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Abstract In this paper, a logic for reasoning about coalitional power is developed
which explicitly represents agents’ preferences and the actions by which the agents
can achieve certain results. A complete axiomatization is given and its satisfiability
problem is shown to be decidable and EXPTIME-hard.
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1 Introduction

Cooperation of agents plays a major role in many fields such as computer science,
economics, politics, social sciences and philosophy. Agents can decide to cooperate
and to form groups in order to share complementary resources or because as a group
they can achieve something better than individually.

When analyzing interactive situations involving multiple agents, we are interested
in what results agents can achieve—individually or together as groups. There can be
many ways how agents can achieve some result. They can differ significantly, e.g.
with respect to their feasibility, costs or side-effects. Hence, it is not only relevant
what results groups of agents can achieve but also how exactly they can do so. In other
words, plans and actions also play a central role if we want to reason about cooperation
in an explicit way. However, cooperative ability of agents expressed only in terms of
results and actions that lead to these results does not tell us why a group of agents
would actually decide to achieve a certain result. We also need to take into account
the preferences based on which the agents decide what to do. Summarizing, we can
say that in interactive situations, the following three questions are of interest:
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– What results can groups of agents achieve?
– How can they achieve something?
– Why would they want to achieve a certain result?

The above considerations show that coalitional power, actions/plans and prefer-
ences play a major role in interactive situations and are moreover tightly connected.
Thus, we argue that a formal theory for reasoning about agents’ cooperative abili-
ties in an explicit way should also take into account actions/plans of agents and their
preferences.

Modal logics have been used to develop formal models for reasoning about each
of these aspects—mostly separately. Coalitional power has mainly been investigated
within the frameworks of ATL (Alur et al. 1998), coalition logic (Pauly 2002a) and
their extensions.

Recently, there have been some attempts to develop logics for reasoning about
coalitional power that also take into account either agents’ preferences or actions.
One group of such logics looks at cooperation from the perspective of cooperative
games (Ågotnes et al. 2007a). In a non-cooperative setting preferences and strategic
abilities have been considered in van Otterloo et al. (2004). Another path that has
been taken in order to make coalitional power more explicit is to combine cooperation
logics with (fragments of) action logics (Sauro et al. 2006; Borgo 2007; Walther et al.
2007).

In this paper, a logic for reasoning about cooperation, actions and preferences
(CLA+P) is developed, which is obtained by combining the cooperation logic with
actions CLA (Sauro et al. 2006) with a preference logic (van Benthem et al. 2005;
van Benthem et al. 2007). Soundness and completeness are shown and the logic’s
expressivity and computational complexity are investigated.

The remainder of this paper is structured as follows. Section 2 gives an overview
of CLA. In Sect. 3, CLA+P is developed, a complete axiomatization is given and its
expressivity is discussed. Section 4 gives complexity results and Sect. 5 concludes this
work.

2 Cooperation logic with actions

In this section, we briefly present the CLA developed by Sauro et al. (2006), which
will be extended in the next section by combining it with a preference logic. The idea
of CLA is to make coalitional power explicit by expressing it in terms of the ability
to perform actions instead of expressing it directly in terms of the ability to achieve
certain outcomes. CLA is a modular modal logic, consisting of an environment mod-
ule for reasoning about actions and their effects, and an agents module for reasoning
about agents’ abilities to perform actions. By combining both modules, a framework
is obtained in which cooperative ability can be made more explicit.

The environment is modeled as a transition system whose edges are labeled with
sets of atomic actions.

Definition 1 (Environment Model (Sauro et al. 2006)) An environment model is a
set-labelled transition system
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E = 〈S, Ac, (→)A⊆Ac, V 〉.

S is a set of states, Ac is a finite set of atomic actions, →A⊆ S × S and V is a
propositional valuation. Each →A is required to be serial.

The intuition being s →A t is that if in s all actions and only the actions in A are
performed concurrently, then the next state can be t .

Then a modal language is defined with modalities [α], for α being a propositional
formula built from atomic actions. The intended meaning of [α]ϕ is that every transi-
tion →A such that A � α (using the satisfaction relation of propositional logic1) leads
to a ϕ-state:

E, s � [α]ϕ iff ∀A ⊆ Ac, t ∈ S : if A � α and s →A t then E, t � ϕ.

Due to space restrictions, we cannot go into the underlying philosophy of actions
but refer the reader to Broersen (2003) for a detailed discussion of action logics. The
restriction to a finite set of actions is reasonable for modelling many concrete situations
and also ensures that we have a finite axiomatization.

An environment logic�E is developed, which is sound and complete (Sauro et al.
2006). It contains seriality axioms and the K axiom for each modality [α], for α being
consistent. The environment logic can then be used for reasoning about the effects of
concurrent actions.

Then an agents module is developed for reasoning about the ability of (groups of)
agents to act. Each agent is assigned a set of atomic actions and a group is assigned
the actions its members can perform.

Definition 2 (Agents Model (Sauro et al. 2006)) An agents model is a triple 〈Ag, Ac,
act〉, where Ag is a set of agents, Ac is a set of atomic actions and act is a function
act: Ag → P(Ac) such that

⋃
i∈Agact(i) = Ac. For G ⊆ Ag, define act(G) :=⋃

i∈Gact(i).

We are also interested in agents’ abilities to force more complex actions. A lan-
guage is developed with expressions 〈[G]〉 α, meaning that the group G can force that
a concurrent action is performed that satisfies α. This means that G can perform some
set of atomic actions such that no matter what the other agents do, the resulting set of
actions satisfies α.

