
Landauer Defended: Reply to Norton

James Ladyman, Katie Robertson

Department of Philosophy, University of Bristol

March 7, 2013

Abstract

Ladyman et al (2007) proposed a model of the implementation of

logical operations by physical processes in order to clarify the exact

statement of Landauer’s Principle, and then offered a new proof of the

latter based on the construction of a thermodynamic cycle, arguing

that if Landauer’s Principle were false it would be possible to harness

a machine that violated it to produce a violation of the second law

of thermodynamics. In a recent paper in this journal, John Norton

(2011) directly challenges the consistency of that proof. In the present

paper we defend the proof given by Ladyman et al against his critique.

In particular, contrary to what Norton claims, we argue that the pro-

cesses used in the proof cannot be used to construct a cycle that enacts

erasure in a thermodynamically reversible way, and that he does not

show that the processes used in the proof violate the Second Law of

Thermodynamics.

1 Introduction

There is a consensus among physicists that there is a connection between

information processing and thermodynamics (see, for example, Blundell and
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Blundell (2010), and this is foundational to work in work in other areas of

physics, including, for example, cosmology (Lloyd 2002). In particular, it

is standardly thought that logically irreversible computations can only be

implemented by thermodynamically irreversible processes. This is known as

Landauer’s Principle, hereafter LP, the quantitative form of which says that

there is an entropy increase of k ln 2 associated with the resetting of a single

bit of data in a computational device. John Norton (sometimes together with

John Earman) has repeatedly criticised this consensus and argued that the

purported proofs of both the qualitative and quantitative forms of LP are

not sound (see Earman and Norton 1998, 1999, and Norton 2005). Norton’s

critique led Charles Bennett (2003) to concede that LP cannot be used to

show that there cannot be a Maxwell Demon. It also exposed deficiencies

in the extant discussions of LP in the wider literature, demonstrated that

LP could not be established by reasoning about particular cases, and showed

that a general proof of LP had not been given. Ladyman et al (2007), here-

after LPSG, proposed a model of the implementation of logical operations by

physical processes in order to clarify the exact statement of LP, and then of-

fered a new proof of the latter based on the construction of a thermodynamic

cycle, arguing that if LP were false it would be possible to harness a machine

that violated it to produce a violation of the second law of thermodynam-

ics. In a recent paper in this journal (2011), John Norton directly challenges

the consistency of that proof. He also gives a number of arguments that he

takes to undermine the foundations of the thermodynamics of computation

(against which he also argues in his (forthcoming)). In the present paper we

reply to Norton and defend the proof given by LPSG against his critique.
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2 The Connection between Logical and Ther-

modynamic Irreversibility

LPSG proposed an analysis of the implementation of computation by phys-

ical systems in order to clarify exactly what LP says and to provide a basis

for its evaluation and proof. They argue that much of the confusion in the

literature results from a failure to clearly distinguish between logical trans-

formations and the physical processes that implement them, for example, by

loosely talking about logically irreversible processes. To be clear, we empha-

sise that a logical transformation is a mathematical entity not a physical one.

Physical processes are the direct subject of thermodynamics which applies

to computations only derivatively via applying to the processes used to im-

plement them. Once this distinction is made it is obvious that it makes no

sense to talk of the implementation of a logical transformation by a physical

process, rather, in so far as logical transformations are implemented using

physical systems, they are implemented by families of physical processes. For

example, it is not correct to talk of ‘the erasure process’ because, depending

upon what the input state is, a different member of the family of physical

processes will occur. In general, if a logical transformation is a single-valued

map L from a finite set X of input states, into a finite set Y of output states,

then it will be implemented by a family of physical processes equinumerous

with the number of logical input states.1 (For example, in the case of RESET

there are two input states usually labelled 0 and 1.) We say that a logical

transformation, L, is logically reversible if and only if L : X → Y is a one-

to-one (injective) mapping. Hence, with a reversible logical transformation,

we can uniquely reconstruct the input state from the output state. If L is

not a one-to-one mapping, we say that it is logically irreversible. For the

physical system to implement the logical transformation reliably, the family

1Like LPSG, we are only concerned with deterministic computation and not with prob-

abilistic operations such as Maroney’s RAND (2005).

3



x
L−−−→ y∥∥∥ ∥∥∥

Din(x) −−−→
ΛL

Dout(y)

Figure 1: An illustration of the relationship between the logical states x and

y and their representative physical states Din(x) and Dout(y), showing the

logical transformation L and the physical time evolution operator ΛL.

(reproduced from Ladyman et al 2007)

of processes must take each of the physical states that represent the logical

input states to the appropriate physical state, that is the one that represents

the right logical output state.

This is all summarised in the definition of L-machine given by LPSG. The

key features of their analysis are briefly reviewed below.

To physically implement a logical transformation, we require: A physical

device, D, a specification of which physical states of that device correspond

to the possible logical states (we call the former representative states), and

a time evolution operator of that device. We refer to this combined system

as an L-machine.

