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Abstract

The goal of genome-wide association studies is to identify SNPs unique to disease. It usually

involves a single sampling from subjects' lifetimes. While primary DNA sequence variation

influences gene-expression levels, expression is also influenced by epigenetics, including the

‘somatic epitype’ (GSE), an epigenotype acquired postnatally. While genes are inherited, and

novel polymorphisms do not routinely appear, GSE is fluid. Furthermore, GSE could respond to

environmental factors (such as heavy metals) and to differences in exercise, maternal care and

dietary supplements – all of which postnatally modify oxidation or methylation of DNA, leading

to altered gene expression. Change in epigenetic status may be critical for the development of

many diseases. We propose a ‘longitudinal epigenome-wide association study’, wherein GSE are

measured at multiple time points along with subjects' histories. This Longitudinal epigenome-wide

association study, based on the ‘dynamic’ somatic epitype over the ‘static’ genotype, merits

further investigation.
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The current widely used genome-wide association study (GWAS) aims at determining SNPs

that are unique to a human disease and that usually requires a single sampling from subjects'

lifetimes. Using the GWAS to work out genetic factors behind different sporadic diseases

follows logically from the Human Genome Project. The goal of GWAS is to use genomic

data to understand complex mechanisms, diagnosis, prevention and treatment of many

disorders. In this context, efforts by different groups have been fruitful, but improvements in
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understanding the nature and etiology of human diseases have, nevertheless, been modest.

The present article focuses on the limitations of the GWAS approach, and proposes a new

framework to circumvent the problems involved in the study of complex human disorders.

The partly fulfilled promise of GWAS

One of the major reasons for this shortcoming has been the failure of GWAS to integrate

contributions of environment and environmental interaction with genes in disease processes.

In short, GWAS is essentialist. It presumes that an organism's state of health is solely and

fundamentally determined by its ‘fixed’ genome. After many years and much effort, there is

still controversy over how useful GWAS has actually turned out to be. Their utility has been

questioned [1] and defended [2,3]. In its defense, GWAS has been able to elucidate genetic

associations such as macular degeneration with complement H [4], and it has suggested

molecular pathways to explore, even with genes that explain relatively low phenotypic

variation in a population, such as PPAR- γ in Type 2 diabetes, which has become an

effective drug target.

The GWAS model is an end point assay, comparing a specific genetic sequence with a

difference in disease state at the time the GWAS is run. Under the simplest form of this

model, if a person possesses a pathogenic allele, the person will develop the associated

disorder. While prima facie elegant, this model often does not apply. One conventional

solution to this short-coming would be to invoke cumulative effects of endophenotypes or

other ‘subclinical’ genetic contributions to disease. Unfortunately, the concept can be of

limited use, such as when applied to diabetes. As Goldstein has noted, the strongest SNP-

related sibling relative risk for Type 2 diabetes (found on the TCF7L2 gene) amounts to only

1.02, and the contribution of further common risk alleles falls off dramatically from that

point [1]. Thus, ‘lucky strikes’, such as PPAR-γ, cannot necessarily be relied upon and may

actually only represent the low hanging fruit of gene–disorder interactions. An even more

stark contrast can be drawn with a fundamental, readily visible, nonpathogenic trait, such as

adult height. In 1886, a method to predict adult height based entirely upon parental height

was proposed by Galton [5]. Nearly 150 years later, Galton's method still surpasses methods

based on genomic inference [6].

In addition, even a well-known genetic risk factor may turn out to be strongly subject to

nongenetic influence. For example, the APOE ε4 allele is a generally accepted genetic risk

factor for Alzheimer's disease (AD). However, while it has been shown that AD risk can

correlate with APOEε4 allele dose (non-ε4/non-ε4 <ε4/non-ε4 <ε4/ε4) [7], other studies

have shown no association between APOEε4 allele status and AD in a different population

[8]. In addition, levels of circulating ApoE protein correlate with accumulation of the AD-

associated amyloid-β peptide (Aβ), irrespective of APOEε4 status [9].

Genetic variation does not explain pathogenesis of ‘sporadic’ disorders

Both critique and defense of GWAS may be missing a biological ‘elephant in the room’.

They do not look beyond the theoretical frame-work of GWAS to question whether some

fundamental feature aside from, or in addition to, genomic DNA sequence is behind a

significant proportion of sporadic disorders. Primary DNA sequence variation is certainly
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behind some diseases, and this is most obvious in autosomally inherited disorders such as

hemophilia or sickle cell. Likewise, early-onset forms of AD are autosomally inherited and

traceable to specific DNA variations [10], but these are still a minority of AD cases. An

alternative for those disorders that involve protein configuration changes, such as AD,

would be to invoke prions. However, the prion hypothesis does not explain disease

progression or take into account a wide variety of environmental influence, particularly not

latent influences [11]. It is now generally acknowledged that variation in regulatory regions

influences gene expression and may contribute to pathogenesis of some disorders, but

expression is also influenced by other structural elements, such as presence or absence of

DNA methylation at CpG dinucleotides or oxidation of guanine residues (particularly at GG

dinucleotides) [12–14]. Further more, a direct relationship has been found between guanine

oxidation and interference with adjacent CpG methylation [15]. Methyl-cytosine can

undergo a further modification to hydroxymethylcytosine. Impairment of this process may

play a role in cancer development [16]. In addition, acetyl and methyl modification of the

histone structural elements of chromatin plays a significant role in gene expression [17].

