
Partial interpretations 

F R A N Z V O N K U T S C H E R A 

i . Statement of the problem 

Natural languages contain many expressions which are grammatically 

well-formed but meaningless; they are assembled from meaningful words 

or morphemes 1 i n accordance with the syntactic rules of the language but 

no meaning is conferred upon them by the semantic rules of the language. 

W h e n we call expressions or utterances 'meaningless* here without further 

qualification, that w i l l just be for the sake of brevity. W e want to indicate by 

that term that the expressions or utterances are semantically anomalous i n 

such a way that they w i l l generally evoke responses like 'What do you 

mean?' or * What are you talking about?' There is no implication that they 

are on a par with totally meaningless expressions as Krz is thwing. 

L e t us take six typical examples of such well-formed but meaningless 

expressions: 

(1) Incompletely defined functors: M a n y predicates are not defined for al l 

syntactically permissible arguments. T h u s the verb to run is defined 

for animals with locomotive appendages, for humans, machines, 

fluids and for noses, not however for plants, minerals or numbers. 

A n d the G e r m a n verb lachen is defined only for humans and the sun. 

T h e sentence Der Mond lacht, though constructed grammatically 

just as Die Sonne lachty has, i n distinction to the latter, no meaning. 

(2) Non-existing objects: Sentences about objects w h i c h do not exist or 

no longer exist form a significant sub-category of example (1). T h e 

sentences Odysseus is (now) shaving himself and Eisenhower is (now) 

sick are meaningless but not the sentences Professor Snell is dreaming 

of Odysseus or Nixon remembers Eisenhower. T h u s many predicates 

are defined for non-existent objects while others are not. Since the 

question of whether a human being is alive or dead is purely e m ­

pir ical , syntax cannot refer to this distinction. 

(3) Invalid presuppositions: A presupposition of a statement or utterance 

A is a state of affairs w h i c h is not itself asserted i n A, but w h i c h 

1 Meaningless expressions do not rate as words of the lexicon upon which the syntax is 
based. 



must be the case i f both A and the (colloquial) negation of A are to 

be meaningful. T h u s the sentence John gave up smoking presupposes 

that John previously smoked. Jack knows that there is a university in 

Regensburg presupposes that Regensburg does indeed have a u n i ­

versity. T h e utterance As a doctor I realize how dangerous this 

symptom is presupposes that the speaker is a physician. These pre­

suppositions are not part of the content of the sentences but rather 

preconditions to them being meaningful at al l . Such presuppositions, 

being again matters of empirical fact, cannot be accounted for 

syntactically. 

Inval id presuppositions also appear i n the following special cases: 

(4) Definite descriptions with unfulfilled normality conditions: Description 

terms as RusselVs book or George VPs son have no meaning because 

the describing predicate fails to apply to exactly one object as the 

normality condition of descriptions requires. Whether this condition 

holds or not is again an empirical question, not a syntactic one. 

(5) Empty generalizations: I n ordinary discourse the sentence All of 

John's children have red hair is meaningless if John does not have any 

children. I n general a sentence of the form All A's are B is only 

meaningful i f there are ^4s. Such a sentence thus presupposes that 

sentence As exist. T h i s should not i n every case be understood to 

mean that there must exist 'real objects' which are As - sentences 

like All the Greek Gods were assimilated into the Roman Pantheon 

indicate to the contrary that they can also be 'possible objects'. These 

presuppositions of descriptions and generalizations were first noticed 

by P. F . Strawson. 

(6) Quantifying into intensional contexts: W . V . Quine (1953) has 

repeatedly emphasized that it is senseless to quantify into inten­

sional contexts, as i n the sentences There is a number x such that x is 

necessarily greater than 7 or There is a person x such that Philip is 

unaware that x denounced Catiline. A quantification of this sort is 

only meaningful under the normality condition that the use of the 

predicate depends solely upon the extension and not upon the 

intension of the argument indicated by the variable as is the case i n 

deontic contexts like There is a person x who is obliged to examine the 

students (see Kutschera (1973), section 1.6). 

I n this paper we propose to discuss how the problem of grammatically 

well-formed but meaningless expressions can be handled w i t h i n the 



general framework of intensional semantics developed by R. Montague. 1 

T h i s semantic system refers pr imar i ly to an artificial language L of the logic 

of types and w i l l be treated exclusively as such i n the following. Rules for 

the interpretation of a natural language S can be derived f rom this system 

only when an analysing relation between the expressions of L and those of 

S is defined. 