〈Ag, Ac,act〉 � 〈[G]〉 α iff ∃A ⊆ act(G) : ∀B ⊆ act(Ag\G) : A ∪ B � α.

Then a cooperation logic for actions is developed, which is very much in the style
of coalition logic (Pauly 2002a)—the main difference being that it is concerned with
the cooperative ability to force actions.

Definition 3 (Coalition Logic for Actions (Sauro et al. 2006)) The coalition logic for
actions �A is defined to be the logic derived from the following set of axioms, with
rule of inference modus ponens.

1 That is, A � a iff a ∈ A, A � ¬α iff A � α, and A � α ∧ β iff A � α and A � β.
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(1) 〈[G]〉 
, for all G ⊆ Ag,
(2) 〈[G]〉 α → ¬〈[Ag\G]〉 ¬α,
(3) 〈[G]〉 α → 〈[G]〉 β if � α → β in propositional logic,
(4) 〈[G]〉 a → ∨

i∈G〈[{i}]〉 a for all G ⊆ Ag and atomic a ∈ Ac,
(5) (〈[G1]〉 α ∧ 〈[G2]〉 β) → 〈[G1 ∪ G2]〉 (α ∧ β), for G1 ∩ G2 = ∅,
(6) (〈[G]〉 α∧〈[G]〉 β) → 〈[G]〉 (α∧β) if α and β have no common atomic actions,
(7) 〈[G]〉 ¬a → 〈[G]〉 a for atomic a ∈ Ac,
(8) 〈[G]〉 α → ∨{〈[G]〉 ∧

�|� is a set of literals such that
∧
� → α}.

Axiom 5 says how groups can join forces. The coalition logic for actions is sound
and complete with respect to the class of agents models (Sauro et al. 2006).

Next, agents are introduced as actors into the environment. This is done by com-
bining the environment models with the agents models. Then the agents can perform
actions which have the effect of changing the current state of the environment.

Definition 4 (Multi-agent System (Sauro et al. 2006)) A multi-agent system (MaS) is
a tuple

M = 〈S, Ac, (→)A⊆Ac, V, Ag,act〉,

where 〈S, Ac, (→)A⊆Ac, V 〉 is an environment model and 〈Ac, Ag,act〉 an agents
model.

Now, we can reason about what states of affairs groups can achieve by performing
certain actions. The corresponding language contains all expressions of the previously
defined logics and additionally expressions for saying that a group has the power to
achieve ϕ which means that the group can make the system move into a state where
ϕ is true.

Definition 5 (Language for MaS (Sauro et al. 2006)) The language for multi-agent
systems Lcla is generated by the following grammar:

ϕ ::= p |ϕ ∧ ϕ| ¬ϕ |[α]ϕ| 〈[G]〉 α |〈[G]〉 ϕ

for G ⊆ Ag and α being an action expression.

〈[G]〉 ϕ means that G can force ϕ, i.e. G can perform a set of actions such that no
matter what the other agents do, the system moves to a ϕ-state.

M, s � 〈[G]〉 ϕ iff ∃A ⊆ act(G) such that ∀B ⊆ act(Ag\G), t ∈
S : if s →A∪B t, then M, t � ϕ.

A complete axiomatization is obtained by combining the environment logic and
the coalition logic for agents by adding two interaction axioms.

Definition 6 (Cooperation Logic with Actions (Sauro et al. 2006)) The cooperation
logic with actions �CLA combines the environment logic �E and the coalition logic
for actions �A by adding
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(1) (〈[G]〉 α ∧ [α]ϕ) → 〈[G]〉 ϕ,
(2) 〈[G]〉 ϕ → ∨{〈[G]〉 α ∧ [α]ϕ|α is the conjunction of a set of atomic actions or

their negations}.
CLA provides us with a formal framework for reasoning about what states of affairs
groups of agents can achieve and how they can do so. For a detailed discussion of CLA,
the reader is referred to Sauro et al. (2006). Now, we proceed by adding preferences
to CLA.

3 Cooperation logic with actions and preferences

In this section, a logic for reasoning about cooperation, actions and preferences is
developed. This is done by adding a preference logic to CLA. For a more detailed
discussion and proofs, see Kurzen (2007).

3.1 Preference logic

There are various ways how preferences can be added to a logic for cooperation and
actions. They could range over the actions that he can perform. Alternatively, we can
think of each agent having preferences over the set of successor states of the current
state.

In the current work, we consider preferences of individual agents ranging over the
states of the environment. This is reasonable since by performing actions the agents
can change the current state of the environment, and the preferences over those states
can be seen as the base of how the agents decide how to act. Such a preference relation
can also be lifted in several ways to one over formulas (van Benthem et al. 2005,
2007).

Definition 7 (Preference Model (van Benthem et al. 2005)) A preference model is a
tuple

M P = 〈S, Ag, {�i }i∈Ag, V 〉,

where S is a set of states, Ag is a set of agents, for each i ∈ Ag,�i⊆ S × S is reflexive
and transitive, and V is a propositional valuation.

We use a fragment of the preference language developed by van Benthem et al.
(2007). It has strict and non-strict preference modalities.

Definition 8 (Preference Language) Given a set of propositional variables and a finite
set of agents Ag, define the preference language Lp to be the language generated by
the following syntax:

ϕ := p |¬ϕ| ϕ ∨ ϕ |♦�iϕ| ♦≺iϕ.

♦�iϕ says that there is a state satisfying ϕ that agent i considers to be at least as good
as the current one. The semantics is defined as follows.
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M P , s � ♦�iϕ iff ∃t : s �i t and M P , t � ϕ.

Analogously for ♦≺iϕ. The preference relation � is a preorder and ≺ is its largest
irreflexive subrelation. Hence, the following axiomatization.

