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Abstract

The main features of the tetron model of elementary particles are discussed

in the light of recent developments, in particular the formation of strong

and electroweak vector bosons and a microscopic understanding of how the

observed tetrahedral symmetry of the fermion spectrum may arise.
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1 Prologue

In the left-right symmetric standard model with gauge group U(1)B−L ×
SU(3)c ×SU(2)L ×SU(2)R [1] there are 24 left-handed and 24 right-handed

fermion fields which including antiparticles amounts to 96 degrees of free-

dom, i.e. this model has right handed neutrinos as well as righthanded weak

interactions.

In a recent paper [2] a new ordering scheme for the observed spectrum of

quarks and leptons was presented, which relies on the structure of the group

of permutations S4 of four objects, and a mechanism was proposed, how

’germs’ of the Standard Model interactions might be buried in this symmetry.

In the following I want to extend this analysis in several directions. First, I

will show that it is possible to embed the discrete S4-symmetry in a larger

continuous symmetry group. Afterwards, we shall see how the appearance

of gauge bosons can be understood as well as obtain some hints about how

the underlying microscopic structure may look like.

The permutation group S4 [3] consists of 5 classes with altogether 24 elements

σ = abcd where a, b, c, d ∈ {1, 2, 3, 4}. It has 5 representations A1, A2, E, T1

and T2 of dimensions 1, 1, 2, 3 and 3 and is isomorphic to the symmetry group

Td of a regular tetrahedron (and also to the subgroup O of proper rotations

of the symmetry group Oh of a cube), cf table 1. The observed fermion

symmetry will therefore be synonymously called Td or S4 in the following,

depending on whether a geometrical or an algebraic viewpoint is taken.

An important subgroup of S4 is A4, the group of even permutations, which

is sometimes called the ’symmetric group’ and will be relevant in the discus-

sion of gauge bosons in section 5. A4 has 3 representations A, E and T of

dimensions 1, 2 and 3 and is isomorphic to the symmetry group of proper
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S4 Td O

I 1234(id) identity-rotation identity-rotation

3C2 2143 3412 4321 rotations by π about rotation by π about

the coordinate axes the coordinate axes

8C3 2314 3124 3241 1342 rotations by 2

3
π about rotations by 2

3
π about

1423 2431 4132 4213 diagonals of the cube diagonals of the cube

6C4 6 transpositions 6 reflections on planes rotations by ±1

2
π about

(i↔ j) like through the center the coordinate axes

(1 ↔ 2) = 2134 and two edges i and j

6C ′
2 2341 3142 6 rotoreflections by 1

2
π rotations by π about

2413 3421 axes parallel to the 6

4123 4312 face diagonals

Table 1: Classes I, C2, C3, C4 and C ′
2 of the groups S4, Td and O making their

isomorphy explicit. Classes I, C2 and C3 form the 12-element subgroup A4 of

even permutations, which will be important in our analysis of vector bosons

in section 5. The notation C4 and C ′
2 is normally used only for rotations in

O, whereas the classes of reflections in Td are usually called σ and S4 in the

literature.

rotations of a regular tetrahedron.

The starting point of ref. [2] was the observation that there is a natural

one-to-one correspondence between the fermion states and the elements of

S4. This feature is made explicit in table 2 where the elements of S4 are

associated to the fermions.

I use the term ’natural’ because the color, isospin and family structure of

fermions corresponds to K, Z2 and Z3 subgroups of S4, where Zn is the
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...1234... ...1423... ...1243...

family 1 family 2 family 3

τ , b1,2,3 µ, s1,2,3 e, d1,2,3

ν 1234(id) 2314 3124

u1 2143(k1) 3241 1342

u2 3412(k2) 1423 2431

u3 4321(k3) 4132 4213

ντ , t1,2,3 νµ, c1,2,3 νe, u1,2,3

l 3214(1 ↔ 3) 1324(2 ↔ 3) 2134(1 ↔ 2)

d1 2341 3142 1243(3 ↔ 4)

d2 1432(2 ↔ 4) 2413 3421

d3 4123 4231(1 ↔ 4) 4312

Table 2: List of elements of S4 ordered in 3 families. ki denote the elements

of K and (a ↔ b) a simple permutation where a and b are interchanged.

Permutations with a 4 at the last position form a S3 subgroup of S4 and may

be thought of giving the set of lepton states. It should be noted that this is

only a heuristic assignment. Actually one has to consider linear combinations

of permutation states as discussed in section 2.
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(abelian) symmetric group of n elements and K is the so-called Kleinsche

Vierergruppe which consists of the 3 even permutations 2143, 3412, 4321,

where 2 pairs of numbers are interchanged (class C2), plus the identity. In

fact, S4 is a semi-direct product S4 = K � Z3 � Z2 where the Z3 factor is the

family symmetry and Z2 and K can be considered to be the ’germs’ of weak

isospin and color (cf [2] and section 5). At low energies this product cannot

be distinguished from the direct product K×Z3 ×Z2 but has the advantage

of being a simple group and having a rich geometric and group theoretical

interpretation and will also lead to a new ordering scheme for the Standard

Model vector bosons in section 5.

If one wants to include antiparticles and the spin of the fermions in this

analysis, one can do the following: on the compound level the situation seems

very simple. Spin and antiparticles each double the degrees of freedom, so

that one has the structure of table 2 for fL, fR, f̄L and f̄R separately. This is

enough, as long as one continues to consider quarks and leptons as pointlike

objects, and asks questions like how under the assumption of the S4 symmetry

vector boson formation can be interpreted (section 5), and as long as one

keeps the (discrete) inner and spatial symmetries completely separate - but

it would not suffice any more, as soon as one would consider the possibility of

compositeness and a spatial extension of the observed fermions, in particular

in the form of a micro-geometric tetrahedral substructure cf. sect. 6 and ref.

[2].

In that case the situation becomes more difficult, because one needs a descrip-

tion of the spacetime behavior of the constituents and how they join together

to form a fermion. Ultimately, one would like to have a fully relativistic un-

derstanding of the fermion compound states. As a first step towards this

goal in section 6 a nonrelativistic approach will be presented which relies on

the representation G1 of the covering group S̃4 [6]. As will be shown, this
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accounts for an additional ’spin factor’ in the fermion wave function which

must be due the tetron spin degrees of freedom.

In effect, one has two functions f+
σ and f−

σ for each flavor, where the spin

averaged wave function is given by the sum

fσ = f+

σ + f−
σ (1)

whereas the spin content is contained in the difference f+
σ − f−

σ , so that

including the spin degrees of freedom one has now 48 wave functions instead

of the 24 given in table 1.

One may visualize this approach by a geometrical picture, where one has

a cube which contains two tetrahedra (one for particles and the other one

for antiparticles) which transform into each other by a CP-transformation so

that for example in the process of vector boson formation F̄ γµf the fermion

f, which spreads over the first tetrahedron, and antifermion F̄ , which spreads

over the other, join together to form a cube.

