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Abstract

If Connectionism is to be an adequate theory of mind, we must
have a theory of representation for neural networks that allows for
individual differences in weighting and architecture while
preserving sameness, or at least similarity, of content. In this paper
we propose a procedure for measuring sameness of content of
neural representations. We argue that the correct way to compare
neural representations is through analysis of the distances between
neural activations, and we present a method for doing so. We then
use the technique to demonstrate empirically that different artificial
neural networks trained by backpropagation on the same
categorization task, even with different representational encodings
of the input patterns and different numbers of hidden units, reach
states in which representations at the hidden units are similar. We
discuss how this work provides a rebuttal to Fodor & Lepore’s
critique of Paul Churchland’s state space semantics.
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1. Introduction

Since Putnam’s papers on Turing-machine functionalism in the 1960’s, computational

functionalism has been the dominant theory of mind. On this view, mental states are tokenings of

morphologically identifiable “symbols” at an abstract (“functional”) level of description. The

meaning, or “content,” of a mental state is determined by the symbols tokened in that state, the

rules governing the tokenings of symbols in the system, and the relations between the symbols

tokened inside the system and objects outside of the system. This is the fundamental view

underlying computational models of cognition, i.e., Good Old Fashioned Artificial Intelligence

(GOFAI) models. In keeping with convention, we will refer to it as the “Classical” view.

The advantage of the Classical view over the various “identity” theories of mind that

proliferated before Putnam’s work is that it allows for the multiple reliability of mental states. On

identity theories, mental states are identical with the physical substrates in which they are

realized. Therefore, identity theories rule out the possibility of the same mental state being

realized in systems composed of different substances. However, many of us have the strong

intuition that machines could, at least conceivably, think the same kinds of thoughts that we do.

By individuating mental states at a functional level, rather than a physical level, the Classical

view makes room for this intuition: different systems, perhaps even systems composed of such

different substances as carbon and silicon, could realize the same functional description and so

be in the same mental state.

While Classical models of cognition performed well at abstract, logical tasks, they tended

to do less well at more primitive sensory-motor tasks. Classical models were often too sensitive

to small variations in starting conditions, or to the environment in which they operated. They

also tended to degrade ungracefully in the face of minor damage.
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The rebirth of connectionism, and especially the development of the backpropagation

learning algorithm in the 1980’s, seemed to offer an alternative. Connectionist models were

robust in the face of damage and minor changes in initial conditions or environment, and

excelled at the kinds of sensory-motor tasks that had been the bane of Classical models. Paul

Churchland soon proposed that Connectionism was not only a new kind of cognitive modeling

but also a new theory of the mind. On Churchland’s view, mental states consist, not in the

tokening of symbols, but in the activation of hidden units in a connectionist network. Churchland

writes, “the brain represents various aspects of reality by a position in a suitable state space”

(Churchland 1986, p. 78). He makes the same point in another work:

fleeting facts get represented by a fleeting configuration of
activation levels in the brain’s many neurons.... The overall pattern
of neuronal activation levels at any given instant constitutes the
brain’s portrait of its local situation here and now (Churchland
1995, p. 6).

The position in activation space occupies the same role in the Connectionist theory of mind as

the tokening of symbols does in the Classical view. On the Classical view, an occurrent

representational state just is the tokening of certain symbols. On the Connectionist theory of

mind, an occurrent mental state just is the activation of certain nodes.

The content of the qualitative experience of seeing a particular color, for example, is a

specific pattern of neural activation:

a visual sensation of any specific color is literally identical with a
specific triplet of spiking frequencies in some triune brain system
(Churchland 1986, p. 104).

Any humanly perceivable color...will be a distinct pattern of
activations across...three types of downstream opponent process
neurons (Churchland 1995, p. 25).

One of the notable virtues of Churchland’s pattern-of-activations theory is that it explains the

introspective (and psychophysical) datum that qualitative experiences within perceptual
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modalities exhibit robust similarity relations. As Churchland writes, if the pattern of activations

theory is true:

then the similarity of two color sensations emerges as just the
proximity of their relative state-space positions (Churchland 1986,
p. 104).

Coding each color with a unique triplet of neural activation levels
provides not only for phenomenological similarities...but for other
phenomenological relations as well. Intuitively, orange is between
yellow and red, as pink is between white and red. And that is
exactly how they are positioned within the coding space
(Churchland 1995, pp. 25-6).

Color categorization, of course, lends itself to network modeling. Language imposes categories

on many properties of the qualitative states that comprise our consciousness. We categorize

colors, for example, by chroma (red, orange, yellow, green, blue, or violet), by brightness (light

or dark), by saturation (deep or pale), and in other ways. The qualities of our awareness,

however, transcend the categories we use to communicate their properties. We perceive sets of

relative similarity relations between our qualitative states, both within and across the categories

we use to describe them. For example, for any three reds we can distinguish, we will be able to

say which of two is more like the third, even if we cannot describe the difference precisely.

Given the similarities we perceive among our qualitative states, we can order them along the

dimensions of the properties we perceive as ordered. Where the dimensions are orthogonal, we

can construct spaces that map our qualitative states into points in a low-dimensional space,

points that reflect by relative proximity the similarities we perceive between the qualitative

states. The problem of constructing such spaces is the ordering problem, the problem of

constructing “for each category of qualia, a map that will assign to each quale in the category a

unique position and that will represent relative likeness of qualia by relative nearness in position”

(Goodman 1951, pp. 217-8).
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The field of psychophysics has for the past hundred and fifty years taken the solution of

the ordering problem as its fundamental task. It has proceeded by eliciting from human subjects

large numbers of judgments of the relative similarities between stimuli in various qualitative

modalities, and mapping these similarity judgments into spaces using the techniques of multi-

dimensional scaling. The procedure has been fruitful. For example, it has given rise to the CIE

uniform color space specification (anonymous 1976a; Wyszecki and Stiles 1982), which maps

human color similarity judgments into a three-dimensional Euclidean space such that human

judgments of similarity between color stimuli correspond as closely as possible to similarities in

the color space.

As a result of the successful solution of the ordering problem for many domains of

qualitative experience, psychophysics has generated an enormous set of data on the similarity

structure of qualitative experiences. This point has been made before. Austen Clark writes, for

example, that “there is no need for a new discipline of ‘objective phenomenology’— of objective

characterization of the modes of appearance of the world— for psychophysics already is that

discipline” (Clark 1985a, p. 505). As Clark points out:

qualia are...those properties [of sensations] which enable one to
discern similarities and differences: they engage discriminations.
The way in which qualia have been thought to do this is
isomorphic to the way critical properties engage an internal
discriminal process. Items identically encoded yield qualitatively
identical presentations, and differences at that stage occasion
differences in qualia. In short, qualitative content can be identified
with those properties of encodings which engage the discriminal
process (Clark 1985b, p. 392).

Hence, we should expect the structure of qualitative content to be reflected in the structure of

neural representations at various stages of sensory processing. Qualitative experiences, for all

their touchy-feeliness, are contentful states. While the contents of our qualitative experiences

transcend our conceptualizations of them, the experiences are nevertheless contentful. One of the
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virtues of Connectionism is that it accounts not only for the conceptual aspects of qualitative

content, but also, and equally naturally, for their nonconceptual aspects —  the subtle similarities

and other relations among them for which we have no names or ready concepts but which we are

nevertheless capable of distinguishing when confronted with or asked about them.

Although some philosophers might be resistant to the idea of associating content with

qualitative state, there is no reason to suggest that the qualitative contents on which Churchland

bases his examples are not contentful in the fullest sense of the word. As Wittgenstein pointed

out, and as linguists have voluminously documented, the contents of many if not all of our

concepts are rather more like qualitative contents than many philosophers have acknowledged.

Psychophysics— objective phenomenology— has not yet got around to all of our concepts, but

the work has only just begun.

