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Abstract. Relativistic quantum theories are equipped with a background

Minkowski spacetime and non-relativistic quantum theories with a Galilean
spacetime. Traditional investigations have distinguished their distinct space-

time structures and have examined ways in which relativistic theories become

sufficiently like Galilean theories in a low velocity approximation or limit. A
different way to look at their relationship is to see that both kinds of theories

are special cases of a certain five-dimensional generalization involving no limit-

ing procedures or approximations. When one compares them, striking features
emerge that bear on philosophical questions, including the ontological status

of the wave function and time reversal invariance.

1. Introduction

Let the term ‘Galilean theory’ apply to any theory based essentially on a Gali-
lean (or neo-Newtonian) spacetime, a spacetime that is topologically R4 and comes
equipped with Euclidean temporal and spatial metrics, a co-vector field picking out
a time-like direction, and a constant, flat affine connection. Galilean spacetime is
the background spacetime best suited to the standard interpretation of Newtonian
gravitation and non-relativistic quantum mechanics. Let the term ‘relativistic the-
ory’ apply to any theory based essentially on Minkowski spacetime, a spacetime
that is topologically R4, with the Minkowski metric, a constant, flat connection,
and a spacetime orientation. Minkowski spacetime is the background spacetime in
relativistic electrodynamics and the Dirac theory of the electron. In this paper, I
will restrict attention to theories that do not employ second quantization.

One significant philosophical issue concerns the relationship between Galilean
theories and relativistic theories. The most common way to think about their
relation is informed by the belief that relativistic theories are empirically more
accurate, whereas Galilean theories more closely represent classical conceptions of
space and time. A common task in physics textbooks is to demonstrate that in some
appropriate limit, a relativistic theory behaves like a Galilean theory in physically
important respects. The intricacies of these limiting processes have been often
discussed, (e.g. Holland and Brown 2003), with regard to whether the limits make
sense, whether there are multiple limiting processes that lead to distinct Galilean
theories, etc.

This paper investigates an altogether different relationship between the relativis-
tic and Galilean theories whose interpretational significance has been discussed very
little: both theories can be embedded in a five-dimensional model such that their
difference is captured by a single parameter in a simple way. It is my hope that
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this relation between Galilean and relativistic quantum mechanics will be surpris-
ing enough by itself to readers not already familiar with null cone gauge theory
to generate interest in the interpretational questions raised by the five-dimensional
formalism. But for the more skeptical, I will apply the formalism to the debate
over the ontological status of the wave function. This serves as a demonstration
that the model warrants further philosophical investigation. I do not have a specific
proposal for how to interpret the five-dimensional model, but I will mention several
possible approaches one could take to develop a full interpretation.

First, I will outline some preliminary positions one might take with regard to
ontological status of the wave function. Then, after describing how the relativistic
and Galilean theories are secretly hidden inside a five-dimensional generalization,
I will focus on two applications, Galilean boosts and time reversal. In both cases
the five-dimensional formalism helps to undercut arguements for anti-realism about
the wave function. I will not defend the conclusion that the wave function should
be treated as a physical field but just use the five-dimensional model to overcome
two barriers to treating it so.

2. The Ontological Status of the Wave Function

Various attitudes taken towards the quantum mechanical wave function may for
current purposes be delineated into two broad classes. In one class, the (mathemat-
ical) wave function ψ is understood to encapsulate information about fundamental
physical stuff without itself representing a physical field that closely corresponds
to ψ. This view has been popular historically, from early instrumentalist inter-
pretations to modern information theoretic approaches. Call this thesis ‘ψ-is-non-
physical.’ In the other class, the wave function is taken to be physical in some
robust sense. This could involve a commitment to ψ’s being just as physical as the
electromagnetic field or vector potential (Albert 1996), or it could involve thinking
of ψ as a holistic relation among particles (or property of particle configurations)
that is physically three-dimensional (Lewis 2004) even though it is representable
mathematically only using a higher-dimensional configuration space.

The distinction between the physical and non-physical interpretations of ψ is
too vague to definitively categorise all existing interpretations. Any interpretation
where the wave function is understood as ontologically complete is arguably in the
ψ-is-physical camp because if there is nothing other than the wave function and it is
not physical, then nothing is physical, which is a reductio. But, if ψ’s completeness
is not ontological but informational, then a range of options opens depending on
how one interprets ‘information’ in this context. One might profess an unwillingness
to speculate on the ontology underlying quantum mechanics yet remain convinced
that whatever it is, our knowledge of it comes only by way of learning about ψ. In
what follows, it will not matter that this distinction is somewhat vague.