L e t us first take a general look at possible courses toward solving our 

problem. W e shall disregard solutions which syntactically exclude meaning­

less expressions as being not well-formed. One could i n this manner, for 

instance with respect to (1), introduce a many-sorted language wi th several 

object domains and several varieties of constants and variables of the same 

category so that every single-place predicate would be defined for exactly 

one object domain. T h e examples given under (1), however, already 

indicate that this is a hopeless undertaking since the predicates of a natural 

language are not a l l defined on sets that can be delineated by such simple 

classifications as 'animal ' , ' h u m a n ' , 'abstract object', etc. Such an attempt 

becomes even more dubious i n case (2) and collapses completely i n cases 

(3)-(6). T h e problem permits only semantic solutions if unpleasant inter­

ference between syntax and semantics is to be avoided. 2 

Semantic solutions offer themselves i n the fol lowing ways: 

(a) Completing the semantic interpretation: W e might stipulate, for i n ­

stance, that a basic predicate takes on the value false for an argument for 

w h i c h it is not defined - ij runs and The moon laughs are then false 

sentences, just as Odysseus is shaving and Eisenhower is sick. Furthermore 

the interpretation of description terms is extended, for instance i n the sense 

of Frege, i n such a way that they have a meaning even when the normality 

condition is not met. Generalizations are interpreted i n such a way that 

they are true when their presuppositions are not fulf i l led. 3 A n d i n the cases 

mentioned under (3), finally, one can resort to the device of inc luding the 

presuppositions into the assertions. T h u s the sentence John gave up smoking 

w o u l d be interpreted as meaning John used to smoke but doesn't any more. 

Supplementing the semantic interpretation i n this way has been the 

customary procedure i n logic since Frege. 

(b) Incomplete 2-valued interpretations: One uses a 2-valued semantics 

but permits interpretations w h i c h do not assign a meaning to every syn­

tactically well-formed term. Functors can then be interpreted as partial 

1 Reference will be mainly to Montague (1970). 
2 Syntax and semantics interfere with one another, for instance, if forming a description 

term is permitted only when the normality condition is provable. 
3 For a complete interpretation of generalizations in intensional contexts, see 2.3.1(c). 



functions so that a sentence F(a) remains meaningless when the reference 

of a does not belong to the domain over which F is defined. Expressions 

involving presuppositions are only interpreted if these are valid. T h i s is the 

solution proposed by D . Scott (1970). 

(c) 3-valued interpretations: A l o n g with the truth values of sentences 

true and false one introduces a th ird value meaningless y and assigns meaning­

less proper names an object meaninglessness as reference and thus con­

structs a 3-valued semantics. A 3-valued semantics has been offered for 

predicate logic for instance by Woodruff (1970), but he only considers such 

meaningless expressions as arise from the use of meaningless proper 

names. F o r this reason we shall discuss a more general 3-valued semantics 

below. 

(d) Sets of 2-valued interpretations: Proceeding from the idea that 

meaningless expressions arise when only l imited information is available 

about the interpretation of a language, one represents such l imited semantic 

information by the set T of 2-valued interpretations M which are eligible 

relative to that information. T then assigns to an expression A the value a, 

if for all MeT, M(A) = a. I f there is no such a, then T is not defined for 

A. T h i s procedure leads therefore to considering a term meaningless if the 

semantic information is compatible with different interpretations for this 

term. If, for instance, a predicate F(x) is only defined over a proper subset 

U' of the object domain £/, then all possible continuations of this partial 

function on U are considered as possible interpretations of F. If the con­

stant a designates an object from U - these interpretations provide 

different values for F(a) so that F(a) is characterized as meaningless with 

respect to the set of these interpretations. A n d i f the normality condition 

for descriptions does not hold, then every assignment of an object to this 

term would be a possible interpretation of the term so that it again is 

meaningless relative to the set of these interpretations. 

Such an approach has been developed especially by B. van Fraassen 

(1969). It refers, however, only to the language of elementary predicate 

logic in an extensional interpretation. 

Complet ing semantic interpretations i n accordance with proposal (a) 

leads to several inadequacies in the semantic analysis of natural language 

sentences. First of all one has to determine which predicates are to be 

basic predicates. F o r instance should sick be taken as a basic predicate and 

healthy as not sick or vice versa. Both cannot be taken as basic because 

otherwise the sentence Eisenhower is neither sick nor healthy would be cor­

rect, i n contradiction to the analytic sentence Anyone who is not healthy is 

sick. Such conventions are, however, very artificial for natural languages and 



they always end up by making sentences false w h i c h ordinarily are con­

sidered true: I f work and to be lazy are basic predicates, then the sentence 

Anyone who never works is lazy is false by virtue of the new semantic con­

ventions, since numbers do not work. M o s t importantly, however, the 

distinction between the assertion of a sentence and its presupposition gets 

lost and its meaning is thereby distorted. If one interprets the sentence 

John gave up smoking to mean John used to smoke and doesn't any more then 

the negation of this sentence maintains John didn't use to smoke or John 

still smokes and i n contradistinction to John didn't give up smoking is true 

even i f J o h n never smoked. 

T h e proposal (a) therefore offers no satisfactory solution to our problem, 

so we can l imit ourselves henceforth to a discussion of proposals (b), (c) 

and (d), i.e. those concerning partial interpretations which do not assign 

every term a meaning. O u r primary objective w i l l be to work out and 

compare these proposals w i t h i n the framework of Montague's semantics. 

It w i l l t u r n out that (b) and (c) have essentially the same effect while pro­

posal (d) does not lead to satisfactory results. 

