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Nonconstructive Properties of Well-Ordered
T2 Topological Spaces

KYRIAKOS KEREMEDIS and ELEFTHERIOS TACHTSIS

Abstract We show that none of the following statements is provable in
Zermelo-Fraenkel set theory (ZF) answering the corresponding open questions
from Brunner in “The axiom of choice in topology”:

(i) For every T2 topological space(X, T ) if X is well-ordered, thenX has a
well-ordered base,

(ii) For every T2 topological space(X, T ), if X is well-ordered, then each
open cover ofX has a well-ordered open refinement,

(iii) For every T2 topological space(X, T ), if X has a well-ordered dense sub-
set, then there exists a functionf : X × W → T such thatW is a well-
ordered set and{x} = ∩ f ({x} × W ) for eachx ∈ X.

1 Introduction Let (X, T ) be a T2 topological space and letB be a base forX.
Clearly,

|T | ≤ |2X| (1)

and

|X| ≤ |2B |. (2)

(The mapf : X → P (B )(= the powerset ofB), f (x) = {B ∈ B : x ∈ B} is obviously
1 : 1). We then have the following proposition.

Proposition 1.1 In Fraenkel-Mostowski permutation models, a T2 topological
space (X, T ) is well-ordered if and only if X has a well-ordered base.

Proof: From (1) and the fact that in every permutation model Form 91 in Howard
and Rubin [4], PW :The powerset of a well-ordered set can be well-ordered holds,
we have that ifX is well-ordered, thenT is well-ordered. Similarly from (2) it follows
that if X has a well-ordered base, thenX is well-ordered. �
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In Cohen models however Proposition 1.1 may fail. Indeed, in the basic Cohen
model, modelM 1 of [4], the real lineR with the standard topology has a countable
base, butR is not well-ordered. There remains the question:

If (X, T ) is a well-ordered T2 topological space, then does X have a well-
ordered base?

Motivated by this question, Brunner [1] defined the following statements:

(A1) Form 148 in [4]: For every T2 topological space(X, T ), if X is well-ordered,
thenX has a well-ordered base.

(A2) For every T2 topological space(X, T ), if X is well-ordered, then there exists a
function f : X × W → T such thatW is a well-ordered set andf ({x} × W ) is
a neighborhood base atx for eachx ∈ X.

(A3) For every T2 topological space(X, T ), if X is well-ordered, then each open
cover ofX has a well-ordered open refinement.

(A4) For every T2 topological space(X, T ), if X is well-ordered,thenX satisfies (∗):
if O ⊆ T coversX, there is a mappingf : X → T such thatx ∈ f (x) and f [ X]
refinesO.

(A5) For every T2 topological space(X, T ), if X is well-ordered, then (∗) is a hered-
itary property ofX.

(A6) For every T2 topological space(X, T ), if X has a well-ordered dense subset,
then there exists a functionf : X × W → T such thatW is a well-ordered set
and{x} = ∩ f ({x} × W ) for eachx ∈ X.

Clearly, each of the above statements is a theorem of ZFC (ZF with the axiom of
choice AC, Form 1 in [4]). Brunner [1] asks whether these statements are provable in
ZF minus the axiom of regularity (ZF0) and Howard and Rubin [4] ask whether 148
implies AC. The aim of this paper is to show that none of (Ai), i = 1, 2, 3, 4, 5, 6, is
a theorem of ZF and that 148 does not imply AC in ZF0. In particular, we show that

1. (A1), (A2), and (A6) are equivalent to AC in ZF,

2. (A3), (A4), and (A5) imply Form 13 in [4]:Every Dedekind finite subset (i.e.,
it has no countably infinite subset) of R is finite.

Before setting out with proofs let us make a straightforward remark on the interrela-
tion between the statements (A1) up to (A5).

(i) (A1) ⇐⇒ (A2).

(ii) (A1) =⇒ (A3).

(iii) (A3) ⇐⇒ (A4) ⇐⇒ (A5).

For any undefined topological notion the reader is referred to Willard [9].
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2 Results We begin by observing the following.

Theorem 2.1 (A1) does not imply AC in ZF0.