The time evolution operator, ΛL must generate the relevant family of pro-

cesses, and the reliability of the implementation consists in the time evolution

operator being such as to ensure that whichever of the representative physical

states the device is prepared in, it ends up in the appropriate representative

state.

LPSG emphasised that everything about the behaviour of the device must be

incorporated into the time evolution operator and external agents may not

intervene during its operation. In particular this prohibits any such external

agent affecting the time evolution of the system by making use of information

about its state while it is running.
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An L-machine {D, {Din(x)|x ∈ X}, {Dout(y)|y ∈ Y },ΛL} physically imple-

ments L in the following sense. If D is prepared in the input state Din(x)

corresponding to the logical input state x ∈ X, and is then evolved using ΛL,

it will be left in the output state Dout(y) corresponding to the logical output

state y = L(x) ∈ Y . We will denote this physical process by px.

A process p is thermodynamically reversible if and only if ∆Stot(p) = 0, where

Stot is the total entropy of the whole system.

If ∆Stot(p) > 0, the physical process p cannot be run in reverse, as the reverse

process p′ would have ∆Stot(p
′) < 0, and hence violate the second law. We

therefore refer to any process p for which ∆Stot(p) > 0 as thermodynamically

irreversible. As is well known, there are a number of formulations of the

second law that are provably equivalent to this, modulo certain assumptions.

The other one to which we will refer is the Kelvin statement of the second

law according to which there is no cyclic process whose sole effect is the

conversion of heat into work (see Uffink 2001, p. 328).

A family of physical processes is thermodynamically irreversible if and only

if at least one of its members is.

LPSG’s proof uses these definitions to establish the connection between log-

ical irreversibility and thermodynamic irreversibility as follows. LP can be

stated precisely as the claim that if L is logically irreversible then any L-

machine will use a thermodynamically irreversible family of physical pro-

cesses to implement L.

3 Norton’s Critique

In Norton (2011), John Norton argues that LPSG’s proof is not sound for two

reasons. The first is that, according to him it is possible to use processes from

the above thermodynamic cycle to violate the Second Law of thermodynamics
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(hereafter SL). Hence, in effect, where LPSG argue that LP must be true by

reductio, because assuming its negation plus the admissibility of a certain set

of processes entails the violation of SL, Norton argues that inferring the truth

of LP is fallacious because the processes entail the violation of the second

law on their own. Hence, his first charge is that LPSG are inconsistent in

affirming both that their processes are admissible and SL. He argues that the

processes in question violate SL in two principle ways. Firstly, he claims that

a different cycle can be constructed with them that violates SL. Secondly, he

claims that one process in particular violates the second law. In sum, then

where LPSG claim that p1 ∧ ...p4 ∧ ¬LP ` ¬SL (where p1..p4 are premises

asserting that the respective processes P1..P4 are admissible) and so infer

that LP is true, Norton argues that {P} ` ¬SL making LPSG’s inference

to LP gratuitous.

Norton’s second objection to the soundness of LPSG’s proof is that according

to him, their cycle can be adapted to provide an example of ‘dissipationless

erasure’ which is his term for an implementation of RESET that is thermo-

dynamically reversible in direction contradiction of LP. In what follows we

first explain the cycle the Norton constructs as the basis of his discussion and

how it relates to the cycle used by LPSG. We then list the processes used, be-

fore arguing that Norton uses a particular kind of ‘controlled operation’ that

differs from any of those used by LPSG, and which is inadmissible. Hence,

we argue that Norton’s counterexample fails, and that if it is reconstructed

using admissible processes used by LPSG then it reduces to reset of known

data which is logically reversible and so not a counterexample to LP. We also

argue that the processes that LPSG regard as admissible do not violate the

second law, and that Norton’s cycle that violates SL cannot be constructed

from admissible processes.
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3.1 Norton’s cycle and the LPSG cycle compared

Norton constructs a modified version of the cycle that LPSG use in their

proof which he claims is a particular case of their cycle, where the device is

also a one-molecule gas in a box. As a consequence of this, the two states

of the device in step 2 (ML and MR), have the same entropy. From this

characterisation he then constructs a list of processes with the aim of:

1) Showing these processes are inconsistent with asserting the 2nd law.

2) Using these processes to construct 2 counterexamples; ‘dissipationless era-

sure’ and reset by the repeated removal of the partition.

Initial conditions: A one-molecule gas occupies the whole box, B. The

device is initially in ML.

Step 1 (same as LPSG): A partition is inserted into the box.

Step 2: A controlled operation is performed on the device depending on

the position of the molecule in B, a) If the molecule is found on the LHS,

the device is set to the LHS (this means doing nothing as an action is only

triggered if the box molecule is found on the right).

b) If the molecule in the box is found on the RHS, the device is set to

right hand.“ The shift is performed by a reversible thermodynamic process.

Since the thermodynamic entropies of ML and MR are the same, no heat

passes to or from the surroundings.” (Norton 2011, p. 188) (This step is

uncontroversial and the same as in LPSG’s cycle.)

Step 3 (same as LPSG): A controlled operation is performed on the box

depending on the state of the device, a) If the device is in the state ML, the

piston inserted on the RHS.

b) If the device is in state MR, the piston is inserted on the LHS.