Significant differences in methylation between control and disease states have been found in

several disorders, including schizophrenia, bipolar disorder, suicide following abuse during

childhood and AD, among others [18 –20]. Differences in guanine oxidation that correlate

with symptoms have been found in Parkin-son's disease models [21]. Histone acetylation

differences have been found in Waldenstrom's macroglobulinemia [22]. Influence of

epigenetic status is also very well known in oncology and is beginning to be recognized in

inflammatory and neurodegenerative disorders [23]. In other words, genotype plus

epigenetic status is a closer model for determining phenotype, rather than genotype alone.

We have referred to this combination as the ‘somatic epitype’ (GSE), an epigenotype

acquired postnatally, after methylation ‘reset’ and imprintation. While our original definition

of GSE was restricted to methylation status, we now consider other epigenetic DNA

modifications, such as oxidation and hydroxy-methylation, to also fall in this category [201].

We would like to make it plain that the GSE is not a somatic mutation. It is a purely

epigenetic phenomenon and does not involve alteration of the primary DNA sequence.

Such a model cannot exclude the possibility that some ‘hidden variable’ might still, some-

how, be valid, and that GWAS has merely not been given enough time to produce results.

However, there is no epistemologically conclusive way, short of screening every genomic

and mitochondrial DNA base of every cell of every human presently or previously in

existence (or at least having had lived since a specific disease was first formally

characterized), to exclude such unknown DNA sequence variations. Given the power of

current GWAS assays and associated data analysis, and given that these powerful assays

have, upon diligent application by skilled researchers, come up short to fulfill their original

goal, it is reasonable to propose that probability of such discoveries in the future is low

enough to justify exploring alternative methods.

How would GSE-based screening improve upon GWAS? First, it would look at the direct

substrate of transcription. Epigenetic changes that influence transcription are invisible to a

GWAS. Direct measurement of GSE would overcome this shortfall. However, a screen for

somatic epitypes that uses an end point model such as GWAS would still not be sufficient. A

high-throughput methylome analysis has been proposed in detail elsewhere [24]. If
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combined with epigenome-wide histone modification, this gives rise to an ‘epigenome-wide

association study’ (EgWAS) [17], although it ignores the ‘oxidome’ (oxidative modification

of DNA), the ‘hydroxymethylome’ (hyodroxymethylated DNA) and other likely

components of the epigenome as a whole. Even overlooking the lack of attention paid to the

oxidome, the EgWAS still does not directly consider environmental input. A different

protocol, the ‘environment-wide association study’ (EWAS), which, despite its broad name,

actually measures circulating chemical traces of various potential exposures and other

environmental effects, has recently been tested with some measure of success for Type 2

diabetes [25].

The promising results of this study and similar work has led to a recent proposition that the

older concept of the ‘exposome’ (the sum of all external exposures an organism undergoes)

should be given greater consideration in ‘idiopathic’ disease etiology [26]. It has been

pointed out that multiple samplings over time of the same subjects would be desirable [26],

which we applaud. However, studies cited in advocating exposome research still presume an

end point paradigm that contrasts subjects with a disorder against those without [25]. They

do not test whether observed differences actually precede or follow upon a disorder. In

addition, ‘pure’ exposome studies would have great difficulty discerning latent response to

exposome perturbation, wherein any pathogenic material could have been cleared from the

organism long before clinical symptoms might develop, as has been suggested by data

linking early-life environmental exposures to AD and other neuropsychiatric disorders [18].

The possibility of ‘latent sequelae’ that appear long after exposure to a toxin such as lead

was recognized decades ago [27]. Single time-point exposomics would be unable to detect

such conditions. Furthermore, overall mortality is very likely linked to early-life

inflammatory exposure and nutrition, and this link may be sufficiently strong to explain the

general increase in lifespan observed in developed countries over the last century [28].

A diagnostically powerful study would need to fulfill several criteria. It would need to

determine the ‘classic’ epigenome, which disregards the oxidome. It would need to explore

the ‘envirome’, which combines chemistry-based exposome or toxicome with health history,

sociocultural and behavioral factors. However, it would also need to measure somatic

epitypes, that is, the epigenome including the oxidome, hydroxymethy-lome and histone

modification. It would need to do this longitudinally and correlate changes in results from

the repeated samplings with those disorders that emerge over a subject's lifetime (Figure 1A)

– a kinetic approach. This research pathway is a viable alternative to the static model

implied by GWAS and GWAS-like epigenomic and exposomic methods. We offer an

alternative to the end point assay approach of GWAS, EgWAS and EWAS. Specifically, we

suggest the use of a longitudinal combination of multiple time-point EgWAS (methylomic,

hydroxymethylomic, oxidomic and histone based) and enviromics, in essence a ‘kinetic’

assay based on a dynamic, environment-responsive model of ‘sporadic’ disease etiology.

Thus, ‘longitudinal epigenome/envirome-wide association study’ (LEWAS) would fulfill the

unmet criteria.

