
Noname manuscript No.
(will be inserted by the editor)

The Situation Calculus: A Case for Modal Logic

Gerhard Lakemeyer

Received: date / Accepted: date

Abstract The situation calculus is one of the most established formalisms for rea-

soning about action and change. In this paper we will review the basics of Reiter’s

version of the situation calculus, show how knowledge and time have been addressed

in this framework, and point to some of the weaknesses of the situation calculus with

respect to time. We then present a modal version of the situation calculus where these

problems can be overcome with relative ease and without sacrificing the advantages of

the original.
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1 Introduction

The situation calculus is one of the most established formalisms for reasoning about

action and change. It is almost as old as the field of Artificial Intelligence itself and was

originally proposed by McCarthy [37] as a dialect of first-order logic. But it had a major

impact only after Reiter proposed his solution to the frame problem [43], which was

the start of a whole research agenda culminating in the publication of his book [44].

An important milestone was the development of the action programming language

Golog [34], which is based on the situation calculus and which led to applications in

robotics [8,32] and the semantic web [38], among other things.

Situations share many properties with possible worlds, but in contrast to modal

logic, these are reified in the situation calculus. Properties of situations are captured

axiomatically, and there is no special semantics, that is, ordinary Tarskian models

suffice. As pointed out in [28], this approach is fine if we are just interested in what

a theory entails. A prominent example is the projection task, where a domain theory

about a dynamic world is given and one asks questions about what will be true after

a number of actions are executed. Projection is a key mechanism underlying planning
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and languages like Golog. Questions other than entailment are not so easy to deal with

in the situation calculus. One example is: if Theory1 entails Formula1, is it also the

case that Theory2 entails Formula2? We will see an example of this later (Theorem 3

on page 12). This was the motivation in [28] to come up with a new modal version

of the situation calculus, where situations are banned from the language and the new

logic called ES is given a possible-world semantics. It is shown that ES retains all the

advantages of Reiter’s situation calculus but where questions like the above become

much easier to answer.

The purpose of this paper is to make this case for a modal situation calculus again

and support it with more evidence. For that we will start by reviewing Reiter’s original

situation calculus with a focus on its most successful application, namely solving the

projection task. We will then highlight how features like knowledge and time, which

have long been studied in the modal logic community, are treated in the situation

calculus. In the context of time we will see more evidence that the situation calculus is

problematic when it comes to expressing temporal notions such as branching time in

a natural way. Then we will introduce the modal situation calculus ES and show that

these problems can be overcome with relative ease there.

2 The Situation Calculus

We begin with the basic situation calculus as defined by Reiter and add epistemic

and temporal features as we go along. The situation calculus is a sorted second-order1

language with equality. The logical connectives are ¬,∧, and ∀. We will freely use

∨,∃,⊃, and ≡, which are understood as the usual abbreviations. There are predicate

and function symbols of every arity and three sorts: situations, actions, and objects.

Situations are understood as histories of actions starting in an initial situation denoted

by the constant S0. A special binary function do(a, s) is used to refer to the situation

which results from performing action a in s. For example,

do(putonfloor(B), do(pickup(B), S0))

denotes the situation after the agent picks up object B in S0 and then puts it on

the floor. In other words, we can get from one situation to another by performing an

action and do records the history of actions that lead to the situation referred to by

the do-term. To enhance readability, we will sometimes write do([a1, . . . , an], s) instead

of do(an, do(an−1, . . . , do(a1, S0) . . .). Fluents are used to talk about what is true at

a given situation. These are simply predicates and functions whose last argument is a

situation term. For example,

Holding(B, do(pickup(B), S0))

may be read as “the agent is holding object B after picking it up in S0.” There are

two special predicates Poss(a, s), indicating that action a is possible in situation s, and

s @ s′, which says that s precedes s′, that is, s′ can be reached from s by a sequence

of actions. We will also write s v s′ as shorthand for s @ s′ ∨ s = s′. For the purposes

of this paper, we assume that all predicates of the language are fluents and that all

functions are rigid, that is, they have no situation arguments.

1 As we will see below, only a tiny bit of second-order logic is actually used, namely to define
the set of all situations.
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The intended use of the situation calculus is that a domain expert would axioma-

tize the relevant aspects of an application, including its dynamics, and then use some

automated reasoning mechanism to arrive at interesting conclusions about the domain,

in particular, about what holds after a number of actions have been performed. Among

other things, axioms are needed which describe the effects of actions, their precondi-

tions, and what is true initially. Here is an example of an effect axiom, which says that,

provided an object is within reach, the agent will hold it in its hand after picking it

up.

WithinReach(x, s) ∧ a = pickup(x) ⊃ Holding(x, do(a, s)).

Throughout we often leave out universal quantifiers. The rule is that all free vari-

ables are implicitly universally quantified, unless stated otherwise. We use s for situa-

tion variables, a for actions, and others like x and y for objects.

What we have seen so far is no more than a variant of McCarthy’s original pro-

posal from fifty years ago. In the early days, perhaps the strongest argument in favour

of using the situation calculus for problem solving came out of the work by Cordell

Green [22]. The only problem was that it did not quite work. This was because getting

the right inferences turned out to be very difficult computationally, if not impossible.

Among the reasons for this early failure perhaps the following stand out: automated

reasoning methods like resolution were still in their infancy and the frame problem

was unsolved. The latter refers to the fact that any logical theory of action not only

needs to have axioms which describe the effects of actions but also their non-effects.