It should be noted that even if one rejects the constituent picture and/or

the geometric intuition it is possible to give a meaning to the tetrahedra

describing fL and fR and being connected by parity. Namely, in the SU(4)

model which will be introduced in section 4, they do not live in physical space

but exist as weight diagrams of the fundamental SU(4) representation. If one

follows such an approach a correct relativistic treatment can be maintained

without any difficulty.
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2 The Use of Symmetry adapted Wave Func-

tions and the Origin of strong and elec-

troweak Charges

In [2] a sort of seesaw mechanism was derived which is able to accomodate all

observed hierarchies in the quark and lepton masses. This mechanism relies

on the introduction of S4 symmetry functions to describe fermion fields,

where the given Dirac fields of quarks and leptons are written as symmetry

adapted linear combinations of more fundamental fields ψσ, σ ∈ S4.

The linear coefficients are essentially given by the A1, A2, E, T1 and T2

representation matrices of S4. This is due to the group theoretic theorem

that from an arbitrary function f(x) orthonormal sets of symmetry functions

of a discrete group G can be obtained as

fij =
dim(D)

|G|
∑

g∈G

Dij(g)f(g−1x) (2)

where D is any representation of G. (In general this will yield dim(D) sets of

dim(D) orthonormal symmetry functions corresponding to the representation

D.) Therefore to obtain the symmetry adapted functions one just has to take

as linear coefficients the appropriate representation matrix entries Dij which

are well known in the realm of finite symmetry groups and for convenience

given in tables 3 and 4 [5]. The resulting functions were already given in ref.

[2].

In order to explain the observed parity violation of the weak and the V −A

structure of the strong interaction it was suggested [2] that the two tetrahedra

describing fermions and antifermions are intertwined in the following sense:

field components ψg corresponding to even permutations g ∈ S4 live on one
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x y z xyz x̄yz̄ x̄ȳz xȳz̄ xyz x̄yz̄ x̄ȳz xȳz̄

1 C2 C2 C2 C8 C8 C8 C8 C8 C8 C8 C8

A1 1 1 1 1 1 1 1 1 1 1 1 1

A2 1 1 1 1 1 1 1 1 1 1 1 1

(E)11 1 1 1 1 c c c c c c c c

(E)21 0 0 0 0 s s s s -s -s -s -s

(E)12 0 0 0 0 -s -s -s -s s s s s

(E)22 1 1 1 1 c c c c c c c c

(T1)11 1 1 -1 -1 0 0 0 0 0 0 0 0

(T1)21 0 0 0 0 1 -1 1 -1 0 0 0 0

(T1)31 0 0 0 0 0 0 0 0 1 -1 -1 1

(T1)12 0 0 0 0 0 0 0 0 1 1 -1 -1

(T1)22 1 -1 1 -1 0 0 0 0 0 0 0 0

(T1)32 0 0 0 0 1 -1 -1 1 0 0 0 0

(T1)13 0 0 0 0 1 1 -1 -1 0 0 0 0

(T1)23 0 0 0 0 0 0 0 0 1 -1 1 -1

(T1)33 1 -1 -1 1 0 0 0 0 0 0 0 0

(T2)11 1 1 -1 -1 0 0 0 0 0 0 0 0

(T2)21 0 0 0 0 1 -1 1 -1 0 0 0 0

(T2)31 0 0 0 0 0 0 0 0 1 -1 -1 1

(T2)12 0 0 0 0 0 0 0 0 1 1 -1 -1

(T2)22 1 -1 1 -1 0 0 0 0 0 0 0 0

(T2)32 0 0 0 0 1 -1 -1 1 0 0 0 0

(T2)13 0 0 0 0 1 1 -1 -1 0 0 0 0

(T2)23 0 0 0 0 0 0 0 0 1 -1 1 -1

(T2)33 1 -1 -1 1 0 0 0 0 0 0 0 0

Table 3: Matrices for the irreducible representations of S4 = Td fixing the

coefficients of the symmetry adapted functions as given in [5]. I have used

the abbreviation c = cos(2

3
π) = −1

2
and s = sin(2

3
π) =

√
3

2
.
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x̄y xy x̄z xz ȳz yz z z y y x x

σ σ σ σ σ σ S4 S4 S4 S4 S4 S4

A1 1 1 1 1 1 1 1 1 1 1 1 1

A2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

(E)11 1 1 c c c c 1 1 c c c c

(E)21 0 0 s s -s -s 0 0 s s -s -s

(E)12 0 0 s s -s -s 0 0 s s -s -s

(E)22 -1 -1 -c -c -c -c -1 -1 -c -c -c -c

(T1)11 0 0 0 0 -1 -1 0 0 0 0 1 1

(T1)21 -1 1 0 0 0 0 -1 1 0 0 0 0

(T1)31 0 0 -1 1 0 0 0 0 1 -1 0 0

(T1)12 -1 1 0 0 0 0 1 -1 0 0 0 0

(T1)22 0 0 -1 -1 0 0 0 0 1 1 0 0

(T1)32 0 0 0 0 -1 1 0 0 0 0 -1 1

(T1)13 0 0 -1 1 0 0 0 0 -1 1 0 0

(T1)23 0 0 0 0 -1 1 0 0 0 0 1 -1

(T1)33 -1 -1 0 0 0 0 1 1 0 0 0 0

(T2)11 0 0 0 0 1 1 0 0 0 0 -1 -1

(T2)21 1 -1 0 0 0 0 1 -1 0 0 0 0

(T2)31 0 0 1 -1 0 0 0 0 -1 1 0 0

(T2)12 1 -1 0 0 0 0 -1 1 0 0 0 0

(T2)22 0 0 1 1 0 0 0 0 -1 -1 0 0

(T2)32 0 0 0 0 1 -1 0 0 0 0 1 -1

(T2)13 0 0 1 -1 0 0 0 0 1 -1 0 0

(T2)23 0 0 0 0 1 -1 0 0 0 0 -1 1

(T2)33 1 1 0 0 0 0 -1 -1 0 0 0 0

Table 4: Continuation of table 3: representation matrices for the reflection

operations in Td. The symbols above the symmetry operations indicate their

orientation relative to the axes.
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tetrahedron, whereas components ψu corresponding to odd permutations u ∈
S4 live on the other. In other words, the symmetry adapted functions for

left handed fermions have the generic form fL = ψg + Pψu and those for

the right handed fR = Pψg + ψu. The point is that fermions of opposite

isospin differ by an odd permutation (as is explicit from table 2), so that

parity violation/conservation for weak bosons/gluons is obtained.[2]

Having made extensive use of symmetry adapted functions in various direc-

tions, it is time to discuss the legitimacy and drawbacks of such an approach,

which have to do with the fact that one is combining fields with different Stan-

dard Model charges into linear combinations. As a consequence no definite

strong and electroweak charges can be associated to single state compone-

nents ψσ, σ = abcd ∈ S4, but only to the symmetry adapted linear combina-

tions giving the quarks and leptons. In other words, such an approach can

only be valid, if the Standard Model charges arise as derived entities

from secondary dynamical causes and are not really fundamen-

tal. Fundamental are only the interactions behind the S4-symmetry (resp.