We have recently published a short critique of the end point paradigm in disease research

and suggested that a kinetic assay would overcome end point assay shortcomings [29]. Such

a model has been foreshadowed in well-accepted theories such as Barker's fetal/neonatal
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basis of disease [30], and work that has shown behavioral effects associated with epigenetic

reprogramming due to mammalian maternal behavior [31,32] and hypermethylation of the

genes for ribosomal RNA in brains of subjects who have commited suicide [33]. These

observations are part of a large body of evidence that has led to ‘life course epidemiology’

[34–37]. LEWAS would be an explicitly proposed assay based on these and similar

epidemiological models.

Looking past disease

Interaction of biology and environment go beyond disease etiology. One example is the

‘Hispanic paradox’, in which immigrants to the USA from Latin American countries, such

as Mexico, are more healthy than their socioeconomic status within the USA would predict

[38]. Some explanation has been found for this from the finding that immigrants from

Mexico who stay in the USA tend to be taller than Mexicans who do not immigrate and

Mexicans who immigrate and return [39]. This suggests the explanation that healthier

individuals are more likely to immigrate to the USA from Mexico. It has also been noted

that a health disparity exists between immigrant and native-born residents of the USA.

Immigrants tend to have longer life-spans and be less prone to specific disorders, and this

trend has increased over time [40].

Adult height is used as ‘a proxy for a range of preadult exposures’ [41], as are mortality

indexes versus certain chronic disorders [42]. However, specific effects of different

exposures and events are not always well characterized but have been ‘inferred’ [42], and it

has been recognized that research is needed to explore direct measures of diet, stress, illness

and other factors on adult health instead of a single end point indirect measurement [41].

Likewise, explanations based on adult height gathered from body measurements and

medical history do not consider potential genetic contributions to issues such as population

movement. A multivariate kinetic study such as LEWAS could directly explore what is

generally considered a purely ‘social’ phenomenon. Since it considers personal history, it

would not suffer (or at least not suffer as much) from accusations of excessive reductionism

that have be leveled at ‘purely’ biological studies. Such adoption of a systems biology

approach has been suggested in oncology and theoretical biology [43,44]. LEWAS is a

novel application of the systems biology approach to basic investigation of specific

disorders.

The need for a ‘kinetic’ approach versus an 'end point' assay

A gene, including its regulatory (promoter) sequence, is presumed to be relatively static. It is

not thought to undergo changes within an individual lifetime, although possible significant

contributions of somatic DNA mutations/mosaicism to disease etiology has recently been

mentioned in the literature for disorders as diverse as neurofibromatosis 1, Creutzfeldt–

Jakob, Duchenne muscular dystrophy and AD [45–49]. A GSE, on the other hand, is by its

nature dynamic, and any study based on the GSE would have to be a kinetic study. A dual

study conducted on Ice-landic and US populations indicated significant amounts of DNA

methylation drift over the entire genome [50]. Likewise, DNA methylation changes in

response to stress persist late into life [51], although this study did not investigate possible
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effects of underlying deficiencies in DNA methylase and associated genes. DNA oxidation

changes with age [52,53], but these changes can be environmentally modified [52]. The GSE

is a product of environmental factors acting upon genes and presumes fluidity within a

single organism's lifetime. Such factors could include differences in maternal grooming

[32], exercise [54], direct oxidative stress [55], dietary levels of nutrients such as folate [56]

or caloric restriction [52], all of which postnatally modify oxidation or methylation of

specific genes (it must be noted that the above studies do not always report whether or not

these differences might also correlate to sequence variations in genes that regulate DNA

methylation or oxidation). Furthermore, childhood poverty and stress specifically alter adult

working memory in humans [57]. Changes in behavior, such as decision-making, due to

stress refect basic neuroanatomical alterations [58]. Such modification leads to changes in

gene-expression levels. Somatic epitypes can explain the incomplete penetrance found for

the vast majority of pathology-associated genes. A given gene's expression levels ordinarily

would not be pathogenic. However, perturbation of the GSE would alter expression levels

and induce pathology [59].

This is not to say that primary DNA sequence has no function in disease etiology nor that

GWAS has outlived its usefulness. Two recent very large GWAS examining AD discovered

a significant association with the CLU gene [60,61]. Epigenetic and epigenomic features

rely upon the underlying genome to be able to exist. Long stretches of regulatory DNA with

low levels of CpG (methylation) or GG (oxidation) dimers would be highly unlikely to have

significant somatic epitypic variation. However, the GSE can determine affinity for a wide

range of (hydroxy) methyl and oxidation sensitive transcription factors, including MeCP or

inhibition of SP1 binding. In addition, DNA methylation has significant influence upon

histone acetylation or methylation, which is a fundamental feature of chromatin

rearrangement. GWAS ignore these fundamental features of gene expression, and it is the

gene as expressed that contributes to an organism's health or illness.