For example, after the robot has picked up a blue book and then moves to another

room, we would like to conclude that the book is not only still in the robot’s posses-

sion but that it has remained blue, as moving does not normally change the colour of

objects. What makes this a problem is that there usually are far more non-effects than

effects and having to write them down explicitly is not only cumbersome but makes

the reasoning task even more daunting. From this dilemma two important streams of

research emerged. For one, people interested in planning gave up on the idea of using a

very expressive representation language and turned to STRIPS [21].2 For another, the

frame problem was a major impetus for nonmonotonic reasoning. The idea was quite

intuitive and appealing in that non-effects were seen as default conclusions, hence ob-

viating the necessity to explicitly represent them (see [47] for a detailed discussion).

Alas, nonmonotonic reasoning turned out to be even more complex than classical log-

ical reasoning. In any case, after the early failures most people believed (and some

still do) that the situation calculus is not useful as the basis for building agents which

reason about action.

2.1 Basic Action Theories

This was essentially the situation until the early nineties, when Ray Reiter proposed a

monotonic solution to the frame problem by introducing what he calls successor state

axioms, one for each fluent, which provide necessary and sufficient conditions for the

values of fluents after any action. These together with precondition axioms and axioms

describing what is true initially (in S0) make up what Reiter calls basic action theories.

2 In fact, an early version of the famous SRI robot Shakey used the situation calculus for
planning, but it was later dropped in favour of STRIPS.
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We begin with a very brief review of the foundational axioms Σ for the situation

calculus from [44].

1. do(a1, s1) = do(a2, s2) ⊃ a1 = a2 ∧ s1 = s2;

2. ∀Q.[Q(S0) ∧ ∀s, a.[Q(s) ⊃ Q(do(a, s))] ⊃ ∀s.Q(s);

3. s @ do(a, s′) ≡ s v s′;
4. ¬s @ S0.

(1) is a unique names axiom for situations; the second-order axiom; (2) is similar to

the induction axiom for the natural numbers and defines the set of all situations to be

exactly those reachable from S0 by a sequence of actions; (3) defines @ as reachability

(by a sequence of actions) between situations; (4) says that no situation precedes S0.

Essentially, these axioms make sure that the space of situations forms a tree rooted

in S0, where the nodes of the tree are the situations and the edges represent actions

connecting situations with their successors. Note that, despite the induction axiom,

there may be uncountably many situations in case the set of actions is uncountable.

Precondition axioms have the form

Poss(A(x, s)) ≡ ΠA(x, s),

which specifies under which conditions action A with arguments xis executable in

situation s. ΠA is required to be uniform in the situation variable s. This means,

roughly, that s is the only situation term occurring inΠA, and only as the last argument

of a fluent, and s is free everywhere.

Successor state axiom define, for each fluent F , what the truth value of F will be

after an action has occurred. It has the form

F (x, do(a, s)) ≡ ΦF (x, a, s),

where ΦF is again uniform in s.

A basic action is then defined as

D = Σ ∪ Dap ∪ Dss ∪ DS0 ∪ Duna,

where Σ is the set of foundational axioms, Dap the set of action preconditions, one

for each action type, Dss the set of successor state axioms, one for each fluent, DS0

consists of sentences uniform in S0 describing the initial situation, and Duna consists

of unique name axioms for actions.

As an illustration, consider the following blocks-world example of a robot with three

actions pickup, putontable, and putonfloor with the obvious connotation. The fluents

are Holding(x, s), which is true when the robot is holding an object in its gripper,

OnTable(x, s) and OnFloor(x, s), which are true when object x is on the table or on

the floor, respectively. As action preconditions (Dap) we have the following sentences:

Poss(pickup(x), s) ≡ ∀z¬Holding(z, s)

Poss(putontable(x), s) ≡ Holding(x, s)

Poss(putonfloor(x), s) ≡ Holding(x, s)

In other words, the robot can pick up an object if it is not holding anything, and it

can put away an object if it is currently holding it. The successor state axioms (Dss)

are these sentences:

Holding(x, do(a, s)) ≡ [a = pickup(x) ∨
Holding(x, s) ∧ a 6= putontable(x) ∧ a 6= putonfloor(x)]
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OnTable(x, do(a, s)) ≡ [a = putontable(x) ∨ OnTable(x, s) ∧ a 6= pickup(x)]

OnFloor(x, do(a, s)) ≡ [a = putonfloor(x) ∨ OnFloor(x, s) ∧ a 6= pickup(x)]

Let us consider the axiom for Holding . It says that after performing an action the robot

is holding object x if the action is pickup(x), or if it was holding it before and did not

put the object away. Finally, we need to describe the initial state (DS0):

OnTable(x, S0) ≡ (x = B) ∨ (x = C) ∀x¬Holding(x, S0)

In other words, we assume that there are exactly two objects B and C on the table

initially and the robot is not holding anything.

Given a basic action theory like the above one can then answer questions about what

holds after some actions have occurred. This is also called the projection problem and

lies at the heart of planning but also of action programming languages like Golog [34].

For example, we obtain

D |= OnFloor(B, do([pickup(B), putonfloor(B)], S0),

that is, object B is indeed on the floor after the robot picked it up and put it there.

In principle, projections could be computed from D using automated reasoning

methods, but this is unlikely to be feasible in general. Also, keep in mind that D is

second order, if only to a small degree. Perhaps the most important contribution of

Reiter’s work on the situation calculus was that he showed that there is a much bet-

ter and more efficient way to compute projection using regression. Without going into

too much detail, the idea of regression is that any fluent F (t, do(A, σ)) is replaced by

ΦF (t, A, σ), the R.H.S. of the corresponding successor state axiom with appropriate

variable substitutions. Similarly, occurrences of Poss are also replaced by their defini-

tions in Dap. The result is a formula where the level of nesting of do-terms is reduced

by one. If σ is a ground situation term this can be iterated until the resulting formula

only mentions S0.