SU(4)-symmetry in section 4) or the superstrong forces between the possible

constituents, whereas the Standard Model interactions of the fermions do

not exist a priori but are just a consequence of the relative position of a, b,

c and d in the permutations. In order to understand this more clearly it was

suggested in [2] to introduce nondiagonal charge operators so that not the

permutation fields ψσ but their symmetry combinations are eigenfunctions

of the Standard Model charge operators - in much the same way as they are

not eigenfunctions of the mass operator.

If one does not like this approach and wants to stick to the viewpoint that

charge operators must be diagonal and have to be associated not to linear

combinations of fields but to the fields ψσ themselves, one has to give up

the symmetry adapted linear combinations. The only linear combinations
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which may then be used are Z3-adapted functions, because they are not

associated to any charges but to the family symmetry. In other words, since

for example the 3 neutrinos, for which permutations of the first 3 indices are

relevant (cf table 2), have identical Standard Model charges, one may use

linear combinations of the form

νe = ψ1234 + ψ2314 + ψ3124 (3)

νµ = ψ1234 + εψ2314 + ε∗ψ3124 (4)

ντ = ψ1234 + ε∗ψ2314 + εψ3124 (5)

and similarly for electron, muon and tau-lepton

e = ψ3214 + ψ1324 + ψ2134 (6)

µ = ψ3214 + εψ1324 + ε∗ψ2134 (7)

τ = ψ3214 + ε∗ψ1324 + εψ2134 (8)

These equations are easily understood because Z3-symmetry combinations

always have the generic form f0 + f1 + f2, f0 + εf1 + ε∗f2 and f0 + ε∗f1 + εf2,

where ε = exp(2πi/3).

Gauge bosons may be re-expressed using these combinations. For example

one obtains for the leptonic part of the neutral weak W-boson

W3µ = ēγµe− ν̄eγµνe + µ̄γµµ− ν̄µγµνµ + τ̄γµτ − ν̄τγµντ (9)

= 3(ψ̄1234γµψ1234 + ψ̄2314γµψ2314 + ψ̄3124γµψ3124

−ψ̄3214γµψ3214 − ψ̄1324γµψ1324 − ψ̄2134γµψ2134) (10)

Note that eqs. (3)-(10) hold separately for left and right handed lepton and

W fields.
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3 The two main Problems

In the remainder of this work I will deal with the two fundamental problems,

which have to be solved, if the tetron approach is to make sense:

• First to understand in a natural way the appearance of vector bosons

as linear combinations of products of fermion fields. In particular the

question why among the many fermion-antifermion products which can

in principle be formed, precisely and only those corresponding to the

Standard Model gauge groups arise. The idea which reduces the num-

ber of possible combinations and produces the Standard Model gauge

bosons will be that when product states are formed from two fermions

each with Td- resp. Oh-symmetry a final state object appears, which

again has a symmetry of (a subgroup of) Td.

• Secondly what the origin of the tetrahedral symmetry may be. It

is plausible although not compelling that the observed S4-symmetry

points to a substructure of quarks and leptons with four constituents

(called tetrons). In this scenario the main question concerns the space

time behavior of the tetrons, and in particular how the spin-1

2
nature

of the observed fermions can be obtained. One possibility, which will

be followed in section 6, is to give up continuous spatial rotation sym-

metry on the microscopic level and replace it by a discrete symmetry

and then to consider Z4-extensions of the tetrahedral group instead of

the Z2-extension defined by the covering group. This will involve the

use of octonions and giving up complex in favor of quaternion quantum

mechanics.
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4 Discrete versus continuous inner Symme-

try

I have repeatedly mentioned the argument of ref.[2] that S4-symmetry trans-

formations may serve as ’germs’ for the gauge symmetries which in modern

times are used to describe the strong and electroweak interactions.

Discrete symmetry as an ordering scheme for quarks and leptons and a pos-

sible source for their interactions? At this point particle physicists may feel

a bit uneasy, because it can hardly be imagined that the rich and rather

involved structure of the Standard Model gauge theories can be derived in a

strict sense from a discrete symmetry structure.

Therefore, one may look for alternative ideas, and one possibility is that

the appearant S4-symmetry of quarks and leptons is part of a larger (con-

tinuous) symmetry group like SU(4) or Sp(4). In these groups the S4-

symmetry adapted functions naturally appear as part of the product states

in 4⊗4⊗4⊗4, where 4 is the fundamental representation of SU(4), the rep-

resentation space being spanned by ’tetron’ states a, b, c and d, just like in

the SU(3)flavor quark model the fundamental representation 3 is spanned

by fields u, d and s. The point is that if one considers fourfold tensor

products 4 ⊗ 4 ⊗ 4 ⊗ 4, among the corresponding 256 possible states one

will automatically encounter the 24 linear combinations of product states

ψabcd = a× b× c×d and their permutations, or more precisely the symmetry

adapted linear combinations thereof - just like in the SU(3)flavor quark model

among the 27 baryonic states in 3 ⊗ 3 ⊗ 3 there are 6 linear combinations

like for example Λ0 = 1√
12

[sdu− sud+ usd− dsu+ 2(uds− dus)] which can

be interpreted as symmetry adapted functions of the permutation group S3.

This is not astonishing but has to do with the fact that S4(S3) is a distinct
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particle symmetry of the product states in 4 ⊗ 4 ⊗ 4 ⊗ 4 (3 ⊗ 3 ⊗ 3).

Since the fundamental representation of SU(4) can be geometrically visual-

ized as a tetrahedron which lives in a 3-dimensional weight diagram spanned

by the SU(4) generators λ3,8,15, we arrive at more or less the same geometri-

cal picture as described in section 1 for the discrete S4-symmetry. Even the

formation of vector bosons as compounds F̄ γµf from two tetrahedral config-

urations, which can be transformed into another by CP and where a cube

is formed in the combined weight diagram of particles and antiparticles, can

be understood in this model.

There are 3 questions left open:

• how the Standard Model charges and interactions can arise from an

SU(4) ’hyperflavor’ interaction just by a permutation of constituents.

This question will be tackled in section 5.

• how products of 4 constituents can make up for fermions with their

spin-1

2
transformation properties under spatial rotations. This will be

discussed in section 6 and further in a forthcoming publication [4].

• and finally why only ’distinct’-tetron states arise, whereas all the rest

of the 256 product states (those where one of the tetrons appears at

least twice) are not observed (or have a much higher mass).

As for the last problem I formulate the following exclusion principle for

tetrons: quarks and leptons consist of 4 tetron states a,b,c,d. Only states

where all tetrons are different are allowed. In order to include vector bosons

and their treatment in section 5 one may extend this principle as follwows:

for an arbitrary state to be physical the exclusion principle demands that it

is part of a S4 permutation multiplet.
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Note that this is a weaker condition (i.e. allows more states) than for example

the color singlet principle of SU(3)color-QCD, which demands that among all

3 ⊗ 3 ⊗ 3 only the A2 singlet function ε(i, j, k)qiqjqk is allowed.

In conclusion one may say that one has two options which match the phe-

nomenological fermion spectrum equally well: either one uses a continuous

inner symmetry group like SU(4) together with an exclusion principle or one

sticks to the discrete tetrahedral=permutation symmetry.