However, in contrast with Clark, we believe that items need not be identically encoded in

order to yield qualitatively identical presentations. Rather, we believe that items with the same

relative positions in state space will yield qualitatively identical presentations. Small changes in

the way that a particular item is encoded, provided that they do not change its position relative to

the encodings of other items, will not, we claim, change its qualitative presentation.

This is, we feel, also a problem with Churchland’s strict identification of content with a

specific position in state space. It is well known that networks with different numbers of hidden

units can solve the same problem. It is at least plausible that what is represented at the hidden

layers of two such networks is the same. (It is only that the information is distributed over more

nodes in one network than in the other.) It is also a fact that two different human beings can have

the same belief, even though it strikes us as highly unlikely that such beliefs are ever represented

by exactly the same levels of activation over exactly the same numbers of neurons in two
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people’s brains. On the position-in-activation-space view of occurrent representation that

Churchland advocates, the criterion for representations in two different individuals having the

same content is clear: they must have exactly the same levels of activation over exactly the same

numbers of neurons. Even if the representations are not identical, their similarity is easy to

compute, for example by taking the dot products of the respective activation vectors.

There is a problem, though: dot products (and other standard measures of association like

correlation) are only defined for vectors of equal length. However, different numbers of units can

carry the same information. (Connectionist nets can solve the same problem with different

numbers of hidden units, and human beings can hold the same beliefs despite presumable

differences in the numbers of neurons in their respective brains.) Therefore, the position-in-

activation-space view leaves us at a loss as to how to determine when two systems represent the

same information with a given pattern of activation. We cannot take the dot product, compute

correlation, or use any of the other standard tools for determining similarity between two vectors,

because we might be dealing with vectors of different lengths. There is no corresponding

problem for the Classical view, because an occurrent mental state on the Classical view is just

the tokening of certain symbols, and two individuals (with sufficiently powerful architectures)

can token the same symbols regardless of how many transistors, or whatever, they have.

The same problem arises when we consider latent representations. On the Classical view,

latent information is represented by the set of rules that govern the manipulation and tokening of

symbols. Classical systems of many different sorts can embody the same sets of rules. It is

tempting to identify the representation of latent information in a Connectionist network with its

position in weight space, i.e., the particular set of weights that determines which of its units will

be activated in a given circumstance. Churchland espoused this view at one time: “An
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individual’s overall theory-of-the-world...is a specific point in that individual’s synaptic weight

space.... a configuration of connection weights” (Churchland 1989b, p. 177).

This position-in-weight-space view of latent information in Connectionist networks faces

the same sort of problem as did the position-in-activation-space view of occurrent information.

Networks with different weights may in fact react very similarly to their inputs. Differences in

certain weights may be compensated for by differences in other weights in such a way that

differently weighted networks exhibit similar, if not identical, responses to the same inputs.

Churchland himself acknowledged this problem, putting the point in terms of the partitioning of

activation vector spaces: “differently weighted systems can produce the same, or at least roughly

the same, partitions on their activation-vector spaces” (Churchland 1989b, p. 177). (A

partitioning of activation-vector space is a particular mapping between input activations and

hidden-unit activations.) The point is not limited to artificial neural networks. Different people

may know the same things even though it would be highly surprising to find that even small

areas of their brains were wired in exactly the same ways. Because we want our theory of mind

to allow for the fact that different people, who presumably are not wired identically, can share

knowledge, the position-in-weight-space view is unacceptable. It suffers from the same sort of

chauvinism the position-in-activation-space conception of occurrent representation does:

individuating representation states too finely makes it impossible for subtly different individuals

to be in the same representational state. If Connectionism is to be an adequate theory of mind, we

must have a theory of representation for neural networks that allows for individual differences in

weighting and architecture while preserving sameness of content.

An evident solution would be to identify latent information not with specific patterns of

connection strengths, but rather with characteristic groupings of activation patterns, the partitions
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of activation space that the specific connection weights determine. The way networks partition

their hidden layer activation spaces is a better criterion for evaluating their semantic similarity

than is their exact position in weight space. The partitioning view allows different individuals to

represent the same latent information without having identical networks. Churchland also

considered this possibility:

we might try to abstract from the idiosyncratic details of a system’s
connection weights, and identify its global theory directly with the
set of partitions they produce within its activation-vector space.
This would allow for differently weighted systems to have the
same theory (Churchland 1989b, p. 177).

As soon as Churchland made this suggestion, however, he dismissed it on the grounds that it

would preclude lawful explanations of learning:

While differently weighted systems can embody the same
partitions and thus display the same output performance on any
given input, they will still learn quite differently in the face of a
protracted sequence of new and problematic inputs...because the
learning algorithm that drives the system to new points in weight
space does not care about the relatively global partitions that have
been made in activation space. All it cares about are the individual
weights and how they relate to apprehended error. The laws of
cognitive evolution, therefore, do not operate primarily at the level
of the partitions...rather, they operate at the level of the weights.
Accordingly, if we want our “unit of cognition” to figure in the
laws of cognitive development, the point in weight space seems the
wiser choice of unit. We need only concede that different global
theories can occasionally produce identical short-term behavior
(Churchland 1989b, pp. 177-8).

It is not obvious to us that the “unit of cognitive significance” really must figure in the laws of

cognitive development. The “unit of cognitive significance” is presumably that feature in terms

of which we give our explanations of how behaviors happen. The laws of cognitive development,

on the other hand, are explanations of how behaviors change. As long as the laws of cognitive

development adequately explain changes in behavior, we see no reason why they must do so in

ways that refer to the mechanisms of behavior themselves. Admittedly, we do not now have
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rigorous theories of how the partitions of neural networks will change given new inputs, while

we do have algorithms such as backpropagation for determining how the weights in artificial

networks should change in order to learn particular tasks. In the case of artificial networks,

though, the algorithms themselves give us perfectly good explanations of how learning changes

the weights. While the mechanisms of learning in biological neural systems are not yet

completely understood, we expect that neuroscience will eventually discover the laws that

govern the ways synaptic connections change in the face of new experience. Changes in the

weights determine changes in the partitions. Presumably, therefore, laws could be developed that

would explain changes in partitions in terms of learning. At least, we do not see any reason in

principle why this is not so.

(Churchland 1989a) also seems to have adopted the view that the partitions are the

fundamental unit of cognitive significance, however important the weights may be in the

explanation of learning:

While the weights are of essential importance for understanding
long-term learning and fundamental conceptual change, the
partitions across the activation space, and the prototypical hot-
spots they harbor, are much more useful in reckoning the cognitive
and behavioral similarities across individuals in the short term.
People react to the world in similar ways not because their
underlying weight configurations are closely similar on a synapse-
by-synapse comparison, but because their activation spaces are
similarly partitioned (Churchland 1989a, p. 234).

This latter view seems to have stuck. In his most recent book, Churchland asserts that:

the general and lasting features of the external world are
represented in the brain by relatively lasting configurations of
synaptic connections (Churchland 1995, p. 5).

This might suggest that Churchland has reverted to his earlier position-in-weight-space account

of knowledge. However, he also writes that the cluster diagram of NETTalk’s hidden-layer

activations “is the conceptual framework that learning has produced within NETTalk” and that it
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“displays the system of interrelated categories or concepts whose activation is responsible for

NETTalk’s sophisticated input-output behavior” (Churchland 1995, p. 90). Thus, Churchland’s

considered view seems to be that knowledge corresponds to a partitioning of activation space,

not to a point in weight space.

