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Abstract

EL is a tractable description logic serving as the logical underpinning of large-scale ontologies. We
launch a systematic investigation of the boundary between tractable and intractable reasoning in EL
under relational constraints. For example, we show that there are (modulo equivalence) exactly 3
universal constraints on a transitive and reflexive relation under which reasoning is tractable: being a
singleton set, an equivalence relation, or the empty constraint. We prove a number of results of this
type and discuss a spectrum of open problems including generalisations to the algebraic semantics for
EL (semi-lattices with monotone operators).
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1 Introduction

Standard modal logics are usually based on propositional logic and therefore cannot be
tractable: unless P = NP, no algorithm is capable of checking validity (or satisfiability)
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for such a logic in polynomial time. In most cases, the computational complexity is
even higher: with the notable exception of S5, basic modal logics like K, K4, S4, the
Gödel–Löb logic GL and the Grzegorczyk logic Grz, as well as their polymodal variants,
are all PSpace-complete as far as the ‘local’ reasoning problem ‘if ϕ is true in a world,
then ψ is true in that world’ is concerned. The ‘global’ reasoning problem ‘if ϕ is true
in all worlds, then ψ is true all worlds’ is ExpTime-complete for all polymodal fusions
of these logics and even unimodal K [7].

Very few attempts have been made to understand the complexity of sub-Boolean
modal logics, which do not have all propositional connectives or use them in a restricted
way. For example, Hemaspaandra [10] considered satisfiability of the ‘poor man’s for-
mulas,’ built from literals, ∧, 2 and 3, over various classes of frames. A complete
classification of the complexity of modal satisfiability for finite sets of propositional con-
nectives (without any constraints on frames) was obtained in [4]. More recently, the
computational complexity of sub-Boolean hybrid logics has been considered in [13].

In description logic (DL), the situation is quite different.1 Until the mid-1990s, sub-
Boolean DLs were the rule rather than exception, and mapping out the border between
DLs with tractable and non-tractable reasoning problems was one of the main research
goals [5]. This changed drastically in the second half of the 1990s when the focus was
shifted to DLs with all Booleans (the so-called expressive DLs) due to the develop-
ment of highly optimised tableau decision procedures and reasoning systems exhibiting
satisfactory performance on real-world ontologies given in expressive DLs [11]. As a
consequence, the DL-based web ontology language OWL,2 which became a W3C stan-
dard in 2003, was based solely on expressive DLs with (at least) ExpTime-hard TBox
reasoning. Since then, however, two developments have led to a massive resurgence of
interest in sub-Boolean and tractable DLs.

First, very large ontologies like SNOMED CT 3 (with ≥ 300, 000 axioms) have been
designed and used in every day practice. These ontologies represent application domains
at such a high level of abstraction that the full power of propositional connectives is not
required. On the other hand, the enormous size of the ontologies makes tractability of
reasoning a crucial factor. Second, realising the idea of employing ontologies for data
access requires query answering to be tractable, at least in the size of the typically
very large data sets. The two main families of tractable DLs currently evolving are
EL and DL-Lite. EL is tailored towards representing large ontologies; it is the logical
underpinning of the OWL 2 profile OWL 2 EL. DL-Lite is designed for ontology-based
data access; it is the basis of OWL 2 QL.4

In this paper, we focus on the DL EL, where concepts are constructed using in-
tersection u and existential restriction ∃r.C (∧ and 3rϕ, in the modal logic parlance)
interpreted over relational (or Kripke) models. The fundamental subsumption problem
for general TBoxes in EL—whether every model of an EL TBox (a set of concept in-

1 We refer to differences between research communities and their activities rather than differences
between modal and description logics. The view taken in this paper is that DLs form a class of modal
logics [3].
2 http://www.w3.org/TR/owl-overview/
3 http://www.nlm.nih.gov/research/umls/Snomed/snomed_main.html
4 http://www.w3.org/TR/owl2-profiles/

http://www.w3.org/TR/owl-overview/
http://www.nlm.nih.gov/research/umls/Snomed/snomed_main.html
http://www.w3.org/TR/owl2-profiles/
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clusions C v D) satisfies a given concept inclusion C ′ v D′—is decidable in polynomial
time. In modal logic, this inference corresponds to the global consequence relation ‘if a
set of implications ϕ→ ψ between EL-formulas is true in every world of a Kripke model,
then an implication ϕ′ → ψ′ is true in every world of the model.’ In algebraic terms,
this problem is equivalent to the validity problem for quasi-identities in the variety of
semi-lattices with monotone operators [15].

In DL applications, the intended models are rarely arbitrary; more often they have
to satisfy certain constraints. Of particular importance are constraints imposed on the
interpretation of relations. For example, the Gene Ontology GO5 is an EL ontology
with one transitive relation. SNOMED CT is an EL-ontology interpreted over models
where certain relations are included in each other (e.g., causative agent is a subrelation
of associated with). Other standard OWL constraints (also familiar from modal logic)
include (ir)reflexivity, (a)symmetry and functionality. The complexity of reasoning in
EL under some of such concrete relational constraints is well understood [1,2,15]. For
example, the subsumption problem for general TBoxes in EL is tractable for any finite
set of constraints of the form

r1(x1, x2) ∧ · · · ∧ rn(xn, xn+1)→ rn+1(x1, xn+1) (1)

(the order of the variables is essential). On the other hand, subsumption becomes
ExpTime-complete in the presence of symmetry or functionality constraints [2].

Nevertheless, from a theoretical point of view, the selection of constraints on EL
models investigated so far is rather ad hoc and narrow. In fact, no attempt has been
made to classify constraints according to tractability of EL-reasoning. The aim of this
paper is to start filling in this gap by mapping out the border between tractability and
intractability of TBox reasoning in EL under arbitrary relational constraints.

Our initial findings indicate that informative dichotomy results can indeed be ob-
tained. We establish transparent P/coNP dichotomies for finite classes of finite rela-
tional structures, classes of quasi-orders with universal first-order definitions, and classes
of Noetherian partial orders closed under substructures. Not every relational constraint
is ‘visible’ to EL: for example, as in modal logic, TBox reasoning over irreflexive rela-
tions coincides with TBox reasoning over arbitrary relations. To obtain basic insights
into relational constraints ‘visible’ to EL, we show that, for universal classes of rela-
tional constraints, there is no difference between modal definability and definability in
EL. On the other hand, a typical condition definable in modal logic but not in EL is
the Church-Rosser property.

2 Description logic EL
Fix two disjoint countably infinite sets NC of concept names and NR of role names.
We use arbitrary concept names in NC for constructing complex concepts, but often
restrict the set of available role names to some subset R of NR. Thus, for R ⊆ NR, the

5 http://www.geneontology.org/

http://www.geneontology.org/
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EL-concepts C over R are defined inductively as follows:

C ::= > | ⊥ | A | C1 u C2 | ∃r.C,

where A ∈ NC, r ∈ R and C,C1, C2 range over EL-concepts over R. An R-TBox is a
finite set of concept inclusions (CIs) C v D, where C and D are EL-concepts over R. An
R-interpretation is a structure of the form I = (∆I , ·I), where ∆I 6= ∅ is the domain
of interpretation and ·I is an interpretation function assigning to each concept name
A ∈ NC a set AI ⊆ ∆I and to each role name r ∈ R a binary relation rI ⊆ ∆I ×∆I .
Complex concepts over R are interpreted in I as follows:

>I = ∆I , ⊥I = ∅,
(C1 u C2)I = CI1 ∩ CI2 , (∃r.C)I = {x ∈ ∆I | ∃y ∈ CI (x, y) ∈ rI}.