Among the arguements for each side, only a few are mentioned here. In favor
of the non-physicality of the wave function is that ψ in general is defined over a
multi-particle configuration space instead of physical space. (Set aside Hilbert space
representations for the sake of discussion.) ψ does not correspond directly to stuff in
physical space but instead (in the non-relativistic theory) inhabits a configuration
space of 3N dimensions, where N is the number of particles. The mathematical
wave function cannot be reduced to a (natural) three-dimensional field and still
retain all the information it encodes. This arguement for the non-physicality of
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the wave function is almost certainly not merely an artifact of the non-relativistic
version of quantum mechanics. Although there is no known relativistic equivalent of
the non-relativistic configuration space, empirical evidence demands some account
of quantum entanglement, and entanglement has so far resisted being reduced to
lower dimensional physics.

A separate line of reasoning points to the transformation properties of the wave
function in the non-relativistic theory as evidence that ψ is non-physical. In the non-
relativistic theory, the wave function transforms under boosts in a way that is wholly
unmotivated if one thinks of it as a fundamental physical stuff. Its behaviour under
time reversal is likewise mysterious. Neither transformation is puzzling, though, if
ψ just encodes information about quantum expectation values. This issue will be
discussed in greater detail in sections 4 and 5.

In favor of the physicality of the wave function, the dynamical evolution of nearly
every important physical quantity takes place in the wave function. Interpretations
of quantum mechanics that employ local beables, i.e., stuff in ordinary spacetime,
still encode almost all physical properties—including spin, entanglement relations
and (to some extent) charge—using the wave function. The interpretation that goes
furthest towards segregating particle properties from the wave function is Bohmian
mechanics. Bohmian particles have relative positions, relative velocities and mass.
The mass appears separate from ψ in Bohm’s equation and Schrödinger’s equation,
but the positions contribute to the determination of the particles’ future motion
only by way of their contribution to the full set of all particle positions together
with the universal wave function. Other properties like spin states are encoded
in the wave function and are not properly thought of as attributes that adhere
to the particle as it moves through space. Conceivably, extra variables that in
effect adhere to particles could supplant and explain the wave function’s properties
and evolution, but no interpretation has yet been described that replaces ψ with
local beables. All current interpretations that employ extra variables do so only by
supplementing ψ.

Furthermore, in the special case of a single particle, the similarities between the
wave function and uncontroversially physical fields like the electromagnetic field be-
come tighter. Loosely speaking, one can think of the single particle wave function
as having a strong magnitude where the particle is located (or likely to be located).
Whether such claims can be construed literally is interpretation dependent. One
clear example is the Benatti, Ghirardi, Grassi mass density field interpretation
(Benatti et al. 1995) where a particle is treated as fundamentally continuously dis-
tributed in space. For a single particle wave function, |ψ(x)|2 corresponds literally
to how much of the particle is located in an infinitesimal region around x. In most
other interpretations, |ψ(x)|2 merely corresponds to the probability of the particle
being at x or the probability of being detected at x by some suitable experiment.
Such interpretations are not especially friendly to ψ being a kind of physical stuff.
In section 4 we will see that the equations governing ψ look a lot like those gov-
erning the electromagnetic potential, which appears to make ψ more friendly to an
interpretation where it inhabits spacetime.

3. The Five-Dimensional Model

I will now sketch the skeletal model that I believe deserves further interpreta-
tional scrutiny. It postulates a base manifold M that is topologically R5 and has a
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constant metric of signature (1, 4), with a constant, flat connection. The ontology
of the theory is that of a complex scalar field ψ defined on M . It is also insightful
to think of ψ = ψa +ψbi as a multi-vector field with ψa, ψb being real numbers and
i being an appropriate multi-vector element, i.e., a volume form, in M .

The dynamics of the model is given by

(1) DDψ = 0.

The D is the vector derivative as defined in geometric algebra (see Doran and
Lasenby 2003). (Readers unfamiliar with geometric algebra may interpret the dy-
namics in the formalism of differential forms as ?d ? dψ = 0.)

For convenience, label the points of M using arbitrary rectangular coordinate
axes with the variables {q, t, x, y, z} and their corresponding unit tangent vectors
{eq, et, ex, ey, ez}. Expressed in this coordinate system, the components of the
metric are given by

(2) g =


−1 0 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1

 .