Definition 9 (Preference Logic�P ) For a given set of agents Ag, let�P be the logic
generated by the following axioms for each i ∈ Ag: For ♦�i and ♦≺i , we have Duality
and K and for ♦�i also reflexivity and transitivity axioms. Moreover, there are four
interaction axioms:

(1) ♦≺iϕ → ♦�iϕ,
(2) ♦�i ♦≺ϕ → ♦≺iϕ,
(3) ♦≺i ♦�iϕ → ♦≺iϕ,
(4) ϕ ∧ ♦�iψ → (♦≺iψ ∨ ♦�i (ψ ∧ ♦�iϕ)).

The inference rules are modus ponens, necessitation and substitution.

Transitivity for ♦≺i follows. We show soundness and completeness using the bull-
dozing technique (Blackburn et al. 2001) to deal with ≺. For details, we refer to van
Benthem et al. (2007).

Theorem 1 �P is sound and complete with respect to the class of preference models.

Proof Follows from Theorem 3.9 in van Benthem et al. (2007). ��
The preference logic is able to distinguish between weak and strict preference.

This plays a major role in many concepts for reasoning about interaction in multi-
agent systems. Due to the logic’s simplicity it still has the modal character and talks
about preferences from a local perspective. An additionally ♦� modality would have
increased the expressivity but would have resulted in a global existential modality with
respect to all comparable states.

3.2 Environment logic with preferences

As an intermediate step towards a logic for cooperation, actions and preferences, we
combine the preference logic and the environment logic. Their models are combined
by identifying their states. The agents’ preferences range over the states of the envi-
ronment. The agents cannot act in the environment, but can rather be seen as observing
the environment from the outside while having preferences over its states.

Definition 10 (Environment with Preferences) An environment model with prefer-
ences is a tuple

E� = 〈S, Ac, (→)A⊆Ac, {�i }i∈Ag, V 〉,

where 〈S, Ac, (→)A⊆Ac, {�i }i∈Ag, V 〉 is an environment model and 〈S, Ag,
{�i }i∈Ag, V 〉 is a preference model.
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We combine the languages for environment and preferences and add expressions
saying that “i (strictly) prefers every α-accessible state”. This will later allow us to
express statements saying by which actions groups can(not) achieve an outcome better
for (some of) its members.

Convention 1 We will write the symbol � in statements that hold for both � and ≺,
each uniformly substituted for �.

Definition 11 (Environment Language with Preferences) The language Lep contains
all expressions of the environment language and the preference language and addi-
tionally formulas of the forms α ⊆�i and α ⊆≺i , for α being an action expression.

Boolean combinations and expressions of previously defined languages are inter-
preted as usual. For the newly introduced expressions, we have:

E�, s � α ⊆�i iff ∀A ⊆ Ac, t ∈ S : if s →A t and A � α then s �i t.

α ⊆�i cannot be defined in the preference language and the environment language.
because α ⊆�i says that each state accessible by an α-transition is also accessible
by �. Thus, we would have to be able to refer to particular states. Therefore, we add
two inference rules.

(PREF-ACT) ��i ϕ→[α]ϕ
α⊆�i

(STRICT PREF-ACT) �≺i ϕ→[α]ϕ
α⊆≺i

In order to obtain a complete axiomatization, two axioms are added which corre-
spond to the converse of the inference rules.

Theorem 2 Let �E P be the logic generated by all axioms of the environment logic
�E , all axioms of the preference logic �P , and

(1) α ⊆�i→ (��iϕ → [α]ϕ),
(2) α ⊆≺i→ (�≺iϕ → [α]ϕ).

The inference rules are modus ponens, substitution, PREF-ACT and STRICT PREF-
ACT. Then�EP is sound and complete with respect to the class of environment models
with preferences.

Proof Soundness is straightforward, and completeness follows from completeness of
the sublogics and the closure under the new rules. ��

In�EP , the performance of concurrent actions changes the current state of the sys-
tem also with respect to the agents’ “happiness”: transitions can also be a transitions
up or down in the agents’ preference orderings.

3.3 Cooperation logic with actions and preferences

Now, we introduce agents as actors by combining the environment models with pref-
erences with agents models. The resulting model is then called a multi-agent system
with preferences (henceforth MaSP).
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Definition 12 (Multi-agent System with Preferences) A multi-agent system with
preferences (MaSP) M� is a tuple

M� = 〈S, Ac, (→)A⊆Ac, Ag,act, {�i }i∈Ag, V 〉,

where 〈S, Ac, (→)A⊆Ac, V, Ag,act〉 is a MaS, 〈S, Ag, {�i }i∈Ag, V 〉 is a preference
model and 〈S, Ac, (→)A⊆Ac, {�i }i∈Ag, V 〉 is an environment with preferences.

Remark 1 Note that given a deterministic MaSP in which each preference relation
�i is total, we can consider each state s as having a strategic game (Osborne and
Rubinstein 1994) Gs attached to it.

Gs = 〈Ag, (P(act(i)))i∈Ag, (�i )i∈Ag〉,
×n

i=1 Ai �i ×n
i=1 A′

i iff t �i t ′ for s →⋃
i∈Ag Ai t and s →⋃

i∈Ag A′
i

t ′.

Next, we introduce two expressions saying that a group can force the system to move
into a ϕ-state that some agent (strictly) prefers.

Definition 13 (Language Lcla+p) The language Lcla+p extends Lcla by formulas of
the form

♦�iϕ | ♦≺iϕ | α ⊆�i | α ⊆≺i | 〈[G�i ]〉 ϕ | 〈[G≺i ]〉 ϕ.