Theorem 1 (Reiter) Let φ be a formula whose situation terms are all ground. Then

there is a formula φ′ uniform in S0 (obtained by regression) such that

D |= φ iff DS0 ∪ Duna |= φ′.

As an illustration, consider our example basic action theory and

φ = Holding(B, do(pickup(B), S0)) ∧ Poss(pickup(B), S0).

Then the regression of φ (after simplification) is φ′ = ∀x.¬Holding(x, S0), which obvi-

ously follows from DS0 ∪ Duna.

Note that the R.H.S. of the theorem does not mention the foundational axioms,

thus making the projection problem amenable to existing first-order theorem-proving

technology. With further restrictions such as DS0 consisting only of literals and the

closed-world assumption, which are routinely made in Prolog implementations, this

often becomes efficiently computable.

Besides knowledge and time, which we will turn to in a moment, there have been

a number of other extensions of the situation calculus, dealing with issues like concur-

rency [44] or probabilities [1]. Perhaps the most important use of the situation calculus

has been within the framework of the Golog family of languages like [34,19,7]. Golog

combines features from traditional imperative programming language with planning,
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and its semantics is completely specified within the situation calculus. In particular,

the actions referred to in Golog programs obtain their meaning from a basic action

theory as described above. Golog has been applied to the control of real robots [8,17,

9]. See also [32] for a general story about applying the situation calculus to cognitive

robotics.

2.2 Knowledge in the situation calculus

So far the situation calculus allows us to talk about what is true in the world and how

it changes. We now add an agent’s epistemic state to the picture as proposed by Scherl

and Levesque [46] and building on earlier ideas by Moore [39]. The idea is to add a

special binary fluent K to the language, where K(s′, s) should be read as “situation s′

is (epistemically) accessible from s.” Knowledge is then defined as truth in all accessible

worlds, and we write

Knows(φ(now), s)
def
= ∀s′.K(s′, s) ⊃ φ[s′].

Here φ(now) is a formula uniform in the special situation variable now.3 For example,

Knows(OnTable(A,now), S0) stands for ∀s′.K(s′, S0) ⊃ OnTable(A, s′).
For those familiar with possible-world semantics all this should look awfully fa-

miliar, and indeed, what we have done here is simply reify the accessibility relation of

possible-world semantics within the situation calculus.4 However, there is still one ques-

tion that needs to be addressed: what kinds of situations should be accessible at any

given moment? Or, put differently, given that we already have infinitely many situations

at our disposal, can we choose arbitrarily among them and make them epistemically

accessible? The answer, it seems, is no. To see why consider an agent’s knowledge who

has not performed any actions. Intuitively, whatever situations the agent considers

possible initially, these should themselves be initial situations. After all, even if the

agent has no knowledge about the world initially, it should know that it has not done

anything yet. But so far, the only initial situation is S0. It seems the only way out of

this dilemma is to extend the space of situations and allow other initial situations (and

their successors) besides S0. The following two axioms take care of all this:

2′ ∀Q.∀s.[Ini(s) ⊃ Q(s)] ∧ ∀a, s.[Q(s) ⊃ Q(do(a, s))] ⊃ ∀s.Q(s),

where Ini(s)
def
= ∀a∀s′. s 6= do(a, s′);

5. K(s′, s) ⊃ [Ini(s) ≡ Ini(s′)].

Axiom 2′ replaces Axiom 2 and is the new induction axiom, making sure that every

situation is rooted in some initial situation. Axiom 5 formalizes what we just said,

namely that initially only initial situations are accessible.

What is still left to do is a specification of how the K-fluent and hence the agent’s

knowledge evolves when actions are performed. To this end, Scherl and Levesque [46]

came up with a successor state axiom for K, which in its simplest form looks like this:

K(s′′, do(a, s)) ≡ ∃s′.s′′ = do(a, s′) ∧K(s′, s) ∧ Poss(a, s′).

3 The notion of uniform in now can be extended to formulas with nested occurrences of
Knows, but we leave out the details here.

4 As a minor quirk, note that the order of the arguments of K is reversed compared to the
standard use.
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In other words, the accessible situations accessible after doing an action are pre-

cisely the successors of those situations accessible before doing the action, provided the

execution of the action is possible.5 One of the nice properties of this axiom is that

it makes sure that whatever general property the accessible situations have initially,

these will be preserved by actions. In particular, this is true for reflexive, transitive,

symmetric, or Euclidean relations. So if an agent is fully introspective initially (K is

transitive and Euclidean), then this remains true after any sequence of actions.

3 Time

There are essentially two approaches to modelling time in the situation calculus, one

adds time explicitly as a new kind of individuals, and another one makes use of the

implicit temporal structure the tree of situations provides. While the former may be

a bit unusual for readers from the temporal logic community, the latter will be rather

familiar.

Treating time points as first-class citizens was done in [40,44,20]. In its most basic

form, actions are fitted with an extra time argument in the last position ranging over

the reals. For example, pickup(x, t) should be understood as “the agent picks up object

x at time t.” To make the formalism easier to work with, two functions time and start

are introduced with

time(A(x, t)) = t and start(do(a, s)) = time(a)

as new foundational axioms. This allows a simple definition of executability of an action

that takes into account temporal ordering:

executable(a, s) ≡ Poss(a, s) ∧ start(s) ≤ time(a),

that is, an action is executable in s if it is possible and its execution time does not

precede the start time of s.

Given an explicit notion of time, it seems desirable to allow actions with durations.