One can make the connection between these two approaches explicit by writ-

ing down the Td-content of the relevant SU(4) representations. Namely,

within the discrete approach the 24 fermion states can be classified accord-

ing to the Td representations A1, A2, E, T1 and T2, i.e. the 18 T1- and

T2-functions are used to describe up- and down-type quarks degrees of free-

dom respectively, whereas the 6 A1-, A2- and E-functions are responsible for

leptons. (This is just the use of the symmetry adapted functions discussed

before and in [2].) On the other hand, in the continuous symmetry approach

the 256 SU(4)-states of 4 ⊗ 4 ⊗ 4 ⊗ 4 may be decomposed according to

4 ⊗ 4 ⊗ 4 ⊗ 4 = 3×45(T1)+3×15(T2)+2×20(E)+35(A1)+1(A2) (11)

Here one finds in brackets, which kind of Td symmetry functions are contained

in the corresponding SU(4) representations. For example, there are three

SU(4) representations of dimension 45 each containing a set of 3 T1-functions,

i.e. all in all the 9 functions used to describe the up-type quarks. More

precisely, the 3 functions of the n-th T1 in (11) are to describe the family

triplet un, cn and tn, where n=1,2,3 is the color index. Similarly there are

3 sets of 3 T2-functions in the 3 15-dimensional representations to describe

the down-type quarks. Furthermore, A1 and A2 describes the electron and

its neutrino, whereas one E-representation in (11) contains µ and τ and the

other νµ and ντ .
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It is an interesting observation that this way only particles of the same Stan-

dard Model charges (but belonging to different families) are put together in

a SU(4) multiplet. The alternative would be to put quarks of different color

into one SU(4) multiplet (like u1, u2 and u3 into one 45) and similarly for

leptons of different isospin (e.g. µ and νµ into one 20).

One should stress that the choice of SU(4) is not compelling. One could

choose other groups which contain S4 and its representations, like SO(4)

or even SO(3). However, I consider the possibility, where four constituent

tetrons span the basis of the fundamental complex representation the most

promising.

It should further be noted that the fermion mass relations derived in [2]

on the basis of the discrete Td-symmetry can be rederived as SU(4) mass

relations that are analogous to the mass relations for hadrons derived in the

SU(3)flavor quark model.

5 Vector Boson Formation

In this section I will not make any assumptions about possible substructures

of quarks and leptons, but will only use the appearant S4-symmetry of their

spectrum table 2. On the basis of this symmetry I want to show that the

vector bosons of the left-right symmetric Standard Model can be ordered in a

similar manner and according to the same principle as the fermions. The idea

is that the tetrahedral (resp octahedral) symmetry of the quarks and leptons

is more or less retained when the vector bosons are formed. More precisely,

I shall assume that the vector boson states can be ordered according to the

subgroupA4 of S4 (the so called symmetric group of even permutations). This

reduces the a priori large number of possible fermion-antifermion interactions,
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because it means that whatever internal dynamical reordering takes place in

the process of vector boson formation F̄ γµf from two fermions F and f, the

resulting state has to have A4 symmetry. For example, the long discussion in

ref.[2] of how to avoid leptoquarks is completely superfluous in this approach

simply because within the A4-symmetry with its 12 degrees of freedom there

is no space for additional gauge bosons.

The two possible types of vector bosons VµL = F̄LγµfL and VµR = F̄RγµfR can

be accounted for by including parity P : VµL ↔ VµR so that one arrives at the

so called pyritohedral symmetry A4 ×P , a subgroup of the octahedral group

Oh. Note that since the gauge bosons have spin 1, no covering group has to

be considered. Note further that since I work in the relativistic limit (which

I can do since S4 and A4 are just inner symmetries of pointlike particles) no

vector boson spin-0 component appears.

In table 5 I present a heuristic ordering of the observed vector bosons accord-

ing to the proposed A4-symmetry. Phenomenologically, there are 8 gluons

Gµ, one (B − L)-photon Bµ and 3 weak bosons W1,2,3µ. The argument of

why only the weak bosons appear in a right- and a lefthanded version WR

and WL, whereas for gluons and photon one has GµL = GµR and BµL = BµR

can be taken over from ref [2].

This table, which may look miraculous at first sight, is not difficult to un-

derstand. For example, in [2] it was argued that the weak bosons W1,2,3 arise

naturally from the Kleinsche Vierergruppe K (the subgroup of A4 formed by

the classes I and 3C2) because it is isomorphic to Z2 × Z2 where the two Z2

factors stand for the germs of weak isospin of the fermion resp antifermion.

To go beyond such a heuristic understanding one should use symmetry adapted

linear combinations of functions Ψσ, σ ∈ A4 instead of the simple assign-

ments of table 5. The linear coefficients could in principle be taken from
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Bµ = 1234 G3µ = 2314 G8µ = 3124

W3µ = 2143 G1µ = 3241 G2µ = 1342

W1µ = 3412 G4µ = 1423 G5µ = 2431

W2µ = 4321 G6µ = 4132 G7µ = 4213

Table 5: List of Standard Model vector bosons ordered heuristically according

to their proposed A4 symmetry. A4 is composed of 3 classes I, 3C2, 8C3 (cf

table 1) and the proposed ordering follows this line. Note that just as table 2

for fermions these are only preliminary assignments. Later we shall see, how

to construct the correct vector bosons states in terms of symmetry adapted

functions.

table 3 (dropping the contributions from improper rotations). However we

shall instantly see how to construct them explicitly from fermion-antifermion

bilinears in order to obtain the combinations relevant in particle physics.

Using S4-Clebsch-Gordon coefficients for the fermion-antifermion tensor prod-

ucts [8], I want to show, that and how from the 24x24=512 possible fermion-

antifermion-product states 12 are selected in order to describe the final states

(the vector bosons). From the point of principle this is in fact no question: if

the final states are to have A4-symmetry then their number must boil down

to 12. In practice these states can be explicitly constructed by evaluating

fermion-antifermion products using the S4-symmetry adapted functions for

the fermions whose benefits and deficiencies have been discussed in section

2, also in connection with their appearance in the continuous SU(4) model

in section 4, cf. eq. (11), projecting them to A4 ⊂ S4 and comparing the

result with the observed vector boson spectrum.

Before I start I want to remind the reader that the 24 S4-functions for fermi-
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ons divide into 9 symmetry functions from T1 used for the up-type-quarks, 9

functions from T2 for the down-type-quarks and 6 functions from A1, A2 and

E for the lepton degrees of freedom and that they all can be obtained from

table 3. Clebsch-Gordon(CG) coefficients appear when one calculates tensor

products of two representations D1 and D2 as direct sums

D1 ⊗D2 = D3 ⊕ ... (12)

and wants to determine a set of symmetry functions for D3 from symmetry

functions f i
1 and f j

2 of D1 and D2. Namely they are given

fk
3 =

√

dim(D3)
∑

i,j

V (D1, D2, D3, i, j, k)f
i
1f

j
2 (13)

where the sum runs over sets of symmetry functions that span the represen-

tation spaces, i = 1, ..., dim(D1) and j = 1, ..., dim(D2). Eq. (13) will be

used as the defining equation for the normalization of the CG-coefficients.

