Skip to main content
Log in

Uniform Lyndon interpolation property in propositional modal logics

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

We introduce and investigate the notion of uniform Lyndon interpolation property (ULIP) which is a strengthening of both uniform interpolation property and Lyndon interpolation property. We prove several propositional modal logics including \(\mathbf{K}\), \(\mathbf{KB}\), \(\mathbf{GL}\) and \(\mathbf{Grz}\) enjoy ULIP. Our proofs are modifications of Visser’s proofs of uniform interpolation property using layered bisimulations (Visser, in: Hájek (ed) Gödel’96, logical foundations of mathematics, computer science and physics—Kurt Gödel’s legacy, Springer, Berlin, 1996). Also we give a new upper bound on the complexity of uniform interpolants for \(\mathbf{GL}\) and \(\mathbf{Grz}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Essential parts of the modification of our proof from Visser’s are the use of the relation \(\prec _\varphi ^s\) and this definition of witnesses.

References

  1. Ali Zadeh, M., Derakhshan, F., Ono, H.: Uniform interpolation in weak Grzegorczyk logic and Gödel-Löb logic (abstract). In: 15th Conference of Logic, Methodology and Philosophy of Science (2015)

  2. Bílková, M.: Uniform interpolation in provability logics. In: Liber Amicorum Alberti—A Tribute to Albert Visser, pp. 57–90 (2016)

  3. Bílková, M.: Uniform interpolation and propositional quantifiers in modal logics. Studia Logica 85(1), 1–31 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blackburn, P., de Rijke, M., Venema, Y.: Modal logic. In: Cambridge Tracts in Theoretical Computer Science. Cambridge University Press (2002)

  5. Boolos, G.: On systems of modal logic with provability interpretations. Theoria 46(1), 7–18 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boolos, G.: The Logic of Provability. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  7. Chagrov, A., Zakharyaschev, M.: Modal logic. In: Oxford Logic Guides. Clarendon Press (1997)

  8. Craig, W.: Three uses of the Herbrand–Gentzen theorem in relating model theory and proof theory. J. Symb. Log. 22(3), 269–285 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fitting, M.: Proof Methods for Modal and Intuitionistic Logics. D. Reidel Publishing Co., Dordrecht (1983)

    Book  MATH  Google Scholar 

  10. Gabbay, D.M.: Craig’s interpolation theorem for modal logics. In: W. Hodges (ed.) Conference in Mathematical Logic—London ’70 (Proc. Conf., Bedford Coll., London, 1970), Lecture Notes in Mathematics, vol. 255, pp. 111–127. Springer (1972)

  11. Gabbay, D.M., Maksimova, L.L.: Interpolation and Definabilit. Clarendon Press, Oxford (2005)

    Book  Google Scholar 

  12. Garson, J.: Modal Logic: The Stanford Encyclopedia of Philosophy. https://plato.stanford.edu/entries/logic-modal/ (2017)

  13. Ghilardi, S.: An algebraic theory of normal forms. Ann. Pure Appl. Log. 71(3), 189–245 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ghilardi, S., Zawadowski, M.: Undfinability of propositional quantifiers in the modal system \(S4\). Studia Logica 55(2), 259–271 (1995)

    MathSciNet  MATH  Google Scholar 

  15. Goldblatt, R.: Arithmetical necessity, provability and intuitionistic logic. Theoria 44(1), 38–46 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hughes, G.E., Cresswell, M.J.: A New Introduction to Modal Logic. Routledge, London (1996)

    Book  MATH  Google Scholar 

  17. Iemhoff, R.: Uniform interpolation and sequent calculi in modal logic. In: Archive for Mathematical Logic, p. 27 (2018). https://doi.org/10.1007/s00153-018-0629-0

  18. Kuznets, R.: Proving Craig and Lyndon interpolation using labelled sequent calculi. In: Michael, L., Kakas, A. (eds.) Logics in Artificial Intelligence, Lecture Notes in Computer Science, vol. 10021, pp. 320–335. Springer, Cham (2016)

  19. Litak, T.: The non-reflexive counterpart of \(Grz\). Bull. Sect. Log. 36(3–4), 195–208 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Lyndon, R.C.: An interpolation theorem in the predicate calculus. Pac. J. Math. 9(1), 129–142 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  21. Maksimova, L.L.: The Lyndon interpolation theorem in modal logics. In: Mathematical Logic and the Theory of Algorithms, pp. 45–55. “Nauka” Sibirsk. Otdel., Novosibirsk (1982)

  22. Maksimova, L.L.: Amalgamation and interpolation in normal modal logics. Studia Logica 50(3–4), 457–471 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. Maksimova, L.L.: Definability and interpolation in non-classical logics. Studia Logica 82(2), 271–291 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Maksimova, L.L.: The Lyndon property and uniform interpolation over the Grzegorczyk logic. Sib. Math. J. 55(1), 118–124 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nagle, M.C., Thomason, S.K.: The extensions of the modal logic \(K5\). J. Symb. Log. 50(1), 102–109 (1985)

    MATH  Google Scholar 

  26. Pitts, A.M.: On an interpretation of second-order quantification in first-order intuitionistic propositional logic. J. Symb. Log. 57(1), 33–52 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rautenberg, W.: Modal tableau calculi and interpolation. J. Philos. Log. 12(4), 403–423 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  28. Schumm, G.F.: Interpolation in \(S5\) and some related systems. Rep. Math. Log. 6, 107–109 (1976)

    MATH  Google Scholar 

  29. Shamkanov, D.S.: Interpolation properties for provability logics \(GL\) and \(GLP\). Proc. Steklov Inst. Math. 274(1), 303–316 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Shavrukov, V.Y.: Subalgebras of diagonalizable algebras of theories containing arithmetic. Diss. Math. 323, 1–82 (1993)

    MathSciNet  MATH  Google Scholar 

  31. Smoryński, C.: Beth’s theorem and self-referential sentences. In: Macintyre, L.P.A., Paris, J. (eds.) Logic Colloquium ’77 (Proc. Conf., Wrocław, 1977), Studies in Logic and the Foundations of Mathematics, vol. 96, pp. 253–261 (1978)

  32. van Benthem, J.F.A.K., Blok, W.J.: Transitivity follows from Dummett’s axiom. Theoria 44(2), 117–118 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  33. Visser, A.: Uniform interpolation and layered bisimulation. In: Hájek, P. (ed.) Gödel ’96, Logical Foundations of Mathematics, Computer Science and Physics—Kurt Gödel’s Legacy, pp. 139–164. Springer, Berlin (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taishi Kurahashi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by JSPS KAKENHI Grant No. 16K17653.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurahashi, T. Uniform Lyndon interpolation property in propositional modal logics. Arch. Math. Logic 59, 659–678 (2020). https://doi.org/10.1007/s00153-020-00713-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-020-00713-y

Keywords

Mathematics Subject Classification

Navigation