W e w i l l start off i n the next section by defining the ordinary, complete, 

2-valued interpretations i n the sense of Montague, i n order to elucidate 

where the partial interpretations differ from them. 1 

2. Fundamentals of intensional semantics 

2.1. The syntax of L 

T h e language L upon w h i c h intensional semantics is based is constructed 

i n the fol lowing way: 

W e determine first the categories of L-expressions. 

2.I.I. 

(a) tr,v are categories. 

(b) I f r ,p are categories, then t(p) is also a category. 

(c) I f T is a category, then I(T) is also a category. 

a is the category of sentences, v the category of proper names, r(p) is the 

category of functors w h i c h produce expressions of category T f rom argu­

ments of category p, I ( T ) is the category of intensions of expressions of the 

category T . 

1 These definitions are taken from Kutschera (1975) where they are intuitively ex­

plained. 



T h e alphabet of L consists of the symbols A, = , 5, (,) and infinitely 

many constants and variables of every category. T h e category of an expres­

sion w i l l often be noted by use of an upper index. 

T h e symbol * is not a part of L. A[*] is a finite series of basic L-symbols 

together w i t h this symbol, and A [a] is the expression resulting from replace­

ment i n A[*] of al l occurrences of * by a. 

T h e well-formed expressions or terms of L are determined by 

2.1.2. 

(a) Constants of the category T of L are terms of the category T of L. 

(b) I f F is a term of the category i (p) ( T # i) and a is a term of the 

category p of L , then jF(tf) is a term of the category T of L . 

(c) I f 4̂[<z] is a term of the category T , a is a constant of the category p 

and # is a variable of the category p of L which does not occur i n 

A[a]y then Ax(^4[^]) is a term of the category i(p) of L. 

(d) I f a and 6 are terms of the same category of L , then a = 6 is a term 

of the category a of L. 

(e) I f 4̂ is a term of the category t of L , then /i(^4) is a term of the 

category c(r) of L . 

(f) I f A is a term of the category I(T) of L , then 8(A) is a term of the 

category T of L. 

Where brackets are not necessary to delineate clearly the range of an 

operator A, n or 5, they w i l l be left out i n the following. 

L2 shall be that sublanguage of L i n which the operators /i and 6 do not 

appear and only constants and variables of those categories which can be 

constructed solely i n accordance with rules (a) and (b) of 2.1.1. 

2.2. Extensions 

F o r clarity's sake the semantics of L w i l l be constructed i n several stages, 

i n the first of w h i c h the expressions of L are assigned only extensions. F o r 

this purpose we w i l l restrict ourselves to the sublanguage Lv 

2.2.1. L e t Ex u be the set of possible extensions of the terms of Lx of the 

category T relative to the object domain U. 

(a) EVTU = U 

(b) EATU = {»,/} 

(c) EX(PHA = EXtV,Ep,u 



w represents the truth value true and / the truth value false. AB is the set 

of functions w i t h domain B and a range included i n A. 

2.2.2. An extensional interpretation of Lx over the (non-empty) object 

domain U is a i-place function M w i th the fol lowing properties: 

(a) M(a) e Ez v for all constants a of the category T . 

(b) M(F(a)) = M(F)(M(a)) for all terms i n accordance wi th 2.1.2(b). 

(c) M(XxA[x]) is that function / from Et{p)tU for w h i c h f(M'(b)) == 

M'(A[b]) holds for all M' wi th M' = M. T h e term XxA[x] is 

formed i n accordance wi th 2.1.2(c) and the constant b of the same 

category as x shall not occur i n AxA[x], 

(d) M(a == b) = w iff M ( a ) = M ( i ) for all terms i n accordance wi th 

2.1.2(d). 

I n (c) A T j M means that the two interpretations M and M ' differ at 

most i n the values they assign the constant b. 

2.2.3. W e define fol lowing Montague: 

(a) hxxA : = XxxA = Xxx(xx = *T) 

(b) ~}A := A = Nx\x°). 

(c) AhB : = Nx°i°\B = {x<*°\A) = xa{<r\B))) 

(d) AVB : = i(~\A/^^B) 

(e) ^ D B : = n ^ V £ 
(f) : = n A * T - l A 

2 . 2 . 4 . It is often useful to introduce names for non-existing objects l ike 

Odysseus. T a k i n g U as the set of 'possible objects' and a subset U' of U as 

the set of 'real objects', then where E is a constant of category a(v) and a is a 

constant of category v we postulate 

(e) M(E(a)) = w iff Af(a) e £/'. 

I f we then define 

(g) A . xvA[xv] := hxv(E(xv)^A[xv]) 

(h) V . * M [ * V ] : = n A . ^ v n ^ [ x v ] 

the fol lowing principles h o l d 

A[a] A => V . xA[x] 

A . xA[x] A => ^M-



T h i s means that quantification wi th A . and V . takes into account only 

existing objects. 

2.2.5. Descriptions can be introduced i n L 7 i n such a way that ix^4[#] is a 

term of L1 of category t i f A[b] is a term of category ( 7 , i a constant and x a 

variable of category T of L2\ x should not occur i n A[b]. It can then be 

postulated i n extension of 2 . 2 . 2 : 

(f) M(xA[x]) = a 

if there is exactly one M' such that M' = M and M'(A[a\) = w and i f for 

this M' M'{a) = <x (a being a constant of the same category as x and one 

which does not occur i n txA[x]; otherwise we let M(ixA[x]) = M(a0) 

where a0 is a fixed constant of the category T . 