Step 4: “The erasure process is performed. It transforms the memory device

from the probabilistically mixed state of ML or MR with equal probability,

to the initial state of ML” (ibid)

Norton’s cycle is intended to use exactly the same set of processes as those
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Figure 2: A diagram of Norton’s cycle
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that LPSG use in their’s. In the next section we list them and discuss how

his usage of them differs from LPSG.

3.2 List of Admissible Processes

Process 1a: Isothermal expansion. This a reversible process that takes place

at constant temperature; a piston is inserted and the gas does work on it,

increasing the volume of the gas. The amount of work done by the gas is equal

to the heat flow from the reservoir to the gas. In an isothermal expansion to

twice its initial volume, the work done by the gas is −kT ln 2.

Process 1b: Isothermal compression. A reversible process at a constant tem-

perature. The piston reduces the volume of the gas. The work done on the

gas by the piston is equal to the heat delivered to the heat bath. The work

done by the piston is −kT ln 2.

Process 2a: Removal of the partition. The partition (which traps the gas on

one side of a box) is removed. (There is no heat flow.)

Process 2b: Insertion of the partition. The partition is inserted trapping the

gas in a smaller volume.2 We will assume the partition is inserted halfway

along the box. (There is no heat flow.)

(These two processes are used by LPSG just as Norton says they are.)

Process 3a: Detection. The location of the molecule can be determined

without the detection incurring any thermodynamic cost.

Process 3b: Detect and Trigger. “According to the whether the outcome of

a detection is L or R, processL or processR, respectively, may be initiated,

2Clearly, a distinction is needed here. Our gas consists of only one molecule so inserting

a partition in the middle of the box will compress the gas to half its volume with certainty.

However, in a many molecule gas the probability of the gas being compressed to half the

volume is very small.
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without the initiation passing heat to the heat bath, where these are any two

admissible processes.” (ibid, p. 189)

The key difference and infidelity to LSPG is Norton’s use of process 3b.

Process 3b is a controlled operation: if the control state is detected to be X,

then perform process pX on Z. If the control state is detected to be Y, then

perform process pY on Z. This process is used in step 2 and 3 of both LPSG’s

cycle and Norton’s particular case. However, in step 4 of Norton’s cycle he

performs a controlled operation on the same state.

Further, a controlled operation on the same state is a crucial step in his

counterexample of ‘dissipationless erasure.’ This counterexample proceeds

by using the next process.

Process 4: Shift. “If a system has states M1 or M2 of equal thermodynamic

entropy, then a shift process moves the system from one state to the other

without passing heat to the heat bath.” (ibid)

In LPSG, the shift process is used in step 2. However, in step 2, which process

happened to the device (representing the target bit) depended on the state

of the gas (representing the control bit). On the other hand, Norton’s cycle

uses ‘shift’ in his fourth step, in such a way that whether the location of the

molecule is shifted (the target bit) depends upon the location of the molecule

(the control bit), because the state of the device is used to represent both

bits. Hence, in Norton’s cycle shift is used as a ‘controlled operation’ by part

of the system on itself.

So Norton replaces the above step 4 with step 4*: “If the memory device

is measured to be in state MR, a shift process is initiated that moves the

molecule from the state MR to state ML with equal thermodynamic entropy

by a process that passes no heat to the heat bath.” (ibid)

The second counterexample resets a memory device initially in either ML

or MR to ML. Norton says “the process detects whether the molecule is
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trapped in the right side of the chamber. If it is, the partition is removed

and replaced” (ibid, p. 190). This process is repeated until the molecule is

detected on the left (the probability become overwhelmingly high (≈ 0.999)

after 10 repetitions). However, this process might not be successful in reset-

ting and as such it does not correspond to a logical transformation, rather it

is a probabilistic operation taking MR to ML or MR each with a probability

of 1
2
. As such, this is not a counterexample against LPSG who state in their

premises that they do not consider probabilistic transformations. This is also

a ‘controlled operation’ on the same state: which action (remove partition or

nothing) is performed on the device, depends on the state of the same device

(molecule on LH or RH side).

Whether you can perform a ‘controlled operation’ on the same state is pivotal

to the success or failure of Norton’s reply. In the next section, we argue that

this is not possible.

4 Responding to Norton’s Critique

In the first subsection below we consider controlled operations and the partic-

ular operation that Norton uses in his critique, arguing that it is not among

the operations that LPSG use, and that it is in any case inoperable and not

rightly called a ‘controlled operation’ in the sense in which the term is usually

meant hence the scare quotes above. In the second subsection we consider

Norton’s arguments that the processes LPSG use are inconsistent with the

second law of thermodynamics and argue that each of them fails.

4.1 Controlled operations

Controlled operations are commonly discussed in the literature. A controlled

operation is a logical transformation that maps an input state of at least 2
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bits to an output state of at least two bits in such a way that how one of the

bits, the target bit, is transformed depends on the value of the other bit, the

control bit. The most commonly discussed example of such an operation is

CNOT which has the following truth table, where bit1 is the target bit and

bit2 is the control bit.