From the point of view of disease etiology, simply suffering from a disease is, ultimately,

not very interesting. What matters is how the organism changed or was changed in order to

enter a disease state. For example, in some in stances of AD, such as Swedish familial AD

(FAD), which is due to the ‘Swedish’ mutation of the Alzheimer's disease associated

amyloid-β precursor (APP) gene (APPSWE), the disease mechanism is not subject to

environmental influence [62]. However, there is no fundamental mechanistic change in

individual members of the APPSWE population that produces AD. The APPSWE- AD

relationship is fixed. Thus, while there may be a difference between APPSWE/+AD adults

and non-APPSWE/non-AD adults, there is no realistically inducible change that could occur

to the non-APPSWE/non-AD adults to convert them into APPSWE/+AD adults. Nevertheless,

a great deal of AD research was expended on FAD under the presumption that differences

seen in FAD from the general population are necessarily consistent with changes that

convert a member of the general population into someone with sporadic AD. This

presumption has met with, at very best, limited success [63].

How should research approach non-FAD/+AD versus non-FAD/non-AD subjects? For

nearly all sporadic cases, the consensus in the feld seems to be that some change occurs that

can ‘convert’ a non-FAD/non-AD into a non-FAD/+AD individual. For example, a pair of

Lahiri and Maloney Page 6

Epigenomics. Author manuscript; available in PMC 2014 October 13.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



monozygotic twins had been raised together but were discordant for AD. They had

differential DNA methylation in temporal neocortical neurons [64,65]. What produced AD

in one but not the other? It could be proposed that it was some kind of environmental

influence resulting in an epigenetic effect. To strip the question to fundamental theory of

disease, something induced a change in one twin and not in the other. Whether this change

was pathogenic or pathopreventative cannot be determined from one sample taken at one

time point, but at least in theory, the twins began ‘the same’. At some point, a vital

difference was induced, and this difference either led to or prevented AD. This is, of course,

a simplification. A chain of inductions could have occurred in each twin, ‘nudging’ each

toward or away from AD, until one twin either was pushed over a pathogenic threshold or

was held back from that threshold, which would have otherwise been crossed.

The strength of older models to answer questions can instill a desire to apply those models

beyond the limits of supporting evidence. For example, a measurable difference between

diseased and nondiseased populations has been successfully used as a placeholder for

changes that convert a specific nondiseased individual into a diseased individual. For simple

infectious diseases, this theoretical substitution can work well. However, we can see from

the literature that the ‘end point difference = necessary change’ presumption may not apply

to epigenetic states. Some studies unite differences in DNA methylation with a disorder [66–

68], others lead to the opposite conclusion [69–71]. This is where LEWAS could make a

difference. To return to the example of the AD discordant twins, the study indicated an

association between lower levels of methylation and AD [65], but that does not answer

fundamental etiological questions: would DNA demethylation in the brain lead to AD,

making the methylated brain healthy? Would DNA methylation in the brain prevent AD,

meaning that, barring methylation, both of the twins would have developed AD? On the

other hand, could AD lead to DNA demethylation in the brain, making a lower DNA

methylation state a symptom and not a contributing factor? Similar questions can be asked

about observed differences in DNA oxidation linked to disease states. A kinetic-paradigm

study, such as LEWAS, would go far towards answering these questions.

The ‘demethylase issue’

One of the fundamental principles behind LEWAS is changes in epigenetic status that would

include DNA methylation and demethylation. DNA hypomethylation is well attested in

cancers [72], and we hypothesize that it would be an issue in other sporadic disorders.

Unfortunately, while human DNA methylase is known, no specific mammalian DNA

demethylase has been discovered to date. This has led some workers to insist that an

etiological model based on changes in DNA methylation status cannot be viable until and

unless a specific DNA demethylase is discovered. If there were no evidence of

demethylation, this objection would be valid. However, overall loss of DNA methylation

over time has been demonstrated in humans [50], and such loss varied from individual to

individual in that study, suggesting specificity of demethylation activity operating on the

individual level. In addition, active demethylation activity has been observed for specific

genes in specific tissues [73], including induced rapid demethylation of the memory-critical

reelin gene that followed contextual fear conditioning [74]. Thus, while the identity of a

specific demethylase molecule is currently unknown, this can not be used to deny the
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existence of target- and stimulus-specific demethylation activity, any more than lack of

conclusive demonstration of nucleic acids as the physical ‘genetic material’ could be used to

dismiss the entirety of genetic science that was undertaken before the Avery– MacLeod–

McCarty experiment in 1944 [75]. By more recent analogy, the cleavage of Aβ from its APP

precursor was determined to occur through two activities. Specifically, β-secretase activity

cleaves the APP protein to produce the soluble APPβ (sAPPβ) and C99 fragments. C99 is

then cleaved by γ-secretase activity to produce the Aβ and p3 peptides [76]. The β-secretase

activity was described and accepted as real nearly a decade before the actual β-secretase

protein was discovered [76,77]. Likewise, some time elapsed between the identification of γ-

secretase activity and identification of the presenilins in that activity, and the full list of

components of the γ-secretase complex is still unknown [78]. Thus, while we freely admit

that no specific molecule or complex has been found that drives mammalian DNA

demethylation, we note that lack of such specific knowledge regarding other molecular

actors has not previously invalidated all potential research on a particular biological activity.

In any case, recent work has suggested that hydroxymethylation via methylcytosine

dioxygenase TET1 plays an important role in maintaining hypomethylation of CpG islands

in mammalian promoters [79]. Hydroxymethylcytosine would then be demethylated by the

AID/APOBEC family of cytosine deaminases [80].

