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Nonconstructive Properties of Well-Ordered
T, Topological Spaces

KYRIAKOS KEREMEDIS and ELEFTHERIOS TACHTSIS

Abstract We show that none of the following statements is provable in
Zermelo-Fraenkel set theory (ZF) answering the corresponding open questions
from Brunner in “The axiom of choice in topology”:

(i) Forevery T, topological spacéX, T) if X is well-ordered, therX has a
well-ordered base,

(ii) For every T, topological spac&X, T), if X is well-ordered, then each
open cover ofX has a well-ordered open refinement,

(iii) Forevery T, topological spaceéX, T), if X has a well-ordered dense sub-
set, then there exists a functidn: X x W — T such thatw is a well-
ordered set anfk} = N f ({x} x W) for eachx € X.

1 Introduction Let (X, T) be a T, topological space and I& be a base foiX.
Clearly,

ITI < 2% (1)

and
1X| < |28). )

(The mapf : X — P (B)(= the powerset oB), f (x) = {B € B : x € B} is obviously
1:1). We then have the following proposition.

Proposition 1.1  In Fraenkel-Mostowski permutation models, a T, topological
space (X, T) iswell-ordered if and only if X has a well-ordered base.

Proof: From (1) and the fact that in every permutation model Form 91 in Howard
and Rubin [4], PW The powerset of a well-ordered set can be well-ordered holds,

we have that iX is well-ordered, theit is well-ordered. Similarly from (2) it follows
that if X has a well-ordered base, th&ns well-ordered. O
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In Cohen models however Proposition 1.1 may fail. Indeed, in the basic Cohen
model, modeM 1 of [4], the real lineR with the standard topology has a countable
base, butt is not well-ordered. There remains the question:

If (X, T)isawell-ordered T, topological space, then does X have a well-
ordered base?

Motivated by this question, Brunner [1] defined the following statements:

(A1) Form 148 in [4]: For every Ttopological spacéX, T), if X is well-ordered,
then X has a well-ordered base.

(A2) For every B topological spacéX, T), if X is well-ordered, then there exists a
function f : X x W — T such thatV is a well-ordered set anfl({x} x W) is
a neighborhood base afor eachx € X.

(A3) For every T topological spacgX, T), if X is well-ordered, then each open
cover of X has a well-ordered open refinement.

(A4) Forevery T topological spaceéX, T), if Xis well-ordered,theiX satisfies£):
if O C T coversX, there is a mapping : X — T such thak € f(x) and f[ X]
refinesO.

(A5) Forevery B topological spacéX, T), if Xiswell-ordered, theny) is a hered-
itary property ofX.

(A6) For every T topological spacéX, T), if X has a well-ordered dense subset,
then there exists a functioh: X x W — T such thaW is a well-ordered set
and{x} =N f({x} x W) for eachx € X.

Clearly, each of the above statements is a theorem of ZFC (ZF with the axiom of
choice AC, Form 1in [4]). Brunner [1] asks whether these statements are provable in
ZF minus the axiom of regularity (A and Howard and Rubin [4] ask whether 148
implies AC. The aim of this paper is to show that none of (Ai),i=1, 2, 3,4, 5, 6, is
a theorem of ZF and that 148 does not imply AC irPZF particular, we show that

1. (A1), (A2), and (A6) are equivalent to AC in ZF,

2. (A3), (A4), and (A5) imply Form 13 in [4]Every Dedekind finite subset (i.e.,
it has no countably infinite subset) of R isfinite.

Before setting out with proofs let us make a straightforward remark on the interrela-
tion between the statements (A1) up to (A5).

(i) (Al) > (A2).
(i) (Al) => (A3).
(iii) (A3) <= (Ad) < (A5).

For any undefined topological notion the reader is referred to Willard [9].
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2 Results We begin by observing the following.
Theorem 2.1 (A1) does not imply AC in ZF°,

Proof: LetN be the basic Fraenkel model (modill in [4]). By Proposition 1.1
we have that (A1) holds ilN . On the other hand, AC fails iN (see [4]) meaning
that (A1) does not imply AC in Z¥as required. d

However in ZF, (Al) is equivalent to AC as Theorem 2.3 clarifies. In particular, we
show that both (A1) and (A6) are equivalent to the set-theoretic principle PW (see the
introduction) which in ZF is known to be equivalent to AC (see Felgner and Jech [3]).
We recall first the notion of an independent family of sets.

Definition 2.2 Let 9 > w be an ordinal number. A familA € P (9) is said to be
independent if and only if for any finite collectiomy, ..., Am, Ba, ..., B, of distinct
elements oA, |A;N---NALZN (E\By) N---N(E\Bp)| = |6].

Theorem 2.3  In ZF the following statements are equivalent:
(i) PW,

(i) (A1),

(iii) (A6).