If CI ⊆ DI , we say that I satisfies C v D and write I |= C v D. I is a model of a
R-TBox T , I |= T in symbols, if it satisfies all the CIs in T .

We now formally define what we understand by constraints on interpretations. An
R-frame is a structure F = (∆F, ·F) where ∆F 6= ∅ and ·F is a map associating with
each r ∈ R a relation rF ⊆ ∆F ×∆F. We say that an R-interpretation I is based on an
R-frame F if ∆I = ∆F and rI = rF for all r ∈ R. A class K of R-frames closed under
isomorphic copies is called an R-constraint, or an R-frame condition. For example, a
constraint for R = {r1, r2, r3} can consist of all R-frames F = (∆F, ·F) with arbitrary rF

1 ,
transitive rF

2 and functional rF
3 . We say that an interpretation I satisfies an R-constraint

K if I is based on some F ∈ K.
A pair (T , C v D) with an R-TBox T and an R-CI C v D will be called an R-

entailment query in EL. Given an R-constraint K, we say that C v D follows from T
with respect to K and write

T |=K C v D
if I |= C v D for every model I of T based on an R-frame in K. For singleton K = {F},
we sometimes write T |=F C v D. The TBox theory ThTK of K is the set of all R-
entailment queries (T , C v D) for which T |=K C v D. The reasoning problem we
consider in this paper, known in description logic as the subsumption problem for K,
is the decision problem for ThTK: given an R-entailment query (T , C v D), decide
whether T |=K C v D.

Example 2.1 In the extension EL+ of EL [1], along with a TBox one can also define an
RBox containing inclusions of the form r1 ◦ · · · ◦ rn v rn+1, where r1, . . . , rn+1 are role
names. In this case we write (T ,R) |= C v D if I |= C v D holds whenever I |= T and
I satisfies constraint (1) for every r1 ◦ · · · ◦rn v rn+1 ∈ R. Reasoning with RBoxes R as
defined above is clearly captured by the frame condition KR containing all NR-frames F

in which constraint (1) is valid for all r1 ◦ · · · ◦ rn v rn+1 in R. According to [1,15], the
subsumption problem for any such KR is decidable in polynomial time.

Example 2.2 It follows from Example 2.1 that the subsumption problem for the class
of transitive frames is in P. Similarly, it is straightforward to extend existing proofs to
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show that the subsumption problem for the classes of reflexive or reflexive and transi-
tive frames is also in P. On the other hand, the subsumption problem for the class of
symmetric frames is ExpTime-complete [2].

3 TBox definability

To better understand the frame conditions in the context of EL, let us take a look
at frame classes that can be defined using TBoxes and compare them with modally
definable frame classes. Thus, we take a brief detour into what is known in modal logic
as correspondence theory [17].

Call R-frame conditions K1 and K2 TBox-equivalent if ThTK1 = ThTK2. For exam-
ple, the standard unravelling argument from modal logic shows that the TBox theory
of the class of all frames coincides with the TBox theory of the class of all irreflexive
frames. Similarly, the finite model property of the TBox theory of all frames [1] means
that it coincides with the TBox theory of all finite frames.

Given a set Γ of R-entailment queries, denote by FrΓ the class of R-frames F such
that T |=F C v D for all (T , C v D) ∈ Γ. An R-frame condition K is TBox definable
if K = FrΓ for a suitable set Γ of R-entailment queries. For example, the class of
transitive {r}-frames is defined by Γ = {(∅,∃r.∃r.A v ∃r.A)}. Observe that in this
definition the TBox is empty. Such R-frame conditions are called concept definable.
Density is another example of a concept definable frame condition: it is defined by
Γ = {(∅,∃r.A v ∃r.∃r.A)}.

The class of R-frames defined by (∅, C v D) is clearly the class of R-frames validating
the modal formula C] → D], where ·] replaces each A ∈ NC with a propositional variable
and each ∃r with 3r. As all formulas of the form C] → D] are Sahlqvist, every concept
definable class is first-order definable, and its first-order definition can be computed
effectively [14]. More generally, a class K of R-frames is modally definable if there is a
set Γ of modal formulas such that F ∈ K iff F |= Γ. K is called globally definable if there
is a set Γ of pairs (ϕ,ψ) of modal formulas such that F ∈ K iff F |= 2uϕ→ 2uψ, where
2u is the universal modality [9]. One can easily show that every TBox definable class is
globally definable.

Recall from modal logic that a p-morphism from an R-frame F1 to an R-frame F2

is a function f : ∆F1 → ∆F2 such that, for every r ∈ R, (i) (v1, v2) ∈ rF1 implies
(f(v1), f(v2)) ∈ rF2 and (ii) if (f(v1), w) ∈ rF2 , then there is v2 with (v1, v2) ∈ rF1 and
f(v2) = w. If there is a p-morphism from F1 onto F2, then F2 is called a p-morphic
image of F1. An R-frame F1 is called a subframe of an R-frame F2 if ∆F1 ⊆ ∆F2 and
rF1 is the restriction of rF2 to ∆F1 , for every r ∈ R. A subframe F1 of F2 is said to be
generated if whenever u ∈ ∆F1 and (u, v) ∈ rF2 , for some r ∈ R, then v ∈ ∆F1 . Finally,
u ∈ ∆F is a root of a frame F if the subframe of F generated by u coincides with F.

The following result is straightforward and left to the reader:

Lemma 3.1 TBox definable frame conditions are closed under p-morphic images and
disjoint unions.

However, unlike modally definable frame classes, TBox definable classes are not nec-
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essarily closed under generated subframes.

Example 3.2 Let Γ = ({> v ∃r.>},> v ⊥). Then the {r}-frame condition FrΓ
contains the {r}-frame F, which is the disjoint union of an r-reflexive point and an r-
irreflexive point, as no interpretation based on F is a model of > v ∃r.>. However, the
subframe of F generated by the r-reflexive point does not belong to FrΓ.

A universal R-frame condition is a class of R-frames definable by universal first-
order sentences in the signature R. Equivalently, by [16], a universal frame condition
is a first-order definable class of frames closed under taking (not necessarily generated)
subframes. The vast majority of frame conditions considered in modal and description
logics are universal: transitivity, reflexivity, symmetry, weak linearity, just to mention
a few. Typical examples of non-universal (first-order) conditions are the Church-Rosser
property and density.

To characterise TBox definable universal frame conditions, with every R-frame F we
associate the ‘TBox’ TS(F) (here we slightly abuse notation as TS(F) is infinite whenever
F or R is infinite) containing the following CIs, where the Au, for u ∈ ∆F, are distinct
concept names:

– Au v ∃r.Av, for (u, v) ∈ rF, r ∈ R;

– Au uAv v ⊥, for u 6= v;

– Au u ∃r.Av v ⊥, for (u, v) /∈ rF, r ∈ R.

The meaning of TS(F) is explained by the following lemma (the standard proof of which
is left to the reader):

Lemma 3.3 Let F be an R-frame with root w. Then, for every R-frame G, we have
TS(F) 6|=G Aw v ⊥ iff F is a p-morphic image of a subframe of G.