Although actions in the situation calculus really are discrete and instantaneous, Pinto

showed that it is not that difficult to model durative actions using a little trick. Con-

sider, for example, the action of going to location 〈x, y〉. Instead of a non-temporal

primitive action goto(x, y), Pinto suggested to use two actions startgoto(x, y, t0) and

endgoto(x, y, t1) with the obvious understanding that the goto starts at time t0 and

ends at t1. All that is needed in addition is another fluent going(s) which is false ini-

tially, set true by startgoto and false again by endgoto. This way it is easy to prevent

the start of another goto-action before the other has ended. With a little extra effort,

the model of time can be adapted further to allow fluents to change continuously with

the passage of time [20]. This is particularly useful in applications like robotics.

While the explicit use of time in the situation calculus has been around for more

than 10 years, the implicit use which relies on the precedence ordering inherent in situ-

ations is fairly recent. It was introduced by Gabaldon [18] and later used by Bienvenue

et al. [5]. Roughly, the idea is to introduce familiar temporal operators like eventually

or until, which are used to specify temporal constraints or preferences on situations.

5 Scherl and Levesque also considered sensing or knowledge-producing actions, which slightly
complicates the successor state axiom for K, but we gloss over those details here.
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They define what they call basic desire formulas (BDFs), which are formed from

situation-suppressed first-order formulas not mentioning Poss, @, and equality expres-

sions with situation arguments, the usual logical connectives, and temporal operators

F (eventually), X (next), and U (until). There is also a new predicate occ(a), which is

true when a is the next action to occur.

Formally, given two situations s and s′ such that s′ precedes s (s′ v s), φ[s′, s] is

is inductively defined as follows:

– F (t,now)[s′, s]
def
= F (t, s′) for fluent F

– t1 = t2[s′, s]
def
= t1 = t2

– (¬φ)[s′, s]
def
= ¬φ[s′, s]

– (φ ∧ ψ)[s′, s]
def
= φ[s′, s] ∧ ψ[s′, s]

– (∀x.φ)[s′, s]
def
= ∀xφ[s′, s]

– occ(a)[s′, s]
def
= do(a, s′) v s

– Fφ[s′, s]
def
= ∃s1.s′ v s1 v s ∧ φ[s1, s]

6

– Xφ[s′, s]
def
= ∃a.do(a, s′) v s ∧ φ[do(a, s′), s]

– φUψ[s′, s]
def
= ∃s1.s′ v s1 v s ∧ ψ[s1, s] ∧ ∀s2.s′ v s2 @ s1 ⊃ φ[s2, s]

As in temporal logic, other operators are definable in terms of the above. For

example, Gφ (always φ) is ¬F¬φ. To see what can be expressed with this language,

consider the following example, adapted from [5], about the preferences of an agent

making dinner plans:

[∃x, y.F(occ(orderTakeout(x, y))) ∨
F(occ(orderRestaurant(x, y)))] ∧

G(¬∃x.occ(eat(x)) ∧ type(x) = chinese)).

Roughly, the agent would like to either order takeout food or something at a restau-

rant, but in any case, she wants to avoid eating Chinese food.

One use of BDFs is to control the search for a plan (situation) satisfying a goal G(s),

that is, instead of proving D |= ∃s.G(s) one tries to establish D |= ∃s.φ[S0, s] ∧ G(s).

As shown in [2,18], this can significantly improve the performance of forward-search

planners.

While it seemed almost effortless to define LTL operators in the situation calculus,

there is a catch. Notice that the definitions require two situations s and s′ such that

s′ v s. In temporal logic terms this means that we restrict ourselves to finite paths, and

so we cannot express, for example, that a certain property repeats itself infinitely often.

And what about branching time? After all, given the tree-like nature of situations, one

would think that the logic lends itself most naturally to the definition of branching-

time operators as, say, in CTL* [15]. Curiously, this does not seem to be the case. To

be fair, some things can be said easily such as

∀s.now v s ⊃ φ,

which can be read as “from now on φ always holds.” But this refers to all situations

on all paths starting at now, where a path is understood as one of the branches of

the situation tree rooted in now. It is much more difficult to express properties that

6 We write s′ v s1 v s as shorthand for s′ v s1 ∧ s1 v s.
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hold along a particular path. For example, it is not immediately obvious how to say in

the situation calculus that there is a path such that eventually φ becomes true on this

path. In fact, it seems that we need to resort to second-order logic to formalize such

path quantifiers.

While this can be done in principle, it seems somewhat dubious that we have to

resort to higher order logic to express such simple concepts. In fact, one could argue

that this is just another symptom of a deeper problem with the situation calculus:

by giving access to situations in the language, it simply becomes too fine-grained and

unwieldy. Notice also that in practice very little of this very expressive language is

used. For example, while there is no restriction in principle on how to use the K-fluent,

the only real use is in terms of the knowledge operator of modal logic.

This suggests that perhaps we can get by with a less expressive modal language,

which is sufficient to capture Reiter-style basic action theories but at the same time

becomes much more manageable and where temporal concepts can be embedded in a

style similar to existing temporal logic. Indeed, such a logic was recently introduced [28–

30], and we will present it in the next section. Moreover, we will show how branching

time operators can be added and discuss related approaches from the modal logic

community.

4 The Modal Situation Calculus ES

The language is a first-order modal dialect with equality and sorts of type object

and action. Unlike other languages, the language includes (countably many) standard

names for both objects and actions. These can be thought of as special extra constants

that satisfy the unique name assumption and an infinitary version of domain closure.