Precursors to LEWAS: studies that have partially implemented principles

The experimental concepts that comprise the LEWAS are not completely untested. Several

experiments and surveys have used some element or another of this proposed method. These

fall into three categories, specifically:

• Epigenetic induction of phenotype experiments in animals;

• Targeted epigenetic studies of humans;

• Survey studies in humans.

For example, bisphenol A was used to induce hypomethylation of the DNA sequence

upstream of the mouse Agouti gene, resulting in a shift of coat color distribution toward

yellow. Both the epigenetic and epiphenotypic results were prevented by maternal

nutritional supplementation [81]. Placing mice pups in an enriched ‘communal nest’ that

provides a highly stimulating early social environment altered histone acetylation at the

BDNF gene, and this was accompanied by increased BDNF expression after environmental

challenge compared with nonenriched mice [82]. Mice were fed a high-fat diet from

weaning to 18 weeks. These mice had reduced preference for sucrose and decreased µ-

opioid mRNA levels specific to the ventral tegmental area, nucleus accumbens and

prefrontal cortex, but not the hypothalamus. Such change in expression was accompanied by

an increase in specific receptor gene promoter methylation in these brain regions, among

several other specific epigenetic differences induced by diet [83].

These, and many other studies, have features that support implementing the LEWAS, such

as:

• Induction of specific epigenetic changes owing to environmental stress or

enhancement;
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• In some cases epiphenotypic differences requiring additional environmental

stimulus;

• Complex (behavioral) phenotype responses that accompanied the induced

epigenetic changes.

Of course, such studies differ from the LEWAS in that such animal studies:

• Use defined, inbred subjects with well-controlled ‘life paths’;

• Target specific genes and epigenetic target regions;

• Track epiphenotypes after specific, intentional treatment.

This would be in contrast to the LEWAS, which, for humans, would be concerned with

‘wild’ subjects and conditions not under laboratory control. However, the controlled rodent

studies give ample evidence to the critical underlying principle: environment induces

epigenetic changes that have important consequences for the organism as a whole.

Many targeted epigenetic studies have been performed in humans, including several already

mentioned herein. To reiterate, significant differences in DNA methylation have been found

in schizophrenia, bipolar disorder, suicide following childhood abuse and AD [18–20], and

histone acetylation aberrations exist in Waldenstrom's macroglobulinemia [22]. These differ

from the LEWAS in that they either measure nonspecific changes in epigenetic markers or

predetermined epigenetic markers. Furthermore, they are non-longitudinal and do not

measure changes in the epigenome, only compare different epigenes and epigenomes.

Nevertheless, they establish epigenomic links to disease in humans. Finally, epigenome and

exposome-wide studies have been performed on human subjects, such as the demonstration

that DNA methylation changes over time in the human genome [50] and recent ‘exposome’

studies of Type 2 diabetes [25]. Such documented changes in the human epigenome over

time and the exposome link to Type 2 diabetes each illustrate two fundamental principles of

LEWAS: longitudinal epigenome alterations and environmental induction of sporadic

disease in humans. In short, although the LEWAS has not yet been implemented, its

individual elements have already been well documented. LEWAS unites these threads into a

cohesive approach.

Novelty of LEWAS: applying epigenomics longitudinally

Large-scale methylomic epigenetic programs are under way, such as the Alliance for the

Human Epigenome and Disease (AHEAD) [84] and the Human Epigenome Project [85].

Both of these are devoted to discovering the ‘baseline’ human methylome down to specific

tissue and cell types. These could be used as baselines for comparison with methylomic

surveys of diseased individuals and to compare with nondisease controls in an individual

EWAS. These studies would still, unfortunately, fall short of measuring the impact of

changes in various GSE within a person's life-time. They would still presume an end point

model, treating a difference in methylomic state as a static marker for disease. The critical

element that may not have been considered is that these markers change over time, and that

these changes are clinically meaningful. In addition, the studies do not take changes in the
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oxidome or histone modifcation into account, nor do they consider environmental

interaction.

We propose that it would be more fruitful to explore the kinetic aspect of epigenetic changes

with the LEWAS, which measures GSE of multiple genes and applies

(hydroxy)methylomics, oxidomics and histone studies, at the very least, at multiple time

points in subjects' lives and correlates them with subjects' histories of environmental

conditions such as social status, known exposures, nutrition, rearing conditions (such as

presence or absence of abuse) and others. For neuropsychiatric disorders, such a study

would be particularly strong were it to begin in early childhood, before events such as final

formation of the blood–brain barrier. This is suggested by studies that led to the ‘latent

early-life associated regulation’ model [18]. However, early-life stress could also be

important in epigenetic control of cancers [86,87] and cardiovascular disease [88], although

the emphasis in cardiovascular disease has still been mostly on prenatal factors. LEWAS

could differentiate between early natal, early childhood and later effects on disease

development. This is not to say that LEWAS could only be conducted on populations

sampled in early childhood. What would be important is finding an initial cohort sampling

time that would sufficiently predate the development of a condition of interest. We admit

that this may require some calibration, as evidence has amassed that even ‘senescent’

disorders, such as AD, may actually see their start very early in the human lifespan [89,90].

Of further note is the level of interaction that exists between the genome and epigenome.