(In fact we are using so-called V-coefficients which have the advantage of be-

ing invariant under simultaneous permutations of representations and indices

in their argument.)

Consider for example the product T1 ⊗ T1. Since T1 corresponds to the up-

type quarks, the product T1 ⊗ T1 will yield 9 up-quark bilinears. Within S4

these can be decomposed according to

T1 ⊗ T1 = A1 ⊕ E ⊕ T1 ⊕ T2 (14)

Taking the 3 up-quark color components u1, u2 and u3 as T1-functions on the

LHS and evaluating the corresponding Clebsch-Gordon coefficients leads to

• a representation of the (B − L)-photon as

Bµ = ū1γµu1 + ū2γµu2 + ū3γµu3 (15)
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This stems from the representation A1 on the right hand side of eq.

(14) and from the corresponding Clebsch-Gordon coefficient [8]

V (T1, T1, A1; i, j, 1) =
1√
3
δij (16)

• a representation of the gluon octet stemming from the remaining part

E⊕T1⊕T2 of the decomposition eq. (14). Namely, the CG-coefficients

can be written in terms of the Gell-Man λ-matrices as

V (T1, T1, T1; i, j, k) =
1√
6
εijk (17)

=
i√
6
λ7,5,2ij for k = 1, 2, 3 (18)

V (T1, T1, T2; i, j, k) =
1√
6
|εijk| (19)

=
1√
6
λ6,4,1ij for k = 1, 2, 3 (20)

V (T1, T1, E; i, j, 1) =
1

2
λ8ij (21)

V (T1, T1, E; i, j, 2) =
1

2
λ3ij (22)

(23)

Note that the difference in the coefficients 1

2
of V (T1, T1, E) and 1√

6
of

V (T1, T1, T1,2) is an artefact of the normalization factor
√

dim(D3) in

eq. (13). All in all we obtain

G3µ = ū1γµu1 − ū2γµu2 (24)

G8µ =
1√
3
(ū1γµu1 + ū2γµu2 − 2ū3γµu3) (25)

and similarly for the other λ-matrices.

The fact that formally the same bilinear combinations are created as

needed in SU(3)color-QCD is no accident but has to do with the fact
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that S4 = Td is a subgroup Td ⊂ SO(3) ⊂ SU(3). The result is there-

fore an elaboration on the claim formulated in [2] that the appearant

tetrahedral symmetry of quarks and leptons is able to provide ’germs’

of the Standard Model gauge interactions.

It should further be noted that there is no problem of antifermions being

involved here, because on the S4 level there is no difference in the treatment

of fermion-fermion and fermion-antifermion bilinears, because the group ten-

sor product states do not care whether they are formed with particles or

antiparticles.

Nevertheless, one could have the suspicion of being cheated here in that one

obtains complex fields from real representations of a discrete group. To be

on the safe side, one may embed these considerations in the framework of the

SU(4) model presented in section 4. In that model the physical vector bosons

will be states in the representation (4̄ ⊗ 4̄ ⊗ 4̄ ⊗ 4̄) ⊗ (4 ⊗ 4 ⊗ 4 ⊗ 4)1. What

is done in this section is to select the 12 physical vector bosons among the

48 states in that representation by applying the exclusion principle (’any

physical particle must be a permutation state’) proposed in section 4.

As a next step the results eqs. (14)-(25) have to be projected from S4 to A4 of

the vector bosons. This can be done by symmetrization in the family (u,c,t)

and the isospin (up,down) degrees of freedom. Doing that the gluons turn

out all right, but the (B−L)-photon is still missing its lepton contributions.

The point is that A4 has a 3-dimensional representation T (for which 9 sym-

1Such vector boson bound states correspond in a sense to a kind of technicolor theory.

Technicolor models often predict a large value for the Peskin-Takeuchi S and T parameters

[7] and non universal couplings for the third generation. However, since I am not in the

stage of proposing a specific tetron dynamics, it may be possible that some elaborate

dynamical scheme exists where these deviations are canceled.
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metry functions are needed), a 2-dimensional representation E (with only

2 functions because it is separably degenerate) and the totally symmetric

representation A2. Interpreted on this basis we obtain from the RHS of eq.

(14):

i) the symmetry function for the totally symmetric representation A

ii) the two symmetry functions for the representation E

iii) 6 of the 9 T -functions (3 from T1 and 3 from T2).

The 3 missing T -functions, which will be used to describe the weak bosons,

can be obtained, for example, from the product

E ⊗ E = A1 ⊕A2 ⊕ E (26)

Namely, taking µ and νµ as basis functions for E on the LHS and evaluating

the corresponding Clebsch-Gordon coefficients leads to

• a representation of the (B − L)-photon as Bµ = ν̄µγµνµ + µ̄γµµ which

is due to the A1-term in eq. (26) and, after symmetrization over the

family index, gives in fact the missing lepton part of the quark-lepton

symmetrized representation of Bµ.

• a representation of the weak boson triplet stemming from the remaining

part A2⊕E of the decomposition eq. (26). Namely, the CG-coefficients

V (E,E,A2) and V (E,E,E) are given by

V (E,E,A2; 1, 1, 1) = 0 V (E,E,A2; 1, 2, 1) =
1√
2

(27)

V (E,E,A2; 2, 1, 1) = − 1√
2

V (E,E,A2; 2, 2, 1) = 0 (28)

2In the literature the represenations of A4 are sometimes labelled as 1, 1’, 1” and

3, where 1=A and 3=T and 1’ and 1” are two one-dimenensional representations to

which the representation I have called E, can be effectively reduced by an appropriate

base transformation (note this is only possible for A4 but not for the E of S4 and has to

do with the fact how the Z3-subgroup is embedded in A4.)
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and

V (E,E,E; 1, 1, 1) = −1

2
V (E,E,E; 1, 2, 1) = 0 (29)

V (E,E,E; 2, 1, 1) = 0 V (E,E,E; 2, 2, 1) =
1

2
(30)

V (E,E,E; 1, 1, 2) = 0 V (E,E,E; 1, 2, 2) =
1

2
(31)

V (E,E,E; 2, 1, 2) =
1

2
V (E,E,E; 2, 2, 2) = 0 (32)

leading to the combinations

W1 = µ̄γµνµ + ν̄µγµµ (33)

iW2 = µ̄γµνµ − ν̄µγµµ (34)

W3 = µ̄γµµ− ν̄µγµνµ (35)

Writing the CG-coefficients eqs. (27)-32) in terms of Pauli matrices σ

V (E,E,A2; i, j, 1) =
i√
2
σ2ij (36)

1√
2
V (E,E,E; i, j, 2) =

1√
2
σ1ij (37)

1√
2
V (E,E,E; i, j, 1) =

1√
2
σ3ij (38)

it becomes appearant that they are formally a SU(2)weak triplet. Since

the T -representation of A4 is the restriction of the triplet representation

to A4 considered as a subgroup of SU(2)weak they can be used as the

set of missing symmetry functions for T .

As before the result eq. (33)-(35) has to be symmetrized in the family and

the quark and lepton degrees of freedom.