Proof: Let N be the basic Fraenkel model (modelN 1 in [4]). By Proposition 1.1
we have that (A1) holds inN . On the other hand, AC fails inN (see [4]) meaning
that (A1) does not imply AC in ZF0 as required. �

However in ZF, (A1) is equivalent to AC as Theorem 2.3 clarifies. In particular, we
show that both (A1) and (A6) are equivalent to the set-theoretic principle PW (see the
introduction) which in ZF is known to be equivalent to AC (see Felgner and Jech [3]).
We recall first the notion of an independent family of sets.

Definition 2.2 Let θ ≥ ω be an ordinal number. A familyA ⊆ P (θ) is said to be
independent if and only if for any finite collectionA1, . . . , Am, B1, . . . , Bn of distinct
elements ofA , |A1 ∩ · · · ∩ Am ∩ (E\B1) ∩ · · · ∩ (E\Bn)| = |θ|.
Theorem 2.3 In ZF the following statements are equivalent:

(i) PW,

(ii) (A1),

(iii) (A6).

Proof: (i) → (ii) This is straightforward.

(ii) → (i) Fix an ordinal numberκ ≥ ω and letA = {ai : i ∈ 2κ} ⊆ P (κ) be an
independent family (see Kunen [6], Exercise (A6), p. 288). The existence of such a
family can be proved in ZF0. We show that 2κ is well-ordered.

For eachi ∈ 2κ, letGi = {x ∈ P (κ) : |x 
 ai| < ω} where
 denotes the operation
of symmetric difference. Since for alli, j ∈ 2κ, i �= j, ai 
 a j is infinite, we have that
Gi ∩ G j = �. Put G = ∪{Gi : i ∈ 2κ}. For eachx ∈ [κ]<ω(= {x ∈ P (κ) : |x| <

ω}), i ∈ 2κ andg ∈ Gi, put

B(x, i, g) = {y ∈ [κ]<ω : x ⊆ y andy ∩ g = �}. (3)

Claim 2.4 The family {B(x, i, g) : x ∈ [κ]<ω, i ∈ 2κ, g ∈ Gi} is a cover of [κ]<ω.

Proof of Claim 2.4: Fix x ∈ [κ]<ω and let i ∈ 2κ. Then ai\x ∈ Gi and x ∈
B(x, i, ai\x) finishing the proof of the Claim 2.4. �

Let B = {B(x, g) : x ∈ [κ]<ω, g = ∪Q, Q ∈ [G]<ω} whereB(x, g) = {y ∈ [κ]<ω :
x ⊆ y andy ∩ g = �}.
Claim 2.5 B is a base for a T2 topology TB on [κ]<ω.

Proof of Claim 2.5: By Claim 2.4 we have thatB is a cover of [κ]<ω. On the other
hand, if x ∈ B(x1, g1) ∩ B(x2, g2), then sincex ∩ g1 = x ∩ g2 = �, we have that
B(x, g1 ∪ g2) ∈ B and clearly,x ∈ B(x, g1 ∪ g2) ⊆ B(x1, g1)∩ B(x2, g2). Therefore,
B is a base. We show now thatB generates a T2 topology on [κ]<ω. Fix x, y ∈ [κ]<ω

with x �= y and letg ∈ G be such that(x ∪ y) ∩ g = � (take, for example, anyi ∈ 2κ

and putg = ai\(x ∪ y)). ThenVx = B(x, g ∪ (y\x)) andVy = B(y, g ∪ (x\y)) are
disjoint neighborhoods ofx andy, respectively. Assume otherwise and letz ∈ Vx ∩
Vy. Thenx ⊆ z, z ∩ (g ∪ (y\x)) = �, andy ⊆ z, z ∩ (g ∪ (x\y)) = �. Thus,
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y ⊆ z andy ∩ (y\x) = � (4)

and

x ⊆ z andx ∩ (x\y) = � (5)

By (4) we have thaty ⊆ x and by (5),x ⊆ y. Therefore,x = y, a contradiction. This
completes the proof of Claim 2.5. �

Since([κ]<ω, TB ) is a well-ordered T2 space, let by (A1)W = {Wj : j ∈ ℵ} be a well-
ordered base. Consider now the open coverU = {B(�, i, g) : i ∈ 2κ, g ∈ Gi} where
B(x, i, g) is given by (3). ThenV = {V ∈ W : V ⊆ U for someU ∈ U} is clearly a
well-ordered open refinement ofU. For everyV ∈ V , let

HV = {i ∈ 2κ : ∃g ∈ Gi, V ⊆ B(�, i, g)}. (6)

Claim 2.6 For each V ∈ V , HV is finite.