We can also define new variables, Q = (t+ q)/
√

2 and T = (t− q)/
√

2, that are
rotated by an angle π/4 with respect to their lower case counterparts. The compo-
nents of the metric expressed with respect to the new tangent vectors {eQ, eT , ex, ey, ez}
is

(3) G =


0 −1 0 0 0
−1 0 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1

 .

The Ansatz that gives rise to the relativistic model is

(4) ψ = ψ0(t, x, y, z)ei(mc/~)q

whereas the Galilean model arises from

(5) ψ = ψ0(T, x, y, z)ei(mc/~)Q,

where ψ0 is some complex function.
Constraining ψ with (4) is exactly what Oskar Klein proposed in his famous

(1926) attempt to unify electromagnetism and gravity. In fact, he even derived
a non-relativistic wave equation using a formula similar to (5). However, this re-
markable feature of his model—that it entails a non-relativistic wave equation from
a relativistic background theory without any technique of approximation—has not
been flagged by any commentary on Klein’s work, as far as I have been able to
determine.

3.1. The Equations of Motion. It follows from the dynamics (1) that

(6) DDψ = −∂2
qψ + ∂2

t ψ − ∂2
xψ − ∂2

yψ − ∂2
zψ = 0,

and taking the q derivatives using (4) gives us

(7) (∂2
t −∇2)ψ +

(mc
~

)2

ψ = 0,
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which is the Klein-Gordon equation for a spinless particle of mass m.
Similarly, it follows from the dynamics (1) that

(8) DDψ = −2∂T∂Qψ −∇2ψ = 0

Taking the Q derivative using (5) gives us

(9) 2i
m

~
∂Tψ +∇2ψ = 0

which is Schrödinger’s equation for a spinless particle of mass m. (The c vanishes
because in natural units there is an implicit use of cT for distances along the T
axis.)

The oddity that the five-dimensional model highlights is that equations that
seemingly require the symmetries of a Galilean spacetime structure can be un-
derstood in terms of the resources of a relativistic spacetime structure so long as
there is a constraint that the five-dimensional ψ takes the special form of (5). The
appearance of Galilean characteristics, i.e., the obtaining of Schrödinger’s equa-
tion and other features to be discussed in §4 in one version of the five-dimensional
model, does nothing to alter the fact that the model is built on a five-dimensional
Minkowski spacetime. So, the Galilean version of the five-dimensional model is
relativistic in the sense that it is a special case of a dynamics built using standard
structures of special relativity, yet Galilean in the sense that its dynamics formally
matches that of the four-dimensional quantum mechanics in Galilean spacetime.

3.2. Lagrangians. The Lagrangian density for both Schrödinger’s equation and
the Klein-Gordon equation take a remarkably simple form, L = |Dψ|2.

We can derive the usual expression for the Klein-Gordon equation,

L = g(Dψ∗, Dψ)(10)

= −∂qψ
∗∂qψ + ∂tψ

∗∂tψ − ∂xψ
∗∂xψ − ∂yψ

∗∂yψ − ∂zψ
∗∂zψ

= −(mc/~)2ψ∗ψ + ∂tψ
∗∂tψ −∇ψ∗∇ψ

For the Galilean theory, we can verify the Lagrangian density by using G instead
of g,

(11) L = G(Dψ∗, Dψ) =
2mi
~

[ψ∗∂Tψ − ψ∂Tψ
∗]−∇ψ∗∇ψ,

which generates Schrödinger’s wave equation.

3.3. Mass, Energy, Momentum Relations. One can also see the different
mass-energy-momentum relations transparently in the five-dimensional model. By
substituting a generic plane wave solution ψ = ei(mq−Et+~p·~x) into (6) and ψ =
ei(mQ−ET+~p·~x) into (8), we get the correct values of −m2 + E2 − p2 = 0 for the
relativistic theory and 2mE − p2 = 0 for the Galilean theory.