Input1 Input2 Output1 Output2

0 0 0 0

1 0 1 0

0 1 1 1

1 1 0 1

The heart of the Norton’s objections lies in the fact that his cycle requires

that a controlled operation can be implemented by a physical system that

has only one degree of freedom which must therefore be used to represent

both the target bit and the control bit. On the contrary, LPSG are explicit

that “the same bit cannot be both the control and the target of a controlled

operation” (Ladyman et al 2007, p. 23 note 7).

In particular, considering Norton’s alleged counterexample of a cycle using

LPSG’s processes that violates SL, step 4* requires that a controlled opera-

tion be performed from a physical degree of freedom to itself. That is instead

of:

Targetin Controlin Targetout Controlout

Z 0 p0(Z) 0

Z 1 p1(Z) 1

we have:

Targetin Controlin Targetout Controlout

0 0 p0(0) 0

1 1 p1(1) 1

In the first table which process px occurs depends only the value of the control

bit. This table implicitly contains another two rows as the physical system Z
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which represents the target bit can be in two different states. However, the

second table cannot have an additional two rows, as the same physical state

represents both the target and the control bit. Further, unless both p1 and

p0 are ‘do nothing’ then the physical state that previously represented the

control bit does not exist after the transformation.

However, it makes no sense to allow which bit a physical degree of freedom

represents to change during the processes that implement a computation.

Furthermore, for physical degrees of freedom to represent different bits they

must be independent of each other. This is because, for a physical system to

represent a set of n bits it must have sufficient, i.e. 2n, different configurations

of its degrees of freedom. For example, if the only two alternative states for

a one molecule gas are BL molecule trapped on the LHS, or BR (trapped

on RHS) then it does not make sense to say this represents 001010 as this

string represents 6 bits of information and the system would need at least

26 different configurations. If this were not so the different bits could not

vary independently of each and that they do so is what makes them different

bits in the first place. For example, there is a difference between having four

different logical states a, b, c, and d, and having four different configurations

of two bits 11, 10, 01 and 00. While in each case there are four possible states,

they are computationally different because they involve different alphabets.

The former four states cannot be used as inputs to AND or CNOT whereas

the latter four can. It is crucial to the identity of logical transformations

whether or not they map the former set of input states to output states

or the latter. Accordingly, when we consider physical states that represent

logical states in the context of implementation, it matters whether the former

are composed of independent degrees of freedom because otherwise measuring

one bit cannot be done without measuring all of them. Equivalently, it would

not be possible to make a process that transforms a bit according to some

rule the same regardless of the value of other bits. In the particular case of

CNOT, it is required that the physical process that transforms the target bit
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depend only on the value of the control bit and not on the value of the target

bit itself (Z).

For example, the four different input rows of CNOT could be physically

represented by a pin on four different places on a chess board (here we do

not have independent degrees of freedom). Since there are two different

positions corresponding to the single value of the control bit, which physical

process acts on the system depends on the value of both bits, not just the

control bit.

There is another reason why different bits cannot be represented by the

same physical state at different times, namely that to allow them to do

completely trivialises the physical implementation of logical transformations.

For example, consider COPY. If relabelling is allowed no physical change in

a system is required for it to implement COPY because we simply stipulate

that whatever state the physical degree of freedom happens to be in now

represents the state being copied.

Norton’s alleged counterexample relies crucially on the use of a process that

consists in a degree of freedom performing a ‘controlled operation’ on itself.

Norton claims to show that allowing P1 to P4 plus PN entails that LP is false.

However, PN is not among the processes that LPSG use. Their controlled

operations are standard because their inputs consist of a control bit and a

target bit represented by two distinct physical degrees of freedom, and their

outputs also consist of two distinct physical degrees of freedom that also

represent the control bit and the target bit where the former is in the same

state as before. Norton’s ‘controlled operation’ is not of this kind because the

control bit is not represented at all at the end of the operation. Furthermore

PN entails that LP is false without the rest of the cycle. This is because

an instance of PN would be RESET in a thermodynamically reversible way

as follows. Consider a memory device with a single degree of freedom. If

it can perform a controlled operation on itself then let that operation be
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to do nothing if the state is 0 and to perform SHIFT if it is in the state

1. Since, doing nothing and shift are both thermodynamically reversible

then PN entails not-LP and hence the rest of Norton’s cycle using LPSG’s

processes is redundant. Hence, where Norton claims p1 ∧ ... ∧ p4 ∧ pN `
¬SL actually pN ` ¬SL. It is clearly question-begging in the dialectical

context to assume the use of a process that on its own entails not-LP. In any

case, such controlled operations are not controlled operations in the sense in

which CNOT and COPY, since there is no degree of freedom representing

the controlled bit at the end of the operation.