If the description operator is only to refer to existing objects, it can be 

defined by 

(i) 1. xvA[xv] : = LXv(A[XV^E(XV)). 

2.3. Intensions 

Considering now the assignment of intensions to the expressions of L let us 

shift over f rom L 2 to L. L can be characterized as a modal language of the 

logic of types. According to Carnap the intension of an expression should 

be taken as that function which determines its extension for every possible 

world, iel are to be indices for these possible worlds. 

T h e extension of a functional expression such as it is necessary that p is 

often dependent not only on the extension but also on the intension of the 

argument p. T h u s the arguments of the functor it is necessary that... are 

assigned the category for propositions (intensions of sentences) instead 

of the category a for sentences. Since however the intension of p can be 

expressed by fi(p), it is possible to maintain, as Frege d i d , that the exten­

sions of functional expressions always depend on the extensions of their 

arguments i f one writes it is necessary (ti(p)) instead of it is necessary 

that p. 
Supplementing the conventions 2 . 2 . 1 by 

(d) Ei(t)9u = EttU1 

we define: 

2.3.1. A n intensional interpretation of L over the (non-empty) 



domain J wi th the (non-empty) object domain U is a 2-place function 

Mt(A) such that the fol lowing holds for al l i e I: 

(a) Mt(a) e EtU for all constants a of the category T . 

(b) M f ( F ( a ) ) = Ml(F)(Mi(a)) for all terms according to 2.1.2(b). 

(c) M^kxAlx]) is that function / f r o m Ex(f))tU, for w h i c h : /(M/(6)) = 

M[(A[b]) holds for al l A T w i t h M' = M , and M;(6) = Mt(b) for all 

j ^ i f rom /. T h e term is constructed i n accordance wi th 

2.1.2(c) and the constant b of the same category as x shall not occur i n 

XxA[x]. 

(d) Mfa = b) = w iff M(a) - M(b) for a l l terms according to 2.1.2(d). 

(e) Mt(n(A)) = XHMIA). 
(f) M15{A)) = M ^ X O -

A * is to be a symbol of the metalanguage for functional abstraction. 

M' = M now means that the intensional interpretations M and M' diifer 

at the most w i t h regard to the values M^b) and M •(£) for any number 

of tel. 

Mt(A) is the extension of the term 4̂ i n world i , X*iMi(A) its intension. 

I f the variable # i n A A : ^4[JC] does not occur w i t h i n the scope of an operator 

fly then one can also define: Mt(XxA[x]) is that f u n c t i o n / f r o m Ex[p]fU for 

w h i c h f(M'.(b)) = M/(^[6]) holds for all M' w i t h M ' = M\ for then for all 

M' and M " w i t h A f ' = M9 M" = M and M\(b) = M ' ' ( 6 ) we have 
b b 

M^(A[b]) = Mf;(A[b]). T h i s does not hold however when XxA[x] is the 

expression XxvG<T(i^ff))(fi(F<,(v)(xv))) for which vi(F(a)) can depend on the 

intension of a9 i.e. on the values of Mj(a) w i th j # i. I n this case the 

expression he G(n(F(x)))} w h i c h is to be interpreted as a function from 

<̂r(v),£/> has no reasonable meaning. T h e construction of the terms 

A#-4[#], however, cannot be restricted to those cases i n w h i c h x does not 

occur i n the scope of an operator \x since there are also interpretations of G 

and F for w h i c h the truth value of G(n(F(a))) does not depend on the 

intension but only upon the extension of a. Such contexts are, for instance, 

deontic contexts like 0(n(F(a))) (i.e. F(a) is obligatory). I n such contexts 

we cannot do without terms such as XxA[x]f hxA[x]y or WxA[x]. It is 

therefore necessary to permit syntactically the construction of all the 

terms Ax4[#] and they must then be interpreted i n such a way that they 

have the usual meaning i f the normality condit ion obtains, i.e. i f Mi(A[a]) 

does not depend upon the Mj(a) w i t h j # i. A n d that is what condit ion 

(c) does. 



I n L we can define, besides the operators under 2.2.3, modal operators as 

(j) DA := 11(A) =/i(A* v (* v = 0 ) 
(k) OA : = n • 1A. 

If for every i a set Ut of objects existing i n i is given with Utc: £/, then 

operators for quantifying over existing objects can be introduced i n 

analogy to 2.2.4 w * t h the help of the existence predicate E for which 

Mi(E(a)) = w now holds iff M^eU^ Since statements about the quan­

tity of objects existing i n a world are to be formulated with such quantifiers, 

no sentence of the form It is necessary that there are exactly k objects is 

analytically true unless all the Ut have the same cardinality. 