This idea was adapted from [31]. Its main advantage is that this allows quantification

to be understood substitutionally. The language also contains fluent predicates and

rigid functions.7

4.1 The Language

Definition 1 The symbols of ES are taken from the following vocabulary:

– first-order variables: x1, x2, . . . , y1, y2, . . . , a1, a2, . . .;

– standard names: n1, n2, . . . for objects and actions;

– rigid function symbols of arity k: gk
1 , g

k
2 , . . .;

– fluent predicate symbols of arity k: F k
1 , F

k
2 , . . .;

– connectives and other symbols: =, ∧, ¬, ∀, Know, �, round and square parentheses,

period, comma.

We assume that the fluent predicates include the special predicate Poss.

Definition 2 The terms of the language are of sort action or object, and form the

least set of expressions such that

1. Every standard name and first-order variable is a term of the corresponding sort;

7 In [29,30], a full version of ES is considered, with rigid predicates, fluent functions, as well
as fluent and rigid second-order variables.
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2. If t1, . . . , tk are terms and h is a k-ary function symbol then h(t1, . . . , tk) is a term

of the same sort as h.

By a primitive term we mean one of the form h(n1, . . . , nk) where h is a function

symbol and all of the ni are standard names.

Definition 3 The well-formed formulas of the language form the least set such that

1. If t1, . . . , tk are terms, and F is a k-ary predicate symbol then F (t1, . . . , tk) is an

(atomic) formula;

2. If t1 and t2 are terms, then (t1 = t2) is a formula;

3. If t is an action term and α is a formula, then [t]α is a formula;

4. If α and β are formulas, and v is a variable, then the following are also formulas:

(α ∧ β), ¬α, ∀v. α, �α, Know(α).

We read [t]α as “α holds after action t”, and �α as “α holds after any sequence of

actions.” As usual, we treat (α ∨ β), (α ⊃ β), (α ≡ β), and ∃v. α, as abbreviations.

To ease notation, we leave the type of variables implicit. We reserve the symbol a to

denote a variable of type action.

We call a formula without free variables a sentence. By a primitive sentence we

mean a formula of the form F (n1, . . . , nk) where F is a predicate symbol and all of the

ni are standard names. A formula with no Know operators is called objective. A formula

with no fluent, �, or [t] operators outside the scope of a Know is called subjective. A

formula with no Know, �, or [t] is called a fluent formula.

4.2 The semantics

The main purpose of the semantics we are about to present is to give meaning to

fluents, which may vary as the result of actions and whose values may be unknown.

Intuitively, to determine whether or not a sentence α is true after a sequence of actions

z has been performed, we need to specify two things: a world w and an epistemic state

e. We write e, w, z |= α. A world determines truth values for the primitive sentences

and co-referring standard names for the primitive terms after any sequence of actions.

An epistemic state is defined by a set of worlds, as in possible-world semantics. More

precisely, let N denote the set of all standard names and Z the set of all finite sequences

of standard action names, including 〈 〉, the empty sequence. Then

– a world w ∈ W is any function from the primitive sentences and Z to {0, 1}, and

from the primitive terms to N (preserving sorts).8

– an epistemic state e ⊆W is any set of worlds.

We extend the idea of co-referring standard names to arbitrary ground terms as follows.

Given a term t without variables and a world w we define |t|w (read: the co-referring

standard name for t given w) by:

1. If t ∈ N , then |t|w = t;

2. |g(t1, . . . , tk)|w = w[g(n1, . . . , nk), z], where ni = |ti|w.

8 Since we only deal with rigid terms, there is no need to include action sequences for those.
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To interpret formulas with free variables, we proceed as follows. First-order variables

are handled substitutionally using the standard names.

Finally, to be compatible with the original situation calculus where the values of

rigid terms are always known, we introduce the notion of compatibility ' between

worlds:

1. w′ ' w iff w′ and w agree on the value of every primitive rigid term;9

Putting all these together, here is the semantic definition of truth. Given a sentence α,

e ⊆W and w ∈W , we define e, w |= α (read: α is true) as e, w, 〈 〉 |= α, where for any

z ∈ Z we have:

1. e, w, z |= F (t1, . . . , tk) iff w[F (n1, . . . , nk), z] = 1, where ni = |ti|w;

2. e, w, z |= (t1 = t2) iff n1 and n2 are identical, where ni = |ti|w;

3. e, w, z |= [t]α iff e, w, z · n |= α, where n = |t|w;

4. e, w, z |= (α ∧ β) iff e, w, z |= α and e, w, z |= β;

5. e, w, z |= ¬α iff e, w, z 6|= α;

6. e, w, z |= ∀x. α iff e, w, z |= αx
n, for every std. name n of the right sort;

7. e, w, z |= �α iff e, w, z · z′ |= α, for every z′ ∈ Z;

8. e, w, z |= Know(α) iff e, w′, z |= α, for every w′ ∈ e such that w′ ' w.

When α is objective (has no Know operators), we can leave out the e and write w |= α.

Similarly, when α is subjective, we can leave out the w and write e |= α. When Σ is a

set of sentences and α is a sentence, we write Σ |= α (read: Σ logically entails α) to

mean that for every e and w, if e, w |= α′ for every α′ ∈ Σ, then e, w |= α. Finally, we

write |= α (read: α is valid) to mean {} |= α.

4.3 Knowledge

At this point we will not go into a detailed discussion of the properties of ES. Instead

we will focus on knowledge as a first example of how the semantics of ES allows us to

prove properties with relative ease. A more complete picture of ES will emerge later

when we establish a formal connection with Reiter’s situation calculus.