Using this lemma we obtain a characterisation of TBox definable universal frame
conditions:

Theorem 3.4 Let K be a universal class of R-frames, for some R ⊆ NR. Then the
following conditions are equivalent:

(1) K is TBox definable;

(2) K is closed under p-morphic images and disjoint unions;

(3) K is modally definable;

(4) K is globally definable.

Proof. By Lemma 3.1, (1) ⇒ (2) and, as shown in [18], (2) ⇔ (3) ⇔ (4). To prove
that (2) ⇒ (1) it suffices to show that FrThTK ⊆ K. So suppose that F ∈ FrThTK.
We will have F ∈ K if we can show that all rooted generated subframes of F are in K
(because F is a p-morphic image of the disjoint union of these frames). So let Fw be the
rooted subframe of F with root w. If Fw /∈ K then, by Lemma 3.3, TS(Fw) |=K Aw v ⊥.
By compactness—as K is first-order definable—there exists a finite subset T of TS(Fw)
with T |=K Aw v ⊥. But then (T , Aw v ⊥) ∈ ThTK and T 6|=Fw

Aw v ⊥, which is a
contradiction. 2
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We conjecture that the equivalence of (1) and (4) in Theorem 3.4 can be generalised
to arbitrary (not necessarily first-order definable) classes of R-frames closed under sub-
frames. Note that without the subframe condition there are modally but not TBox
definable classes of frames. One example is the Church-Rosser property

∀x, y1, y2

(
r(x, y1) ∧ r(x, y2)→ ∃z(r(y1, z) ∧ r(y2, z))

)
,

which is modally definable by 32p → 23p, but not TBox definable; see Section A for
details.

It is beyond the scope of this paper to develop correspondence theory any further.
The main conclusion, however, is clear: as far as TBox definability is concerned, EL is
still a very powerful language, and one has to go beyond subframe conditions to find
natural classes of frames definable in modal logic but not in EL.

4 P/coNP dichotomy for tabular frame conditions

An R-frame condition K is called tabular if there is a number n > 0 such that |∆F| ≤ n
for all F ∈ K. The aim of this section is to characterise the tabular R-frame conditions
K for which the subsumption problem is tractable, that is, there is an algorithm which,
given an R-entailment query (T , C v D), can decide whether T |=K C v D in time
polynomial in the size |(T , C v D)| of (T , C v D). Note that, for any tabular K, ThTK
belongs to coNP. Our proofs of coNP-hardness in this and subsequent sections are by
reduction of the following set splitting problem, which is known to be NP-complete [8]:

– given a family I of subsets of a finite set S, decide whether there exists a splitting of
(S, I), that is, a partition S1, S2 of S such that each set G ∈ I is split by S1 and S2

in the sense that it is not the case that G ⊆ Si for i ∈ {1, 2}.

The characterisation of tabular frame conditions we are about to prove dichotomises
them into functional and non-functional. An R-frame condition K is called R-functional
if, for every F ∈ K, every r ∈ R and every w ∈ ∆F, we have |{v ∈ ∆F | (w, v) ∈ rF}| ≤ 1.
For R-interpretations I1 and I2 based on a functional frame F, we say that I1 is smaller
than I2 and write I1 ≤ I2 if AI1 ⊆ AI2 for all A ∈ NC. Clearly, ≤ is a partial order on
the set of interpretations based on F. A simple proof of the following lemma is given in
Section B.

Lemma 4.1 Suppose that I is an interpretation based on a finite R-functional frame
F and w ∈ ∆I . Given any R-concept C, one can decide in polynomial time in |C|
whether there exists an R-interpretation J such that I ≤ J and w ∈ CJ . If such an
interpretation exists, then there is a unique minimal (with respect to ≤) R-interpretation
I(w,C) ≥ I with w ∈ CI(w,C); moreover, this minimal interpretation can be constructed
in polynomial time in |C|.

We are now in a position to formulate the main result of this section.

Theorem 4.2 Let K be a tabular R-frame condition for a finite R ⊆ NR. Then either
K is functional, in which case ThTK is in P, or ThTK is coNP-complete.
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Proof. Assume first that K is functional and that we are given an R-TBox T and and
R-CI C ′ v D′. Our polynomial time algorithm checking whether T |=K C ′ v D′ runs
as follows. Let F1, . . . ,Fn be a list of all frames in K (up to isomorphism). For each Fi

and each w ∈ Fi, we do the following:

1. Let I be the R-interpretation based on Fi with AI = ∅ for all A ∈ NC.

2. Compute I := I(w,C ′) if it exists (cf. Lemma 4.1). If it does not exist, return
‘yes’ and stop.

3. Apply the following rule exhaustively: for C v D ∈ T and v ∈ ∆I , if v ∈ CI

and I(v,D) does not exist, return ‘yes’ and stop; otherwise, if I(v,D) 6= I, set
I = I(v,D).

4. If w ∈ (D′)I , return ‘yes.’ Otherwise, return ‘no.’

It is easy to see that T |=K C ′ v D′ iff the output is ‘yes’ for all Fi and all w ∈ ∆Fi .
Suppose now that K is not R-functional. Then there exists F ∈ K with w ∈ ∆F such

that |{v | (w, v) ∈ rF}| ≥ 2. Let m be the maximal number for which there exist r ∈ R,
F ∈ K and w ∈ ∆F with |{v | (w, v) ∈ rF}| = m. Fix such r, F and w.

It should be clear that the complement of ThTK is decidable in nondeterministic
polynomial time. We show now that ThTK is coNP-hard by reduction of the set
splitting problem. Suppose we are given an instance (S, I) of this problem. It will be
convenient for us to assume that the members of S are concept names. Consider the
{r}-TBox T containing the following CIs:

(a) Bi uBj v ⊥, for 1 ≤ i < j ≤ m;

(b) A uBi v ⊥, for 3 ≤ i ≤ m and A ∈ S;

(c) ∃r.(Bi u
l

A∈G

A) v ⊥, for i = 1, 2 and G ∈ I.

The meaning of these CIs will become clear from the following:

Claim There exists a splitting of (S, I) iff

T 6|=K
l

A∈S

∃r.A u
l

1≤i≤m

∃r.Bi v ⊥.

Proof of claim. Suppose S1, S2 is a splitting of (S, I). Let w1, . . . , wm be the r-successors
of w in F. Define an interpretation I based on F by setting BIi = {wi} and

AI =

{
{w1}, if A ∈ S1;
{w2}, if A ∈ S2.

The reader can check that w ∈ (
d

A∈S ∃r.A u
d

1≤i≤m ∃r.Bi)I and I |= T .
Conversely, suppose that there is a model I of T based on a frame F ∈ K and such

that v ∈ (
d

A∈S ∃r.A u
d

1≤i≤m ∃r.Bi)I . By the choice of m and (a), v has exactly m

r-successors, say w1, . . . , wm, such that wi ∈ BIi . Now let

S1 = {A ∈ S | w1 ∈ AI}, S2 = {A ∈ S \ S1 | w2 ∈ AI}.
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By (b) and v ∈ (∃r.A)I , AI ∩ {w1, w2} 6= ∅ for any A ∈ S, and so S1, S2 is a partition
of S. We show that S1, S2 is a splitting of (S, I). Indeed, let G ∈ I. By (c), there are
A1, A2 ∈ G such that w1 /∈ AI1 , w2 ∈ AI1 and w2 /∈ AI2 , w1 ∈ AI2 , i.e., A1 ∈ S2 and
A2 ∈ S1.