The main consideration in favor of the partitioning-of-activation-space conception of

latent information in networks is the desideratum that different individuals be able to share

mental states. It is a fact that many different human beings— at least some of whom presumably

have differently weighted connections between neurons in their respective brains— often share

beliefs. Taking category structure to be identical to the weighting of network connections would

force us to say that two individuals whose brains were wired even slightly differently had

different categories, even if their categorization behaviors were identical. This is a very good

reason for preferring a partitioning-of-activation-space view of latent representation in neural

networks to a position-in-weight-space view: it allows us to account for the representational

similarities between individuals who have different weights and architectures. The position-in-

weight-space view, on the other hand, relegates the pervasive correspondence between the

similarity judgments of different individuals to mere accident. We therefore believe that we must

reject the position-in-weight-space view of neural representation (where latent representations

are identical if and only if they are implemented in neural systems with identical connection

strengths). Instead, we favor of a partitioning-of-activation-space theory of neural representation

(where latent representations are similar insofar as they partition the activation space in similar

ways). To meet Churchland’s objection about the lawfulness of cognitive development, we must

begin to formulate laws of cognitive development that operate over partitions rather than

activations, but that is a project for another paper.
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Adopting the partitioning-of-activation-space view about latent information also suggests

a complementary solution for the corresponding problem with the position-in-activation-space

view of occurrent information. Rather than associating content with absolute position in

activation space, we advocate associating content with relative position in the partitioning of

activation space. On our view, occurrent representations in different neural networks should be

compared not by the absolute positions of the representations in the networks’ activation spaces,

but rather by each representation’s location relative to other possible activations in the same

network.

There is, however, a significant problem with the partitioning-of-activation-space view:

how do we assess when two networks with differently weighted connections or different

numbers of hidden units partition their activation space the same way? Taking the partitioning of

activation space to be the representational vehicle requires that we find a way of comparing

partitionings. On the position-in-weight-space view, it was easy (theoretically, anyway) to

determine whether two different individuals represented their experiences the same way: we

simply determined whether they had the same connection strengths between their neural units.

Things are not so easy on the partitioning-of-activation-space view.

In order to make the partitioning-of-activation-space theory of neural representation

viable, we must solve this problem. The position-in-weight-space view has an easily computable

measure of representational similarity between two individuals: two individuals’ neural

representations are similar in proportion to the correlation between the connection strengths (or

synaptic weights) between their neural units. The association between two vectors of equal

dimensions is easy to compute using vector inner products. However, because the inner product

between two vectors is defined only if the vectors have the same number of components, the
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technique of computing simple correlation between representations is not applicable to the

partitioning-of-activation-space model of representation. The partitioning-of-activation-space

model is designed specifically to account for similarities across individuals with different neural

architectures, but it seems to leave us with no way of measuring those similarities.

(Fodor and Lepore 1996a; Fodor and Lepore 1996b) have voiced precisely this objection

in response to Churchland’s theory of state-space semantics. In short, the argument is that a

Connectionist theory of mind, because of the way it individuates mental states, cannot give a

satisfactory account of different individuals being in the same mental state. Fodor and Lepore

argue that the viability of Churchland’s view of state-space representation depends on his having

a robust criterion for content identity, a project whose prospects they view as dim. They raise the

same problem that we have about the identity of content across individuals with different

architectures:

If the paths to a node are collectively constitutive of the identity of
the node...then only identical networks can token nodes of the
same type. Identity of networks is thus a sufficient condition for
identity of content, but this sufficient condition isn’t robust; it will
never be satisfied in practice (Fodor and Lepore 1996a, p. 147).

The condition will never be satisfied in practice because different individuals are bound to have

at least slightly different connections among nodes. Any theory of mind must have a substantive

notion of inter-individual content similarity that is not dependent on a strictly psychophysical

mode of explanation. A Connectionist explanation, based on neurophysiological measurements,

would be in a position to give precisely such an explanation only if Connectionism had an

adequate account of inter-individual sameness (and hence difference) of content.

As we have seen, there are lots of reasons why Connectionism needs a robust criterion of

inter-individual content similarity. Because the position-in-activation-space and position-in-

weight-space views are inadequate for the task, we have argued that two individuals’ neural



Laakso & Cottrell… .14

representations are similar in proportion to the correspondence between the partitionings each

produces over the set of possible inputs. But how can we evaluate that correspondence?

The units in an artificial neural network (neurons in a biological network) can be seen as

determining dimensions in an abstract space. The vector of activations over the units at a

particular time is a point in this space. Hence, the network’s representation of every object is a

point in activation space. Objects that the network represents as alike will be nearby in this space

(fall into the same partition), whereas objects that the network represents as different will be

distant (in different partitions). Groups of similar objects form clusters in the space. For example,

a network’s representations of trees might form one cluster and its representation of animals

might form another. The problem of measuring the representational similarity of two different

networks is the problem of measuring the similarity of the clusters in one network’s activation

space with the clusters in the other network’s activation space.

The way a single network partitions its activation space may be visualized using cluster

analysis. In the application of cluster analysis to networks, patterns of activation at the hidden

units are measured for each input, and then the patterns are progressively matched with each

other according to their proximity. The result is a dendogram, or tree structure, which graphically

displays the relative proximities of the input patterns as they are represented at the hidden layer.

In the first application of cluster analysis to representation in artificial neural networks,

(Sejnowski and Rosenberg 1987) showed that similarities among hidden-layer representations in

their NETTalk network matched the phonological similarities that humans perceive in spoken

phonemes. For example, hard-’c’ and ‘k’ sounds were grouped together, and at the highest level,

consonants were grouped together, as were vowels.
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We can use cluster analysis to visualize the partitioning of activation space within a

single network. However, cluster analysis produces a dendogram, and we know of no accepted

way to compare different dendograms. If we think, for example, of the complex dendogram

representing the clustering of inputs in NETTalk, it is unclear how we could measure the

similarity of that tree with a different one. Furthermore, there are myriad ways to cluster data,

with differing results. Thus, “cluster analysis” itself is an ambiguous term at best.

2. A Modest Proposal

We have argued that having a method for comparing the relative positions of concepts in

one state space to the relative positions of concepts in another state space is critical for state

space semantics. The method we propose here works well for neural networks, and may be

generalizable to animals and robots. The basic idea is to collect the activation patterns evoked by

inputs and compute all possible distances between these representations. The distances between

representations capture the structure of representational space. We then compute the correlation

between the distances between representations in one state space and the distances between

representations in the other state space. This procedure can be used to measure the similarity

between any two neural representations (be they from natural or artificial networks, from input,

output, or hidden-unit representations, from the same or different networks, with the same or

different numbers of units).

Walking through the application of our measure to a simple problem is the easiest way to

explain it. Suppose we consider the representation of three things, “A”, “B”, and “C”, in a

network with one hidden unit. Say the network represents these things with the following levels

of activation:

A=<0>, B=<50>, C=<100>
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We will call such a representation a vector coding. In this case, the vector has only one

dimension. The network’s representations fall on a line:

Suppose also that another network, this one with two hidden units, represents the same three

things with the following vector coding:

A=<0,0>, B=<30,30>, C=<80,0>

In this case, the points form a triangle in two-dimensional space:

Our problem is to measure the similarity of these two shapes.

We start by taking distances‡ in each network between each of its representations and

each other, giving two symmetric matrices:

Distances Between Representations
1-Unit Network 2-Unit Network

A B C A B C
A 0 50 100 A 0 42 80
B 50 0 50 B 42 0 58
C 100 50 0 C 80 58 0

Table 1: Comparison of distances between points in two different vector encodings.

                                               

‡ We use Euclidean distance, but it would be possible to use other distance measures.
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Taking distances between the representations has two advantages. First, it achieves invariance to

global translation, rotation and mirror inversion, since for any set of points in n-dimensional

space, the set of distances between them will remain constant through uniform translation,

rotation, or inversion. Second, taking distances between the representations allows us to use

standard mathematical measures of similarity to compare the representations. Since the distance

matrices for both networks are symmetric and we are measuring the representations of the same

number of things in each network, the distance matrices each have n(n-1)/2 unique elements,

where n is the number of representations being compared. If we lay the unique elements for each

network out in a vector, we have two vectors of length n(n-1)/2. In our toy case:

<50,100,50>

<42,80,58>

We then compute the correlation (Pearson’s r) between these two vectors. (Correlation measures

the extent to which the values in one data set can be predicted from values in another data set.