The interpretation of knowledge in ES is just a special case of possible-world se-

mantics [27,25]. In particular, as we model knowledge as a set of “worlds”, it is not

surprising that we obtain the usual properties of weak S5 or K45 [16]. Since we assume

a fixed universe of discourse, the Barcan formula for knowledge (Property 4 of the fol-

lowing theorem) and its existential version (Property 5) hold as well. Moreover, these

properties hold after any number of actions have been performed.

Theorem 2

1. |= �(Know(α) ∧Know(α ⊃ β) ⊃ Know(β));

2. |= �(Know(α) ⊃ Know(Know(α)));

3. |= �(¬Know(α) ⊃ Know(¬Know(α)));

4. |= �(∀x.Know(α) ⊃ Know(∀x.α));

5. |= �(∃x.Know(α) ⊃ Know(∃x.α)).

Proof: The proof is fairly straightforward. Here we only consider (3.) and (4.).

9 In [29], compatibility was extended to account for sensing actions as well, an issue we
ignore here, just as we did earlier when introducing the original situation calculus.
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3. Let e, w, z |= ¬Know(α). Thus for some w′, w′ ' w, w′ ∈ e and e, w′, z 6|= α. Let

w′′ be any world such that w′′ ' w′ and w′′ ∈ e. Clearly, e, w′′, z |= ¬Know(α).

Since w′′ ' w, e, w, z |= Know(¬Know(α)) follows.

4. Let e, w, z |= ∀x.Know(α). Hence for all n ∈ N of the right sort, e, w, z |= Know(αx
n)

and thus for all w′ ' w, if w′ ∈ e then for all n ∈ N of the right sort, e, w, z |= αx
n,

from which e, w, z |= Know(∀x.α) follows. ut

We remark that the converse of the Barcan formula (Property 4) holds as well. However,

note that this is not the case for Property 5: �(Know(∃x.α) ⊃ ∃x.Know(α)) is not valid

in general. Despite the fact that quantification is understood substitutionally, knowing

that someone satisfies α does not entail knowing who that individual is, just as it

should be.

The following property refers to what is sometimes called the determinacy of knowl-

edge.

Theorem 3 Suppose α is an objective sentence and β is an objective formula with one

free variable x, such that |= Know(α) ⊃ ∃x.Know(β). Then for some standard name

n, |= Know(α) ⊃ Know(βx
n).

Proof Suppose not. Then for every n (of the right sort), Know(α) does not entail

Know(βx
n), and so, by the Lemma below, α does not entail βx

n. So for every n, there

is a world wn such that wn |= (α ∧ ¬βx
n). Let e = {wn | n a standard name}. Then

we have that e |= Know(α) and for every standard name n, e |= ¬Know(βx
n), and so

e |= ∀x.¬Know(β). This contradicts the fact that Know(α) entails ∃x.Know(β).

Lemma 1 If α and β are objective, and |= (α ⊃ β), then |= (Know(α) ⊃ Know(β)).

Proof Suppose that some e |= Know(α). Then for every w ∈ e, w |= α. Then for every

w ∈ e, w |= β. Thus e |= Know(β).

For a modal logician neither the result nor the proof may seem surprising. What is

noteworthy though is that in the original situation calculus the proof requires a compli-

cated multi-page argument involving Craig’s Interpolation Lemma [45]. This is perhaps

another indication that a modal situation calculus may be easier to work with.

5 The Connection with Reiter’s Situation Calculus

In [28] it was shown how to define basic action theories and regression in a way very

similar to what we saw in Section 2.1. We will not repeat that exercise here except to

note that it is the ability to quantify over action modalities which allows us to model

successor state axioms with ease in the new language. For example, in our blocks world

domain the successor state axiom for OnFloor would now be this:

�∀a, x.[a]OnFloor(x) ≡ a = putonfloor(x) ∨
OnFloor(x) ∧ a 6= pickup(x).

Note the use of � and [a] here, which allows us to state how the fluent changes or does

not change after an arbitrary action is performed in any situation.

Despite this nice correspondence between ES and Reiter’s situation calculus regard-

ing the representation of action theories, there is still the question of correctness. Or,
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how do the valid sentences of ES relate to what we can conclude from Reiter’s foun-

dational axioms? In [29] it is shown that this relationship is indeed tight. They first

present a translation from formulas in ES to the situation calculus and then show that a

sentence is valid in ES iff its translation follows from Reiter’s foundational axioms plus

axioms which account for the fact that ES requires a countably infinite domain and

that equality is interpreted as identity. As this result provides a nice bridge between

the modal situation calculus and the original, we will restate it here and begin with

the translation.

5.1 The translation

Before describing Υ , we present the translation from ES into the situation calculus. In

the simplest case, the idea is that a formula like OnTable(B) will be mapped to the

situation calculus formula OnTable(B,S0), where we have restored the distinguished

situation term S0 for the fluent. Similarly, the formula [pickup(B)]¬(OnTable(B)) will

be mapped to ¬(OnTable(do(pickup(B), S0))). So ES formulas can be thought of as

“situation-suppressed” (in situation-calculus terminology) and the ∗ mapping restores

the situation argument to the fluents, leaving the rigids unchanged.

More precisely, we have the following:

Definition 4 Let α be any term or formula of ES without standard names. The expres-

sion α∗ is defined as α[S0] where, for any situation term σ, α[σ] is defined inductively

by:

1. v[σ], where v is a first-order variable, is v;

2. g(t1, . . . , tk)[σ], where g is a rigid function is g(t1, . . . , tk);

3. F (t1, . . . , tk)[σ], where F is a fluent predicate is F (t1, . . . , tk, σ);

4. (t1 = t2)[σ] is (t1 = t2);

5. ([t]α)[σ] is α[do(t[σ], σ)];

6. (α ∧ β)[σ] is (α[σ] ∧ β[σ])

7. (¬α)[σ] is ¬α[σ];

8. (∀v. α)[σ] is ∀v. α[σ];

9. (�α)[σ] is ∀s′(σ v s′ ⊃ α[s′]);
10. Know(α)[σ] is Knows(α[now], σ).