The first four expressions are interpreted as in the environment logic with prefer-
ences and for the last two we have the following.

M�, s � 〈[G�i ]〉 ϕ iff ∃A ⊆ act(G) : ∀B ⊆ act(Ag\G), t ∈ S :
if s →A∪B t, then M�, t � ϕ and s �i t.

Let us now look at how coalitional power to achieve an improvement for an agent
is made explicit in CLA+P. We can show that 〈[G�i ]〉 ϕ is equivalent to the existence
of an action expression α that G can force such that all transitions of type α lead to a
ϕ-state preferred by i .

Observation 1 Given a MaSP M� and a state s of its environment, M�, s � 〈[G�i ]〉
ϕ iff there exists an action expression α such that

M�, s � 〈[G]〉 α ∧ [α]ϕ ∧ (α ⊆�i ).

Proof Analogous to that of Observation 14 in Sauro et al. (2006). Use the action
expression

∧
�(A,G) := ∧

(A ∪ {¬a|a ∈ (act(G)\A), a /∈ act(Ag\G)}) for A be-
ing the “witness” of G’s ability to force ϕ. ��

Now we need axioms establishing a relationship between the newly added formulas
and the expressions of the sublogics.
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Definition 14 (Cooperation Logic with Actions and Preferences)�CLA+P is defined
to be the smallest logic generated by the axioms of the cooperation logic with actions,
the environment logic with preferences and

(1) (〈[G]〉 α ∧ [α]ϕ ∧ (α ⊆�i )) → 〈[G�i ]〉 ϕ,
(2) 〈[G�i ]〉 ϕ → ∨{〈[G]〉 α ∧ [α]ϕ ∧ (α ⊆�i )|α is a conjunction of action literals},
(3) 〈[G≺i ]〉 ϕ → ∨{〈[G]〉 α ∧ [α]ϕ ∧ (α ⊆≺i )|α is a conjunction of action literals}.

The inference rules are modus ponens, necessitation for action modalities and pref-
erence modalities (��i ,�≺i ), substitution of logical equivalents, PREF—ACT and
STRICT PREF—ACT.

Theorem 3 The logic �C L A+P is sound and complete with respect to the class of
MaSP’s.

Proof Soundness of the axioms is straightforward and completeness follows from
completeness of the sublogics. ��

3.4 Expressivity of CLA+P

We now show that in CLA+P, we can express some concepts relevant for reasoning
about game-like interaction in multi-agent systems.

3.4.1 Stability

Given a MaSP, M� = 〈S, Ac, (→A)A⊆Ac, Ag,act, {�i }i∈Ag, V 〉, the following
formula characterizes the states that are individually stable (group stable), i.e. no
individual (group) has the power to achieve a strict improvement (for all its members).

ψind. stable :=
∧

i∈Ag

¬〈[{i}≺i ]〉 
.

ψgr. stable :=
∧

G⊆Ag

∧

A ⊆act(G)

(
∨

i∈G

¬
((∧

�(A,G)
)

⊆≺i

)
)

.

3.4.2 Dictatorship

We can express that an agent d is a (strong) dictator in the sense that coalitions can
only achieve what d (strictly) prefers.

ψd=dict. :=
∧

G⊆Ag

∧

A ⊆act(G)

((∧
�(G, A)

)
⊆�d

)
.

Then, we can also say that there is no (strong) dictator:

ψno dict. :=
∧

i∈Ag

¬
⎛

⎝
∧

G⊆Ag

∧

A ⊆act(G)

((∧
�(G, A)

)
⊆�i

)
⎞

⎠ .
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3.4.3 Enforcing Unanimity

In some situations we might want to impose the condition that groups should only be
able to achieve something if they can do so in a way that all members will be better
off:

〈[G]〉 ϕ →
⎛

⎝
∨

A ⊆act(G)

(
∧

i∈G

((∧
�(A,G)

)
⊆ ≺i

)
∧

[∧
�(A,G)

]
ϕ

)⎞

⎠ .

Note that the length of the last four formulas is exponential in the number of atomic
actions (and agents).

3.5 CLA+P and coalition logic

Let us now briefly discuss the relation between CLA+P and coalition logic (CL)
(Pauly 2002a) in order to illustrate how CLA+P builds upon existing frameworks
for reasoning about coalitional power and how the underlying actions that are only
implicitly represented in the semantics of CL are made explicit. Given a fixed set
of agents Ag, a coalition model M = 〈(S, E), V 〉 with S being a set of states, E :
S → (P(Ag) → P(P(S))) being a playable effectivity function and V being a
propositional valuation, we can we use Theorem 3.2 of Pauly (2002a) and obtain a
corresponding game frame, i.e. each state has an associated strategic game form in
which each outcome corresponds to some accessible state. Looking back at Remark 1,
it is now easy to see how we can construct a corresponding MaS: We take the same set
of states and add actions for each of the strategies in the attached games and define the
accessibility relation in accordance with the outcome function. Finally, we can define
a translation τ of formulas of CL to those of CLA in a straightforward way: formulas
[G]ϕ talking about coalitional power in CL are translated into 〈[G]〉 τ(ϕ).

If we add preferences to the game forms in the game frame we obtained from the
coalition model, then we can transform it into a MaSP in an analogous way.

This shows that the framework of CLA+P is a natural way to make coalitional
power as modelled in CL and its extensions more explicit.

4 Complexity of CLA+P

In this section, we analyze the complexity of SAT of CLA+P.

4.1 Decidability of CLA+P

We show that SAT of CLA+P is decidable. The first step is to show that only a
restricted class of models of CLA+P needs to be checked.