2.4. Pragmatic relations 

W e shall disregard here the meaning dependencies which derive from the 

linguistic context i n which an expression occurs (Kutschera (1975)), and 

take account only of the fact that the meaning of an utterance may depend 

on its non-linguistic, situational context, e.g. by making use of indexical 

expressions. If the semantically relevant pragmatic parameters are sum­

marized i n an i n d e x y e j - the point of reference of an utterance - then we can 

define: 

2.4.1. A pragmatic interpretation of L over the universe with domain / and 

the (non-empty) index set J is a 3-place function Mtj such that for all 

jejfj M( j is an intensional interpretation of L over / i n the sense of 2.3.1. 

W e call Mi j (A) the extension of statement A at the point of reference; 

wi th regard to i, X*i Mt j its intension, X*jMtJ (A) the extension of A with 

regard to i and X*ijMitj(A) the intension of A. 

3. Partial 2-valued interpretations 

3.1. Extensions 

After these preparatory steps we can now take up method (b) of section 1 

and specify i n greater detail what is meant by an incomplete 2-valued 

interpretation of the language L. W e begin again by assigning extensions to 

the expressions of Lv 

Every complete 2-valued interpretation of M over U i n the sense of 

2.2.2 assigns a possible extension from Ex{p)fU to a functional constant F of 

the category x(p). These functions are defined for all arguments from 



EpJJ. I f M(a)eEpU has been defined, then M(F(a)) is also defined. T h u s i n 

handl ing case ( i ) from section i of incompletely defined functors by the 

use of incomplete 2-valued interpretations, partial functions must be per­

mitted as possible extensions of functors. T h e set of possible extensions 

must therefore be defined i n the fol lowing way: 

A(B) is to be the set of partial functions from B into A, i.e. functions wi th a 

domain included i n B and a range included i n A.1 

If EXtU i n 2.2.2 is everywhere replaced by E*v, i f no demand is made i n 

(a) that M(a) be defined for all constants a of the categories v and a, and 

if the conditions (b)~(d) are taken to hold only i n the case where the values 

of M i n the recursive conditions are defined, then we get the definition of 

the concept of a partial extensional interpretation of L. M' = M i n con­

dit ion (c) is now to indicate that M'(b) or M(b) can also be undefined. 

Therefore we attach to (c) the supplementary condition that M'(b) should 

be defined. T h e conditions f(M'(b)) = M'(A[b]) i n (c) is meant to include 

that f{M'(b)) be undefined iff M'(A[b]) is undefined. 

3.1.2. I f definition (a) f rom 2.2.3 I S taken over, thenM(AxA[x]) = w holds 

i n case M(XxA[x]) is a complete function taking on the value w for every 

argument. Otherwise M(AxA[x]) = / holds since M(XxA[x]) is always 

defined. Consequently according to definition (f) f rom 2.2.3 VxA[x] is 

true i n every case where M(XxA[x]) is a partial function, no matter whether 

this function takes on the value w for a particular argument or not. T h u s 

definition (a) is not suitable. I n order to arrive at quantifiers Ax and Vx 

referring only to the objects for w h i c h A[x] is defined we introduce an 

operator ~ such that a ~b is a term of L1 i f a and b are terms of the same 

category t(p), and postulate: 

M(a~b) = w iff M(a) and M(b), restricted to the c o m m o n domain of 

definition, are identical - i n case this domain is not empty. 

1 If M(Fxip)) is the totally undefined function from E\(/>)tUi then FHp) remains undefined. 

Since we also wish to admit the case where M is undefined for some constants - though it is 

of no special interest n the present context - we can also include totally undefined func­

tions into the set E\(pytV> 



W i t h 

(a') KxxA[xx] := XxxA[xx]~Xx\xx = xx) 

and (f) we can then introduce suitable quantifiers and keep the rest of the 

definitions i n 2.2.3. 

Definit ion (a'), however, does not solve the problem of colloquial 

generalizations of the form All As are B mentioned i n section 1. I n com­

m o n usage such a sentence is only about the As - i.e. it has a truth value 

iff there are As and B is defined for all As. F o r representing such sentences 

restricted generalizations can be introduced, for instance by stipulating 

Af( A xB[x]) = w iff for all A T with M' = M and 

A[x] 

M'(A[b]) = w M'(B[b]) = w holds - provided that there is such an A T 

and that for all such A T , M'(B[b]) is defined. 

Names of non-existing objects can be handled as i n 2.2.4. However, 

instead of defining descriptions as i n 2.2.5 a s w e ^ f ° r *he c a s e where the 

normality condition is not met, using partial interpretations we can restrict 

the definition to the normal case, i.e. the case i n 2.2.5(i). 

3.2 Intensions 

If i n extension of 3.1.1.we postulate 

we can define partial intensional interpretations i n the same correspondence 

to 2.3.1 as we defined extensional interpretations i n correspondence to 

2.2.2. H a v i n g , however, emphasized i n sections 1 and 2.3 that quantifica­

t ion into intensional contexts is only meaningful under the normality con­

dit ion, 2.3.1(c) must be replaced by: 

(c') MlkxAlx}) is that function / from E+iphv for which f(M[(b)) = 

M£A[b]) holds for all A T with A T = M and M\(b) defined - pro­

vided that for all A T , A T with A T = M , M" = M and M[(b) = 

M'i'(b) (for which both these values are defined) Mi(A[b]) = 

Ml'(A[b]). Otherwise M(XxA[x]) shall be the totally undefined 

function from E+(p)tU. XxA[x] shall be a term according to 2.1.2(c) 

i n which the constant b of the same category as x does not occur. 