Values close to 0 indicate that it is impossible to predict the values in one set from the values in

the other, whereas values near 1 indicate that one set can be predicted almost perfectly from the

other.) In this toy example, the correlation is 0.91, suggesting that they are similar structures.

This corresponds to our intuition, in that both spaces place B “between” A and C. (In realistic

cases, of course, we would want to compare many more observations.) Using correlation also

achieves a third criterion that we believe should be met by any solution to this problem, namely

scale invariance, because correlation is insensitive to the magnitude of the vectors being

compared. In summary, our measure evaluates to 1 for two individuals who have identical

representations (modulo differences in global scale, rotation, translation and inversion), to -1 for

individuals whose representations are maximally dissimilar (anticorrelated), and to 0 for
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individuals whose representations are completely uncorrelated. This is the essence of our

solution to Fodor & Lepore’s challenge— by computing the similarity of the distances between

points in two representational spaces, we provide state space semantics with a criterion for

semantic similarity while eliminating the need to match the dimensions of the two spaces.

Our technique has a number of desirable properties as a measure of representational

similarity. Because it compares distances between representations, it allows for comparisons

between networks with different numbers of units, and it is insensitive to differences in global

rotation, translation and inversion. Because it uses correlation (which is not sensitive to

magnitude) as a measure of association, it is also insensitive to differences in global scaling.

Global differences of scale merely reflect uniform differences in activation levels. If one network

has activations that range between 0 and 1 and another network has activations that range

between 0 and 100, the scale of their representations will be different. Nevertheless, if the shapes

of their representations are similar, we would want to judge them as similar. Similar arguments

hold for translation and rotation: translational differences correspond to differences in which part

of the range of activation the neurons use the most; rotational and inversion differences

correspond to differences in which neurons are used to represent which factors in the

representation.

In the following, we present two experiments that demonstrate the use of our measure on

neural networks that learn to classify colors. In the first experiment, we show that neural

networks with different “sensory apparati” learn internal representations that are quite similar by

our measure, and that neural networks with the same sensors learn nearly identical

representations. In the second experiment, we show that even neural networks with different



Laakso & Cottrell… .19

numbers of hidden units (in this case, an excessive number) also learn nearly identical

representations by our measure.

3. Experiment One

As an example of how our technique for measuring similarities in network

representations can be used, we chose to model color categorization in artificial neural networks

using a variety of input encodings. The different encodings might be thought of as ways in which

the sensory systems of different “species” encode the impact of light at various frequencies on

their bodies.

The key assumption is that all of the networks agree about the category labels (i.e., they

all agree that a particular stimulus is “red”). This corresponds to agreement within human

subjects about color labels, which is presumably “trained”. We considered two questions. First,

we were interested in the degree of agreement within a species. This addresses the question of

how much you and I might agree in the content of our representations, even though we may have

different synaptic connectivity and hence different actual patterns of activity (the issue of

different numbers of neurons is addressed in the next section). Second, we were interested in the

degree of agreement between species. This addresses the question of how similar the content of

your representations can be to the content of my representations when at least one aspect of our

“bodies”— the sensory apparatus— differs between us, even though we use the same learning

mechanism and number of internal units.

3.1. Procedure

We started with a database of reflectance spectra of color samples measured by the

University of Kuopio, Finland (anonymous 1995). The database consists of 40 files, each one
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containing data from a particular page in the Munsell Book of Color: Matte Finish Collection

(anonymous 1976b). The database contains data on 10 colors: red, yellow-red, yellow, green-

yellow, green, blue-green, blue, purple-blue, and purple. For each color, there are 4 files, each

containing data on the color at Munsell hue values of 2.5, 5, 7.5 and 10, respectively.

Each file consists of about 30 spectra. Each spectrum is represented by 3 lines in the file.

The first line for each spectrum is a label of the spectrum based on the Munsell notation. The

second line for each spectrum consists of 61 elements of raw data obtained from the output of a

spectrophotometer, measured from 400nm to 700nm, at 5nm intervals, represented as integers

between 0 and 4095. (Some values were larger than 4095 but should, according to the Kuopio

specification, be corrected to 4095.) Because the spectra were measured from 400nm to 700nm

at 5nm intervals, each spectrum could be considered a 61-dimensional vector, of which the first

component represents the reflectance intensity of a color chip at the wavelength 400nm, the

second at 405nm, and so on.

To generate our data set from the Kuopio set, we ignored the data for the intermediate

colors yellow-red, green-yellow, blue-green, and purple-blue and used only the data on 5 colors:

red, yellow, green, blue, and purple. The data had approximately the same numbers of patterns

for each color for a total of 627 patterns. To make network training possible, we replaced the

Munsell labels with the binary suffixes shown in Table 2 to serve as output patterns over 5 units.

Color Pattern
Red 1 0 0 0 0

Yellow 0 1 0 0 0
Green 0 0 1 0 0
Blue 0 0 0 1 0

Purple 0 0 0 0 1

Table 2: Target output patterns for the 5 color categories.
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To correct the errors reported in the specification of the original data set, we replaced all

values greater than 4095 with 4095. To prepare for encoding the input patterns with schemes that

required large numbers of units for each element, we then scaled the 0-4095 values to 0-255

values and removed all but every fifth field from the Kuopio input patterns, resulting in patterns

with 12 rather than 61 elements each. This formed the complete data set for our purposes.

From this base data set, we created four different encodings of the input patterns to be

used in training the networks:

• The binary encoding was formed by representing the 0-255
integer inputs as 8-bit binary numbers. Thus, each pattern had
96 (=12x8) input elements in the binary encoding, each
element valued either 0 or 1.

• The real encoding was formed by scaling the 0-255 integer
inputs to decimal representations between 0 and 1. Thus, each
pattern had 12 input elements in the real encoding, one for each
of the elements in the integer data set, each element a rational
number between 0 and 1.

• The gaussian encoding was formed by dividing the interval
between 0 and 255 into quarters, and using five units to
represent the endpoints of the intervals. A particular value was
coded as a Gaussian “bump” on this interval, with a standard
deviation of 32 and mean and the point to be represented. (See
Table 3 and Table 4.)

Element 1 2 3 4 5
Value 0 63.75 127.5 191.25 255

Table 3: Mean value of each element in the gaussian encoding.

Value Element 1 Element 2 Element 3 Element 4 Element 5
0 1 0.137462 0.000357 0 0

127 0.000380 0.141791 0.999878 0.133233 0
128 0.000335 0.133233 0.999878 0.141791 0.000380
255 0 0 0.000357 0.137462 1

Table 4: Some examples of gaussian encodings.
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• The sequential encoding was formed by numbering the patterns
sequentially with 3-digit decimal numbers from 001 to 627.
Each 3-digit number was then represented by a single unit with
activation between 0 and 1. (See Table 5.) While this might
seem completely arbitrary, in fact like colors were grouped
together in the pattern file, so this representation does contain
enough information to solve the problem.

Pattern Number Element 1 Element 2 Element 3
1 0 0 0.1

627 0.6 0.2 0.7

Table 5: Some examples of sequential encodings.

Next, we created a set of holdout data and a set of training data for each representation, by taking

every sixth line for the holdout set (104 patterns) and leaving the rest for the training set (523

patterns). Because we were not exploring generalization in this experiment, we did not use a

separate testing set.

Using backpropagation, we trained 3-layer networks, each with 3 hidden units, on each

input encoding for a maximum of 10,000 cycles using a learning rate of 0.25. Training was

stopped before epoch 10,000 if the root mean-squared error of the holdout patterns had not

declined in as many epochs as taken to reach the previous low. For example, if a minimum root

mean-squared error was reached after epoch 2,500 and no subsequent epoch had a lower error,

then training would be stopped after epoch 5,000. For each encoding, the experiment was

repeated with 5 networks, each starting with a different set of initial random weights. About half

of the networks stopped training before epoch 10,000. However, those networks that trained

fewer than 10,000 epochs tended to perform less well on the categorization task. Nevertheless,

most networks achieved 90% or greater accuracy on both the training and holdout sets.