Note that the translation of �α introduces quantification over situations, where the

introduced variable s′ is assumed to be one that does not appear in situation term σ.

5.2 The axioms and the embedding theorem

The axioms we assume in Υ are the following:

1. domain of objects is countably infinite;10

2. domain of actions is countably infinite (as above);

3. equality is the identity relation:

∀x∀y. (x = y) ≡ ∀Q(Q(x) ≡ Q(y)).

10 Since the axioms defining a countably infinite set are somewhat cumbersome and would
only distract at this point, we defer them to the end of the discussion of Υ .
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4. the K predicate:11 ∀s′∀s.K(s′, s) ≡ ∀P (. . . ⊃ P (s′, s)),
where the ellipsis stands for the universal closure of

[K(s1, S0) ∧ Ini(s2) ⊃ P (s1, s2)] ∧
[P (s1, s2) ⊃ P (do(a, s1), do(a, s2))].

Axioms (1) and (2) talk about the cardinality of the set of objects and actions re-

spectively: they are both countable and infinite. The countability aspect is not very

controversial. In the first-order case, every satisfiable set of sentences is satisfiable in a

countable domain, and we do not expect users of the situation calculus to use second-

order logic to defeat this. Note that this does not rule out having theories that talk

about real numbers or other continuous phenomena; it simply rules out using second-

order logic to force the interpretations of these theories to be uncountable. We can,

however, imagine contexts where finiteness might be desirable. In such cases, we can

introduce a new predicate O and instead of asserting that there are finitely many

objects, assert that there are finitely many objects in O.

As for axiom (3), it is hard imagining anyone taking the negation of this one

seriously. The usual first-order axiomatization of equality is often enough, but the

intent is invariably for the equality symbol to be understood as the identity relation,

which this second-order axiom ensures.

Finally axiom (4) is a second order definition of the K predicate in terms of the

value it has at S0. This is just another way of capturing the successor state axiom for

K introduced by Scherl and Levesque [46], and the added machinery to make Knows

be a weak-S5 operator [26]. Other knowledge operators are possible in the situation

calculus, but weak-S5 and its extensions (such as strong-S5) are the most often used.

The last missing piece are the axioms asserting the countability of objects and

actions. Here is one way of specifying these for objects:

∃Q.∀xQ(x) ∧ Inf(Q) ∧ Cnt(Q) where

Cnt(Q)
def
= ∀Q′ (Q′ ( Q ∧ Inf(Q′) ⊃ Q ≤ Q′)

Inf(Q)
def
= ∃Q′. Q′ ( Q ∧ Q ≤ Q′

Q ( Q′
def
= ∀x.Q(x) ⊃ Q′(x) ∧ ∃x.(Q(x) ∧ ¬Q′(x))

Q ≤ Q′ def
= ∃R. ∀x (Q(x) ⊃ ∃y Q′(y) ∧R(x, y))

∧ ∀x, x′, y. R(x, y) ∧R(x′, y) ⊃ x = x′.

Starting from the bottom, Q ≤ Q′ says that the set Q′ is no smaller than Q, that is,

there is a 1-1 mapping from Q to Q′; Q ( Q′ says that Q is a proper subset of Q′;
Inf(Q) says that Q is infinite if it contains a proper subset Q′ which is no smaller than

Q itself; Cnt(Q) says that Q is countable if every infinite proper subset is no smaller

than Q; finally, the first line says that the set of all objects is countably infinite (here x

is assumed to be of type object). To assert the same for actions we simply add another

axiom of the form

∃Q.∀aQ(a) ∧ Inf(Q) ∧ Cnt(Q) where a is of type action.

With all the axioms in place we can now state the embedding theorem:

Theorem 4 (Lakemeyer and Levesque) Let α be any basic sentence of ES without

standard names. Then

α is valid iff Σ ∪ Υ |=FOL α
∗.

11 We let Ini(t) be an abbreviation for the situation calculus formula ∀a∀s(t 6= do(a, s)). In
this version of the axiom, we ignore the correspondence between K and Poss.
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Recently [30], the authors obtained an even stronger result in that the equivalence

holds when Σ is replaced by an axiom defining v. In other words, as far as the fragment

of the original situation calculus as defined by ES is concerned, Reiter’s foundational

axioms play essentially no role.

A sentence which has no straightforward counterpart in ES is

∀s∃s′.s v s′ ∧ (s 6= s′) ∧ F (s) ≡ F (s′),

which says that from every situation another situation is reachable that agrees on the

truth value of F . However, as we showed in [29], this sentence can be expressed if we

add to ES an explicit encoding of action sequences. Indeed, with this trick we were

able to come up with a backward translation from the situation calculus to ES, which

covers the entire rooted situation calculus with knowledge. Here rooted means that

quantification over situations is restricted to formulas of the form ∀s.σ v s ⊃ α, where

σ is a situation term. Note, in particular, that the rooted situation calculus without

knowledge is equivalent with Reiter’s original version (simply take σ to be S0). So,

with a little bit of extra effort, ES has almost the same expressive power as all of the

situation calculus.

5.3 Branching time

Let us now see how to integrate branching time into ES. We start with the definition

of a temporal sub-language.