W i t h regard to partial pragmatic interpretations we also permit that 

Mitj(A) be not defined for all jej. 

T h e introduction of intensions and pragmatic relations provides a suitable 

framework for treating presuppositions. 

3.2.1. A sentence B of L is a presupposition of A relative to interpretation M 

iff for all iel andjej MU(A) is only defined if Mitj(B) = w. I f MltJ(B) is 

not dependent onj, then we call B a purely intensionalpresupposition, and if 

Mi j(B) is not dependent upon /, we call B a purely pragmatic presupposition. 

A c c o r d i n g to this definition a sentence has an intension (as partial 

function) i n a wor ld 1 even if it has no extension in * because of a non-

fulfilled presupposition. A description whose normality condition is not 

met is thus not completely without meaning, it just does not denote 

anything. 

It is obvious that material implications cannot be used for the definition 

of presuppositions, i f B is called a presupposition of A iff A and non-A 

both i m p l y B. Otherwise every factually correct sentence B w o u l d be a 

presupposition to every other sentence A. Just as obvious, however, is the 

fact, that this implication cannot be understood i n the sense of an entail­

ment w i t h reference to a set of interpretations (such that every interpreta­

t ion w h i c h would make A true or false would make B true) because the 

question of whether B is a presupposition of A depends on the interpreta­

t ion of A and JB as long as we are considering the general case under point 

(3) i n section 1 and not only the special cases i n (4) and (5). F o r this reason 

the proposal of van Fraassen (1969) for handling presuppositions is not 

generally applicable. O n l y by reference to possible worlds and intensions 

can a general dependency of the assignment of an extension to A upon the 

truth value of B be determined wi th respect to one and the same inter­

pretation M. 

4. 3-valued interpretations 

W e t u r n now to the proposal to account for meaningless but grammatically 

well-formed expressions w i t h i n the framework of a 3-valued logic. Since 

there is a mult ip l ic i ty of 3-valued logics, we must first consider the p r i n ­

ciples such a logic should be based upon. 

W e wish to interpret the t h i r d value of sentences along w i t h w and / -

we w i l l call it oa - as 'meaningless* i n the sense of 'left indeterminate i n 

truth value by the semantic conventions'. W e adopt an extensive inter-



pretation of the value o* according to which a sentence is characterized as 

meaningless i f one of its components is meaningless. T h e orientation is 

towards partial 2-valued interpretations which also assign no truth value to 

a sentence if they are not defined for its components. T h e object is generally 

to establish a close correspondence between 2- and 3-valued interpretations 

so that for every 3-valued interpretation N there is a 2-valued interpreta­

t ion M which assigns all sentences A wi th N(A) ^ oa the same truth value 

as Nf and vice versa: i.e. for every 2-valued interpretation M there is a 

3-valued interpretation N which assigns every sentence A for which M(A) 

is defined the same truth value as M. O n the basis of this correspondence 

the theorems of 3-valued ogic w i l l be exactly those of 2-valued logic. I n 

natural languages we use i n fact 2-valued logic, excepting, however, the 

metatheoretical principle of bivalence which requires that every sentence 

be true or false. 1 

A 3-valued logic can now be constructed on these lines corresponding 

either to the semantics of section 2 or to the semantics of section 3. W e w i l l 

only carry out the latter project here since the use of partial functions is 

unavoidable, as for instance i n the treatment of presuppositions of indirect 

sentences. T h e truth value of a sentence of the form F(ji(A)) - e.g. John 

said that Jack gave up smoking - depends on the partial function X*i Mt(A) 

and is not invariant with regard to a change i n its domain of definition. 

A n d i n general the reference to the frequent occurrence of only partially 

defined concepts which we made i n section 1 already suggests strongly the 

use of partial functions as possible extensions. 

4.1. Extensions 

W e w i l l define first extensional 3-valued interpretations for the language L2 

and assign every category t a single object 'meaninglessness' o\ oa w i l l be 

assigned to a meaningless sentence, o v to a meaningless proper name. T h e 

objects o T ( p ) w i l l be introduced below. 

T h e set of possible extensions of the category T for the object domain is 

determined i n analogy to 2.2.1 i n the following way: 

4.1.1. 

K,u = Mo*} 

1 For the distinction between accepting the object language principle of tertium non datur 
and accepting the metalinguistic principle of bivalence see van Fraassen (1969). 



E*u>)>v l s the set of f u n c t i o n s / from E*tU
Ep,u w h i c h take the value ox for 

the argument op. 

ox(p) shall be that function from E*(p)iV which takes the value ox for all 

arguments. 

4.1.2. A n extensional 3-valued interpretation of Li over the (non-empty) 

object domain U is a 1 -place function N w i t h the fol lowing properties: 

(a) N(a) e E*tU for all constants a of L2 of the category T . 