Using the best learned weights from each network, we computed the activations at the

hidden nodes for each network on each input pattern, thereby obtaining each network’s internal
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representation of the input patterns at its hidden layer. We then computed the Euclidean

distances between all patterns for that network. Now, to compare two networks, we can compute

the correlation between their corresponding distances.

This technique can be applied to any level of any layered network. We can also use it to

compare the distances induced by the input patterns themselves, treated as activation patterns, to

the distances induced by another input encoding. In this way, we can determine whether our

input encodings are really “different” in their structure.

Furthermore, it would be uninteresting if the hidden layer representations just reflected a

structure that already existed at the input. Thus, we used our technique to compare the structure

of each input encoding with the structure learned at the hidden layer of networks trained on that

encoding. For visualization purposes, we also computed cluster diagrams for some layers, using

standard hierarchical cluster analysis with Euclidean distance.

3.2. Results

In order to visualize the input encoding structure, we performed a hierarchical cluster

analysis on the input vectors. Figure 1 displays a cluster diagram of a subset of the colors for the

“real” encoding. Note that his clustering appears disorganized, and does not match very well

with our qualitative perceptions of color similarities. The colors are mixed together; for example,

“Green 300” and “Blue 380” are clustered together. The cluster diagrams for the “binary”,

“gaussian”, and “sequential” encodings are similarly disordered.
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  _________________|----------> Yellow-200
 |                 |__________|--------> Red-60
 |                            |--------> Purple-500
 |                            _______|---> Purple-440
 |                 |---------|       |---> Purple-460
-|                 |         |-------> Red-540
 |                 |                   |--> Yellow-180
 |                 |                |--|   __|-> Green-240
 |                 |                |  |--|  |-> Green-320
 |-----------------|         |------|     |--> Blue-360
                   |         |      |   __|-> Red-20
                   |         |      |  |  |-> Red-40
                   |         |      |--|        _|-> Green-300
                   |         |         |     |-| |-> Blue-380
                   |         |         |  |--| |-> Blue-400
                   |---------|         |--|  |-> Purple-420
                             |            |--> Blue-600
                             |       _____|---> Green-260
                             |      |     |---> Green-280
                             |      |      ____|---> Blue-340
                             |------|     |    |___|---> Red-100
                                    |     |        |___|--> Yellow-160
                                    |     |            |__|-> Yellow-120
                                    |-----|               |-> Yellow-560
                                          |     ___|---> Red-80
                                          |    |   |___|--> Yellow-140
                                          |----|       |--> Yellow-220
                                               |___|---> Purple-520
                                                   |___|--> Green-580
                                                       |__|-> Purple-480
                                                          |-> Purple-620

Figure 1: Representative clustering of input patterns in the “real” encoding (31 of 627
patterns shown).

We then compared the input encodings using our technique. To our surprise, the binary,

real and gaussian input encodings were highly correlated with each other (see Figure 2). The

correlation between the real and gaussian encodings was nearly 1, and the binary encoding had a

correlation of about 0.8 with both the real and the gaussian encodings. The sequential encoding,

on the other hand, was almost completely uncorrelated with the other encodings.
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Figure 2: Hinton diagram showing correlation among input patterns. The areas of the
boxes are proportional to the values.

The difference in correlation between the sequential input encoding and the other input

encodings is due to the fact that there is little relationship between the order that a sequential

pattern appears in the data file (which is grouped by color), and the actual spectral properties of

the light. That this should be so is reflected in the cluster diagram of the real encoding: the real

encoding is, after all, a reasonably good representation of the filter responses, but the colors are

intermingled in the cluster diagram. On the other hand, since like colors appear nearby in the

sequential pattern file, the sequential numbering provides considerable information concerning

the color category. In particular, most colors that should be categorized together are nearby in the

input pattern space. There are two exceptions to this. The first is that, because three digits were
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used to represent elements in the sequential encoding, patterns differing in the ordering by as

much as 100 can be as close together as patterns differing by only one in the ordering. For

example, pattern 345 (which is represented as <0.3, 0.4, 0.5>) is as close to pattern 245 (<0.2,

0.4, 0.5>) as 245 is to 244 (<0.2, 0.4, 0.4>). The second exception is caused by the fact that all

neighbors in the ordering are 0.1 apart in the encoding except points with a 0 element. Each

pattern with a 0 element in the sequential encoding comes right after one with a 0.9 element (and

hence the two are at least 0.9 units apart). For example, although patterns 458, 459, and 460 are

right next to each other in the data set, the sequential representation of pattern 459 (<0.4, 0.5,

0.9>) is much closer to that of pattern 458 (<0.4, 0.5, 0.8>), than it is to that of pattern 460 (<0.4,

0.6, 0.0>).

In order to test whether the trained networks were recoding the stimulus patterns, we

compared the hidden unit structure with the input encoding structure. We also compared the

hidden unit structure of each species with the input representations of the others. None of the

input representations were very highly correlated with any of the hidden unit representations of

any of the networks (see Figure 3). In fact, the binary networks’ hidden unit patterns were more

highly correlated with the real input patterns than with their own input patterns. Similarly, the

gaussian networks’ hidden unit patterns were more highly correlated with the real input patterns

than with their own input patterns. Although the real networks’ hidden unit patterns were most

highly correlated with the real input representation, they were correlated almost as well with the

gaussian input representation. The sequential networks were also most highly correlated with

their own input representation. All of the networks re-encoded the data at the hidden layer, rather

than simply copying the input pattern structure to the hidden layer.
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Figure 3: Hinton diagram showing mean correlations of the different input pattern
encodings with the hidden unit activations of 5 networks trained on each encoding. The
area of each box is proportional to its value. The input patterns are represented in the
columns; the hidden unit patterns are represented in the rows.

In order to assess whether the contents of the internal representations were similar, we

compared the hidden unit representations of the five networks of each “species” with each other

(10 comparisons). The diagonal of Figure 4 shows the mean correlation within each species. All

of the within-species correlations are greater than 0.9. Thus, networks of the same species

starting from different random initial weights found similar solutions to the color categorization

problem. The similarities are also reflected in their cluster diagrams, which not only show colors

grouped in human-like ways, but are also similar to each other. For example, Figure 5 shows a

cluster diagram of the hidden-unit activations of one of the networks trained on the real
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encoding, and Figure 6 shows the same type of diagram for a different network trained on the

same encoding. Despite the differences in initial random weights, the cluster diagrams are

similar, in that like colors are grouped together, and the same groups are placed near one another

in the diagrams.

Figure 4: Hinton diagram showing mean correlation between hidden unit activations.
Shows mean correlation between hidden unit activations of 5 networks trained on each
encoding and hidden unit activations of 5 networks trained on each other encoding (e.g.,
binary vs. real), as well as mean correlation between hidden unit activations among the 5
networks trained on each encoding (e.g., binary vs. binary). The area of each box is
proportional to its value.
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                              ______|---> Red-20
                             |      |___|---> Red-40
                 |-----------|          |---> Red-60
                 |           |       __|-> Red-80
                 |           |------|  |-> Red-100
 |---------------|                  |--> Red-540
 |               |            _____|----> Yellow-120
 |               |           |     |----> Yellow-180
 |               |-----------|         _|-> Yellow-140
 |                           |     |--| |-> Yellow-200
 |                           |-----|  |-> Yellow-220
 |                                 |__|--> Yellow-160
 |                                    |--> Yellow-560
-|                             ________|--> Green-260
 |                            |        |--> Green-280
 |               |------------|        |-----> Purple-420
 |               |            |        |            __|--> Green-300
 |               |            |--------|     |-----|  |--> Green-320
 |               |                     |     |     |__|-> Green-240
 |               |                     |-----|        |-> Green-580
 |---------------|                           |      ____|-> Blue-340
                 |                           |-----|    |-> Blue-360
                 |                                 |____|--> Blue-400
                 |                                      |__|--> Blue-380
                 |                                         |--> Blue-600
                 |            |-------> Purple-500
                 |------------|       |----> Purple-480
                              |-------|    |--> Purple-460
                                      |----|   __|-> Purple-440
                                           |--|  |-> Purple-520
                                              |--> Purple-620

Figure 5: Representative clustering of hidden-unit activations in one of the five networks
trained on the “real” encoding (31 of 627 patterns shown).