Norton claims that the idea of ‘controlled operation’ from a degree of freedom

to itself is vindicated since a robot may be posited to enact it. However,

contrary what Norton supposes, any such robot would have internal degrees

of freedom that would store the state of the control bit (the state of the

device), thereby effectively remembering the state of the target bit, and hence

requiring resetting for a cycle to be completed. It is also arguable that such

‘controlled operations’ of a degree of freedom on itself are not viable because

any operation would require an auxiliary system whose internal state would

determine which operation was performed. For example, a piece of paper

that says ‘destroy me’ cannot read and destroy itself but would have to be

destroyed by a system that read it, that is copied it, first.

In order to reconstruct PN from processes that are used by LSPG, a copy of

the state of D (which is acting as the control and target bit) must be taken.

This ensures that there is a distinct physical state representing the control bit

that continues to be represented after the physical process has acted upon the

target bit. At the end of the cycle this state must then be reset. However,

if LP were false, this reset would be unproblematic as the ‘dissipationless

erasure’ procedure could then be implemented to perform it.3 However, this

amounts to the reset of known data, and LSPG made it clear (p. 22) that it

is agreed on all sides that reset of known data can be done without increasing

3This does then just amount to asserting LP is false.
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entropy because it is logically reversible. As Feynman (1996, p. 144) says

“If we know the atoms position, then we expend no energy in resetting,

irrespective of where the atom starts out.” Thus, he says it is only unknown

data to which has a cost associated with resetting: “Only if we do not know

which side of the compartment the atom is in do we expend free energy.”

(Ibid.) As shown in LPSG (p. 23), the reset of known data is actually the

logical transformation ‘UNCOPY’ which is logically reversible. As shown by

Bennett (1973), logically reversible transformations can be physically realised

in a thermodynamically reversible way and are irrelevant to LP which is only

concerned with logically irreversible transformations.

Elsewhere Norton (2012) uses a distinction between known and ‘random

data’ that is commonly found in the literature (Leff and Rex (200. For

‘random data’ the molecule may be found on the LHS or the RHS, where as

an example ‘known’ data would be a string of devices with the molecule on

the LHS (reset to zero). This is a bizarre definition. Why would whether the

state of one device is known or not depend on the state of other devices?4

In contrast, LSPG make the distinction between known and unknown data

in the following way for a device, D, that contains both a register R and a

memory M (which can be read). If the physical states of R and M represent

the same logical state, the data contained in the device is known. If the states

of R and M are not correlated, then the data is unknown.

We can operationally define whether a physical state represents known or

unknown data. For physical states representing known data, process 1a can

happen as the physical state representing the memory bit acts as the control

bit to determine which side the piston should enter from. For unknown data,

before process 1a can occur the location of the molecule (whether it is on the

LHS or RHS) must be detected and stored in the memory (which then acts

4Note it is misleading to talk of ‘thermalised data’ being represented by the molecule

occupying the whole chamber as such a state does not really represent data at all rather

it is more like an empty register.
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as the control bit).

By taking a copy of the state in order to perform step 4, there is a memory

(the copy) which is correlated with the register to be acted upon (the detected

state). Thus, so reconstructed, Norton’s erasure process acts on known data:

a process established to be thermodynamically reversible (as it is logically

reversible).

In the light of the above, we conclude that Norton’s alleged counterexample

fails to exhibit a violation of LP. If his cycle does violate LP it is simply

because he assumes the admissibility of a process (PN), that LPSG do not

use, and which is sufficient on its own to violate LP. If we reconstruct Norton’s

process using only LPSG’s processes then it is not RESET of unknown data

and hence not a counterexample to LP.

4.2 Does the ‘standard inventory’ of processes allow

for violation the second law?

As mentioned above, even if this alleged counterexample fails, Norton has a

separate argument against LPSG, namely that the processes that they use,

which as he notes, are standardly employed in the literature (Bennett 2003),

allow for violation of SL. If this is true then it is no surprise that these

processes conjoined with the assumption of the falsity of LP entail violation

of SL, and of course one could not conclude from an argument to that effect

that LP must be true after all. In particular, LPSG argue that there is

a missing entropy that must come from the RESET of the device in their

cycle, but if the processes they use violate SL then that missing entropy is

accounted for by them alone and is an artefact resulting from accounting for

the difference between the entropy reducing processes and the assertion of

the SL. Norton therefore charges LSPG with inconsistency since he alleges

they assume SL, while also using a set of processes that allow for violations
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of it. It is important to note that this charge of inconsistency has a wider

scope; if these processes (which are widely used in the literature do indeed

allow for violation of SL then they cannot be used for any proof of LP that

follows the sound horn of Earman’s and Norton’s dilemma.

4.2.1 A second law violating cycle?

Norton constructs a cycle as follows:

Initial state: The molecule occupies the whole box.

1) The partition is inserted, trapping the one-molecule gas on one side of the

partition. Process 2b

2) The piston is inserted, and the gas does work in an isothermal expansion.

Process 1a

The gas has returned to its initial state so a cycle has been constructed whose

sole outcome is the conversion of heat to work: a violation of SL.