(b) N(F(a)) = N(F)(N(a)) for all terms i n accordance wi th 2.1.2(b). 

(c) N(XxA[x]) is that function / f r o m E*(phU with f(N'(b)) = N'(A[b]) 

for al l N' = N and N'(b) # o p . A ^ f x ] is a term according to 

2.1.2(c) and the constant b of the same category as x shall not occur 

i n AX^4[JC]. 

(d) N(ax =bx)=w for N(ax) * ox and N(ax) = N(bx); N(ax = bx) = / 

for N(ax) * ox # AT(6T) and N(ax) # A^(6T); and otherwise N(ax = 

6T) = oa - for all terms according to 2.1.2(d). 

T h e intuitive ideas for the construction of a 3-valued logic as formulated 

above can then be made precise i n the fol lowing way: 

4.1.3. A n extensional 3-valued interpretation N and an extensional partial 

interpretation M ( in the sense of 3.1) shall be called correlated i f 

(a) M and are based on the same object d o m a i n ; 

(b) for all constants ax wi th x = v,cr M(ax) is defined iff N(ax) ^ ox\ i f 

M(ax) is defined, then M(ax) = N(ax)\ 

(c) for all constants ax{p\ M(ax(p)) is the totally undefined function from 

E+
z(phuifiN(axip)) = ox(p); otherwise M(ax{p)) = N(a™)ID(N(a^p)). 

D(N(a)) is the set of arguments # o p , not assigned the value ox by M a ) , 

while //2? is the function / restricted to E. 

T h i s correlation is a one-to-one correspondence between al l 3-valued 

and all partial interpretations. 

4.1.4. I f N and M are correlated then everything w h i c h applies to the 

constants of L2 according to 4.1.3 applies also to all terms of Lv 

T h i s statement can be proved by induct ion on the degree of the terms, 

i.e. on the number of occurrences of logical operators i n them, where 

brackets which express function-argument posit ioning according to 

2.1.2(b) are also counted as operators. 



W e define: 

4.1.5. A partial interpretation M satisfies a sentence A weakly i f M(A) = w 

or i f M(A) is undefined. A 3-valued interpretation N satisfies A weakly i f 

N(A) ^ /.! A shall be called weakly valid if all partial interpretations 

satisfy A weakly. Furthermore A shall be called weakly 3-valid i f all 3-

valued interpretations satisfy A weakly. 

F r o m 4.1.4 we then obtain the theorem: 

4.1.6. T h e weakly 3-valid sentences of L2 are exactly the weakly valid 

sentences of Lv 

If the 3-valued semantics had been constructed corresponding to the 

semantics of section 2 instead of section 3, we would have obtained i n 

place of 4.2.6 the theorem: T h e weakly 3-valid sentences are exactly the 

logically true sentences, i.e. the sentences satisfied by all complete 2-valued 

interpretations. 

F o r the definitions of 2.2.3 corresponding remarks apply as were made i n 

3.1.2. W e postulate 

N(ax~bx) = wy i f N(ax) # ox # N(bx) and N(ax)/D(N(ax)) n D(N(bx)) 

= N(bx)lD(N(ar)) n D(N(bx)); N(ax ~bx) = 0% i f N(ax) = ox or N(bx) = 

ox\ and otherwise N(ax ~bx) = /. 

Names of non-existing objects and description terms can be treated i n 

direct analogy to 3.1. 

4.2. Intensions 

T h e definition of 3-valued intensional interpretations also follows directly 

f rom 2.3 and 3.2. W e let 

o* ( t ) is to be that function from E*(t)
tU which assigns every iel the value ox. 

I n correspondence to 3.2 condition (c) of 2.3.1 i n the definition of i n ­

tensional 3-valued interpretation takes the form: 

(c") N£AxA[x]) is that function / from E*(phU for which f(N'(b)) = 

N'(A[b]) holds for all N' with N' = N and N'(b) * op - i n case 

N\(A[b]) = N'it'(A[b]) holds for all N'f N" with N' = N, N" = N, 

1 The concept 'satisfies weakly* was introduced by Woodruff (197°)-



andAT;(&) = Nl'(b) # op. Otherwise Nt(XxA[x]) = ox{p\ W e choose 

b as i n 2.3.1. 

T h e definitions and theorems 4.1.3 to 4.1.6 carry over to intensional 

3-valued interpretations, and introducing pragmatic interpretations i n 

3-valued semantics requires no additional considerations either. 

S u m m i n g up we can say: T h e 3-valued semantics we have sketched above 

derives i n a simple and straightforward way from the semantics of partial 

2-valued interpretations of section 3 by assigning undefined expressions 

the object 'meaninglessness'. 3-valued logics can, of course, also be con­

structed i n quite different ways, but these are barred to us here since our 

intention has been to interpret the value 'meaninglessness' as 'indeter­

minate i n value by a 2-valued semantic interpretation' and to let 3-valued 

logic coincide wi th the 2-valued logic of natural languages. 