Differences in specific DNA sequences influence histone methylation [91]. DNA

methylation and oxidation depend upon specific underlying primary sequence. The

contribution of DNA oxidation and methylation to mutations in the DNA primary sequence

has been long known [92,93]. In addition, histone acetylation plays an important role in

DNA strand repair [94], and its disruption may also contribute to DNA sequence mutation.

A LEWAS, if genomic information was collected at each stage, could track such two-way

interaction and correlate it to changes in disease state.

We admit that until and unless a new molecular target or a new way of detecting a molecular

target is discovered, there will be no such thing as a fully novel assay. Instead, there would

be novel applications of currently available assays. Methylome-wide survey assay protocols

already exist, as do histone acetylation and methylation assays. Broad toxicological screens

are well known. Statistical techniques to handle very large (e.g., GWAS) data sets, which

use a multivariate approach necessary for analyzing LEWAS, already exist [95,96]. Patient

histories are already used in medical research. In some cases, patient histories already

include family disease histories, environmental exposures and conditions, and other ‘broad

background’ data points, but this is not a universal practice and depends on the focus of the

study. In some cases, patient histories used in research follow a person through a useful

portion of life stages. Thus, the largest technical innovation would be development and

optimization of an oxidome-wide survey assay, for which the necessary technology already

exists. In addition to measurement of overall levels of 8-oxo-dG in circulating lymphocytes

[97] and excreted in urine [98], immune assays based on monoclonal antibody to 8-oxo-dG

have been used to visualize concentrations of oxidized deoxyguanine on chromosomes [99],

and combined activity of the enzymes MutM, which excises cytosine paired with 8-oxo-dG,

MutT, which hydrolyzes 8-oxo-dG, and MutY, which excises adenine mispaired with 8-oxo-
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dG [100], could be used to provide ‘oxidome cleavage product’ probes for judiciously

designed DNA microarrays. Major differences among LEWAS, GWAS, EgWAS and

EWAS are summarized in Table 1 & Figure 1B–E.

LEWAS is particularly novel in that it would combine these elements in a rational fashion to

compare changes in epigenetic markers and in environment, upon the background of genetic

variation, with changes in disease state. LEWAS depends upon its precursors. The LEWAS

would include GWAS along with repeated EgWAS, EWAS and oxidome-wide association

study from the same subjects at different times.

Potential limits of LEWAS are surmountable

While we propose that LEWAS can be a powerful tool, it must not be forgotten that the

specific molecular target of LEWAS is the epigenome. Therefore, progress with the

LEWAS would be greatly aided by profiles of ‘normal’ epigenomic states for multiple

tissues, organ regions and cell types. Fortunately, much of this groundwork is currently

being laid for the methylome by groups such as AHEAD [84] and the Human Epigenome

Project [85]. Unfortunately, such large-scale projects are not currently up and running for

the oxidome, histone modification or the envirome. Competent selection of controls will be

able to compensate for a great deal of this lack of background information, much as

significant strides have been made in methylomics before AHEAD and the Human

Epigenome Project got off the ground. Ultimately, as the ‘kinetic organism within the

environment’ paradigm of LEWAS becomes more popular, sufficient support should exist to

fund large-scale methylome, histone modification and other such projects.

LEWAS would be more expensive than the same number of GWAS, EgWAS or EWAS on

independent samples, owing to costs of tracking individual subjects for follow-up tests, loss

of subjects over time and other challenges inherent to longitudinal studies. However,

previous health cohort studies have been performed that include banking of biological

tissues. These could be used as a sample source for LEWAS, depending on the completeness

of environmental information that accompanied the samples. Pilot-scale LEWAS, at the very

least, could mine these collections to circumvent these costs. However, comprehensively

addressing funding sources for a large-scale LEWAS, beyond pointing to its utility and

novel concept is beyond the scope of this article. Costs specific to an oxidome-wide study

would be speculative until a large-scale assay has been optimized. However, avidin/

streptavidin detection of 8-oxo-deoxy-guanosine has already been well demonstrated [101].

This could be combined with DNA sequence-specific immobilization in plate wells or on

chips, analogous to current genome chip technology. In addition, the greater amounts of

information needed from subjects for LEWAS would increase time and cost of collection

and data analysis. LEWAS would ideally begin sampling its subjects before the appearance

of disorder symptoms. This would pose a problem on a number of subjects basis. For

example, the widest prevalence of autism spectrum disorders estimated has been no more

than 2.64% of the general population [102]. Epidemiological studies have already developed

acceptable ways of beginning with a broad sample population and reducing it to a

‘hypothesis relevant’ subsample [103]. Iceland, with its unique genomic and population

information bank, may be particularly useful for some LEWAS, as it has already proved for
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demonstrating methylomic changes over time [50]. However, if there is sufficient will, even

Iceland's' special situation would not be necessary. This has been shown for enormous,

worldwide studies such as the second stage of the ADNI2. This study uses facilities and

coprincipal investigators at 55 different facilities, with hundreds of subjects who will be

imaged at multiple time points [202]. Given the broad range of sampling and observation a

LEWAS will require, even sample reduction methods may still leave requirements for large

study populations and the attending expenses and administrative diffculties. However, a

LEWAS, which samples multiple time points, would be worth such inherent administrative

costs, as it would measure changes in epigenetic status and environment over time, changes

we consider critical for the development of many disease states that have not so far been

elucidated through GWAS.