Let me finish this section with the remark that predictions of vector boson

mass ratios can in principle be made from the preceeding symmetry con-

siderations in the same way as was done for the fermion mass spectrum in
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ref. [2]. In the A4-symmetric limit all vector bosons are massless. When

A4 gets broken, one can make an ansatz similar to that for fermions in [2],

namely using the fact that the electro-strong and weak vector bosons are

contained in different representations of A4 they get different masses. Thus

one can naturally accommodate massless photons and gluons and massive

weak bosons. The question how the observed large mass difference between

the left and right handed weak bosons arise remains open at this point.

6 Octonions - a possible Solution to the Tetron

Spin Problem

In the preceeding chapters the inner symmetries of the tetron model have

been discussed on the basis of the known representations of the permutation

group S4 without much reference to a possible tetronic substructure and how

the fermion spatial behavior of quarks and leptons may arise on a microscopic

level.

In contrast, from now on I will explicitly assume that quarks and leptons are

built from 4 tetron constituents. The main problem is then to construct the

spin-1

2
behavior of the compound fermions from the spacetime properties of

the tetrons.

I will mainly present the framework, in which this problem should be solved,

and discuss a possible solution at the end, which is based on an octonion Z4

extension of the rotation group SO(3).

I will consider spatial transformations only. The extension to Minkowski

space will be worked out in a separate publication [4].
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Let me start with a few well-known facts about half-integer spin: in a physical

experiment one cannot distinguish between states which differ by a complex

phase. Therefore, in addition to ordinary representations one may include

projective, half-integer spin representations of the rotation group SO(3), and

also of its Td = S4 subgroup3. These are true representations of the corre-

sponding covering groups SU(2) and S̃4, respectively.

To solve the tetron spin problem I suggest to give up two standard elements

of quantum mechanics:

• Firstly, I will give up the principle of a complex in favor of an octonion

quantum mechanics [13, 14]. One may then have octonion projective

representations (e.g. of nontrivial Z4-extensions) of the rotation group.

Furthermore, in such a framework tetron states should be combined

using octonion instead of complex tensor products.

• Secondly, I will give up the requirement of continuous rotation sym-

metry and assume that tetrons live and interact in microscopical di-

mensions, in which only permutation symmetry survives. The latter is

much less restrictive than rotational SO(3), because the idea of rotation

assumes concepts of angle and length, which may be obstacled by quan-

tum fluctuations when approaching the Planck scale. In contrast, the

idea of permutation merely presupposes the more fundamental princi-

ple of identity. This is why permutation groups may enter theoretical

physics at finer levels of resolution and higher energies than the Lorentz

group. Tetrons may be more basic than spinors4.

3Actually, as discussed in section 1, Td is not a subgroup of SO(3) because odd permu-

tations correspond to certain roto-reflections in O(3). However, Td is isomorphic to the

octahedral group O which is a subgroup of SO(3).
4There is some remote similarity of this idea to a paper by Baugh et al [15].
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As a consequence of the new representation a new type of particle statistics

will arise (called permutation or tetron statistics) which differs from Fermi

and Bose statistics and whose detailed properties will be discussed in the

cause of this section.

However I want to postpone the presentation of the octonion Z4 extension of

S4 to a later stage and at this point just assume that 4-tetron bound states

have spin-1

2
, in order to see, what consequences can be derived from this

assumption.

First of all, the spin part of a 4-particle fermionic compound state must

transform according to a projective representation of S4, i.e. a representation

of its covering group S̃4. There are 3 irreducible projective representations

of S4, namely G1, G2 and H of dimensions 2, 2 and 4, respectively [6].

The sum 4+4+16 of the dimensions squared accounts for the 24 additional

elements due to the Z2 covering of S4. G1 uniquely corresponds to spin-1

2
,

i.e. is obtained as the restriction of the fundamental SU(2) representation to

S̃4. Similarly, H can be obtained from the spin-3

2
representation of SU(2),

whereas G2 is obtained from G1 by reversing the sign for odd permutations

and contains contributions from spins larger 3

2
.

For the understanding of the following arguments a short digression on quaternions and

its usefulness for describing spin- 1

2
fermions will be helpful:

Quaternions [9, 10, 11] are a non-commutative extension of the complex numbers and

play a special role in mathematics, because they form one of only three finite-dimensional

division algebra containing the real numbers as a subalgebra. (The other two are the

complex numbers and the octonions.) As a vector space they are generated by 4 basis

elementes 1, I, J and K which fulfill I2 = J2 = K2 = IJK = −1, where K can be obtained

as a product K = IJ from I and J. Quaternions are non-commutative in the sense IJ=-JI.
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Any quaternion q has an expansion of the form

q = c1 + Jc2

= r1 + Ir2 + Jr3 + Kr4 (39)

with real ri and complex ci.

There is a one-to-one corresponence between unit quaternions q0 and SU(2) matrices,

because the latter are necessarily of the form (α, β;−β∗, α∗) with complex α and β fulfilling

|α|2 + |β|2 = 1, and can be rewritten as q0 = α + Jβ.

SU(2) can be considered as a non-trivial Z2-extension of SO(3), in the sense that to each

element g of SO(3) 2 elements ±D(g) of SU(2) can be attributed. In fact any rotation g

about an axis n = (nx, ny, nz) by an angle θ can be represented as

D(g) = ±cos(
θ

2
) ∓ (nxK + nyJ + nzI)sin(

θ

2
) (40)

SU(2) matrices act on dublets of spinor fields (c1, c2) (c1 with spin up and c2 with spin

down). In quaternion notation this action can be written as:

c1 + Jc2 → (α + Jβ)(c1 + Jc2) (41)

For example the unit quaternions I and J corresponding to rotations by π about the x and

y-axis amount to c1 → Ic1, c2 → −Ic2 and c1 → −c2, c2 → c1, respectively. For a general

SU(2) transformation one has c1 → αc1 − β∗c2 and c2 → α∗c2 + βc1, from which e.g. the

antisymmetric tensor product combination c1c
′

2
− c2c

′

1
can be shown to be rotationally

invariant (spin 0).

Coming back to the representation G1, its symmetry function (also called G1

in the following) can be written in terms of the G1 representation matrices
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(=unit quaternions) of S̃4 as

G1 = g(1, 2, 3, 4) + Ug(2, 3, 1, 4) + U2g(3, 1, 2, 4)

+ Ig(2, 1, 4, 3) + Sg(3, 2, 4, 1) +R2g(1, 3, 4, 2)

+ Jg(3, 4, 1, 2) +Rg(1, 4, 2, 3) + T 2g(2, 4, 3, 1)

+ Kg(4, 3, 2, 1) + Tg(4, 1, 3, 2) + S2g(4, 2, 1, 3)

+
I +K√

2
g(3, 2, 1, 4) +

I − J√
2
g(1, 3, 2, 4) +

J +K√
2

g(2, 1, 3, 4)

+
1 − J√

2
g(2, 3, 4, 1) +

1 −K√
2
g(3, 1, 4, 2) +

J −K√
2

g(1, 2, 4, 3)

+
I −K√

2
g(1, 4, 3, 2) +

1 +K√
2
g(2, 4, 1, 3) +

1 + I√
2
g(3, 4, 2, 1)

+
1 + J√

2
g(4, 1, 2, 3) +

I + J√
2
g(4, 2, 3, 1) +

1 − I√
2
g(4, 3, 1, 2) (42)

where R = 1

2
(1 − I − J −K), S = 1

2
(1 − I + J +K), T = 1

2
(1 + I − J +K)

and U = 1

2
(1 + I + J −K). One can see explicitly from this equation, which

S4 permutation ijkl is represented in G1 by which quaternion, because the

corresponding quaternion appears as a coefficient of g(i,j,k,l). For example,

the permutation 2341 is represented by ±(1 − J)/
√

2, and so on. In other

words, the quaternion coefficients 1, I, J,K, (I+K)/
√

2, ..., R, S, T, ... in this

equations represent the elements of S̃4
5.