As the set splitting problem is NP-complete, ThTK is coNP-hard. 2

Note that this proof of coNP-hardness goes through for many other constraints:

Theorem 4.3 Let K be an R-frame condition such that there are r ∈ R and n ≥ 2 for
which (i) no point in frames from K has > n r-successors, and (ii) at least one point
in a frame from K has ≥ 2 r-successors. Then ThTK is coNP-hard.

5 P/coNP-hardness dichotomy for quasi-order con-
straints

In this section we start analysing the border between tractability and intractability of
subsumption for important classes of quasi-orders, i.e., reflexive and transitive frames.
Throughout, we assume that R = {r} and omit R from our terminology. A cluster in
a quasi-order F is a set of the form {v | (u, v), (v, u) ∈ rF}, for some u ∈ ∆F. Single-
point clusters are called simple. A partial order is a quasi-order in which all clusters
are simple. A quasi-order is called Noetherian if it is a partial-order without infinite
ascending chains.

The main result to be proved in this section is the following:

Theorem 5.1 Let K 6= ∅ be a class of quasi-orders closed under isomorphic copies.
(a) If K is universal, then ThTK is in P if one of the following holds:

(a.1) K is TBox-equivalent to the class of all quasi-orders;

(a.2) K is TBox-equivalent to the class of all equivalence relations;

(a.3) K is TBox-equivalent to the singleton class consisting of a single-point frame.

If none of (a.1)–(a.3) holds then ThTK is coNP-hard.
(b) If K is a class of Noetherian partial orders (e.g., a class of finite partial orders)

closed under subframes, then ThTK is in P if one of the following holds:

(b.1) K is TBox-equivalent to the class of all Noetherian partial orders;

(b.2) K is TBox-equivalent to the singleton class consisting of a single-point frame.

If neither (b.1) nor (b.2) holds then ThTK is coNP-hard.

Remark 5.2 Observe that there are uncountably many distinct ThTK, where K is a
universal class of quasi-orders, and exactly three of them are in P. This follows from
Theorem 3.4 and the fact that there are uncountably many distinct universal modally
definable classes of quasi-orders [19]. The same applies to classes of Noetherian partial
orders. To show this, one can again observe that there are uncountably many modally
definable classes of Noetherian quasi-orders closed under subframes [19] and prove that
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they are non-TBox equivalent by using their finite model property [6] and the finite
TBoxes TS(F) for finite rooted F.

The remainder of this section contains the proof of Theorem 5.1. First we concentrate
on statement (b). Call a finite rooted partial order a finite transitive tree if every point
except the root has exactly one immediate predecessor. The proof of (b) consists of
proving the following three claims:

Claim B1 If neither (b.1) nor (b.2) holds for a non-empty class K of Noetherian partial
orders, then there exists a finite transitive tree F /∈ FrThTK such that |∆F| ≥ 3 and
every proper subframe of F is in FrThTK.

Claim B2 If there is a finite transitive tree F /∈ FrThTK such that |∆F| ≥ 3 and every
proper subframe of F is in FrThTK, then ThTK is coNP-hard.

Claim B3 If either of (b.1) or (b.2) holds, then ThTK is in P.

Proof of B1. Let K be a non-empty class of Noetherian partial orders such that neither
(b.1) nor (b.2) holds. Since (b.1) does not hold, we have T |=K C v D, for some T , C
and D such that T 6|=K′ C v D, where K′ is the class of all Noetherian partial orders.
The proof of Theorem 5.3 below shows that we can find a finite interpretation I based
on a Noetherian partial order such that I 6|= C v D and I |= T . (This can also be
proved using the finite model property of Grz.) Further, by applying the standard
unravelling argument to I, we can find a finite transitive tree F such that F /∈ FrThTK
but F′ ∈ FrThTK for all proper subtrees F′ of F.

If F is a single-point frame then F is a p-morphic image of any quasi-order, and so
we must have K = ∅, which is a contradiction. Suppose next that F is a two-point chain.
Then F is a subframe of any rooted Noetherian frame with at least two points, and so K
is TBox-equivalent to a single-point frame, contrary to our assumption that (b.2) does
not hold. It follows that |∆F| ≥ 3.

Proof of B2. We actually prove a slightly stronger claim covering all classes of quasi-
orders closed under subframes. This claim will also be used in the proof of Theorem 5.1
(a). The precise formulation is as follows:

Claim B2∗ Let K be a non-empty class of quasi-orders closed under subframes. If there
is a finite transitive tree F /∈ FrThTK such that |∆F| ≥ 3 and every proper subframe
of F is in FrThTK, then ThTK is coNP-hard.

The proof of this claim is by reduction of the set splitting problem. Suppose that we
are given a family I of subsets of a finite set S. As before, we assume that the elements
of S are concept names. Two cases are possible.

Case 1: F contains a point w1 with exactly one successor w2, which is a leaf. Denote
by F′ the tree obtained from F by removing the leaf w2. Then F′ ∈ FrThTK. Denote by
w the immediate predecessor of w1 in F′; it must exist because |∆F| ≥ 3. Denote by w0

the root of F′ and consider the TBox T containing the following CIs:

– TS(F′) defined in Section 3;

– A u ∃r.Aw′ v ∃r.Aw, for (w,w′) ∈ rF′ , w′ 6= w1, A ∈ S;



Agi Kurucz, Frank Wolter and Michael Zakharyaschev 281

– Aw v ∃r.(A u ∃r.Aw1) for A ∈ S;

– ∃r.(A u ∃r.Aw) u ∃r.(Aw1 u ∃r.A) v ⊥, for A ∈ S;

–
l

A∈G

∃r.(A u ∃r.Aw) v ⊥, for G ∈ I;

–
l

A∈G

∃r.(Aw1 u ∃r.A) v ⊥, for G ∈ I.

Intuitively, we distribute the A ∈ S over w and w1, which represent S1 and S2: if
∃r.(A u ∃r.Aw) 6= ∅ we put A in S1, and if ∃r.(Aw1 u ∃r.A) 6= ∅ we put A in S2.

Claim There exists a splitting of (S, I) iff T 6|=K Aw0 v ⊥.

Proof of claim. Let S1, S2 be a splitting of (S, I). Define an interpretation I based on
F′ by taking AIv = {v} for v ∈ ∆F′ , w ∈ AI for A ∈ S1, and w1 ∈ AI for A ∈ S2. One
can check that I |= T and I 6|= Aw0 v ⊥, from which T 6|=K Aw0 v ⊥ as F′ ∈ FrThTK.