5. Sets of interpretations 

I n b u i l d i n g up our 3-valued semantics we understood the characterization 

of terms as 'meaningless' i n an extensional sense i n which a sentence 

AyBy for instance, is meaningless i f A or B is meaningless. I n a narrower 

sense we could also call a sentence 'meaningless' if it could be assigned the 

value Hruey as well as 'false' by additional semantic stipulations. I n this 

sense a sentence AVB is not meaningless i f B is true even i f A is meaning­

less. A n d a sentence of the form AW~]A is never meaningless. 

I f meaningless expressions are to be understood i n this way, (non­

empty) sets T of 2-valued interpretations M suggest themselves as an 

adequate tool of semantic analysis. If a is a term of L , it is interpreted by a 

set T i n such a way that 

(a) T(a) = a i n case M(a) = a holds for al l MeT, and 

(b) T(a) remains undefined, i f there is no such a. 

Intuitively this procedure can be described thus: i f only l imited i n ­

formation about a (2-valued) interpretation of L is available, take the set T 

of all interpretations M compatible w i t h this information, and assign a 

term a a meaning a if and only if this meaning can be derived from the 

given information, i.e. i f and only i f all MeT assign a the value a. 

T h e sentences true for al l such sets T are obviously exactly the logically 

true sentences, i.e. the sentences true under all interpretations. T h u s we 

get i n a tr iv ia l way a result corresponding to 4.1.6. 

W e are, however, not concerned here wi th all the interpretations of L 



that can be defined by arbitrary sets T. W e have addressed ourselves 

rather to the problem, that an interpretation can be fixed for all constants of 

L and can st i l l be indeterminate for some terms of L. W e are therefore 

interested primari ly i n those sets T for which T(a) is defined for all (or at 

least most) constants a, and must ask, therefore, i f partial 2-valued inter­

pretations can be represented by sets of complete 2-valued interpretations, 

i.e. i f working wi th sets of interpretations we can get the same results as 

working w i t h partial interpretations. 

L e t us confine our attention to the assignment of extensions. If we take 

sets of complete interpretations i n the sense of 2.2.2 we can account for the 

fact, that a term ax{p) denotes a partial function/from J£p>l/ into ExU - we can 

set T(ax(p)) = / , i f E cz EpU is the most comprehensive set, such that 

M(ax(p))lE = / holds for al l A f e T - b u t those partial functions cannot 

appear as arguments of other functions since we are using ExV instead of 

Ex tU as sets of possible extensions. W e have seen, however, that the use of 

partial functions as arguments is indispensable for an adequate treatment of 

meaningless terms. W e cannot, therefore, represent partial interpretations 

by sets of complete interpretations; so the use of such sets leads to 

unsatisfactory results. 

There remains then only the recourse of using some sort of completed 

partial interpretations. T h e i r definition is to be derived from that of a 

partial interpretation M wi th the additional stipulation that i f M(ax) is 

undefined, M'(ax) is to be an arbitrary object from E+ v for the completed 

interpretation M'. I f TM is the set of all completions of M , then TM is 

defined exactly for those terms a, for which M is defined, and for them we 

have M(a) = TM(a). 

But even i f partial interpretations can be represented by sets of inter­

pretations by this procedure, it is sti l l quite unacceptable since the notion 

of a completed partial interpretation is intuitively wholly unreasonable. If 

M' is such an interpretation, M\Fx{p)) a partial function, and M'(ap) an 

object not belonging to the domain of this function, M'(Fx{p)(ap)) is sti l l 

supposed to be defined. Such a stipulation can, of course, not yield an 

intuitively acceptable concept of interpretation. 

Partial interpretations cannot therefore be represented i n a reasonable 

way by sets of interpretations. 

T h e definition of an interpretation by a set of interpretations further­

more is not recursive: T(Az>B) does not depend directly on the values 

T(A) and T(B) and can be defined even i f both T(A) and T(B) are u n ­

defined. T h i s is not i n accordance with the general semantic principle that 

the meaning of a sentence derives from the meaning of its constituents. 



A n d finally we want to quantify wi th the operator \i over interpretations 

Mx i n intensional semantics. I f every Mi is a complete interpretation, we 

cannot account for the presuppositions of A by 1.1(A) and cannot use partial 

functions A*iMt(A) as arguments of functors. If, o n the other hand, we 

were to work w i t h sets Tt of interpretations and quantify wi th n over such 

sets, we w o u l d use values of interpretations as wel l as sets of interpretations 

i n the recursive definition i n a rather obscure fashion. 

F o r these reasons the attempt to represent incomplete interpretations by 

sets of interpretations seems to be unsuccessful, or at least to become so 

complicated and artificial as to be without interest. 

F o r a simple and adequate treatment of well-formed but meaningless 

terms there remain then only the 2-valued semantics of partial interpreta­

tions and 3-valued semantics. Both come to the same thing on the defini­

tions i n section 4. Since, however, i n our 3-valued interpretations the value 

'meaningless' is understood i n the sense of 'indeterminate under 2-valued 

semantic conventions', the notion of partial interpretation is to be re­

garded as the more fundamental one. 
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