Proof: (i) — (ii) This is straightforward.

(i) — (i) Fix an ordinal numbek > w and letA = {g :i € 2} C P (k) be an
independent family (see Kunen [6], Exercise (A6), p. 288). The existence of such a
family can be proved in ZF We show that 2is well-ordered.

Foreach € 2¢,letG; = {x € P (x) : [XA aj| < w} whereA denotes the operation
of symmetric difference. Since for allj € 2¢,i # j, & A a; is infinite, we have that
G NGj=g. PutG =U{G :i e 2. Foreachx € [k]**(= {x e P (k) : X <
w}),i € 2¢andg € G;, put

B(x,i,9) ={ye[«]": xS yandyng=o}. 3

Claim 2.4 Thefamily {B(x,i,0) : X € [k] =%, i € 2, g € G;} isa cover of [«]=*.

Proof of Claim2.4: Fix x € [«]<® and leti € 2. Thena\x € G andx €
B(x, i, @ \Xx) finishing the proof of the Claim 2.4. O

LetB = {B(x,0) : x€ [«]=*,g=UQ, Q € [G]=?} whereB(x, g) = {y € [«]=*:
xCyandyng= a}.

Claim 25 B isabasefor aT, topology Tg on [«] .

Proof of Claim2.5: By Claim 2.4 we have thd is a cover of f] =“. On the other
hand, ifx € B(xy, g1) N B(Xo, g2), then sincexN g; = XN g, = &, we have that
B(x, g1 Ugy) € B andclearlyx € B(x, g1 Ugy) € B(X1, g1) N B(x2, g»). Therefore,
B is a base. We show now thatgenerates ajltopology on k] =“. Fix X, y € [«]=®
with x #£ y and letg € G be such thatxU y) N g = @ (take, for example, anye 2¢
and putg = g\ (xU y)). ThenVyx = B(x, gU (Y\x)) andVy = B(y, gU (x\y)) are
disjoint neighborhoods of andy, respectively. Assume otherwise andzet Vx N
Vy. Thenx € z,zN (QU (Y\x)) = @, andy C z, zN (gU (X\Y)) = @. Thus,
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yCzandyn (Y\X) = @ (4)

and
X C zandxnN (x\y) = @ (5)

By (4) we have thay € x and by (5) x C y. Thereforex =y, a contradiction. This
completes the proof of Claim 2.5. O

Since([«] =, Tg) is awell-ordered Tspace, letby (AW = {W; : j € 8} be awell-
ordered base. Consider now the open cd¥et {B(,i,g) :i € 2¢, g € Gj} where
B(x, i, g) is given by (3). ThelV ={V e W :V C U for someU € U} is clearly a
well-ordered open refinement bf. For everyV € V , let

Hy ={i€2°:3ge€ G,V C B(,i,9)}. (6)

Claim 2.6 For eachV eV, Hy isfinite.

Proof of Claim2.6:  Assume the contrary and 1&, € V be such thaHy, is in-
finite. As eachG; can be well-ordered uniformly{& A X : x € [«]<“} is a uni-
form well-ordering ofG;) we may define an infinite sé¢t € G; : i € Hy,} such
that Vo € B(@,i, gi) for all i € Hy,. Fix B(Xp, 9) a basic open set contained in
Vo. Theng = g, Ugi, U--- U g, for somen € w andg;; € Gi;, j < n. Since
B(xo, 9) S N{B(@,1, g) :i € Hy,}, we have thatU{g; : i € Hy,})\g = @ (otherwise
fixi € Hy, andy € gi\g, thenxo U {y} € B(Xo, 9)\B(2, 1, gi), a contradiction). Since
|0 A aj| < w, itfollows immediately thatforall € Hy,, F =&\ (a, Ua;,U---Ua,)

is finite. This contradicts the fact thAtis an independent family and completes the
proof of Claim 2.6. O

SinceA is an independent family) has no finite subcover. Furthermore Vdsis a
base it is clear that'2= U{Hy : V € V } and sincec is well-ordered, 2is linearly
ordered (e.g., lexicographically). Thus, edéhis well-ordered and consequently 2
is well-ordered finishing the proof of (il> (i).

(i) — (iii) Sincein ZF, AC<= PW, this is straightforward.

(i) — (i) Fix an ordinal numbek. Since|x| < |2¢| we may assume without loss
of generality thatc C 2. LetW = {W; : f € 2°\«} be an independent family of
subsets of. Define atopologyl on X = 2¢ by requiring: All points inc to be isolated
whereas neighborhoods 6fe 2\« are all sets of the form

Vi ={f}U(Wi\(UQU A)), Q e W \{Wi}]]=*, Ae [Wi]™.

(X, T)isaT, space. Indeed, let, y € X, x # y. We consider the following cases.