We start by looking at how we can restrict the class of models with respect to the
set of agents. Let Ag(ϕ) denote the set of agents occurring in ϕ. Now, we ask: Is

123 [636]



Synthese (2009) 169:223–240 233

every satisfiable ϕ also satisfiable in a MaSP with set of agents Ag(ϕ)? In coalition
logic, the answer is negative: the formula ϕ′ = ¬〈[G]〉 {1}p∧¬〈[{1}]〉 q ∧〈[{1}]〉 (p∨
q) is only satisfiable in models with at least two agents (Pauly 2002b). However, as
in CLA+P the environment models can be nondeterministic, here ϕ′ can indeed be
satisfied in a model with only one agent, as the reader can check.

It can be shown that every satisfiable formula ϕ ∈ Lcla+p is satisfiable in a MaSP
with set of agents Ag(ϕ) ∪ {k}, for k being a new agent. k takes the role of all oppo-
nents of Ag(ϕ) collapsed into one: k gets the ability to perform exactly the actions
that agents not occurring in ϕ can perform as a group.

Theorem 4 Every satisfiable formula ϕ ∈ Lcla+p is satisfiable in the class of MaSP’s
with at most |Ag(ϕ)| + 1 many agents.

Proof Assume that M�=〈S, Ac, (→A)A⊆Ac, Ag,act, {�i }i∈Ag, V 〉 satisfies ϕ. If Ag
⊃Ag(ϕ), we construct M ′�′=〈S, Ac, (→)A⊆Ac, Ag(ϕ)∪{k},act′,{�′

i }i∈Ag(ϕ)∪{k},
V 〉, with act′(k)= ⋃

j∈Ag\Ag(ϕ)act( j) and act′(i) = act(i) for i �= k. The prefer-
ences are defined as follows: �′

i=�i for i ∈ Ag(ϕ) and �′
k= S × S. By induction,

we can show that M�, s � ϕ iff M ′�′
, s � ϕ. The case where ϕ is of the form 〈[G]〉 α

follows from the definition of act′. Then the other cases involving coalition modalities
follow. ��

Next, we want to know how many actions a model needs for satisfying some for-
mula. Consider e.g. ϕ = 〈[G]〉 (p ∧ q) ∧ 〈[G]〉 (¬p ∧ q) ∧ 〈[G]〉 (¬p ∧ ¬q). It is
only satisfiable in models with |Ac| ≥ 2. The main task is to find “witnesses” for
formulas of the form 〈[G]〉 ψ in terms of concurrent actions. We can show that every
satisfiable ϕ is satisfiable in a MaSP whose set of atomic actions consists of those in
ϕ, one additional one (a dummy for ensuring that each agent can perform an action),
and for every subformula 〈[G]〉 ψ or 〈[G�i ]〉 ψ , one action for each of G’s members.

The key step in transforming a model satisfying a formula ϕ into one whose set of
actions satisfies the above condition is to appropriately define the action distribution
and the accessibility relations. For every α occurring in ϕ, we have to ensure that two
states are related by an α-transition in the new model iff they were in the original one.
Additionally, for formulas 〈[G]〉 ψ and 〈[G�i ]〉 ψ , the set of actions introduced for
them serves for making explicit how G can force ϕ.

Theorem 5 Every satisfiable formula ϕ ∈ Lcla+p is satisfiable in a MaSP
with at most |Ac(ϕ)| + (

∑
〈[G]〉 ψ∈Sub(ϕ) |G|) + (

∑
〈[G�i ]〉 ψ∈Sub(ϕ) |G|) +

(
∑

〈[G≺i ]〉 ψ∈Sub(ϕ) |G|)+ 1 many actions.

Proof Assume that M� = 〈S, Ac, (→A)A⊆Ac, Ag, act, {�i }i∈Ag, V 〉 satisfies ϕ. We
construct a model M ′�′ = 〈S, Ac′, (→′)A′⊆Ac′ , Ag,act′, {�′

i }i∈Ag, V 〉 as follows.

Ac′ := Ac(ϕ) ∪ ⋃
〈[G]〉 ψ∈Sub(ϕ) AGψ ∪ ⋃

〈[G�i ]〉 ψ∈Sub(ϕ) AG�iψ

∪⋃
〈[G≺i ]〉 ψ∈Sub(ϕ) AG≺iψ ∪ {â}.

AGψ and AG�iψ consist of newly introduced actions aGψ j , and aG�iψ j , respectively,
for each j ∈ G. Action abilities are distributed as follows:

[637] 123



234 Synthese (2009) 169:223–240

act′(i) := (act(i) ∩ Ac(ϕ)) ∪ {â} ∪ {aGi |〈[G]〉 ψ ∈
Sub(ϕ) or 〈[G�i ]〉 ψ ∈ Sub(ϕ), for i ∈ G}.

For defining the accessibility relation →A′⊆Ac′ , we first define for any state s its
set of successors.

t ∈ T s
A′ iff the following conditions are satisfied:

(1) ∀[α]ψ ∈ Sub(ϕ) such that A′ � α : If M�, s � [α]ψ, then M�, t � ψ ,
(2) ∀α ⊆�i∈ Sub(ϕ) such that A′ � α : If M�, s � α ⊆�i , then s �i t ,
(3) ∀〈[G]〉ψ ∈ Sub(ϕ) such that A′ �

∧
�(AGψ,G), there is some Ā ⊆ act(G) such

that s →A t for some A ⊆ Ac such that A �
∧
�( Ā,G), and if M�, s � 〈[G]〉ψ

then M�, s � [∧�( Ā,G)]ψ
(4) ∀〈[G�i ]〉ψ ∈ Sub(ϕ) such that A′ �

∧
�(AG�iψ,G), there is some Ā ⊆ act(G)

such that s →A t for some A ⊆ Ac such that A �
∧
�( Ā,G), and if M�,

s � 〈[G�i ]〉 ψ then M�, s � [∧�( Ā,G)]ψ and M�, s � (
∧
�( Ā,G) ⊆ �i )}.