To summarise, Schrödinger’s wave equation and the Klein-Gordon wave equation
have been derived from the five-dimensional generalization for the case of a single,
free, massive particle. The constraints (4) and (5) are only different by a rotation of
the axis that appears in the exponential. This difference is all it takes to distinguish
the relativistic and non-relativistic quantum theory in the special case considered.
The Lagrangians for both theories appear in an especially simple form, and the
mass-energy-momentum relations arise immediately. The relation between these
two special cases of the five-dimensional theory is striking and provocative.
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Already, one can see a formal similarity between the electromagnetic field and
the wave function for a spinless particle in that the dynamical equations governing
the fields are both second order differential equations using a vector derivative
operating on a multi-vector field. The difference is just that the electromagnetic
gauge potential (in standard formulations) is a tangent vector field (or 1-vector) in
four dimensions and the spinless particle in the five-dimensional formulation is given
by a scalar (or 0-vector) quantity plus five-dimensional pseudo-scalar (or 5-vector)
quantity.

There exists an ongoing research programme known as light-front field theory
or light-front dynamics or null cone gauge theory which to some extent captures
the non-relativistic nature of relativistic spacetime. In this tradition, one takes
a relativistic theory and formulates it in the so-called light-cone gauge or infinite
momentum frame. This is done by picking an arbitrary direction in space, say
the z-axis, and then transforming an ordinary rectangular reference frame, with
axes, {t, x, y, z}, into a new reference frame, {t′, x, y, z′} where t′ = (z − t)/

√
2

and z′ = (z + t)/
√

2. This makes equations that are really relativistic look as if
they are non-relativistic. The light-cone formulations, however, are not really Gali-
lean theories for at least two reasons. First, the variables that look non-relativistic
don’t correspond to the classical quantities. For example, them in the Schrödinger’s
equation of light-front field theory doesn’t correspond to a particle’s mass. Second,
the theory only generates a two-dimensional Euclidean physical space. To get
the three-dimensional physical space, one must use a fifth dimension that has no
ordinary interpretation in terms of space and time. In standard light-front field
theory, the appearance of a Galilean equation is merely formal in the sense that
one can cook up variables that obey Schrödinger’s wave equation but they do not
correspond to any natural physical quantities. In the five-dimensional model above,
the m really does play the role of a particle mass; the T really does play the role
of time.

The five-dimensional model contains a significant lacuna: an explanation of what
accounts for the Ansätze (4) and (5). Without some story about the physical
structures that justify discarding most of the solutions for the general equation (1),
the model is incomplete. I think ultimately, one should not get too hung up on
what the best interpretation is for the partial model above because it presumably
will be interesting physically only insofar as it can be incorporated as a special case
of a more comprehensive theory. So, the ultimate answer as to how to interpret
it, will hinge on how it can be extended to accommodate a wider range of physical
theories. So, while I advocate no specific proposal for a completion here, there
are several routes one might take. First, one could refashion my model into one
based on a four-dimensional base manifold, which would allow one to maintain
a standard interpretation of spacetime. This would involve maintaining the five-
dimensional character of the model only in the tangent space, i.e., by treating the
model as an extension of a fiber bundle interpretation of special relativity with an
extension of the tangent bundle into a fifth dimension. This would have the benefit
of not being revisionary about spacetime itself but would make the five-dimensional
tangent structure and the associated transformation properties a bit more ad hoc.
Second, one could somehow compactify one of the dimensions of the base manifold,
presumably as R4 × S. The compactification by itself would not be sufficient to
explain (4) and (5), but could supplement a more thorough explanation by at least
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accounting for why we do not perceive the fifth dimension as an extra degree of
spatial freedom. Third, one could maintain the R5 topology of the base manifold
and attempt to subsume the Ansätze, 4 and 5, under a more comprehensive theory
as the result of the imposition of a special boundary condition. This strategy would
be much more revisionary than the other two, but also possibly more informative
and explanatory. There are undoubtedly other strategies one could attempt, but so
far as I can tell, there is no reason to think completing such a model is impossible. I
will continue the discussion assuming that some unobjectionable completion exists
that does not force a significant reappraisal of the interpretation.

4. Galilean Spacetime

It is no great surprise that the Klein-Gordon equation can be formulated as
a wave equation on the five-dimensional M . The more interesting result is that
the non-relativistic quantum mechanics is also naturally formulated using the same
manifold, metric, and connection. This is especially surprising because the Gali-
lean spacetime structure that underlies non-relativistic quantum mechanics is not
a metric space. There is no Galilean spacetime metric, but instead a Euclidean
metric for space, another for time, and an affine connection to bind space and time
together. The key advance the five-dimensional formalism offers is a natural way
to understand classical spacetime structure within a metric space. This perhaps
offers some hope for a version of classical mechanics that eschews the traditional
complicated spacetime structure, though the fifth dimension may introduce more
interpretational difficulties than is desirable.