Conversely, let I be a model of T based on a frame G ∈ K and let d0 ∈ AIw0
. Since F′

is a finite transitive tree, one can use Lemma 3.3 to show that there is an embedding f
of F′ into G such that f(w0) = d0, (v, v′) ∈ rF′ iff (f(v), f(v′)) ∈ rG, and f(v) ∈ AIv , for
all v, v′ ∈ ∆F′ . We claim that, for every A ∈ S, we have either d0 ∈ (∃r.(A u ∃r.Aw))I

or d0 ∈ (∃r.(Aw1 u ∃r.A))I . Indeed, suppose that this is not the case for some A ∈ S.
Take the point d = f(w) ∈ Aw with (d0, d) ∈ rG. By the definition of T , we have
d ∈ (∃r.(A u ∃r.Aw1))I , and so, in view of reflexivity of rG and our assumption, there
must exist points d′ and d′′ such that (d, d′), (d′, d′′) ∈ rG, (d′, d), (d′′, d′) 6∈ rG; d′ ∈ AI ,
d′′ ∈ Aw1 ; and d′ 6∈ (∃r.Aw)I . As d′ 6∈ (∃r.Aw)I , by the definition of T , we must have
d′ 6∈ (∃r.Aw′)I , for all w′ with w′ 6= w1. Consider now the map f ′ : ∆F → ∆G defined
by taking

f ′(u) =


f(u), if u /∈ {w1, w2};
d′, if u = w1;
d′′, if u = w2.

Clearly, f ′ is an embedding of F into G, contrary to F /∈ FrThTK and K being closed
under subframes.

Thus, we have shown that, for every A ∈ S, either (i) d0 ∈ (∃r.(A u ∃r.Aw))I or (ii)
d0 ∈ (∃r.(Aw1 u ∃r.A))I , but not both, as stated in the definition of T . Define S1 and
S2 by putting A in the former if (i) holds and in the latter if (ii) holds. The last two
items in the definition of T guarantee that S1, S2 is a splitting of (S, I).

This completes the proof for Case 1. The complement of Case 1 is the following:

Case 2: F contains a point w with at least two successors, and all successors of w
are leaves. Take a proper successor w3 of w and denote by F′ the frame obtained from
F by removing w3. Let w1 be one of the remaining successors of w in F′. Denote by F′′

the frame obtained from F′ by adding a fresh successor w2 to w1. Clearly, both F′ and
F′′ are finite transitive trees; as before, we denote by w0 the root of F′′. Two cases are
possible now.

Case 2.1: F′′ ∈ FrThTK. To encode set splitting for (S, I), we need additional
concept names Ā, for A ∈ S. This time the intuition behind the encoding is as follows:
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A ∈ S1 will be encoded by ∃r(A′ u ∃r.Ā′) and A ∈ S2 by ∃r.(Ā′ u ∃r.A′), where A′ =
Aw1 uA and Ā′ = Aw1 u Ā. Let T be the TBox with the following CIs:

– TS(F′′);

– Aw v ∃r.A′, for A ∈ S;

– Aw v ∃r.Ā′, for A ∈ S;

– ∃r.(A′ u ∃r.Ā′) u ∃r.(Ā′ u ∃r.A′) v ⊥. for A ∈ S;

–
l

A∈G

∃r.(A′ u ∃r.Ā′) v ⊥, for G ∈ I;

–
l

A∈G

∃r.(Ā′ u ∃r.A′) v ⊥, for G ∈ I.

Claim There exists a splitting of (S, I) iff T 6|=K Aw0 v ⊥.

Proof of claim. Suppose S1, S2 is a splitting of (S, I). Define an interpretation I based
on F′′ by taking AIv = {v} for v ∈ ∆F′′ \ {w1, w2}, AIw1

= {w1, w2}, w1 ∈ AI and
w2 ∈ ĀI for A ∈ S1, w2 ∈ AI and w1 ∈ ĀI for A ∈ S2. It is readily checked that I |= T
and I 6|=K Aw0 v ⊥. Thus, T 6|=K Aw0 v ⊥.

Conversely, let I be a model of T based on a frame G ∈ K and d0 ∈ AIw0
. Since F′

is a finite transitive tree, there is an embedding f of F′ into G such that f(w0) = d0,
(v, v′) ∈ rF′ iff (f(v), f(v′)) ∈ rG and f(v) ∈ AIv for all v, v′ ∈ ∆F′ . We claim that, for
every A ∈ S, either d0 ∈ (∃r.(A′ u ∃r.Ā′))I or d0 ∈ (∃r.(Ā′ u ∃r.A′))I . Indeed, assume
that this is not the case for A ∈ S. Let d = f(w) ∈ Aw with (d0, d) ∈ rG. Then there
are rG-incomparable d1, d2 ∈ AIw1

such that (d, d1), (d, d2) ∈ rG. Now we modify f to
a map f ′ from F into G by taking f ′(w1) = d1 and f ′(w3) = d2, where w3 is the point
removed from F in the definition of F′. Clearly, f ′ is an embedding of F into G, contrary
to F /∈ FrThTK and K being closed under subframes.

Case 2.2: F′′ /∈ FrThTK. As F′ ∈ FrThTK, we can deal with F′′ in precisely the
same way as in Case 1.

This completes the proof of B2∗.

Proof of B3. If (b.2) holds, then ThTK is in P, by Theorem 4.2. The case (b.1) is proved
in Theorem 5.3 below.

The proof of Theorem 5.1 (a) proceed via the following four claims:

Claim A1 Let K 6= ∅ be a universal class of quasi-orders. If none of (a.1)–(a.3) holds,
then either
(eq) K is a class of equivalence relations such that the size of equivalence classes is

bounded by some n > 1 and at least one equivalence relation in K is different from
identity, or

(tr) there is a finite transitive tree F /∈ FrThTK such that |∆F| ≥ 3 and every proper
subframe of F is in FrThTK.

Claim A2 If (tr) holds, then ThTK is coNP-hard by Claim B2∗.

Claim A3 If (eq), then ThTK is coNP-hard.
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Claim A4 If one of (a.1), (a.2) or (a.3) holds, then ThTK is in P.

The proof of A1 is similar to the proof of B1 and is given in Section C. A3 is an
immediate consequence of Theorem 4.3. For A4, the case (a.3) follows from Theorem 4.3
and the case (a.1) is a straightforward modification of the polynomial time algorithm
for transitive frames [1]. It thus remains to consider the case (a.2) in which K is TBox-
equivalent to the class of all equivalence relations. This is proved in Theorem 5.3 below.

Theorem 5.3 Let K be the class of Noetherian partial orders or the class of equivalence
relations. Then ThTK is in P.

The proof of this theorem uses the notion of canonical interpretation, which was
introduced and investigated in [1,12].

Canonical interpretation for the class of all frames. For the class K of all NR-frames,
every satisfiable TBox T and every concept name A0, the canonical interpretation IT ,A0

is an interpretation with a designated dA0 ∈ ∆IT ,A0 , which can be constructed in poly-
nomial time in such a way that for all concepts D,

dA0 ∈ DIT ,A0 iff T |=K A0 v D.

Thus, one can check in polynomial time whether T |=K A0 v D by inspecting IT ,A0 .
We now describe the construction of IT ,A0 and its properties in more detail. Without

loss of generality, we assume that all TBoxes T in this section are normalised in the
sense that in every C v D ∈ T , the concept D is either a concept name or of the form
∃r.A, for a concept name A, and in every subconcept ∃r.E of C, E is a concept name.
Moreover, when deciding whether T |=K C v D we can assume that C is a concept
name. An easy polynomial reduction of the general subsumption problem to this case
by adding ‘abbreviations’ A ≡ C (i.e., A v C and C v A) to TBoxes can be found in
[1].