                                    ______|----> Red-20
                           |-------|      |____|--> Red-40
                           |       |           |--> Red-60
               |-----------|       |------> Purple-420
               |           |_______|--> Red-80
               |                   |__|-> Red-100
               |                      |-> Red-540
               |                        ______|----> Yellow-120
 |-------------|                       |      |----> Yellow-180
 |             |           |-----------|         |-> Yellow-160
 |             |           |           |      |--|  _|-> Yellow-140
 |             |           |           |------|  |-| |-> Yellow-200
 |             |           |                  |    |-> Yellow-220
 |             |-----------|                  |--> Yellow-560
 |                         |            ______|----> Green-280
 |                         |           |      |____|--> Green-260
 |                         |           |           |__|-> Green-240
 |                         |           |              |_|-> Green-320
-|                         |-----------|                |_|-> Green-300
 |                                     |                  |-> Green-580
 |                                     |       ____|--> Blue-380
 |                                     |------|    |--> Blue-400
 |                                            |     __|-> Blue-340
 |                                            |----|  |-> Blue-360
 |                                                 |--> Blue-600
 |                 _|-> Purple-440
 |             |--| |-> Purple-460
 |-------------|  |-> Purple-520
               |__|--> Purple-480
                  |__|-> Purple-500
                     |-> Purple-620

Figure 6: Representative clustering of hidden-unit activations in another of the five
networks trained on the “real” encoding (31 of 627 patterns shown).
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The off-diagonals of Figure 4 show the mean correlation between different species’

hidden unit representations (5X5 = 25 comparisons). All are highly correlated. Correlations

between hidden unit representations between the networks trained with the binary input encoding

and the networks trained on the real and gaussian input encodings are nearly 1. For networks

trained on the real encoding and the gaussian encoding, the results are very similar. This might

be expected based on the high correlation of their input representations. More striking is the high

correlation between the sequential encoding networks’ internal representations and the others.

Although somewhat lower than the others, this is a large change from the near-zero correlation

between their input encodings. This suggests that, at least for neural networks trained by

backpropagation on this task, agreement in categorization labels leads to agreement in internal

content, regardless of sensory coding.

Given that the correlation between networks trained on the sequential encoding and

networks trained on the other encodings is somewhat lower than the correlation among networks

trained on the other encodings, we would expect the cluster diagrams for networks trained on the

sequential encoding to be somewhat different from those trained on the other encodings. They

are. Figure 7 shows the clustering of hidden unit activations for one of the networks trained on

the sequential encoding. Like the clusterings of networks trained on the real encoding, the

clustering of the network trained on the sequential encoding groups like colors together.

However, there is a subtle difference between the clustering in real networks and in sequential

networks. In the clusterings on the real networks, clusters of different colors are more distinct.

For example, in Figure 6, like colors are all clustered together, with one exception (“Purple-420”

is clustered with the reds). In the clusterings on the sequential networks, clusters of different

colors are not as distinct. In Figure 7, for example, some greens are clustered with yellows, while
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some are clustered with blues. This is presumably a consequence of the unusual properties of the

sequential encoding.

                                         ______|--> Red-80
                                        |      |--> Red-100
                       |----------------|       __|-> Red-20
                       |                |------|  |-> Red-40
 |---------------------|                       |__|-> Red-60
 |                     |                          |-> Red-540
 |                     |                 ______|--> Green-240
 |                     |----------------|      |--> Green-260
 |                                      |      |-----> Yellow-120
 |                                      |------|      __|--> Yellow-200
 |                                             |-----|  |--> Yellow-220
 |                                                   |__|-> Yellow-140
 |                                                      |_|-> Yellow-160
-|                                                        |_|-> Yellow-180
 |                                                          |-> Yellow-560
 |                                              _____|--> Green-300
 |                                    |--------|     |--> Green-320
 |                                    |        |_____|-> Green-280
 |                     |--------------|              |-> Green-580
 |                     |              |         _____|--> Blue-340
 |                     |              |--------|     |--> Blue-360
 |---------------------|                       |_____|-> Blue-380
                       |                             |-> Blue-600
                       |               ____|---> Blue-400
                       |              |    |---> Purple-420
                       |--------------|     __|-> Purple-440
                                      |    |  |-> Purple-460
                                      |----|   _|-> Purple-500
                                           |--| |-> Purple-520
                                              |_|-> Purple-480
                                                |-> Purple-620

Figure 7: Representative clustering of hidden-unit activations of one of the five networks
trained on the “sequential” encoding (31 of 627 patterns shown).

3.3. Discussion

It is a well-known “folk theorem” of neural net lore that different networks trained on the

same problem may partition their activation spaces in similar ways. Our results quantify this

intuition. Furthermore, we have also shown that it is possible for networks from different

“species” (i.e., trained from different input encodings) to partition their activation spaces in

similar ways. Even though the networks in our experiment were trained on different input

representations, the high correlations between the hidden layer activations of the networks show

that they partition their activation spaces in similar ways. Therefore, it is possible for the

representational states of two individuals who categorize their inputs the same way to be similar,
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not only in spite of their having different connection strengths between neurons, but even in spite

of their having different “sensory systems”, i.e., input encodings.

The results with the sequential networks are equivocal, however. Although the

correlations between hidden unit activations in sequential networks and hidden unit activations in

networks from other species are higher than the correlations between the sequential input

encoding and the other input encodings, the sequential networks are not as similar to the others

as the others are among themselves. So we cannot say that the internal representations that

different individuals form will be similar no matter how the input is encoded as long as they

perform the same categorization task. However, the representational states of two individuals

who categorize their inputs the same way can be similar despite some differences between the

way the task is presented to the individuals (the way the inputs are encoded). Evidently, there

must be a certain amount of similarity between input representations in order to achieve highly

similar hidden-unit representations. Also, other differences may be significant. For example, in

this experiment we used only networks with 3 hidden units, and only a specific learning rule.

More work is needed to determine what factors most influence the relationship between hidden-

unit representations in different networks.

4. Experiment Two

In a second set of experiments, we varied the numbers of hidden units in the networks,

using only the real encoding and the sequential encoding. The goal was to determine whether

nets with different numbers of hidden units would develop similar representational structures,

and to test the effect of small variations in our procedure.
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4.1. Procedure

A nice feature of the two most different input encodings, the real encoding and the

sequential encoding, is that they both use a rather small number of inputs. The real encoding

requires only 1 input unit per element, and the sequential encoding only 3 input units per pattern.

Hence, in this experiment, we used all 61 of the input elements in the original data set. Also,

having discovered in the first experiment that the networks learned the problem rather more

quickly than we had expected, we implemented a mechanism for stopping training earlier. We

separated the original data set into 3 sets: a training set (used for training the networks and

containing 472 patterns, approximately 75% of the complete set); a holdout set (used for

deciding when to stop training and containing 93 patterns, approximately 15% of the complete

set); and a testing set (used for testing performance of the networks and containing 62 patterns,

approximately 10% of the complete set). We also randomized the order of presentation of the

patterns during each training epoch.