One traditionally strange feature of the wave function in non-relativistic quantum
mechanics is that while it is complex-valued, it is not a complex field. Its boost
transformation involves a more complicated space and time dependent phase shift.
Starting with one inertial frame where spacetime points are labeled (t, ~x), there is
another inertial frame (t′, ~x′) moving away from it with constant velocity ~v. In the
traditional treatment, (e.g. Ballentine 1998), under the combined transformations

~x′ = ~x− ~vt
t′ = t

ψ′(t′, ~x′) = e
i m

~

“
−~v2t

2 +~v·~x
”
ψ(t, ~x),

Schrödinger’s equation holds for ψ′(t′, ~x′) whenever it holds for ψ(t, ~x). One can
also verify that |ψ′|2 = |ψ|2, so that the probability distribution in the position
representation is preserved under a Galilean boost. Strictly speaking, the standard
spacetime transformations of the wave function do not constitute a Galilean group
but only a group up to an overall global phase shift. This is universally thought
to be harmless because overall phases are physically undetectable, so when we say
non-relativistic quantum mechanics is a Galilean theory, this phase irrelevance is
taken for granted.

If one interprets quantum mechanics such that ψ merely codifies statistical prop-
erties about measurement outcomes, the boost transformation is entirely unmyste-
rious. In order to ensure that the standard connection between ψ and probabilities
of outcomes is invariant under boosts, one must insist that |ψ|2 be invariant under
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boosts. The needed transformation rule for ψ can then be derived using this as-
sumption and leaving open how the phase varies with regard to ~x and t, as described
in (Ballentine 1998).

But the traditional boost transformation should strike one as wholly artificial
if ψ is to be interpreted as a kind of fundamental physical stuff. The phase shift
is just stuck in by hand and attributed to the intrinsic transformation properties
of the wave function stuff even though there is no natural field structure that it
represents. That the boost transformation is mass dependent makes this intrinsic
transformation property of ψ appear even more artificial. The seeming artificiality
of the boost equation counts in favor of interpreting ψ as non-physical.

However, the situation changes if we consider the five-dimensional model. We
can achieve the same Galilean covariance in the five-dimensions with

~x′ = ~x− ~vT
T ′ = T

Q′ = Q− 1
2

∣∣∣∣~vc
∣∣∣∣2 cT +

~v

c
· ~x

ψ′(Q′, T ′, ~x′) = ψ(Q,T, ~x).

Notice that while c does appear in the boost transformation, it does so in a way
that rightly draws no important distinction between slower-than-c and faster-than-c
Galilean boosts.

An advantage of embedding non-relativistic quantum mechanics in the five-
dimensional formulation is that it allows us to see how the wave packet can be
just an ordinary scalar field: ψ itself is invariant under boosts. In the single par-
ticle case, this makes ψ seem much more like a physical field. If one sets aside the
fact that the fifth dimension has not yet been given a clear physical interpretation,
ψ is even less mysterious, vis-à-vis boost transformations, than the electromagnetic
field. This helps to undercut the arguement that boost transformation properties
motivate denying ψ an interpretation as a physical stuff.

Of course, nothing I have said here overcomes the fact that in the multiple
particle case ψ is defined over a configuration space. Until one solves the much
harder problem of finding a theory with fundamental ψ-like fields defined over a
lower dimensional space like space or spacetime from which one derives all the
important aspects of the full ψ in configuration space, the arguement here can only
count as a small first step towards demonstrating the physicality of ψ.

5. Time Reversal Invariance

There has been much recent philosophical discussion of time-reversal invari-
ance, (e.g. Albert 2000, Earman 2002, Malament 2004, Leeds 2006, North 2008),
especially a debate concerning whether classical relativistic electromagnetism is
time-reversal invariant, correctly understood. Although valuable lessons have been
thereby gained about how to think of time-reversal invariance, I believe the overall
framework of the debate is suboptimally structured in two ways. First, the de-
bate is focused on electromagnetism in isolation from other theories. Although,
for historical and interpretative purposes, it is useful to examine the features of
non-quantum relativistic electromagnetism, it is even more useful to examine its
time-reversal characteristics in light of other phenomena that we believe to be true,
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specifically the CPT symmetry of quantum field theory. Second, the debate pri-
marily concerns whether there is sufficient justification for the traditional way of
defining time-reversal invariance instead of seeking constraints on our interpreta-
tions of the physical structures that illuminates why the physics is time-reversal
invariant under the traditional definitions.