Assume now that we are given a normalised TBox T and a concept name A0. We
consider first the case when ⊥ does not occur in T . Denote by sub(T ) the set of
subconcepts of concepts in T . First, define an interpretation I0 by taking

∆I0 = {dA0} ∪ {dA | ∃r.A ∈ sub(T )},

where the dA and dA0 are fresh objects. Set d ∈ AI0 iff d = dA, for all dA ∈ ∆I0 , and
rI0 = ∅. Next, we apply exhaustively the following two rules to I := I0:

– for C v A ∈ T and d ∈ ∆I0 , if d ∈ CI and d 6∈ AI , then update I by setting
AI := AI ∪ {d} and leaving the interpretation of all remaining symbols unchanged;

– for C v ∃r.A ∈ T and d ∈ ∆I0 , if d ∈ CI and d 6∈ (∃r.A)I , then update I by setting
rI := rI ∪ {(d, dA)} and leaving it unchanged for the remaining symbols.

The resulting interpretation is denoted by IT ,A0 and called the canonical interpretation
of T and A0. Clearly, it can be constructed in polynomial time. It will be convenient
to employ a characterisation of IT ,A0 in terms of simulations. Recall that a relation
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S ⊆ ∆I1 × ∆I2 is a simulation between interpretations I1 and I2 if the following
conditions hold:

(i) for all concept names A and all (e1, e2) ∈ S, if e1 ∈ AI1 then e2 ∈ AI2 ;

(ii) for all role names r, all (e1, e2) ∈ S and all e′1 ∈ ∆I1 with (e1, e
′
1) ∈ rI1 , there exists

e′2 ∈ ∆I2 such that (e2, e
′
2) ∈ rI2 and (e′1, e

′
2) ∈ S.

For interpretations I1, I2 with d1 ∈ ∆I1 , d2 ∈ ∆I2 , we write (I1, d1) ≤ (I2, d2) and say
that (I1, d1) is simulated by (I2, d2) if there is a simulation S between I1 and I2 such
that (d1, d2) ∈ S.

The role of simulations in EL is explained by the following two lemmas the proofs of
which can be found in [12].

Lemma 5.4 If (I1, d1) ≤ (I2, d2) and d1 ∈ CI1 then d2 ∈ CI2 , for any C.

Now, the canonical interpretation IT ,A0 can be characterised as an interpretation
simulated by any other interpretation satisfying the TBox T and the appropriate concept
names:

Lemma 5.5 IT ,A0 |= T and, for all interpretations I with I |= T , all dA ∈ ∆IT ,A0

and d ∈ AI , we have (IT ,A0 , dA) ≤ (I, d).

It follows immediately that, as claimed above, T |= A0 v D iff dA0 ∈ DIT ,A0 .

Canonical interpretation for equivalence relations. We introduce a canonical interpre-
tation, denoted by Ie

T ,A0
, which characterises TBox reasoning over equivalence relations

in the same way as IT ,A0 characterises TBox reasoning over arbitrary frames. Set

En = ({1, . . . , n}, rEn = {1, . . . , n} × {1, . . . , n}), Eω = (ω, rEω = ω × ω).

Clearly, for the class E of all equivalence relations, we have

T |=E C v D iff T |=Eω C v D iff T |={Ei|i<ω} C v D.

Lemma 5.6 Given A0 and a normalised T not containing ⊥, one can construct in
polynomial time, starting from IT ,A0 , an interpretation Ie

T ,A0
based on some En such

that

(i) Ie
T ,A0

|= T and dA0 ∈ A
Ie
T ,A0

0 , and

(ii) if J is an interpretation based on Eω with d ∈ AJ0 , then (Ie
T ,A0

, dA0) ≤ (J , d).

Proof. Given an interpretation I and d ∈ ∆I , we define a new interpretation Id
∼ which

coincides with I except that (e1, e2) ∈ rId
∼ , for all e1, e2 reachable from d via an rI-path

d1, . . . , dn with d = d1 and (di, di+1) ∈ rI for i < n. We now apply exhaustively the
following rules to I = IT ,A0 :

(s1) if I 6= IdA0∼ then set I := IdA0∼ ;

(s2) for C v A ∈ T and d ∈ ∆I , if d ∈ CI and d 6∈ AI then update I by setting
AI := AI ∪ {d} and leaving the interpretation of all remaining symbols unchanged;
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(s3) for C v ∃r.A ∈ T and d ∈ ∆I , if d ∈ CI and d 6∈ (∃r.A)I then update I by setting
rI := rI ∪ {(d, dA)} and leaving it unchanged for the remaining symbols.

Denote by Ie
T ,A0

the restriction of the resulting interpretation to the subframe generated
by dA0 . Clearly, it can be constructed in polynomial time. One can show that Ie

T ,A0
is

as required (for details see Section D). 2

Using Lemma 5.6, we can decide whether T |=Eω
A0 v D by checking, in polynomial

time, whether dA0 ∈ D
Ie
T ,A0 . If T contains ⊥, we replace every occurrence of ⊥ in T

by the concept name A⊥ and denote the resulting TBox by T ⊥. By Lemma 5.6, the
following conditions are equivalent:

– T ⊥ |=Eω A0 v ∃rn.A⊥ for some n;

– A
Ie

T⊥,A0
⊥ 6= ∅;

– T |= A0 v ⊥.

Thus, T |= A0 v D iff T ⊥ |= A0 v D or A
Ie

T⊥,A0
⊥ 6= ∅, and both conditions can be

checked in polynomial time.

Canonical interpretation for Noetherian partial orders. Finally, we define a canonical
interpretation IN

T ,A0
which characterises TBox reasoning over Noetherian partial orders.

Lemma 5.7 Given A0 and T not containing ⊥, one can construct in polynomial time,
starting from IT ,A0 , an interpretation IN

T ,A0
based on a finite partial order with root d∗A0

and such that

(i) IN
T ,A0

|= T and d∗A0
∈ A

IN
T ,A0

0 , and

(ii) if J is based on a partial order and d ∈ AJ0 , then (IN
T ,A0

, d∗A0
) ≤ (J , d).

Proof. Let I+
T ,A0

be the interpretation obtained from IT ,A0 by adding a copy d∗A0
of

dA0 to its domain. More precisely, we set (d∗A0
, d) ∈ rI

+
T ,A0 whenever (dA0 , d) ∈ rIT ,A0

or d = d∗A0
(note that d∗A0

has no proper predecessors). We set d{A} = dA, for all
dA ∈ ∆IT ,A0 , and define two operators on interpretations I whose domains consist of
points dX , where X is a nonempty set of concept names, and the point d∗A0

.
First, define I∗ by replacing rI with its transitive and reflexive closure rI

∗
. Second,

if rI is transitive and reflexive and d ∈ ∆I , then define Id by removing the cluster
[d] = {d′ ∈ ∆I | (d, d′), (d′, d) ∈ rI} generated by d from I, replacing it with a single
point dX , where X =

⋃
dY ∈[d] Y , and setting dX ∈ AId iff d′ ∈ AI , for some d′ ∈ [d].

(This operation has no effect for singleton [d].) Now, we apply exhaustively the following
rules to I = IT ,A0 :

(r1) if rI is transitive and reflexive and I 6= Id, for some d ∈ ∆I , then set I := Id;

(r2) if I 6= I∗ then set I := I∗;
(r3) for C v A ∈ T and d ∈ ∆I , if d ∈ CI and d 6∈ AI then update I by setting
AI := AI ∪ {d} and leaving the interpretation of all remaining symbols unchanged;

(r4) for C v ∃r.A ∈ T and d ∈ ∆I , if d ∈ CI and d 6∈ (∃r.A)I then update I by setting
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rI := rI ∪ {(d, dX)} for the (unique) X with A ∈ X and leaving the interpretation of
all remaining symbols unchanged.