However, the above cycle is inoperable. In order to know on which side to

insert the piston, one needs to know which side the molecule is on. But

Norton faces a dilemma. Either there is an agent outside the system that

determines on which side to insert the piston, or not. If the former, then

this cycle is irrelevant since everything that determines the time evolution

of the device must be contained within it as argued at length by LPSG and

reiterated above. On the other hand, if there is no external agent then the

cycle uses a ‘controlled operation’ of a degree of freedom on itself which

we argued above is not possible, and in any case, the assumption that it

is possible entails that LP is false and is therefore question-begging in this

context.

Again, in order to make this cycle operable using admissible processes, there

must be a distinct physical state which controls from which side the piston

enters. This cannot be just some arbitrary state; it needs to be different
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depending on which side of the partition the molecule is, so that the piston

entering will varying accordingly. In order for the process to be cyclic, this

‘control state’ must be reset to its initial state and by LP, there is a thermo-

dynamic cost associated with this. Hence, this revised cycle doesn’t violate

SL.

4.2.2 The partition problem: process 2b

Even if all his other arguments fail, Norton also objects to LPSG’s proof on

the grounds that one of the processes they admit, namely 2b above, itself

violates SL. If the processes involved are thermodynamically reversible, the

entropy difference between two states A and B, S(B) − S(A), should be

independent of the path between them. If state A is the gas occupying the

entire box, and state B the gas occupying half the box then we expect the

entropy difference to be the same regardless of the reversible process taken

to reach one from the other. As such, prima facie, we would expect the

entropy difference between A and B to be the same regardless whether the

volume was halved via a isothermal compression or by inserting the partition.

However, in step 1 of the cyclic process, inserting the partition is assumed

not to change the entropy of the gas.5 In contrast, isothermally compressing

the gas reduces its entropy by kT ln 2 (along with a corresponding increase

of the entropy of the heat bath).

So does inserting the partition decrease the entropy of the gas? As SL is

statistical, it holds that on average the entropy does not decrease. For a

many-molecule gas composed of n molecules, it is very unlikely (Pr = 1/2n)

that all the molecules will be on one side when you insert the partition.

Therefore, in this case inserting the partition is not a violation of SL. How-

ever, for a one-molecule gas the volume it can occupy will be halved with

5The temperature of the gas doesn’t change either, as whilst the volume has halved

the pressure has doubled: pV = nRT .
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certainty.

Premise 1: Inserting the partition is a reversible process that halved the

volume of the one molecule gas with certainty.

Premise 2: The entropy difference between two states A and B is the same,

regardless of path taken (provided thermodynamically reversible processes

are used).

Premise 3: Isothermally compressing a gas reduces the entropy of the gas

by kT ln 2 and increases the entropy of the heat bath by kT ln 2.

Premise 4: The state Bcompression (the gas isothermally compressed to half

the box) is the same as state Bpartition (the gas reduced to half its original

volume by inserting the partition).

Conclusion: Inserting the partition reduces the entropy of the gas by kT ln 2

with certainty: a violation of SL.

However, LPSG can reject premise 4. There is an important distinction

between Bpartition and Bcompression; in the former case you do not know which

side of the box the particle is confined to. By considering the statistical

mechanical definition of entropy: S = k
∑

i pi ln pi, where pi is the probability

for the system to be state i.

S = k
∑
i

pi ln pi (1)

The entropy associated with the box in state A can be written:6

−Sbefore/k = pL ln pL + pR ln pR (2)

When you compress the gas isothermally with the piston entering from the

right, pL → 1 and pR → 0. Thus, (as ln 1 = 0), S(Bcompression) → 0. As

6There is no fundamental reason to split the box in 2, rather 3 or any other number,

but 2 allows for an easy comparison with state B.
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expected, the entropy of the gas has decreased (and that of the heat bath

has increased).

However, the case of inserting the partition is different, since one does not

know which side the molecule is on. Because of this, S(Bpartition) = k(pL ln pL+

pR ln pR). Hence, contrary to what Norton’s says, inserting the partition does

not change the entropy of the gas. Hence, premise 4 is false and the partition

does not violate SL.

It may be objected that the only difference is that in the final state Bcompression

one does know which side the gas is trapped on, whereas in the partition

method the final state Bpartition is equally likely to be on the right or left,

and that this difference is solely in our epistemic position, rather than a dif-

ference in the state properties of the gas. Further, it seems that any difference

in the information content of the system (if information is a some way a prop-

erty of the system) only applies on average. For the ‘average’ state Bpartition

there is a difference in the information (compared to the state Bcompression).

But is hard to see what ‘information’ about the state Bpartition on the LHS is

different from the ‘information content’ of the state Bcompression just because

the former could have been on the RHS. Unlike a quantum superposition,

there is a matter of fact whether the gas is on the LHS or RHS.

However, by returning to some familiar phenomenological concepts such as

work and heat the difference between state Bcompression and state Bpartition can

be elucidated. The key difference is how you can extract work from the two

states. In order to do an isothermal expansion, you need to know which side of

the box the molecule is on to know whether to insert the piston on the left or

right hand side. Given 100 systems in the state Bcompression, you can extract

work from all of them. However, given 100 systems in the state Bpartition half

of the time you will have inserted the piston on the wrong side, doing work

(as you are compressing the gas) rather than extracting work. This is why

the fact that Bpartition could have been on the other side is relevant: there
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is no one procedure to extract work from Bpartition with certainty.7 Norton

questions why we should think that whether we know about which state a

device is in affect matters. But it does matter: thermodynamics is about the

properties of matter and how we can exploit or use these properties to do

work. Knowing what state a device is in changes which operations you are

able to perform.