Concerning the first issue, consider the interesting fact that in quantum field
theory, we know that electromagnetic interactions and strong interactions obey the
C, P, and T symmetries individually and the combined operation CPT. Weak
interactions however violate the individual C, P, and T symmetries yet still obey
the combined CPT. This is a striking phenomenon because is prima facie puz-
zling that violations of PT, the flipping of an extrinsic spatio-temporal relation
among material fields, is exactly counterbalanced by violations of C, the reversal
of an apparently intrinsic property of material fields. How is it that there are never
any violations of the combined spatiotemporal flipping and reversal of the internal
charge properties of particles? Why is it that these violations only occur in weak
interactions? Is it a coincidence that particles have mass if and only if they interact
via the weak force, or is that a clue that the existence of mass itself is closely related
to the fact that the weak force violates the individual C, P, and T symmetries?
There are no doubt many possible schemes for explaining the relation between C
and PT. One particularly appealing potential answer is that spacetime and mat-
ter are not metaphysically distinct—that there is some fundamental structure that
is somehow a fusion of matter and spacetime, with the existence of matter being
somehow related to additional geometrical structure, so that the CPT symmetry is
really geometric through and through, not a coincidental counterbalancing of inter-
nal material properties with external spatiotemporal symmetries. Classical gauge
theory, string theory and super-symmetry are examples of programmes consistent
with such an exploration.

How exactly a programme to geometrise matter will play out is very uncertain,
but I think it is useful to examine simple classical systems like relativistic electro-
magnetism as a step on the way to understanding CPT symmetry. Arntzenius
and Greaves (2008) adopt one approach, arguing that the time-reversal operation
is really CT, so that the CPT transformation is really just a spatiotemporal flip.
Another possibility is that there are extra dimensions and performing a charge-
conjugation operation really just amounts to performing the same kind of geometric
flipping on the extra dimensions that one ordinarily does for spatial and temporal
reversals. There are presumably many other possible avenues for explaining how
charge conjugation and spatiotemporal reversals are intimately related so that CPT
symmetry can hold fast while weak interactions violate each individual symmetry.

The second issue was that the debate about time-reversal invariance was initiated
as a dispute over whether the traditional way of defining time reversal invariance is
the proper way to define it. Standardly, a theory is said to be time reversal invari-
ance iff φ(i)→ φ(f) is a lawful physical evolution whenever Tφ(f)→ Tφ(i) is also
a lawful physical evolution of some physical state φ(t). T here represents a suitably
defined time reversal transformation on an instantaneous state, and the debate con-
cerns what counts as a suitable transformation. It is standard practice in physics
to allow at least some non-trivial time reversal transformations, typically flipping
the signs of some mathematical terms corresponding to physical magnitudes. The
purpose of non-trivial time reversal transformations is to take into account aspects
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of the instantaneous state that are intrinsically temporal like velocities. Specifi-
cally, in electromagnetism, T flips the sign of the magnetic field components but
not those of the electric field.

Albert (2000) contends in effect that we should impose constraints on T that arise
from our not-too-theoretically-biased ontological commitments. Because velocities
are a priori a first derivative of position with respect to time, their sign should flip
under a T transformation, but because electromagnetic fields are not a priori the
derivatives of anything, no electromagnetic field terms should flip signs. Arguing
for the other side, Earman (2002) contends that the changes of sign are appropriate
given the role that the physical quantity plays. Malament (2004) also contends the
traditional transformations for the electromagnetic field are justified. Concision
prevents me from engaging in this debate adequately, so I will just submit that
the mere fact that there is some T function that is a symmetry of the physics and
preserves the magnitudes of macroscopic parameters of any instantaneous state on
which it operates, e.g., volume, pressure, and energy, is enough to warrant interest
in such a T. The task should be to explore what interpretational consequences such
a T has for the various physical fields. The task is not to assume we antecedently
know what the electromagnetic field is really like and then derive the “correct” time-
reversal transformation from it, but to find specifications of T such that (1) the
physics is symmetric under them and (2) T bears a close enough relation to time-
reversal, e.g., by serving adequately in a thermodynamic reversibility arguement.
Then, one should seek geometric interpretations for the stuff of electromagnetism
such that T and related symmetries P and C hold. Furthermore, one can examine
how these interpretations might extended to help us understand the significance of
weak interactions.