For any t ∈ T s
A′ ,we set s →′

A′ t . Then we can show by induction on ψ ∈ Sub(ϕ) that

M�, s � ψ iff M ′�′
, s � ψ . ��

The next step is to show that every satisfiable formula ϕ is satisfiable in a model
with a certain number of states. Such results are usually obtained by transforming a
model into a smaller one using a transformation that preserves the truth of subformulas
of ϕ. In the case of CLA+P, the irreflexivity of the strict preferences and the fact that
also α ⊆�i is not modally definable in a basic modal language call for a modification
of the standard techniques.

We appropriately modify the method of filtration (Blackburn et al. 2001) and show
that any satisfiable formula ϕ ∈ Lcla+p is satisfiable in a model with exponentially
many states. The idea of a filtration is to transform a possibly infinite model into a finite
one by identifying states that agree on the truth value of each subformula of the consid-
ered formula. So, given that we know that ϕ is satisfied in some MaSP M� with states
S, we construct an MaSP M� f

with set of states SSub(ϕ) = {|s|Sub(ϕ) |s ∈ S}, where
|s|Sub(ϕ) denotes the equivalence class of the states that in the model M agree with s
on the truth values of all ψ ∈ Sub(ϕ). The main task is to appropriately define the
accessibility relations for actions and preferences in M� f

such that for ψ ∈ Sub(ϕ),
we then have that M�, s � ψ iff M� f

, |s| � ψ . Here, it is important to note that
formulas of the form 〈[G]〉 ψ and 〈[G�i ]〉 ψ correspond to formulas of the form∨

A ⊆act(G)[
∧
�(A,G)]ψ and

∨
A ⊆act(G)([

∧
�(A,G)]ψ∧(∧�(A,G) ⊆ �i )),

respectively—for
∧
�(A,G) as in the proof of Observation 1. Moreover, the trans-

formation of the model does not change the underlying agents model. Thus, the truth
of formulas of the form 〈[G]〉 α is preserved.

Theorem 6 Every satisfiable ϕ ∈ Lcla+p is also satisfiable in a MaSP with ≤ 2|ϕ|
many states.

Proof Given that M�, s � ϕ for some M� = 〈S, Ac, (→A)A⊆Ac, Ag,act, {�i }i∈Ag,

V 〉 and s ∈ S, we obtain M� f = 〈SSub(ϕ), Ac, (→ f )A⊆Ac, Ag,act f , {� f
i }i∈Ag, V f 〉
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by filtrating M� through Sub(ϕ), where the accessibility relations for actions and pref-
erences are defined as follows:
|s| → f

A |t | iff the following conditions are satisfied:

(1) ∀[α]ψ ∈ Sub(ϕ) such that A � α : if M�, s � [α]ψ , then M�, t � ψ ,
(2) (a) ∀α ⊆�i∈ Sub(ϕ) such that A � α : if M�, s � α ⊆�i , then s �i t ,

(b) ∀α ⊆≺i∈ Sub(ϕ) such that A � α : if M�, s � α ⊆≺i , then s ≺i t ,
(3) ∀〈[G]〉 ψ ∈ Sub(ϕ) such that A �

∧
�(A′,G) for some A′ ⊆ act(G) : if

M�, s � [∧�(A′,G)]ψ, then M�, t � ψ,
(4) (a) ∀〈[G�i ]〉 ψ ∈ Sub(ϕ) such that A �

∧
�(A′,G) for some A′ ⊆ act(G): if

M�, s � [∧�(A′,G)]ψ and M�, s � (
∧
�(A′,G) ⊆ �i ), then M�, t � ψ

and s �i t .
(b) ∀〈[G≺i ]〉 ψ ∈ Sub(ϕ) such that A �

∧
�(A′,G) for some A′ ⊆ act(G): if

M�, s � [∧�(A′,G)]ψ and M�, s � (
∧
�(A′,G) ⊆ ≺i ), then M�, t � ψ

and s ≺i t .

|s| � f
i |t | iff the following conditions hold:

(1) (a) ∀♦�iψ ∈ Sub(ϕ): if M�, t � ψ ∨ ♦�iψ then M�, s � ♦�iψ ,
(b) If there is some ♦≺iψ ∈ Sub(ϕ), then s �i t,

(2) If there is some α ⊆�i∈ Sub(ϕ) or some α ⊆≺i∈ Sub(ϕ), then s �i t,
(3) If there is some 〈[G�i ]〉 ψ ∈ Sub(ϕ) or some 〈[G≺i ]〉 ψ ∈ Sub(ϕ), then s �i t.

V f (p) := {|s||M, s � p}, for all propositional letters p ∈ Sub(ϕ). We can show by
induction that for allψ ∈ Sub(ϕ) and s ∈ S it holds that M�, s � ψ iff M� f

, |s| � ψ.
This follows from the definitions of (→ f )A⊆Ac and � f , and the fact that we do not
change the underlying agents model. The interesting cases are those involving strict
preferences and those with formulas 〈[G�i ]〉 ψ and α ⊆�i . Here, what makes the
proof go through is that by conditions 1 b), 2 and 3 of � f , |s| �i |t | implies s �i t .
Similarly, due to conditions 2 and 4 of → f

A, the truth values of subformulas α ⊆�i

and 〈[G�i ]〉 ψ is as in the original model. Moreover, M� f
is a proper MaSP since

each � f
i is reflexive and transitive, and each → f

A is serial. By definition of SSub(ϕ),
|SSub(ϕ)| ≤ 2|ϕ|. ��

Now, we apply the constructions of the last three proofs successively.