Denote by IN
T ,A0

the restriction of the resulting interpretation to the subframe generated
by d∗A0

. One can show that IN
T ,A0

is as required; see Section D. 2

We can now apply Lemma 5.7—in the same way as Lemma 5.6—to obtain a poly-
nomial time decision procedure for ThTK, K the class of Noetherian partial orders, and
TBoxes with and without ⊥.

6 Future directions

Our primary aim in this paper was to start investigating—from a purely theoretical
standpoint—the difference between tractable and intractable relational constraints in
the context of the sub-Boolean DL EL (a finer classification of the intractable constraints
could also be very interesting). As a next step, one can consider classes of transitive
frames or general frame conditions closed under subframes. We note, however, that
even for classes of irreflexive transitive frames without infinite ascending chains (aka
Noetherian transitive frames) closed under subframes, the dichotomy appears to be
much more involved than for Noetherian partial orders. For example, using the technique
developed above one can show that ThTK is in P not only for the class K of all such
frames (the EL analogue of GL) but also for the class of irreflexive transitive frames of
depth ≤ n, for any n < ω. We conjecture that there are other ‘polynomial classes’ of
Noetherian transitive frames.

Although DLs come equipped with the intended semantics, generalisations to the
algebraic setting would also be of interest. In Section 3, we gave first ‘correspondence’
results for EL, aiming to demonstrate the type of relational constraints ‘visible’ to EL.
It turned out that essentially all ‘standard’ modal conditions were TBox definable. Here
are two more illustrative examples:

– Γ0 = {(∅,∃r.∃r.A v ∃r.A), (TS(◦), Aw v ⊥)} defines the class of Noetherian transitive
frames (◦ is a single reflexive point w);

– Γ1 = {(∅,∃r.∃r.A v ∃r.A), (∅, A v ∃r.A), (TS(
�� ��◦◦ ), Aw v ⊥)} defines the class of

Noetherian partial orders (
�� ��◦◦ is a two-point cluster containing w).

Despite the insights provided by such results, their applicability is somewhat limited.
The main problem is that correspondence alone does not build a bridge between the
algebraic/syntactic and the first-order views of modal logic. Ideally, correspondence
results should come together with completeness results, like in Sahlqvist’s theorem [14].
For instance, we would like to know whether the Γi above actually axiomatise (in some
equational or Hilbert-style calculus) the classes of frames they define. Unfortunately,
but not surprisingly, the gap between correspondence and completeness in EL is even
wider than in classical modal logic. To be a bit more precise, we can regard EL-concepts
to be terms in the language of bounded semi-lattices with monotone operators (see, e.g.,
[15]). Then every CI C v D can be identified with the identity C uD = C, and every
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R-entailment query (T , C ′ v D′) with the quasi-identity

l

CvD∈T

C uD = C ⇒ C ′ uD′ = C ′.

Now, we call a set Γ of R-entailment queries complete (for relational models) if, for every
R-entailment query q = (T , C v D), we have T |=FrΓ C v D iff q is valid in all bounded
semi-lattices with monotone operators validating Γ. Γ = ∅ was shown to be complete in
[15] by reduction of TBox reasoning in EL to validity of quasi-identities in semi-lattices
with distributive operators. It is also shown in [15] that (∅, {∃r1. · · · ∃rn.A v ∃rn+1.A})
is complete for the R-frames defined in (1). However, numerous completeness questions
(e.g., for Γ0 and Γ1 above) remain open.

The P/NP dichotomy problem can be extended to the algebraic setting. It is to be
noted, however, that there are ‘many more’ quasi-varieties of semilattices with monotone
operators than TBox non-equivalent relational constraints. In contrast to modal logic,
this is already the case for tabular logics. Indeed, consider the 3-element set-semilattice
{∅, {a}, {a, b}} with 3r(∅) = ∅, 3r({a}) = ∅ and 3r({a, b}) = {a} induced by the 2-
element irreflexive {r}-frame F = ({a, b}, rF = {(a, b)}). This semilattice A validates
(∅,∃r.A v A). One can readily show that (i) the TBox theory corresponding to the
quasi-variety generated by A is ‘incomplete’ for relational models as it is not TBox
equivalent to any TBox theory of any class of {r}-frames, and (ii) that {(∅,∃r.A v A)}
is not complete either. Thus, even simple Sahlqvist inequalities such as 3x ≤ x become
incomplete when added as axioms to the theory of bounded semilattices with monotone
operators. It follows that we cannot obtain dichotomy results for (even tabular) quasi-
varieties of semi-lattices with monotone operators as immediate consequences of the
results presented in this paper.
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A Church-Rosser property is not TBox definable

To show that the Church-Rosser property is not TBox definable, we prove a more general
closure property. Call a subframe F′ of F downward closed if whenever v ∈ ∆F′ and
(v′, v) ∈ rF then v′ ∈ ∆F′ .

Lemma A.1 TBox definable {r}-frame conditions are closed under downward closed
subframes of Noetherian partial orders.

Proof. Suppose that F ∈ FrΓ is a Noetherian partial order and F′ is a downward closed
subframe of F. Assume also that I ′ is based on F′, I ′ |= T and I ′ 6|= C ′ v D′. We have
to show that there exists a model I based on F such that I |= T and I 6|= C ′ v D′. We
construct I by extending I ′ to F in the following way:

AI = AI
′
∪ (∆F \∆F′), for all A with I ′ |= > v ∃r.A.

For the remaining concept names A, we set AI = AI
′
. Using the condition that F is

Noetherian, one can prove by induction that, for all concepts C and all v ∈ ∆F \∆F′ ,

v ∈ CI iff I ′ |= > v ∃r.C.

It follows that v ∈ CI′ iff v ∈ CI , for all v ∈ ∆F′ . Moreover, suppose that there exists
v ∈ ∆F \ ∆F′ such that v ∈ CI \ DI , for some C,D. Then w ∈ CI′ , for all w ∈ ∆F′
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without proper r-successors in ∆F′ , and there exists such a w0 with w0 ∈ DI
′
. It follows

that I |= T and I 6|= C ′ v D′. 2

The Church-Rosser property is not TBox definable because it is not closed under
downward closed subframes of Noetherian partial orders.

B Proof of Lemma 4.1

Lemma B.1 Given any R-concept C, one can decide in polynomial time in |C| whether
there exists an R-interpretation J such that I ≤ J and w ∈ CJ . If such an interpre-
tation does exist, then one can construct, again in polynomial time in |C|, the smallest
(with respect to ≤) R-interpretation I(w,C) ≥ I such that w ∈ CI(w,C).

Proof. If w /∈ CI , we ‘saturate’ I in the following way. Let e(w) be the set of all
conjuncts of C and e(u) = ∅ for u 6= w. If ∃r.D ∈ e(u) and (u, v) ∈ rI , for some v, we
remove ∃r.D from e(u) and add all the conjuncts of D to e(v). If there is no such v,
then the required interpretation does not exist. Otherwise, we repeat the construction.
After at most |C| steps, every e(u) will either be empty or contain only atomic concepts.
Then we define I(w,C) by taking AI(w,C) = AI ∪ {u | A ∈ e(u)}, for every concept
name A. 2

C Proof of Claim A1

Claim A1 Let K 6= ∅ be a universal class of quasi-orders. If none of (a.1)–(a.3) holds,
then either
(eq) K is a class of equivalence relations such that the size of equivalence classes is

bounded by some n > 1 and at least one equivalence relation in K is different from
identity, or

(tr) there is a finite transitive tree F /∈ FrThTK such that |∆F| ≥ 3 and every proper
subframe of F is in FrThTK.