Casel: Xx,yex. Then{x},{y} are the required disjoint neighborhoodsxaind
y, respectively.
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Case2: xek, ye29\«. Then{x}, {y}U(Wy\{x}) arethe required disjoint neigh-
borhoods ofx andy, respectively.

Case3: Xx,ye29\k. Then{x}U(W\W), {y} U (W, \Wy) are the required dis-
joint neighborhoods ok andy, respectively.

Thus, (X, T) is a T, space having the well-ordered seds a dense subset. Adjoin an
extra pointoo to X and extend the topologV by declaring neighborhoods ob to
be all supersets dbo} missing finitely many setsf} U W¢, f € 2°\k. Thus, each
neighborhood obo misses only finitely many elements df\&. ClearlyY = XU
{oo} with the extended topology* is a T, space having as a dense subset.

Let, by (A6),{Z :i € R} be awell-ordered family of neighborhoods{od} such
that{oo} = N{Z :i € R}. Then 2\k = U{(2°\k)\Z : i € 8} and by the above each
set(2\k)\ Z is finite. As 2 is linearly ordered(2“\«)\ Z is well-ordered. Thus,
2\« is well-ordered finishing the proof of (ii}> (i) and of the theorem. O

Remark 2.7 The statement“If X, T) is a T, space with a well-ordered dense sub-
set, then each open cover¥has a well-ordered open refinement” has also been con-
sidered in [1] where it is shown not to be a theorem of ZF; in the basic Cohen model,
the Moore plane (see Steen and Seebach [8], Example 82) is a separsiiided hav-

ing an open cover with no well-ordered open refinement. Via the latter proof, Brunner
implicitly suggests that the above statement implies a well-known weak choice prin-
ciple, namely, the axiom of choice for families of nonempty subseks 8iC(R), and

Form [79 A] in [4]. However, following the proof of Theorem 2.3 we deduce that the
above statement is equivalent to AC in ZF. Indeed(}&tT) be the T, space of The-
orem 2.3 and leD = {{f}UW; : f € 29k} U {{X}: X € k}. Clearly,O is an open
cover of X. LetV = {V, : i € R} be a well-ordered open refinement©@f For each

f € 2°\«, leti; be the least € 8 such thatf € V;. ThenV;, C {g} U W, for some

g € 2°\«. Necessarilyg = f and consequently the functidn— V;, is 1 : 1 meaning

that 2 is well-ordered.

Brunner [1] &) of a T, space (see the Introduction) as topologically the most inter-
esting (among the other fifteen properties gEpaces he considers in [1]) because as

he points out it is both a weakening of metacompact and well-ordered local weight.
In Theorem 2.8 we show that the statement (A3) implies Form 13. Since (13) fails
in the basic Cohen model for the set of the countably many added Cohen reals (see
Cohen [2]) we have that (A3) is not provable in ZF. Thus, neither of the statements
(A4) or (A5) is provable in ZF.

Theorem 2.8  (A3) implies the statement: For every ordinal number « > w, every
infinite subset of 2¢ has an infinite well orderable subset. In particular, for x = w,
(A3) implies Form 13.

Proof: Fix an ordinal numbek > «» and letA be an infinite subset of*2 Assume
that A has no infinite well-orderable subset andAetG;, G and ([«] =, Tg) be de-
fined as in the proof of Theorem 2.3. By (A3) &t = {W, : j € 8} be awell-ordered
open refinement of the open coldr= {B(2,i,9) :i € A, g € Gj} whereB(x, i, g)
is given by (3) in the proof of Theorem 2.3. For egch R, let

Hj={ie A:3dge G, W; C B(w,i, 0)}.
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As in Claim 2.6 of the proof of Theorem 2.3 it can be shown tHais finite for all

j € R and sincdJ has no finite subcover, it follows that there is an infinitelet R
such thatH; # Hj forall j, j" € M, j # j'. Consequentlyid = U{H; : j € M} is
infinite and as 2is linearly ordered it follows thdtl is an infinite well-ordered subset
of A. This contradicts our assumption and completes the proof of the theorém.

Remark 2.9 In view of Theorem 2.8 one expects that (13) does not imply back
(A3). Indeed, this is the case. In particular, Monro ([7], p. 37) constructs a symmetric
extensionN of a countable transitive model of ZFV = L such thatN satisfies
AC(R) (hence, it satisfies 13), but there is a cardinalN and an infinite subset of 2

(the setG* of p. 37) having no countably infinite subsetdNin Thus, the conclusion

of Theorem 2.8 fails for the ordinal numbernd consequently (A3) fails iN as

well.

3 Summary The following diagram summarizes the results of the paper.

|AC = (A1) = (A2) = (A6)|
U
[(A3) = (A4) = (AS)|
4
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