Corollary 1 Every satisfiable formula ϕ ∈ Lcla+p is satisfiable in a MaSP of size
exponential in |ϕ| satisfying the conditions |Ag| ≤ |Ag(ϕ)|+1 and |Ac| ≤ |Ac(ϕ)|+∑

〈[G]〉 ψ∈Sub(ϕ) |G| + (
∑

〈[G�i ]〉 ψ∈Sub(ϕ) |G|)+ (
∑

〈[G≺i ]〉 ψ∈Sub(ϕ) |G|)+ 1.

Having non-deterministically guessed a model of size exponential in |ϕ|, we can
check in time exponential in |ϕ| whether this model satisfies ϕ.

Theorem 7 The satisfiability problem of CLA+P is in NEXPTIME.

Proof Givenϕ, we non-deterministically choose a model M� of size exponential in |ϕ|
satisfying the conditions |Ag|≤|Ag(ϕ)|+1 and |Ac|≤|Ac(ϕ)|+∑

〈[G]〉 ψ∈Sub(ϕ) |G|+
(
∑

〈[G�i ]〉 ψ∈Sub(ϕ) |G|) + (
∑

〈[G≺i ]〉 ψ∈Sub(ϕ) |G|) + 1. Then, given this model, we
can check in time O(|ϕ|||M�||), for |M�| being the size of M�, whether M� satisfies
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ϕ. Thus, given a model of size exponential in |ϕ| that also satisfies the conditions on
its sets of agents and actions explained earlier, it can be computed in time exponential
in |ϕ| whether it satisfies ϕ. Since it can be checked in time linear in the size of
the model whether it is a proper MaSP, we conclude that SAT of CLA+P is in
NEXPTIME. ��

This section has shown that SAT of CLA+P is in NEXPTIME. Now we show that
the environment logic is already EXPTIME-hard.

4.2 Lower bound

In order to show a lower bound for the complexity of SAT of CLA+P, we show that
SAT of the environment logic is EXPTIME-hard. This is done by reduction from the
Boolean modal logic K¬∪

m (Lutz and Sattler 2001; Lutz et al. 2001).
Formulas of K¬∪

m are interpreted in models M = 〈W, R1, . . . , Rm, V 〉, where W
is a set of states, Ri ⊆ W × W and V is a valuation.

Definition 15 Let R1, . . . ,Rm be atomic modal parameters. Then the set of modal
parameters of K¬∪

m is the smallest set containing R1, . . . ,Rm that is closed under ¬
and ∪. The language L¬∪

m is generated by the following grammar:

ϕ ::= p ϕ ∧ ϕ ¬ϕ 〈S〉ϕ S ::= Ri ¬S S1 ∪ S2.

The extension E(S) ⊆ W × W of a parameter S in a model is as follows.

E(Ri ) = Ri

E(¬S) = (W × W )\E(S)
E(S1 ∪ S2) = E(S1) ∪ E(S2)

Formulas of L¬∪
m are interpreted in a model M = 〈W, R1, . . . , Rm, V 〉 as follows:

Propositional letters and boolean combinations are interpreted in the standard way and
for modal formulas we have

M, w � 〈S〉ϕ iff ∃w′ ∈ W : (w,w′) ∈ E(S) and M, w′ � ϕ.

We define a translation τ consisting of two components τ1 for formulas and τ2 for
models. Let us extend the language Le by a propositional letter q /∈ L¬∪

m . Then τ1 is
defined as follows:

τ1(p) = p τ S(Ri ) = ai

τ1(ϕ1 ∧ ϕ2) = τ1(ϕ1) ∧ τ1(ϕ2) τ S(S1 ∪ S2) = τ S(S1) ∨ τ S(S2)

τ1(¬ϕ) = ¬τ1(ϕ) τ S(¬S) = ¬τ S(S)
τ1(〈S〉ϕ) = ¬[τ S(S)](q ∨ ¬τ1(ϕ))

τ2 translates a model M of K¬∪
m into an environment model τ2(M) = 〈W ∪ {u}, Ac,

(→)A⊆Ac, V ′〉 with u being a newly introduced state and
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w →A w
′ iff A = {ai |(w,w′) ∈ Ri } or w′ = u.

Thus, each →A is serial and τ2(M) is an environment model. V ′(q) = {u}, and for
all p �= q, V ′(p) = V (p). Before showing that for any ϕ ∈ L¬∪

m and M ∈ M
¬∪
m for

any state w ∈ W : M, w � ϕ iff τ2(M), w � τ1(ϕ), we proof a lemma saying that if
in M w′ is S-accessible fromw, then in τ2(M),w′ is accessible fromw by a transition
of type τ S(S).
Convention 2 For M = 〈W, R1, . . . , Rm, V 〉 ∈ M

¬∪
m and τ2(M) = 〈W ∪ {u}, Ac,

(→)A⊆Ac, V ′〉, define Aw,w′ := {ai ∈ Ac|(w,w′) ∈ Ri }.
Lemma 1 Let M = 〈W, R1, . . . , Rm, V 〉 be a model of K¬∪

m . Then for any modal
parameter S and for any states w,w′ ∈ W it holds that

(w,w′) ∈ E(S) iff in τ2(M) : ∃A ⊆ Ac : w →A w
′ and A � τ S(S).