For each of the two input encodings (real and sequential), we trained 3-layer networks

with 1 to 10 hidden units. Each network was trained for a minimum of 500 epochs, and training

was stopped after the 500th epoch whenever the root mean-squared error on the holdout set had

not decreased in 50 epochs. We also replicated the training regime on 10 additional networks

with 5 hidden units each, in order to demonstrate that the results in Experiment 1 using networks

with different initial random weights were not sensitive to our minor changes in procedure.

4.2. Results

Figure 8 shows the performance of each network on the test set (generalization

performance). Networks with 1 and 2 hidden units failed to learn, and so will not be considered

further. Networks using the “real” encoding and 3 to 10 hidden units all learned the problem
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approximately equally well, often within 500 epochs. No network trained more than 675 epochs.

Results were slightly different for the sequential encoding. Networks with fewer than 5 hidden

units trained on the sequential encoding performed less well than the networks trained on the real

encoding (approximately 85% correct compared with approximately 95% correct). The networks

trained on the sequential encoding show more variation in both percentage of classifications

correct and error over time. Also, the networks trained on the sequential encoding show a greater

disparity between error on the training set and error on the holdout set (data not shown). These

results are also presumably due to the strange nature of the sequential encoding, as discussed

above.

Figure 8: Percent correct on the test set versus number of hidden units.

Regardless, with 5 or more hidden units, all but the last difference disappeared. In

contrast with networks with less than 5 hidden units, those with 5 or more achieved accuracy of

approximately 95% on the test set, which is better than networks trained on the real encoding
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(see Figure 8). In any case, networks trained on the real input encoding learned hidden-layer

representations that were substantially different from the input representation, but very similar to

each other, regardless of the number of hidden units in the network (see Figure 9). Correlations

between hidden-unit activations and input patterns were low, but average correlations between

hidden-unit activations over networks with different numbers of hidden units were very high.

Likewise, networks trained on the “sequential” encoding learned hidden-layer representations

that were substantially different from the input representation, but more similar to each other,

regardless of the number of hidden units in the network (see Figure 10). Correlations between

hidden-unit activations and input patterns were low, although higher than they were for the

“real” encoding, but average correlations between hidden-unit activations over networks with

different numbers of hidden units trained on the “sequential” encoding were still very high.

Figure 9: Number of hidden units versus correlation to input patterns and average
correlation to networks with different numbers of hidden units for networks trained on the
“real” encoding.
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Figure 10: Number of hidden units versus correlation to input patterns and average
correlation to networks with different numbers of hidden units for networks trained on the
“sequential” encoding.

For networks with 5 hidden units, 10 replications starting from different initial random

weights confirmed that networks with different weights trained on the same encoding found very

similar solutions to the problem. Average correlation among the 10 different networks trained on

the real encoding was 0.93, and average correlation among the 10 different networks trained on

the sequential encoding was 0.93. In other words, networks with different weights trained on the

same encoding found very similar solutions to the problem regardless of which encoding they

used. Average correlation between the hidden unit activations of the 10 5-unit networks trained

on the sequential encoding and the sequential encoding itself was 0.33. Average correlation

between the hidden unit activations of the 10 5-unit networks trained on the real encoding and

the real encoding itself was 0.23. In other words, the hidden unit representations, while not

completely unrelated to the input patterns, were not simply copies of the input patterns.
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5. Discussion

We have proposed correlation over the distances between hidden-unit activations as a

robust criterion of content similarity. Our simulation results show that our criterion is robust, at

least to changes in input encoding, number of connections, and specific connection strength.

However, Fodor and Lepore had originally demanded that a robust criterion of content identity

was necessary. Is similarity enough, or should we concede that connectionism cannot give an

account of content because it cannot give an account of content identity?

Fodor and Lepore offer a series of arguments against the very possibility of a theory of

content based on similarity rather than identity. The first argument is that any criterion of state

space similarity presupposes a notion of state space identity. Thus, they write:

What Churchland has on offer is the idea that two concepts are
similar insofar as they occupy relatively similar positions in the
same state space. The question thus presents itself: when are S1
and S2 the same state space? When, for example, is your semantic
space a token of the same semantic space type as mine? (Fodor and
Lepore 1996a, p. 152)

Formally speaking, our method can be used to compare measurements from any two state spaces.

In fact, however, in the experiments reported in this paper, we imposed additional constraints on

the state spaces we compared. The spaces were generated by presenting identical stimuli to

subjects who “spoke similar languages” (all of the network “subjects” were trained with the same

labels on input stimuli). Using feedforward connectionist networks, it was both possible to

conduct such experiments and reasonable to assume that activations caused by identical stimuli

were comparable. Nevertheless, the fact that we imposed those constraints might give rise to a

number of objections, which we discuss below.

A first objection is that our technique is not applicable to biological nervous systems

because it depends on having large numbers of highly accurate, simultaneous single-cell
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recordings over an extended period of time. Of course, the real world is messier. Given the

technology we have today, it would be impossible to conduct an experiment like ours on human

beings. We agree that it would be impossible to use our technique on biological nervous systems

given current technology, but we suspect that the technology will someday be available to record

the sort of data that would be necessary for applying our technique to real nervous systems. In

fact, one could apply the technique to the results of fMRI experiments, which provide a low-

resolution view of neural activation. In any case, our point does not depend on the ability to

apply the technique in detail to human brains. We have argued that our technique provides a

robust criterion for inter-individual concept similarity. The fact that such a criterion exists is

theoretically important because it means that state space semantics cannot be rejected on the

grounds that it has no such criterion. To make this point, it is not necessary for us to provide a

method for evaluating the criterion that is universally and easily applicable. In fact, we have

provided a method that is universally and easily applicable to artificial neural networks, and we

have also argued that it is universally, though not easily, applicable to biological neural

networks.

A second objection is that our technique is not applicable to recurrent networks, where

state is preserved between stimulus presentations. The neural networks in real brains are far more

complex than the simple three-layer feed forward networks used in the experiments we report

here. By using discrete time feed forward networks, we constrained the systems in our

experiments to be passive receptors of their inputs. It is likely that even humans sitting on a

couch watching TV are not such perfectly passive receptacles. Rather, they bring internal state to

the processing of input. Indeed, this is the point of priming experiments. Recurrence introduces a

significant new level of complexity by allowing the possibility of storing information in the state
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of the network that is not directly caused by the current sensory stimulus. In most recurrent

networks (not to mention real nervous systems), it is not reasonable to assume, as we did in the

experiments above, that states caused by identical stimuli are comparable. Two people watching

the same television are likely to be thinking very different things, but our technique seems to

presuppose that they are thinking the same thing.

Consider what must be done by current imaging experimentalists that use techniques such

as fMRI or PET. They also must deal with the “noise” of different subjects and different initial

states. They approach the problem in two ways. First, they primarily use subtraction methods.

This technique is useful for removing background processes (such as visual processing) that are

not relevant to the variable of interest. Second, they average over subjects. This approach, of

course, presupposes that the subjects locate their processing in similar places, and then averages

out the differences between subjects. The analyses of variance that are performed then find sites

(voxels, or volume elements) that are significantly more active, on average, across all subjects.

This analysis requires that the variance must be low enough that it does not overlap much with

the variance of other voxels. That such experiments return relatively consistent results is

encouraging for our approach.

Unfortunately, this approach does not directly address our problem, which involves

trying to assess the shape of a particular subject's representational space and compare that to

another subject's space. However, it does suggest that the experimental conditions reduce the

variance to low enough levels that the effects of pre-existing internal states in multiple subjects

can be averaged out. Our approach would be to apply the same idea to one subject, averaging

across presentations. Subtraction could be used to directly assess the “distance” between two

concepts. Perhaps less ambitiously, one could average across a concept class, and assess
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differences in those. For example, recent experiments have assessed the difference in

representation between action verbs and verbs of propositional attitude, and found different

patterns of activation for the two kinds of verbs (Devita, Koenig et al. 1999). These activations

represent a component of the “distance” between the two verb classes.