5While S̃4 itself can be shown to make up the inner shell of D4-lattices [16], the first

half of coefficients in eq. (42) represent even permutations corresponding to Ã4 which is

sometimes called the ’binary tetrahedral group’, and generates the F4 lattice also called

the ring of Hurwitz integers (=quaternions with half integer coefficients). The Hurwitz

quaternions form a maximal order (in the sense of ring theory) in the division algebra

of quaternions with rational components. This accounts for its importance. For example

restricting to integer lattice points, which seems a more obvious candidate for the idea

of an integral quaternion, one does not get a maximal order and is therefore less suited

for developing a theory of left ideals as in algebraic number theory [3]. What Hurwitz

realized, was that his definition of integral quaternions is the better one to operate with.
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Due to the 2-fold covering of S4 each of the real functions g(i, j, k, l) in eq.

(42) with its 24 terms is in fact a difference p(i, j, k, l) −m(i, j, k, l) so as to

obtain the 48 terms needed for a symmetry function of S̃4.

g(i, j, k, l) (or alternatively p and m) are the functions to be interpreted as

tensor products of tetrons of the generic form

g(i, j, k, l) = ai ⊗ b′j ⊗ c′′k ⊗ d′′′l (43)

where a,b,c,d are the tetron ’flavor’ and i,j,k,l their ’spin’ indices. I.e. eq.

(42) with (43) corresponds to the assumption that there are 4 tetron ’spins’

i, j, k, l ∈ {1, 2, 3, 4} and that these add to give a spin-1

2
fermion.

It is true that the phenomenological observation of 24 quarks and leptons

and their interactions imply a permutation principle only on the level of

inner symmetries. However, the assumption of 4 different tetron spin within

a fermion bound state comes closest to the original intuition of a spatial

tetrahedral structure as discussed in section 1 and in ref. [2]. In case of e.g.

only 2 tetron spins the G1 function would look quite different, because in

general, the permutation of the tensor product indices - denoted by primes

in eq. (43) - must not be messed up with the permutation of spin states.

Only in the case at hand, where 4 different spin states in 4 different tensor

factors are considered, there is no difference.

Eq. (42) should be considered as the spin factor of the 4-tetron bound state

(whereas the A1, A2, E, T1 and T2-functions implicitly given in tables 3 and

4 account for the flavor factor). In fact, working out the quaternion multi-

plications in eq. (42) and using K = IJ one obtains a representation of the

form G1 = c1 +Jc2 with c1 and c2 decribing the 2 spin directions of the com-

pound fermions, cf eq. (41). Mathematically, the appearance of 2 complex

functions c1 and c2 in eq. (42) is merely expression of the fact that for the
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2-dimensional representation G1 4 real(=2 complex) symmetry functions can

be constructed, which in eq. (42) are combined in one quaternion function.

The complete spin and flavor wave function of quarks and leptons can be

written as

a1 ⊗ b′2 ⊗ c′′3 ⊗ d′′′4 + b1 ⊗ c′2 ⊗ a′′3 ⊗ d′′′4 + ...

Ia2 ⊗ b′1 ⊗ c′′4 ⊗ d′′′3 + ...

... (44)

Here in the rows the tetron flavor indices a,b,c,d are permutated in order to

obtain the appropriate flavor combination (A1 of S4 as an example), whereas

in the columns the tetron spin indices 1,2,3,4 are permutated in order to

obtain the G1 spin combination.

On the microscopic level we shall be looking for a behavior of the spin indices

1,2,3,4, which mimic the behavior of G1, i.e. which induce transformations

of the tensor product combination G1 → q0G1 for q0 ∈ S̃4, cf. eq. (41). E.g.

one needs to show that G1 → IG1 for rotations by πx follows from a suitable

transformation property of the tetrons.

Very important: eq. (42) reflects the statistical behavior of a 4-tetron-

conglomerate unter permutations of its components. This behavior has a

certain similarity to that of fermions but is certainly not identical. While

conglomerates of fermions usually transform with the totally antisymmetric

representation (like A2), tetrons go with G1, which gives a factor of I un-

der the exchange (1 ↔ 2, 3 ↔ 4) or 1√
2
(J + K) under (1 ↔ 2), whereas a

2-fermion conglomerate in a A2 = c1c
′
2 − c2c

′
1 configuration responds with

-1 (i.e. antisymmetric) to the exchange of (1 ↔ 2). See table 6, where the

behavior of tetrons and fermions is compared. The fact that tetrons behave

more complicated under transpositions (i↔ j), has to do with the fact that
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FERMIONS TETRONS

behavior of the wave function under 2πn rotations:

±1 ±1 or ±L
Z2-extension Z4-extension

compound states:

boson from 2 fermions: fermion from 4 tetrons:

complex tensor product quasi-complex, quaternion tensor product

A2 = c1c
′
2 − c2c

′
1 G1 = g(1, 2, 3, 4) + Ig(2, 1, 4, 3) + J...

= a1b
′
2c

′′
3d

′′′
4 + Ia2b

′
1c

′′
4d

′′′
3 + ...

bosonic behavior under rotations fermionic behavior under rotations

G1 → (α+ Jβ)G1

permutation behavior/statistics:

-1 under (1 ↔ 2) a factor I under (1 ↔ 2, 3 ↔ 4)

a factor 1√
2
(J +K) under (1 ↔ 2) etc

Table 6: Comparison between the known fermion behavior and the antici-

pated tetron behavior.

transpositions in S4 correspond to relatively complicated rotoreflections in

Td, c.f. table 1.

We therefore conclude that tetrons follow their own statistics which is neither

bosonic nor fermionic, and conjecture, that a sort of ’tetron spin statistics

theorem’ holds, which will give an explanation of the selection rule proposed

in section 4.

I now turn to the question, how such a behavior can be realized. The specific

Z4-extension of S̃4 which I have in mind is constructed using octonions [9, 10,
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11]. Octonions are a non-associative extension of the quaternions, i.e. they

are a non-commutative non-associative division algebra spanned as a vector

space by 8 elements 1, I, J, K, L, IL, JL and KL, i.e. any octonion t can be

expanded in various ways like

t = q1 + Lq2 (45)

= d1 + Id2 + Jd3 +Kd4 (46)

= c1 + Jc2 + Lc3 + JLc4 (47)

= r1 + Ir2 + Jr3 +Kr4 + Ls5 + ILs6 + JLs7 +KLs8 (48)

with quaternions qi, real numbers ri and si, complex numbers ci and di =

ri + Lsi.