A fundamental trait of epigenetic variation is that it is very often tissue-type specific [104].

This opens the question of appropriate material to study diseases in organs that cannot be

safely sampled repeatedly, or at all, for example, brain tissue. This could be partially

addressed by finding appropriate proxy tissues. Indeed, for any disorders that involve

internal organs, an accessible proxy tissue would be highly preferable. Initially, LEWAS

could use circulating lymphocytes, fibroblasts or olfactory neuroepithelium, as these are the

most convenient sources of ‘resampleable’ epigenetic material. The olfactory cells have

already shown promise in cell adhesion research on schizophrenia [105]. Direct assay of

tissues from live people for diseases such as AD, for example, such as the hippocampus and

parietal lobes, is not possible, likely to become possible, or even appropriate to contemplate.

We do not consider this difficulty to be sufficient grounds to summarily reject LEWAS. For

example, while DNA for GWAS is normally taken from blood, this approach would appear

to be rigorously valid only if one ignores the effect of local DNA mutation/mosaicism in a

gene-based disorder, such as has been suggested to exist for Creutzfeldt–Jakob, Duchenne

muscular dystrophy and AD [45–49]. Such a shortcoming has not eliminated the usefulness

of GWAS in the study of any of these diseases, since conventional genetic contributions to

disease at one time were unknown.

Discovery and validation of proxy tissues would be a necessary component of optimizing

the LEWAS procedure, overall. In addition, rational study design would have to be carefully

adhered to, with strong reference to what would already be known of the underlying biology

for a disorder of interest. That is to say, a given LEWAS would be best performed based on

results from more conventional studies. What would distinguish LEWAS from more

conventional single-cause studies is that potential agents would be studied in a kinetic

fashion, and the possibility of multivariate association among agent actions would be

directly explored. Otherwise, the scope of a particular LEWAS would become an impossible

to perform ‘everything and the kitchen sink’ affair. Not only would such a nondesigned

study be a logistical nightmare, but useful information would be more likely to be lost in a

large mass of data. The more comprehensive a study, the more it will benefit from rational

study design based on known biological principles. While LEWAS might be used for fishing

expeditions, its sheer scope would greatly limit its use in this fashion.
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Conclusion & future perspective

We propose LEWAS as a solution to many of the shortcomings of currently used association

studies. Its inclusion of multiple complementary measurements and kinetic approach will

directly measure what has hitherto primarily been inferred. We consider it a strong potential

addition to the pathology arsenal. We admit that LEWAS will not track down all complex

genome-related disease etiology. For example, copy number variation (CNV) has been

implicated in the etiology and progression of several disorders, including autism [106],

schizophrenia [107] and lung cancers [108]. These variations alter gene dose without

altering underlying gene sequence or epigenetic markers. However, the possibility exists that

each copy of a gene in a specific organism's genome could have a distinct GSE, meaning that

disease state could result in interaction between CNV and GSE. Accounting for epigenetic

variation could inform and refine results of less than conclusive CNV results. Somatic

mosaicism may contribute to several disorders [45–49]. Sampling the mosaic cells would be

a matter of blind luck. However, given known connections between epigenomic

modification and DNA misrepair, a LEWAS could suggest promising genome locations

prone to giving rise to mosaicism.

Genotyping and GWAS will continue to have utility. For example, a recent study

determined that significant neurotoxicity in mice from exposure to inhaled anesthetic was

due to transgenic PSEN1 dE9 status [109]. In theory, such differences in reaction to

environment could be seen as purely genetic and thus ‘visible’ to GWAS. EgWAS will

certainly open up many avenues of research, and the EWAS holds distinct promise,

especially given that toxins known to have decades long half lives, such as lead, still occur

in the developed world, in food products targeted at children [203], and the long-term effects

of demethylation caused by biphenyl-A in infant plastic products remains to be seen

(although some remediation may be possible) [81]. Our proposed LEWAS takes into

account both the contribution of environment, such as imbalance of dietary factors, rearing

and metals, and it tracks changes in the GSE longitudinally at different life points of an

individual. It should not only enhance the power of current association studies but also

overcome the problems inherent to an end point assay.
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Executive summary

Background: the partly fulfilled promise of the genome-wide association study

• Genome-wide association studies are end point assays that compare genetic

sequences between diseased and nondiseased individuals.

• In several diseases, genetic relative risk is remarkably low.

• Nongenetic influence plays an important role in many disorders, such as

Alzheimer's disease (AD).

Genetic variation does not explain pathogenesis of sporadic disorders

• In disorders with known genetic components, such as AD, cases that can be

explained solely by genetic mutation are a small minority.

• Epigenetic markers include cytosine methylation, guanine oxidation and histone

acetylation/methylation. Changes in epigenetic markers can correspond to

several disease states, including AD, schizophrenia, Parkinson's disease and

other conditions.

• We define changes in epigenetic markers acquired after imprinting as a ‘somatic

epitype’ (GSE), thus, these disease-related changes are changes in the GSE. The

GSE can change in response to environmental conditions.

• Several assays currently exist that address parts of the GSE question, but nothing

looks at the whole picture, particularly not changes over time.