Proof of Claim 2.6: Assume the contrary and letV0 ∈ V be such thatHV0 is in-
finite. As eachGi can be well-ordered uniformly ({ai 
 x : x ∈ [κ]<ω} is a uni-
form well-ordering ofGi) we may define an infinite set{gi ∈ Gi : i ∈ HV0} such
that V0 ⊆ B(�, i, gi) for all i ∈ HV0. Fix B(x0, g) a basic open set contained in
V0. Then g = gi1 ∪ gi2 ∪ · · · ∪ gin for somen ∈ ω and gi j ∈ Gi j , j ≤ n. Since
B(x0, g) ⊆ ∩{B(�, i, gi) : i ∈ HV0}, we have that(∪{gi : i ∈ HV0})\g =� (otherwise
fix i ∈ HV0 andy ∈ gi\g, thenx0 ∪{y} ∈ B(x0, g)\B(�, i, gi), a contradiction). Since
|gi 
 ai| < ω, it follows immediately that for alli ∈ HV0, Fi = ai\(ai1 ∪ ai2 ∪ · · ·∪ ain )

is finite. This contradicts the fact thatA is an independent family and completes the
proof of Claim 2.6. �

SinceA is an independent family,U has no finite subcover. Furthermore, asW is a
base it is clear that 2κ = ∪{HV : V ∈ V } and sinceκ is well-ordered, 2κ is linearly
ordered (e.g., lexicographically). Thus, eachHV is well-ordered and consequently 2κ

is well-ordered finishing the proof of (ii)→ (i).

(i) → (iii) Since in ZF, AC⇐⇒ PW, this is straightforward.

(iii) → (i) Fix an ordinal numberκ. Since|κ| < |2κ| we may assume without loss
of generality thatκ ⊆ 2κ. Let W = {W f : f ∈ 2κ\κ} be an independent family of
subsets ofκ. Define a topologyT on X = 2κ by requiring: All points inκ to be isolated
whereas neighborhoods off ∈ 2κ\κ are all sets of the form

V f = { f } ∪ (W f \(∪Q ∪ A)), Q ∈ [W \{W f }]<ω, A ∈ [W f ]
<ω.

(X, T ) is a T2 space. Indeed, letx, y ∈ X, x �= y. We consider the following cases.

Case 1: x, y ∈ κ. Then{x}, {y} are the required disjoint neighborhoods ofx and
y, respectively.
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Case 2: x ∈ κ, y ∈ 2κ\κ. Then{x}, {y}∪ (Wy\{x}) are the required disjoint neigh-
borhoods ofx andy, respectively.

Case 3: x, y ∈ 2κ\κ. Then{x} ∪ (Wx\Wy), {y} ∪ (Wy\Wx) are the required dis-
joint neighborhoods ofx andy, respectively.

Thus,(X, T ) is a T2 space having the well-ordered setκ as a dense subset. Adjoin an
extra point∞ to X and extend the topologyT by declaring neighborhoods of∞ to
be all supersets of{∞} missing finitely many sets{ f } ∪ W f , f ∈ 2κ\κ. Thus, each
neighborhood of∞ misses only finitely many elements of 2κ\κ. ClearlyY = X ∪
{∞} with the extended topologyT∞ is a T2 space havingκ as a dense subset.