How the physical quantities transform under time-reversal depends greatly on
which quantities are treated as fundamental and which are treated as derivative. It
is standard practice in all theories with point-like particles to think of their world
lines in spacetime as fundamental and to treat their tangents (4-velocities) at any
point p and three dimensional velocities as derivative, so that in virtue of what
it means to be a point-particle velocity, velocities flip sign under a time reversal
operation.

Consider, for example, that the accepted formula for the time reversal of a spin-
less quantum particle (in the normal four-dimensional treatment) is given (up to
a unitary transformation) by complex conjugation, Tψ(t) = ψ∗(−t). It is trivial
that Schrödinger’s equation (and Bohm’s equation) are time reversal invariant us-
ing this definition of T and not time reversal invariant using Tψ(t) = ψ(−t) or
Tψ(t) = −ψ(−t). This result by itself vindicates interest in time reversal using
the complex conjugation definition, but one still needs to consider whether the T
transformation plays the right role with regard to various elements in the theory
to deserve the label ‘time reversal.’

How one fills in this story depends on the ontological status of the wave func-
tion. In the case where ψ is considered non-physical, complex conjugation can be
vindicated as time reversal by demonstrating that it is kinematically permissible
in the sense of being compatible with all commutation relations, and that it corre-
sponds to classical time reversal in a classical limit. Such demonstrations are easily
available in standard texts, (e.g. Sachs 1987, Earman 2002). The basic idea is just
that complex conjugation converts a wave packet into a new wave packet whose
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Figure 1. Three of the Six Electromagnetic Field Components

expectation values concerning position are the same and whose expectation values
concerning momentum measurements are of the same magnitude but oppositely
directed, just as needed for capturing the idea that time reversal involves flipping
the directions of velocities.

In the case where ψ is considered physical, more is required. One needs an inter-
pretation of the kind of stuff ψ is that justifies the complex conjugation definition
of T, an interpretation of ψ’s intrinsic geometrical structure. As before, the focus
is on the single particle case, with hope that the time reversal transformation will
unproblematically extend to the multi-particle wave function once that problem is
solved.

Consider as an exemplar of geometric interpretation, the case of the electromag-
netic field in ordinary four-dimensional Minkowski spacetime. The electromagnetic
field on a space-like hypersurface is standardly time-reversed by changing the signs
of either the electric field components or magnetic field components, depending on
one’s conventions, but not both together. One way of expressing the electromag-
netic field components in Minkowski spacetime, (e.g. Baez and Munaian 1994),
is

F = Exetx + Eyety + Ezetz +Bxeyz +Byezx +Bzexy.

where eij is shorthand for a basis 2-vector eiej (or in the formalism of differential
forms, the 2-form dxi∧dxj). The electromagnetic field is interpreted geometrically
as 6 magnitudes corresponding to infinitessimal rectangular patches pictured in
Fig. Fig. 1.

The relevant time reversal operation is a transformation T that in effect reverses
the order of time slices in a foliation of spacetime. For all properties inhabiting a
tangent space, the complete transformation is equivalent to transforming the basis
tangent vector et with −et, which makes the original charge-current transform as

T(ρet + Jxex + Jyey + Jzez) = ρet − Jxex − Jyey − Jzez

F transforms according to

TF = Exetx + Eyety + Ezetz −Bxeyz −Byezx −Bzexy.

This formula mismatches the textbook treatment of time-reversal where one flips
the sign of the magnetic but not the electric field because the standard treatment
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inserts an additional overall sign change for F under time reversal, which is jus-
tified in Malament (2004) and Leeds (2006) by noting the representation of the
electromagnetic field as a tensor makes it implicitly relative to a choice of tempo-
ral orientation. Either way, the transformation can be subsumed under an overall
geometrical interpretation of electromagnetism that maintains the time-reversal in-
variance of Maxwell’s equations. This geometrical formalism also correctly handles
the behaviour of F under all the proper Lorentz transformations as naturally fol-
lowing from how the basis tangent vectors transform under boosts and rotations.