Definition 5 The set of temporal formulas is the least set which includes the fluent

formulas of ES, is closed under ¬,∧, and ∀, and for any temporal formulas φ and ψ

and action a, Eφ,Xφ,Fφ, φUψ, and occ(a) are in the set.

Compared to BDFs (see page 7) the only new operator is the path quantifier E,

and Eφ should be read as “φ is true on some path.” We will also write Aφ as an

abbreviation for ¬E¬φ and, as before, Gφ for ¬F¬φ. Here is an example of what can

be expressed in the new language:

E(∀x.G(OnTable(x) ⊃ FOnFloor(x))),

which can be read as “there is a path such that whenever an object is on the table,

then it will be on the floor some time after that.” Another example is

EG(∀a.occ(a) ⊃ Poss(a)),

which can be read as “there is a path along which all actions are executable.”

In contrast to BDFs, whose semantics is given in terms of situation calculus for-

mulas, we will give meaning to the new operators in terms of the worlds we introduced

for ES. For that we first need to introduce the notion of a path, which we take to be

an infinite sequence of standard action names. We denote paths by π and let Π be the

set of all paths. If z is a finite sequence of action names and π a path, then z · π is the

path generated by the concatenation of z and π.

The truth of a temporal formula is defined with respect to a world, a finite sequence

of actions z and a path π. Intuitively, z tells us how far world w has evolved already,

and π tell us which actions are still to come. (As we left out knowledge from temporal

formulas, there is no need to include an epistemic state e.)
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1. w, z, π |= F (t1, . . . , tn) iff w[F (n1, . . . , nk), z] = 1, where ni = |ti|w;

2. w, z.π |= (t1 = t2) iff n1 and n2 are identical, where ni = |ti|w;

3. w, z.π |= occ(t) iff z = z′ · n and n = |t|w;

4. w, z, π |= (φ ∧ ψ) iff w, z, π |= φ and w, z, π |= ψ;

5. w, z, π |= ¬φ iff w, z, π 6|= φ;

6. w, z, π |= ∀x. φ iff w, z, π |= φx
n, for every std. name n of the right sort;

7. w, z, π |= Eφ iff w, z, π′ |= φ for some path π′;
8. w, z, π |= Xφ iff w, z · n, π′ |= φ for π = n · π′;
9. w, z, π |= Fφ iff w, z · z′, π′ |= φ for some z′ such that π = z′ · π′;

10. w, z, π |= φUψ iff w, z · z′, π′ |= ψ for some z′ such that π = z′ · π′ and

for all z′′ 6= z′ and z′′′ with z′ = z′′ · z′′′, w, z · z′′, z′′′ · π′ |= φ.

What is still missing is an embedding of the temporal language into ES. For sim-

plicity we will assume that all temporal expressions mentioned in ES are of the form

Eφ. In other words, the language of temporal ES is defined exactly as in Definition 3

except that we add:

5. If Eφ is a temporal formula, then it is also a formula (of temporal ES).

To give meaning to the extended language, we only need to add a rule to the original

semantics of ES that deals with temporal formulas:

9. e, w, z |= Eφ iff w, z, π |= φ for some path π.

Logical entailment and validity for temporal ES are defined as before.

We will not go into a detailed discussion of the properties of temporal formulas

except to note that the temporal operators together with the special occ predicate are

powerful enough to simulate the action operators of ES. For example, if φ is a fluent

sentence and t a closed action term, then the following sentences are easily seen to be

valid:

1. �φ ≡ AGφ;

2. [t]φ ≡ EXocc(t) ∧ φ.

So it seems that, if we were to extend temporal formulas with epistemic operators,

we could recreate all of ES within the temporal fragment alone.

5.4 Related work

This paper has started from the original situation calculus and then recast a signifi-

cant fragment of it within modal logic. Another partial translation from the situation

calculus to modal logic in the context of belief change is given by Demolombe [12].

In contrast to ES, the work is purely axiomatic and no quantification over action is

considered. In [6], the situation calculus is embedded in Hybrid Logic [6], a variant of

modal logic which was inspired by the work on tense logic by Prior [42]. In contrast

to [12] and ES, however, situations remain part of the language.

Instead of starting with the situation calculus and then moving towards modal

logic, the opposite direction has also been pursued. Starting with dynamic logic [23],

features were added to close the gap between modal logic and the situation calculus. In

early work, Castilho et al. [10] add a dependence relation between actions and fluents to

partially address the frame problem. In [12] Reiter-style regression is incorporated into
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dynamic logic. The authors also consider formulas of the form ∀a.[a]α in a way similar to

ES, but remain propositional otherwise. In [24] knowledge is added to dynamic logic,

and in [14] the regression idea of [12] is extended to this more expressive language.

The authors also obtain optimality results which make use of a reduction to public

announcement logic [3,36].

6 Conclusions

Starting with Reiter’s influential take on the situation calculus, we discussed how some

issues dear to the heart of modal logicians, like knowledge and time, are represented

in this formalism. We observed that, despite the obvious branching time structure of

situations, it is not that easy to actually introduce branching time operators into the

situation calculus. This led us to a recent modal variant, where situations are banned

from the language. Advantages are that it captures most of what the situation calculus

is actually used for and combines it with the crispness of modal logic. In particular, it

turned out to be fairly straightforward to add branching time to the new logic. Recently,

Classen and Lakemeyer [11] used these ideas to prove properties of non-terminating

Golog programs.

As pointed out at the end of the previous section, there has been other work

capturing aspects of the situation calculus within modal logic, mostly with modal

logic being the starting point. Johan van Benthem recently also observed that there

is a definite trend of convergence between the two camps, despite their “cultural”

differences [4]. Perhaps the present paper can provide additional material for building

this bridge.
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