Let, by (A6),{Zi : i ∈ ℵ} be a well-ordered family of neighborhoods of{∞} such
that{∞} = ∩{Zi : i ∈ ℵ}. Then 2κ\κ = ∪{(2κ\κ)\Zi : i ∈ ℵ} and by the above each
set(2κ\κ)\Zi is finite. As 2κ is linearly ordered,(2κ\κ)\Zi is well-ordered. Thus,
2κ\κ is well-ordered finishing the proof of (iii)→ (i) and of the theorem. �

Remark 2.7 The statement “If(X, T ) is a T2 space with a well-ordered dense sub-
set, then each open cover ofX has a well-ordered open refinement” has also been con-
sidered in [1] where it is shown not to be a theorem of ZF; in the basic Cohen model,
the Moore plane (see Steen and Seebach [8], Example 82) is a separable T2 space hav-
ing an open cover with no well-ordered open refinement. Via the latter proof, Brunner
implicitly suggests that the above statement implies a well-known weak choice prin-
ciple, namely, the axiom of choice for families of nonempty subsets ofR, AC(R), and
Form [79 A] in [4]. However, following the proof of Theorem 2.3 we deduce that the
above statement is equivalent to AC in ZF. Indeed, let(X, T ) be the T2 space of The-
orem 2.3 and letO = {{ f } ∪ W f : f ∈ 2κ\κ} ∪ {{x} : x ∈ κ}. Clearly, O is an open
cover of X. Let V = {Vi : i ∈ ℵ} be a well-ordered open refinement ofO. For each
f ∈ 2κ\κ, let i f be the leasti ∈ ℵ such thatf ∈ Vi. ThenVi f ⊆ {g} ∪ Wg for some
g ∈ 2κ\κ. Necessarily,g = f and consequently the functionf �→ Vi f is 1 : 1 meaning
that 2κ is well-ordered.

Brunner [1] (∗) of a T2 space (see the Introduction) as topologically the most inter-
esting (among the other fifteen properties of T2 spaces he considers in [1]) because as
he points out it is both a weakening of metacompact and well-ordered local weight.
In Theorem 2.8 we show that the statement (A3) implies Form 13. Since (13) fails
in the basic Cohen model for the set of the countably many added Cohen reals (see
Cohen [2]) we have that (A3) is not provable in ZF. Thus, neither of the statements
(A4) or (A5) is provable in ZF.

Theorem 2.8 (A3) implies the statement: For every ordinal number κ ≥ ω, every
infinite subset of 2κ has an infinite well orderable subset. In particular, for κ = ω,
(A3) implies Form 13.

Proof: Fix an ordinal numberκ ≥ ω and letA be an infinite subset of 2κ. Assume
that A has no infinite well-orderable subset and letA , Gi, G and([κ]<ω, TB ) be de-
fined as in the proof of Theorem 2.3. By (A3) letW = {Wj : j ∈ ℵ} be a well-ordered
open refinement of the open coverU = {B(�, i, g) : i ∈ A, g ∈ Gi} whereB(x, i, g)

is given by (3) in the proof of Theorem 2.3. For eachj ∈ ℵ, let

H j = {i ∈ A : ∃g ∈ Gi, Wj ⊆ B(�, i, g)}.
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As in Claim 2.6 of the proof of Theorem 2.3 it can be shown thatH j is finite for all
j ∈ ℵ and sinceU has no finite subcover, it follows that there is an infinite setM ⊆ ℵ
such thatH j �= H j′ for all j, j′ ∈ M, j �= j′. Consequently,H = ∪{H j : j ∈ M} is
infinite and as 2κ is linearly ordered it follows thatH is an infinite well-ordered subset
of A. This contradicts our assumption and completes the proof of the theorem.�

Remark 2.9 In view of Theorem 2.8 one expects that (13) does not imply back
(A3). Indeed, this is the case. In particular, Monro ([7], p. 37) constructs a symmetric
extensionN of a countable transitive model of ZF+V = L such thatN satisfies
AC(R) (hence, it satisfies 13), but there is a cardinalκ ∈ N and an infinite subset of 2κ

(the setG∗ of p. 37) having no countably infinite subsets inN . Thus, the conclusion
of Theorem 2.8 fails for the ordinal numberκ and consequently (A3) fails inN as
well.

3 Summary The following diagram summarizes the results of the paper.

AC ≡ (A1) ≡ (A2) ≡ (A6)

⇓
(A3) ≡ (A4) ≡ (A5)

⇓
13
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