As an algebra the octonions can be generated from the trias I, J and L, be-

cause K, IL, JL and KL can be simply given as the product of I times J, I

times L, J times L and K times L, respectively. They are non-associative in

that (IJ)L = −I(JL). In contrast to quaternions they cannot be represen-

tated as matrices.

Octonions are related to a number of exceptional structures in mathematics,

among them the exceptional Lie groups [12], and have some applications in

fields such as string theory and special relativity, where they are used to

describe spinors in higher dimensional spacetimes, see e.g. [16].

Here I follow a different path and use them to construct a Z4-extension of

S4, regarded as the subgroup Td of spatial SO(3). This extension is defined

as Ŝ4 = ±S̃4(L), i.e. it consists of all elements q0 of S̃4 (as explicitly given in

and after eq. (42)) and possibly multiplied with a factor of L. To be definite

I always take multiplication from the right with brackets, i.e. q0(Lt), when

acting on an arbitrary octonion t and denote this product by q0(L. Using

the octonion multiplication table [9, 10, 11] it can be shown that Ŝ4 is indeed
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R(πx)=IL R(πy)=JL R(πz)=KL

R(πx)=IL -1 (KL)L -(JL)L

R(πy)=JL -(KL)L -1 (IL)L

R(πz)=KL (JL)L -(IL)L -1

Table 7: Behavior of the proposed octonion projective representation R for

the SO(3) generators πx, πy and πz. The appearance of octonion phases ±1

and ±L is explicitly seen and proves that those objects do not give a true

representation of the rotations but an octonion projective one.

closed under multiplication and thus offers a rather unique possibility to get

a nontrivial Z4-extension - in the same sense in which the octonions are a

rather unique extension of the quaternion algebra.

The mentioned Z4 is formed by the subset {±1,±L}, and corresponds to a

4-fold ambiguity of the identity rotation. In general any element ijkl ∈ S4 is

represented by 4 elements ±q0 amd ±q0(L ∈ Ŝ4. For example, a rotation by

π around the x-axis, which in quaternion SU(2) notation is given by ±I has

a 4-fold representation {±I,±I(L} in Ŝ4.

I now use the following definition: concerning spatial S4(= Td) transfor-

mations a tetron is defined to be an octonion field t, on which Ŝ4

acts via octonion multiplication.

In table 7, the action of this representation (called R) is given for the octonion

generators IL, JL and KL. It could easily be extended to include any element

q0(L ∈ Ŝ4 and proves the appearance of phases p(g1, g2) ∈ {±1,±L} in the

products R(g1)R(g2) = p(g1, g2)R(g1g2) for g1, g2 ∈ Ŝ4.

Transformations of the form q0(L are conjectured to give fermionic behavior

33



when acting on a 4-fold tensor product of tetrons. The point is that loosely

speaking applying q0(L four times one ends up with a factor q0L
4 = q0, i.e.

fermion behavior.

Unfortunately the definition of a tensor product is not unique. A priori one

could use either a

i) a real tensor product,

ii) a quaternion tensor product with respect to any quaternion subalgebra of

the octonions or

iii) a complex tensor product with respect to any embedding of the complex

numbers.

At the moment of writing I am still analyzing the various possibilities. For

example, one may define a tensor product of 4 tetron fields t, t′, t′′ and t′′′ as

g(i, j, k, l) = di ⊗ d′j ⊗ d′′k ⊗ d′′′l + o.c. (49)

where di are defined in eq. (46) and o.c. denotes the octonion conjugate. The

g(i, j, k, l) so defined should be inserted in the fermion symmetry function

G1, eq. (42).

Eq. (49) corresponds to case iii. Another good choice might be a tensor

product of angular momentum eigenstates. There is then an ambiguity in

whether I or IL should be chosen as the angular momentum operator. Fur-

thermore, one may use either the complex eigenstates ci of eq. (47) (case

iii) or quaternion eigenstates which are typically of the form c1 + J(Lc4) etc

(case ii).

In any of the cases one should work out the transformation behavior induced

on G1 by transformations of the components. For example, for the choice eq.

(49) one has:
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• Under an identity transformation L a tetron t transforms as

d1 + Id2 + Jd3 +Kd4 → d1 + I(−Ld2) + J(−Ld3) +K(−Ld4) (50)

and therefore g(i, j, k, l) → −g(i, j, k, l) and G1 → −G1, which is ex-

actly the behavior of a fermion under the identity rotation.

• Under a transformation R(πx) = I(L the tetron transforms as I(Lt) =

−d2+I(Ld
∗
1)+J(−Ld∗4)+K(Ld∗3) which gives g(1, 2, 3, 4) → −g(2, 1, 4, 3),

whereas g(2, 1, 4, 3) → +g(1, 2, 3, 4) etc, which leads to G1 → IG1 as

needed.

and this analysis should be continued scanning all elements of S4 and all pos-

sible tensor products whether they yield the required behavior. The results

will be presented in a future publication [4].

7 Summary

It is a remarkable observation, that quarks, leptons and gauge bosons can be

ordered with the help of essentially the same symmetry group, the permuta-

tion group S4.

Starting from this paradigma we have seen, that and how from the 24x24=512

possible fermion-antifermion product states 12 are selected to describe the

gauge bosons, and - though lacking an understanding of the underlying dy-

namics responsible for this selection - by inspection of Clebsch-Gordon coef-

ficients we have tried to follow the path of how this dynamics unfolds itself

on the level of gauge bosons.

Realizing that there might be a connection of the S4-states to representa-

tions of SU(4) we have found two options which match the phenomenological
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fermion and gauge boson spectrum equally well: either one uses a continuous

inner symmetry group like SU(4) together with an exclusion principle or one

sticks to the discrete permutation symmetry.

The discussion of SU(4) suggests the existence of a fundamental quartet of

’tetron’ constituents. Taking that idea serious one encounters the difficulty

to generate the spin-1

2
behavior of quarks and leptons from 4 constituents by

conventional means.

In section 6 a suggestion for the spatial transformation properties of tetrons

was made which relies on an octonion Z4-extension of the spatial S4 permu-

tation symmetry. It is certainly true that the phenomenological observation

of 24 quarks and leptons and their interactions suggest a permutation prin-

ciple only on the level of inner symmetries. However due to the problems

which arise in connection with spin and statitistics one is naturally lead to

consider the possibility that inner and outer permutation behavior may be

intertwined and that this can be used to understand the spin-1

2
nature of

quarks and leptons.

If this approach has some meaning it is possible that besides G1 also the

two other half-integer spin representations of S̃4 (H and G2) play a role in

nature, or in other words, that particles with spin 3

2
and 5

2
may appear at

higher energy levels.

Another speculation concerns the inclusion of gravity in the tetron frame-

work, i.e. the question whether the underlying unknown interaction of tetrons

may also be used to describe gravitons.
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