Norton does not acknowledge this difference and so allows (via process 3b)

that the position of the particle in Bpartition can be detected and the piston

inserted accordingly. Thus, on Norton’s view, work can be extracted from the

state Bpartition. However, this view is mistaken as it would involve performing

‘controlled operations’ on the same state. As shown earlier, this is not possi-

ble and therefore the insertion of the partition does not violate the Kelvin ver-

sion of the second law, in addition to not violating the information-theoretic

version (because the information-theoretic entropy does not decrease).

There is a further way to consider whether the insertion of the partition de-

creases the entropy and therefore violates SL, namely by reference to Clau-

sius’ equation. The Clausius equation directly relates entropy to heat flow,

as discussed in Norton section 2.2, and we could use it to argue that there is

no entropy change through the insertion of the partition because, unlike an

isothermal compression, there is no associated heat flow. Hence, if we assume

that the entropy of a system only changes if there is a heat flow, then the in-

sertion of the partition does not change the entropy. However, he argues that

the Clausius formula is not valid in this context because the entropy change

between the initial and final states in question is not path-independent, since

if the volume of the gas is halved by inserting the partition then a different

entropy change (0) is associated with the state than if the path is isothermal

compression (kln2). However, if we regard the final state as only being the

7The above example also helps to further illuminate the statistical nature of SL: it

could happen that the all 100 are on the LHS, and you extract work from all of them; you

were just lucky. However on average, you cannot extract work.

22



same as the state reached by isothermal compression if it is known where the

particle is (in contrast with what is assumed in premise 4 above), then the

entropy is path-independent.

We now compare the two paths quantitatively using the method defended by

Ladyman et al 2008, hereafter LPS, who show how to calculate the entropy

of a statistical mixture of definite thermodynamic states. They argue that

if a system is in one of two states with equal probability then the entropy

that should be assigned to the system is half the sum of the entropies asso-

ciated with those two definite states, plus a term of kln2 associated with the

uncertainty about in which state it is.

Initially the gas in the box has entropy X. The path taken by isothermal

compression is as follows: the piston is inserted then compression, entropy

of the gas reduced by kln2 (corresponding increase in the heat bath). The

gas is known to be on the RHS (for example) and can be used to do work on

the piston (by isothermal expansion).

The other path is as follows. The partition is inserted and the molecule is

either on the LHS or RHS. Using the formula above for the entropy of a

statistically mixed state the entropy of the gas is 1
2
(SL + Sr) + kln2, where

SL and SR are the well-defined thermodynamic entropies associated with

a gas trapped on one side (via isothermal compression). SL and SR are

X − kln2. After detecting which side of the partition of molecule is on, we

can then extract work from the system. Furthermore, according to the above

formula the entropy of the gas has reduced by kln2 (as there is no longer

any uncertainty and no entropy associated with this). This state is now the

same as the final state reached via isothermal compression. Therefore, again

it can be seen that inserting the partition is thermodynamically reversible

and, provided the true final states are considered, the entropy associated is

path-independent.8

8Note that this deals with Norton’s objections to the result of LPS (2008) which are
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5 Issues with the one-molecule gas

Norton argues that LP has not been proven, and thus that no link has been

established between logical and thermodynamical irreversibility. This link is

the foundation of the thermodynamics of computation which Norton claims is

a ‘spurious science’ (Norton 2012). According to him, the Landauer-Bennett

orthodoxy which is at the heart of the latter is unlikely ever to be estab-

lished because of the need to consider the effect of fluctuations in microscale

implementations of computations. Further, he claims that the treatment of

fluctuations including by LPSG is inconsistent. In the following section, we

consider Norton’s characterisation of processes at the the molecular level and

see that the treatment of fluctuations implicit in LPSG is not inconsistent

after all.9

5.1 Norton, the Second Law and the molecular scale

For Norton, the fact that molecules make up the macroscopic entities that

thermodynamics talks about ushers in violations of SL because he says “a

kinetic gas could, with very low probability, spontaneously recompress to a

much smaller volume, in contradiction with the second law of thermodynam-

ics” (2011, p. 185). Furthermore, he claims that Brownian motion is an

example of SL being violated on the molecular scale because he regards the

dancing of the pollen grains as a result of heat energy from the water being

converted into work (the motion of the pollen). This he claims even violates

the Kelvin formulation of SL (Norton 2012).

This perspective on processes at the molecular scale explains his discontent

precisely that the thermodynamic entropy is not well-defined for the states involved since

it he argues it is path-dependent, and that the processes used are inadmissible.
9Note there is no inherent reason that the thermodynamics of computation has to be

about the microscopic level. Rather, the motivation for considering small systems such as

one-molecule gases is to consider the lower limit on what is possible.
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with the partition process. Fluctuations cause the molecule to move from

one side of the box to another: inserting the partition is ‘locking’ in one of

these fluctuations. Why does Norton object to ‘locking in’ a fluctuation?