Proof Note that by definition of (→A)A⊆Ac, the righthand side is equivalent to
Aw,w′ � τ S(S). Then the proof goes by induction on S. ��
Theorem 8 For any formula ϕ ∈ L¬∪

m and any model M of K¬∪
m , it holds that for any

state w in M:

M, w � ϕ iff τ2(M), w � τ1(ϕ).

Proof By induction. Base case and boolean cases are straightforward. Let ϕ = 〈S〉ψ.
(⇒) M, w � 〈S〉ψ ⇔ ∃w′ : (w,w′) ∈ E(S) and M, w′ � ψ . By the previous

lemma and induction hypothesis, τ2(M), w � τ1(〈S〉ψ).
(⇐) τ2(M), w � τ1(〈S〉ψ) ⇔ τ2(M), w � ¬[τ S(S)](q¬τ1(ψ)). Then ∃w′ ∈ W ∪

{u}, ∃A ∈ Ac : A � τ S(S), w →A w′ and τ2(M), w′ � ¬q ∧ τ1(ψ). Thus,
w′ �= u. By induction hypothesis and the previous lemma, M, w′ � ψ and
(w,w′) ∈ E(S). Hence, M, w � 〈S〉ψ.

��
Theorem 9 SAT of �E is EXPTIME-hard.

Proof We can polynomially transform any ϕ ∈ L¬∪
m into τ1(ϕ). Now, if τ1(ϕ) is satis-

fiable in an environment model E = 〈W, Ac, (→)A⊆Ac, V 〉 with Ac = {a1, . . . , am},
then ϕ is satisfiable in a model M = 〈W, R1, . . . , Rm, V 〉, where (w,w′) ∈ Ri iff
∃A ⊆ Ac such that ai∈Ac and w →A w

′. This can be shown by induction on ϕ.
If τ1(ϕ) is not satisfiable in an environment model then it cannot be satisfiable in

any model M of K¬∪
m because otherwise by the previous theorem, τ1(ϕ) would be

satisfied in τ2(M). ��
Corollary 2 SAT of CLA+P is EXPTIME-hard.

This section has shown that the satisfiability problem of CLA+P is EXPTIME-hard
but still decidable. This rather high complexity is due to the environment logic which
itself is already EXPTIME-hard.
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5 Conclusions and future work

We developed a modular modal logic that allows for reasoning about the coalition-
al power of agents, actions and their effects, and agents’ preferences. The current
approach is based on the logic CLA (Sauro et al. 2006) which is combined with a
preference logic (van Benthem et al. 2007). The resulting logic CLA+P, which is
shown to be sound and complete, allows us to make explicit how groups can achieve
certain results. We can also express how a group can achieve that a transition takes
place that is an improvement for some agent.

In the framework of CLA+P, it can be expressed how the abilities to perform
certain actions are distributed among the agents, what are the effects of the concurrent
performance of these actions and what are the agents’ preferences over those effects.
Moreover, in CLA+P, we can distinguish between different ways how groups can
achieve some result—not only with respect to the actions that lead to some result,
but also with respect to the preferences. We can for instance express that a group can
achieve some result in a way that is ‘good’ for all its members in the sense that after
the achievement all of them are better off. This then also allows us to axiomatize
properties that one might want to impose onto a multi-agent system, e.g. the restriction
that groups can only achieve the truth of a certain formula if this can be done without
making anybody worse off. Thus, CLA+P provides a framework for reasoning about
interactive situations in an explicit way that gives us more insights into the cooperative
abilities of agents. Comparing CLA+P to CL shows that CLA+P naturally builds
on game frames underlying the semantics of CL and makes both the agents’ actions
and the preferences explicit that are only implicitly represented in the semantics of CL.

The satisfiability problem of CLA+P is shown to be decidable and EXPTIME-
hard. Keeping in mind that using CLA+P we can talk about strict preferences, inter-
sections of accessibility relations as well as the property of one relation being a subset
of another, EXPTIME-hardness is not a surprising result. Even though the modular
models of CLA+P are rather special, its complexity is in accordance with general
results concerning the connection between expressive power and complexity of modal
logics for reasoning about coalitional power and preferences (Dégremont and Kurzen
2009).

We showed that the satisfiability problem of the underlying environment logic is
by itself already EXPTIME-hard. Thus, we identified one cause for the high com-
plexity of CLA+P. It is mostly due to the fact that the accessibility relation of the
models can be arbitrary: there does not need to be any relation between →A, →B and
→A∩B . Whereas this generality allows us to model a lot of dynamic processes, from a
computational viewpoint, it seems to be appealing to change the environment logic in
order to decrease computational complexity. Also, when comparing our models to the
game frames of CL, we can see that restricting ourselves to deterministic environment
models can be reasonable. The same holds for considering only total preorders as
preference relation. This would also increase the expressive power (Dégremont and
Kurzen 2009).

There are several immediate ways to extend the logic developed in this paper. First
of all, we can follow the ideas of Ågotnes et al. (2007b) and add a restricted form of
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quantification that allows statements of the form 〈[P�i ]〉 ψ saying that there is some
group G that has property P and 〈[G�i ]〉 ψ . In the current work, we chose a rather
simple preference logic with unary modalities. In order to increase the expressive
power with respect to the agents’ preferences over outcomes that can be achieved, it
seems very promising to consider more expressive preference logics that also contain
binary preference modalities saying e.g. that an agent prefers every ϕ state over every
ψ state (van Benthem et al. 2007).

Moreover, it will be interesting to develop a CLA and preferences based on a logic
for reasoning about complex plans such as the one developed by Gerbrandy and Sauro
(2007).
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