Turning now to quantum mechanics, it is mysterious why ψ, if it is to be a
physical field represented as complex-valued with no geometrical structure, should
undergo complex conjugation under the action of time reversal. That suggests that
we should enrich the standard interpretation of complex numbers with a more geo-
metrical interpretation. There is a long tradition of thinking of the imaginary unit
i in terms of geometry, going back to its inception. Space considerations forbid
me from providing a thorough exploration of the myriad ways one might try to
represent the geometric role of i in quantum mechanics, so I will just focus on two
ideas that come from the geometric algebra formulation of physics, as elaborated
by Hestenes (2003, 1999) and Doran and Lasenby (2003). In the geometric algebra
formulation, a complex value can be split up into its real and imaginary parts,
ψ = ψa + ψbi, with the real part being interpreted as a real scalar field and the
imaginary part interpreted as a field whose unit magnitude is a volume element with
a spatiotemporal orientation, as depicted in Fig. 2. In either a four-dimensional
Minkowski spacetime or the five-dimensional version, the unit volume element (ei-
ther a 4-vector or 5-vector) multiplied with itself does indeed equal -1, which is a
requirement for it to represent the imaginary unit i adequately.

The benefit of the geometric interpretation is that it is automatically compatible
with the algebraic properties of complex numbers in quantum mechanics, yet it
provides a way of seeing quite directly why it is that complex conjugation is the right
way to time-reverse a quantum field. First, consider the ordinary four-dimensional
relativistic theory with a spinless massive particle and no external potential. Time
reversal can be interpreted geometrically as a reflection of the physical fields about
a plane perpendicular to any time-like axis t. When one maps the points in a
flat manifold (with rectilinear axes) according to (t, x, y, z) → (−t, x, y, z), that
induces a transformation on the tangent space so that et goes to −et. Thus, ψa +
ψbetexeyez → ψa − ψbetexeyez, as desired.

Because Galilean spacetime is not a metric space, it is impossible to define a
volume form for it, at least in the normal way, so this interpretation of complex
numbers cannot apply to non-relativistic quantum mechanics in its four-dimensional
form. However, the situation changes if we use the five-dimensional model.

In the five-dimensional non-relativistic model, it is T that corresponds to New-
tonian time, so one should consider how ψ is affected under the transformation
eT → −eT . Because eT = (et − eq)/

√
2, reversing eT is accomplished by et →

−et, eq → −eq. So, the mapping of the five-dimensional base manifold that effects
time reversal is (q, t, x, y, z)→ (−q,−t, x, y, z). Insofar as we are concerned merely
with time reversal, it is possible to represent i in multiple ways, e.g., as etxyz or
eTxyz, and get the desired transformation properties for ψ, complex conjugation,
in the Galilean special case (5).
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ψa ψb
ye

xe

te

Figure 2. Geometric algebra representation of ψ = ψa + ψbetxyz

with ez suppressed.

What this shows is that it is possible to represent the non-relativistic ψ in a
geometrically explicit manner that realises time-reversal as naturally as standard
treatments of electromagnetism realise the transformation properties of the elec-
tromagnetic field. Nothing stands in the way of retaining the more traditional
framework and interpreting ψ with regard to the geometrical structure of four-
dimensional Galilean spacetime, having the imaginary part but not the real part
linked to the vector structure that picks out the difference between time-like and
space-like vectors and possibly linked to the affine connection. But because there
are no structures in Galilean spacetime corresponding to spatiotemporal volume
elements, a geometric interpretation of i in the four-dimensional Galilean theory
would be rather ad hoc.

It is important to recognise that the mere fact we have found some structure
to represent i is not terribly surprising because there is a range of choices for
how to represent ψ in the five-dimensional model. A more detailed investigation
would involve postulating geometric interpretations of multiple fundamental fields
all embedded within the forty-two degrees of freedom provided by the tangent
space for a multi-vector field in a way that respects what we know of the fields
empirically and illuminates geometrical relations among them, especially getting
all the fields to transform under C, P, and T appropriately in unison. That is
far too large a task to take up here, but it is important that the five-dimensional
model does provide a tool whereby geometric relationships between variables whose
transformation properties we think we understand can be translated back and forth
between a relativistic and non-relativistic version.

6. Conclusion

The most interesting feature of the five-dimensional model is simply the fact
that there exists this non-trivial relationship between the Galilean and relativistic
theories—a relationship not captured by thinking of the non-relativistic theory as
a limiting case of the relativistic. I know of no other similar cases where two
major competing scientific theories with significantly different interpretations of
their common subject matter have been embedded into a single model in such
a non-trivial way. I suggest this case is worth studying further not only for its
application to physics but for its potential impact on conceptual translation and
incommensurability between competing paradigms.
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