Accumulating and amplifying these microscopic violations is precisely how

a Maxwell’s demon would operate. Thus, Norton objects to processes that

‘lock in’ fluctuations to prove LP, given that LP is supposed (for example,

Blundell 2006) to help us escape from Maxwell’s demon.

According to Norton, the reason why we do not have to abandon SL, is

because ‘the microscopic violations’ of SL never accumulate to a macroscopic

difference. For example, we cannot harness the work done by the pollen grains

to drive a macroscopic change as they are moving in random directions.

So the molecular constitution of matter does not stop SL being true as an

emergent fact about macroscale processes.

However, Norton is mistaken. Firstly, a kinetic gas spontaneously compress-

ing to a smaller volume is not a violation of SL. It is overwhelmingly unlikely

to happen, as is throwing a fair coin and getting 1000 heads consecutively.

However, we do not think that 1000 heads violates the law of ‘head or tails

with 50/50 probability’. Unlikely events can happen. Further, it is a mis-

take to characterise brownian motion as a ‘thermodynamic fluctuation phe-

nomenon’ that violates SL. It is not that the ‘thermal energy’ of the water

that is being translated into ‘work done’ by the pollen grains jiggling. Rather,

some of the kinetic energy of the water molecules is transferred to the pollen

grains by collisions; this is entirely unmysterious. Heat and work are proper-

ties that belong to macroscopic entities, such as gases and heat baths, rather

than molecules or pollen grains.

But if Norton can’t talk about heat and work at the scale of pollen grains,

how can LSPG (and other proponents of LP) talk about one molecule gas

in a box doing work and exchanging heat with the heat bath? A molecule

in a box can be treated as an ideal gas. To treat 1000 molecules in a box as
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a gas (with constant pressure) you have to average over a short time. The

same reasoning applies to one molecule in a box, except for the behaviour to

count as a ‘gas’ you must average over a long(er) time. Thus, as it can be

treated as a gas, it is legitimate to talk about work and heat.

Further, the same mischaracterisation is the basis of the claim that inserting

a partition is ‘locking in’ a fluctuation. The molecule moving from one side to

the other is not a density fluctuation of the gas. This is a category mistake:

the molecule and the gas are not the same entity. The gas has a volume

equal to that of the box, whereas the molecule’s volume is minute (of the

order 10−33/m3). Moreover, the molecule moving from one side of the box,

colliding with the walls are part of it behaving like an ideal gas. If the

molecule remained in the same location for an extended period of time, it

would no longer be acting as an ideal gas. As such, the molecule moving

from one side to the other is not a fluctuation in the sense of a deviation

from equilibrium.

In the picture below are three different snapshots of the configuration of the

molecules in a gas. It is an error to draw the line around the molecules

(as shown) and claim that the ‘gas’ has a density fluctuation between the

different snapshots.

Figure 3: The different positions of molecules at three consecutive moments

of time

It is this mischaracterisation of thermal fluctuations at the molecular level

that seems to motivate Norton’s discontent with the processes employed by

LSPG: he thinks the processes proceed by fluctuations. As the movement of
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the molecule is seen as a density fluctuation, he thinks isothermal expansion

also proceeds by fluctuations. This is the basis of his claim that the ther-

modynamics of computation selectively ignores some fluctuations (such as

the position of the piston) but not others (density fluctuations of the gas).

Further, he thinks “that [it] is especially awkward since the one occasion on

which processes connected to fluctuations are not ignored is when the the-

ory treats the thermodynamics of erasure” (Norton 2012). However, we have

seen that this view stems from a mischaracterisation of the one-molecule gas.

All fluctuations are ignored, so the charge of inconsistency fails. Despite this,

whether the assumption that fluctuations can be ignored remains an open

question. In Norton (forthcoming) he claims that fluctuations fatally disrupt

processes at the molecular level. The Smoluchowski trapdoor fails because it

has to be light enough that a collision with a faster moving molecule would

open it but not a slower moving molecule, so it is in fact flapping about

wildly. Norton claims that the piston in an isothermal expansion would face

the same problem; it would be as likely to go from being in the middle of the

box to the end of the box via an isothermal expansion as via a fluctuation.

However, the piston could just be really heavy and the time taken for the

isothermal expansion could be very long.

6 Conclusion

We have argued that Norton’s critique of the proof of LP given by LPSG

fails. In particular, the processes they use do not violate the second law

of thermodynamics, and the cycle he constructs to perform ‘dissipationless

erasure’ requires a process that is not among those LPSG use and is inadmis-

sible, and when revised to be admissible the cycle reduces to reset of known

data which is not logically irreversible. Finally, the treatment of fluctuations

by LPSG is consistent and the response to Norton’s critique of LPSG also

counters his criticisms of the result of LPS. We have not addressed Norton’s
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most recent paper that criticises the whole science of the thermodynamics of

computation and that remains a subject for future work.
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