• We propose a longitudinal epigenome/exposome-wide association study

(LEWAS), which unites genetic sequence, epigenomic markers, tracking

environmental exposures and patient personal history taken at multiple time-

points versus development of disorders.

Looking past disease

• The concept of the GSE is not restricted to disease.

• LEWAS could also investigate social phenomena, such as the Hispanic paradox.

The need for a ‘kinetic’ approach versus an ‘end point’ assay

• Assays such as GWAS or even current single-sample point epigenomic studies

compare healthy individuals with unhealthy individuals and presume that

differences are causal to a disorder. However, in the case of single-point

epigenomic studies, it is not trivial to infer whether or not a condition was

caused by or contributed to a change in an epigenomic maker.

• LEWAS, since it is longitudinal, can directly note changes that occur before

symptoms appear and correlate them, over time, with later appearance of

disease.

The ‘demethylase issue’
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• LEWAS presumes demethylation activity, even though no specific mammalian

demethylase protein has been discovered.

• This is not an actual setback, since demethylase activity has been confirmed in

mammalian cells.

• For other conditions, such as AD, β-secretase activity was accepted in the field

long before the actual β-secretase protein was discovered.

Precursors to LEWAS: studies that have partially implemented principles

• Several studies have partially implemented the LEWAS concept.

• Mouse studies have measured changes in specific gene-associated epigenetic

changes to environment and concomitant changes in expression for those

specific genes.

• Targeted epigenomic surveys have been carried out on human populations,

comparing ‘end point’ differences in epigenomic markers and disease.

• No study method currently unites multiple measurements over time with human

populations and a genome-/epigenome-/environment-wide approach.

Novelty of LEWAS: applying the oxidome & methylome longitudinally

• Large-scale epigenomic surveys are currently underway, but these are end point,

not tracking changes in the epigenome.

• The novel element of LEWAS is its longitudinal approach, attempting to

measure, rather than infer, disease-critical epigenomic changes and relate those

to previous environmental influences.

Potential limits of LEWAS are surmountable

• LEWAS poses challenges in terms of scope and cost, particularly the need for

large sample sizes in the face of unknown later development of disease and

multiple sampling times.

• Longitudinal studies have been successfully completed and are ongoing.

Modern communication and travel methods have made these studies far more

feasible than in the past.

• Methods exist to begin studies with very large sample sizes and reduce them to a

‘hypothesis relevant’ subsample.

• For disorders of the CNS or other vital organs, direct sampling will not be

possible. However, proxy tissues may be developed. For example, olfactory

neuroepithelial cells are easily accessed and can be repeatedly sampled with

safety. These have been adequate proxies for other neurological studies.
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Figure 1. Comparison of the genome-wide association study (surveying genes) and other end
point association assays versus the longitudinal epigenome/envirome-wide association study
(measuring somatic epitype over time)
(A) Kinetic workflow of LEWAS. Expression of a gene or genes that are ‘pathogenic’ is

schematically indicated by the line graph. This model presumes a ‘disease of excess’.

However, a ‘disease of defciency’ could also be accounted for. Before an epigenetic event,

GWAS would show alleles of genes while LEWAS would show somatic epitypes in a

‘fundamental’ state. After an H1 that could occur before a specific developmental threshold,

such as formation of the blood–brain barrier in early life, GWAS would show genes in the

same state as before, while LEWAS would indicate a somatic epitype or epitypes have been

altered. After (possibly optional) Hn and a final HT, which leads to disease state, GWAS

would still show genes in the same state as when there was no pathology, except for
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disorders associated with somatic mosaic mutations, while LEWAS would show changes in

somatic epitypes corresponding to disease state. Detecting the changes over time would be

critical to determining which somatic epitypes are important for a given disease. (B–E)
Comparison of LEWAS versus other assays, highlighting specific elements of ‘organism’/

biological substrate and ‘environment’ addressed by each. (B) GWAS. The genome is

directly measured. Environmental input and epigenetic status are ignored: ‘genotype

determines phenotype’. (C) EgWAS. Epigenomic status is directly measured. Genomic

variation is measured or inferred. Environmental effects are inferred as contributing to

epigenetic status. Single-time epigenotype determines phenotype. (D) EWAS. Chemical and

biochemical traces of specific suspected exposures are directly measured. Environmental

effects are partially inferred from circulating (bio)chemicals. Genomic and epigenomic

effects might be partially inferred. Current (nonlatent) single-time evidence of past

exposures correlates with phenotype. (E) LEWAS. Genomic analysis is combined with

measuring epigenetic (oxidomic, methylomic, hydroxymethylomic and histone) status and

‘exposure’, which includes chemicals, previous infections and social influences. Sampling is

performed at more than one time point to detect specific changes in an individual that

correlate with disease state rather than indirectly infer such changes by comparing currently

healthy with currently affected individuals. Changes in the somatic epitype lead to changes

in phenotype, including idiopathic disorders. EgWAS: Epigenome-wide association study;

EWAS: Environment-wide association study; GSE: Somatic epitype; GWAS: Genome-wide

association study; Hit1: Initial hit; Hitn: Intermediate hit; HitT: Triggering hit; LEWAS:

Longitudinal epigenome/envirome-wide association study.
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