Proof. As (a.1) does not hold, there are T , C and D such that T |=K C v D and
T 6|=K′ C v D for the class K′ of all quasi-orders. Using the finite model property of S4,
one can readily show that there exists a finite interpretation I based on a quasi-order
such that I |= T but I 6|= C v D. Applying the unravelling argument to I provides
us with a finite transitive tree of clusters G with G /∈ FrThTK. By replacing every
cluster in G with an infinite ascending chain, we obtain an infinite G′ /∈ FrThTK all
rooted finite subframes of which are transitive trees. But then, using the fact that K is
universal and employing Tarski’s finite embedding property [16] (see also [6,19]), we can
show that there is a finite transitive tree F with F /∈ FrThTK. Take a minimal F of this
kind. Now, if F contains only one point then F is a p-morphic image of any quasi-order,
and therefore K = ∅, which is a contradiction. If F is a rooted frame with two points
then F is a subframe of every rooted quasi-order with at least two clusters. Thus, K
can only be a class of equivalence relations. As (a.3) does not hold, K cannot consist
only frames with the identity relation. It follows that either K is a class of equivalence
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relations with equivalence classes of size bounded by some n > 1 and containing at
least one equivalence relation not identical to the identity relation or ThTK is the TBox
theory of all equivalence relations, contrary to our assumption that (a.2) does not hold.
The only remaining case is |∆F| ≥ 3. 2

D Proofs of Lemmas 5.6 and 5.7

Lemma D.1 Given A0 and T not containing ⊥, one can construct in polynomial time,
starting from IT ,A0 , an interpretation Ie

T ,A0
based on some En such that

(i) Ie
T ,A0

|= T and dA0 ∈ A
Ie
T ,A0

0 , and

(ii) if J is an interpretation based on Eω with d ∈ AJ0 , then (Ie
T ,A0

, dA0) ≤ (J , d).

Proof. Let IT ,A0 = I0, I1, . . . be a sequence obtained from IT ,A0 by applying the rules
(s1), (s2), (s3). We show by induction on n ≥ 0 that if J is based on Eω, J |= T and
AJ0 6= ∅, then the relation

S =
⋃

dA∈∆In

{(dA, d) | d ∈ AJ }

is a simulation between In and J . For I0 this follows from Lemma 5.4 (can). Now
suppose that the claim holds for In. Observe that ∆In = ∆In+1 , and so the relation S

does not depend on n.
Case 1: In+1 = IdA0∼ for I = In. By IH, S is a simulation between In and J . As the

interpretation of concept names coincides for In and In+1, it is sufficient to show that,
for (dA, dB) ∈ rIn+1 and (dA, d

′) ∈ S, there exists d′′ ∈ ∆J such that (dB , d
′′) ∈ S. This

follows from IH if (dA, dB) ∈ rIn . Otherwise, dA, dB are both reachable from dA0 in In.
In view of AJ0 6= ∅ and IH, there exists d such that (dA0 , d) ∈ S. Since S is a simulation
between In and J and dB is reachable from dA0 , there exists d′′ with (dB , d

′′) ∈ S, as
required.

Case 2: In+1 is obtained from In using (s2). This case follows from J |= T .
Case 3: In+1 is obtained from In using (s3). Let C v ∃r.B ∈ T , d0 ∈ CIn and

rIn+1 = rIn ∪ {(d0, dB)}. By IH, it is sufficient to show that if (d0, d) ∈ S, then there
exists d′ with (dB , d

′) ∈ S. Suppose (d0, d) ∈ S. Since d0 ∈ CIn and S is a simulation
between In and J , we obtain d ∈ CJ (Lemma 5.4). Since J |= T , there exists d′ ∈ ∆J

such that d′ ∈ BJ . But then (dB , d
′) ∈ S, as required. 2

Lemma D.2 Given A0 and T not containing ⊥, one can construct in polynomial time,
starting from IT ,A0 , an interpretation IN

T ,A0
based on a finite partial order with root d∗A0

such that

(i) IN
T ,A0

|= T and d∗A0
∈ A

IN
T ,A0

0 , and

(ii) if J is based on a partial order and d ∈ AJ0 , then (IN
T ,A0

, d∗A0
) ≤ (J , d).
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Proof. Let IT ,A0 = I0, I1, . . . be a sequence obtained from I+
T ,A0

by applying the rules
(r1), (r2), (r3), (r4). For a Noetherian partial order J and a concept name A, we set

m(A)J =
{
d ∈ AJ | ∀d′ [(d′ ∈ AJ ∧ (d, d′) ∈ rJ )⇒ d = d′]

}
and call the elements of m(A)J maximal in AJ . We show by induction on n ≥ 0 that,
for every interpretation J based on a Noetherian partial order and such that J |= T ,

Sn = {(d∗A0
, d) | d ∈ AJ0 } ∪

⋃
dX∈∆In

{(dX , d) | ∃A ∈ X d ∈ m(A)J }

is a simulation between In and J , and for every dX ∈ ∆In , m(A)J = m(B)J for all
A,B ∈ X. For I0 this is readily shown using Lemma 5.4 (can) and the fact that J is a
Noetherian partial order.

Case 1: In+1 = Id for I = In. Let X =
⋃

dY ∈[d] Y . We first show that m(A)J =
m(B)J for all A,B ∈ X. Suppose that d ∈ m(A)J . Let A ∈ X1, B ∈ X2 be such that
dX1 , dX2 ∈ [d]. Then (dX1 , d) ∈ Sn. Since Sn is a simulation and (dX1 , dX2), (dX2 , dX1) ∈
rIn , there exist d′, d′′ with (d, d′), (d′, d′′) ∈ rJ and (dX2 , d

′), (dX1 , d
′′) ∈ Sn. By IH,

d′ ∈ m(B)J and d′′ ∈ m(A)J . Then d = d′′ and, therefore, d = d′ and d ∈ m(B)J , as
required. It is now straightforward to show that Sn+1 is a simulation between In+1 and
J .

Case 2: In+1 = I∗n. This case is straightforward in view of transitivity of J .
Case 3: In+1 is obtained from In using (r3). This case follows from J |= T .
Case 4. In+1 is obtained from In using (r4). Let C v ∃r.B ∈ T , d0 ∈ CIn

and rIn+1 = rIn ∪ {(d0, dX)}, where B ∈ X. By IH, it is sufficient to show that if
(d0, d) ∈ Sn+1, then there exists d′ with (d, d′) ∈ rJ and (dX , d

′) ∈ Sn+1. Suppose that
(d0, d) ∈ Sn+1. Then (d0, d) ∈ Sn. Since d0 ∈ CIn and Sn is a simulation between In

and J , we obtain d ∈ CJ by Lemma 5.4. Since J |= T , there exists d′ ∈ ∆J such that
d′ ∈ BJ and (d, d′) ∈ rJ . Since J is Noetherian, we may assume that d′ ∈ m(B)J .
But then (dX , d

′) ∈ Sn+1, as required. 2
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