A third objection is that our technique may falsely identify two networks' state spaces as

similar when they are, in fact, representing two entirely different domains, say, algebra and art

history. This could arise if the shape of the internal space is the same between two domains. But

this is exactly why we require presenting identical stimuli to both networks. It would, of course,

be possible to compute matches between different domains, and this would be an interesting way

to search for targets for analogies.

A fourth objection is that we do not take into consideration the possibility of thinkers

who have different numbers of concepts. Indeed, with our theory or without it, counting concepts

is a difficult business. How many concepts do you have? Is it the same number as I have? If you

have 40 and I have only 3, how is it possible to compare our representational states? We haven’t

said much about what concepts are on our theory, and we don’t feel that we need to in order to

make our point. We have proposed a criterion for similarity of the content of representational

states across individuals that does not depend on individuating concepts. We do, however, want

to say three things about what concepts are not.

First, concepts are not stimuli. One might assume that we equate concepts with stimuli on

the basis of the fact that we use identical stimuli to match points in the activation spaces of

different networks. However, we do not believe that the stimuli are the concepts. As we showed

above, the representation of the stimulus on the sensory surface may be poorly correlated with

the representational state internal to the network. We present the same stimuli to our subjects
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because we believe that presenting the same stimuli is a good way to elicit activations of the

same (or at least similar) concepts in our subjects. Second, concepts are not “dimensions in state

space,” at least insofar as “dimensions in state space” is taken to refer to the dimensions the

space happens to have (e.g., the number of units in the hidden layer of a neural network in the

case of an activation state space)§. In fact, it has been one of our primary points that networks

with different numbers of units (and hence state spaces with different dimensionalities) can still

be meaningfully compared. Third, concepts are not terms in a language. We did not impose the

“same language” constraint on our networks in order to ensure that they had the “same

concepts”.

Although we used exactly the same output representations in all of our networks, we

might have mixed up the output units in such a way that the networks all made the same

categorizations while using different output units to label them. Such networks would have

spoken “different languages” in the sense that they would have had different terms for their

categories. Nevertheless, they would have had the same number of categories and would have

agreed on which stimuli belonged to a particular category. Although we did not run such an

experiment, we would not expect it to change our results.

There is also a stronger sense in which our networks might have spoken “different

languages”. There are many psychological results showing that people categorize the world in

very different ways (see Goschke and Koppelberg 1990 for a review) and many philosophical

arguments to the effect that figuring out what someone is saying is at least as hard as figuring out

what they are thinking (e.g., Quine 1960). Our networks might have had more or fewer

                                               

§ It may happen that for a particular individual, a concept happens to “line up” with a state space dimension. This
is a localist representation of that concept. However, our measure is not sensitive to the distinction between
localist and distributed representations, nor does it need to be.
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categories (output units) in their repertoire; some might have been trained to distinguish only two

colors, others to distinguish six or more. If that had been the case, would it have made sense to

compare representational similarity between networks with different numbers of categories, and

what would the results have been? Because we have not yet done the experiments, we cannot

report the results. One can, in any event, use our technique to compare the representational

structure of two such networks, because we can still present them with the same stimuli. We

would hypothesize that the representational similarity between networks trained on different

numbers of color terms would be rather low, since networks that had to learn more categories

would also have to create more partitions in their hidden unit activation spaces. Hence, we are

strong Whorfians in this sense.

A fifth objection is that we tacitly assume a hopelessly naïve form of empiricism – that

any concept may be elicited simply by the presentation of some stimulus. This objection, like the

third one, arises from a misinterpretation of the fact that we match representations according to

stimuli in the experiments we report here. Since we present the same stimuli to each network, it

is easy to think that we assume that a thinker has one concept for each stimulus. However, even

the reader who understands that we do not identify concepts with stimuli might still be puzzled

about how we would measure representations of abstract concepts like love, truth, beauty and

justice. What possible stimulus could reliably elicit a thought employing such a concept from

any subject? We don’t believe that there is any such simple stimulus (although showing the

subjects those words themselves, or sentences that contain them, would be a good start).

Nevertheless, we believe that it is reasonable to assume that some concepts (color concepts are a

good example) are primarily (though clearly not entirely) perceptual, and that we can get at

representations of the more abstract concepts by using what we know about the representations
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of more perceptual concepts as landmarks in the representational space. We can start by

matching such mostly-perceptual concepts as best we can across large numbers of contexts. The

structure of higher-level, more abstract, less perceptual concepts can then be explored by

locating them relative to the conceptual “landmarks” we have identified for more perceptual

concepts, again across many contexts. By finding patterns of activation that are not the same as

known perceptual representations but which are in similar relative positions across large numbers

of contexts, we can locate the representations of abstract concepts in activation space. (Which

concepts they are will have to be determined by other means, since we do not purport to have a

means of determining what a person is thinking, only a criterion for when two people are

thinking similar things.) Such representations, although they would be located relative to more

perceptual representations, would not necessarily have perceptual representations as logical parts

or final causes. Our theory is not mere empiricism, as can be seen from the fact that the metric of

content similarity we advocate can be used to measure similarity of internal representations

regardless of how inputs are encoded. In fact, as we have demonstrated empirically, it is even

possible for systems with very dissimilar input representations to have internal representations

that are more similar than their inputs.

The mention of similarity in the previous paragraph raises a final issue we must address.

Fodor and Lepore’s challenge to state space semantics was to provide a criterion for content

identity. Although we have given a criterion of content identity (perfect correlation), our

experiments as well as our intuitions tell us that it will be met only very rarely. Is our theory,

which depends in most cases on similarity, not identity, good enough to meet the objection? We

think it is. Fodor and Lepore are, we feel, unduly concerned with the identity of concepts:

clearly a necessary condition for the identity of state spaces is the
identity of their dimensions; specifically, identity of their semantic
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dimensions, since the current proposal is that concepts be located
by reference to a space of semantically relevant properties (Fodor
and Lepore 1996a, p. 152).

We have shown that it is possible to compare state spaces of arbitrarily differing dimensions, as

long as we are willing to be satisfied by a measure that reaches identity only in the limit. Contra

Fodor and Lepore, we are not “faced with the question when x and y are the same semantic

dimensions” (p. 152). The question simply does not arise, because we are not comparing

similarity along dimensions. Instead, we are comparing relative distance between activations,

and distance can be computed in any number of dimensions.

Fodor and Lepore anticipate this kind of argument. They write:

Perhaps it will be replied that semantic similarity doesn’t, after all,
require concepts to be adjacent in the very same state space;
perhaps occupying corresponding positions in similar state spaces
will do. That a regress has now appeared is, we trust, entirely
obvious (p. 152).

On our view, semantic similarity does not consist in concepts occupying similar relative

positions in identical state spaces. Moreover, neither does semantic similarity consist in concepts

occupying similar relative locations in similar state spaces. Rather, semantic inter-individual

concept similarity consists in concepts occupying similar relative locations in the state spaces of

the two individuals, however similar or different those state spaces may be. Our measure of

content similarity is robust and well defined for any state space. The question of state-space

similarity does not arise. Hence, there is no issue of a regress.

6. Conclusions

Our goal here has not been to defend a particular theory of what semantic content is or

how it is determined. Rather, we have defended Connectionism in general, and state space

semantics in particular, against the charge that they are incompatible with any theory of content
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because they preclude the very possibility of determining identity of content across individuals.

In response to Fodor and Lepore’s challenge to state space semantics, we have argued that

representational similarity can be measured by correlation between inter-point distances in any

two activation state spaces. Thus, we have shown that state space semantics does have a way of

measuring similarity of content (and, in the limit at least, identity of content). It can be used to

measure similarity of internal representations regardless of how inputs are encoded and

regardless of number of hidden units or neurons a network might have. Furthermore, we have

shown empirically that the measure of content similarity we advocate for state space semantics is

robust under several conditions, by using it to demonstrate that different individuals, even

individuals with different “sensory organs” and different numbers of neurons, may represent the

world in similar ways.
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