
Turing’s Fallacies

Timm Lampert
Humboldt University Berlin

Abstract

This paper reveals two fallacies in Turing’s undecidability proof
of first-order logic (FOL), namely, (i) an “extensional fallacy”: from
the fact that a sentence is an instance of a provable FOL formula, it
is inferred that a meaningful sentence is proven, and (ii) a “fallacy of
substitution”: from the fact that a sentence is an instance of a provable
FOL formula, it is inferred that a true sentence is proven. The first
fallacy erroneously suggests that Turing’s proof of the non-existence
of a circle-free machine that decides whether an arbitrary machine is
circular proves a significant proposition. The second fallacy suggests
that FOL is undecidable.

1 Introduction

In his famous paper from 1936, Turing proved what was later called the
“Church-Turing theorem”, i.e., the theorem that the property of logical
theoremhood within first-order logic (FOL) is undecidable. This is a well-
established theorem of mathematical logic. Questioning this theorem might
seem illegitimate to those familiar with meta-mathematical proof methods
or those who believe that meta-mathematical theorems are irrefutable. Con-
trary to model-theoretic proofs of the correctness and completeness of FOL-
calculi, however, Turing’s proof of the undecidability of FOL rests on un-
reliable semantic principles concerning the instantiation of logical formulas.
This paper identifies these problematic semantic principles through a close
examination of Turing’s original proof. Note that it does not follow from
this critique that FOL is decidable. It merely follows that one should not
trust meta-mathematical undecidability proofs resting on instantiations of
logical formulas.

This kind of critique is not new. According to my understanding of
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Wittgenstein, it is consistent with Wittgenstein’s remarks on Gödel.1 Un-
fortunately, Wittgenstein does not closely examine Turing’s famous unde-
cidability proof, although he was in close contact with Turing at Cambridge
during the second half of the nineteen-thirties and was one of the first to re-
ceive Turing’s paper in February 1937.2 Nor does he closely examine Gödel’s
proof or any other meta-mathematical undecidability proof. Instead, he
complains rather generally that instead of inferring undecidability theorems,
one might question the underlying interpretations of meta-mathematical un-
decidability proofs.3 However, the intent of this critique is highly controver-
sial.4 I avoid discussing this controversy in this paper. Instead, I present a
systematic critique of Turing’s proof that illustrates why referring to inter-
pretations within Turing’s undecidability proof is problematic. Thus, I wish
to make plausible a certain kind of critique of undecidability proofs that
seems to me to represent the relevant systematic value of Wittgenstein’s
scepticism regarding undecidability proofs.

Turing5 proves the impossibility of a circle-free machine D that can de-
cide whether an arbitrary machine is circular. On this basis, he proves the
impossibility of a machine E that can decide whether an arbitrary machine
M will ever print 0. Given these conclusions, he then proves the impossi-
bility of a machine that can decide whether an arbitrary FOL formula is a
theorem. I show in section 2 that a circle-free machine D (and, consequently,
E) is undefinable. This work is important for analysing Turing’s proof of
the undecidability of FOL. I show in section 3 that Turing’s undecidability
proof rests on a fallacy. Instead of concluding that FOL is undecidable, one
may conclude that the configurations of certain machines are undefinable
within the language of FOL.

2 Proof of the Impossibility of D
This section discusses Turing’s proof of the impossibility of a circle-free
machine D that can decide whether an arbitrary machine M is circular.
According to Turing, a machine is circular iff it never prints more than

1Cf. in particular Wittgenstein (1967), part I, appendix I, and part V, §17-19 and
Lampert (2017).

2Cf. Turing’s letter to his mother AMT/K/1/54, Turing Digital Archive
(http://www.turingarchive.org/browse.php/K/1/54), and Floyd (2016b), p. 9, footnote
3.

3Cf., e.g., Wittgenstein (1967), part I, appendix I, §8, §10, §17.
4Cf., e.g., Rodych (1999) and Floyd and Putnam (2000).
5Turing (1936).
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a finite number of 0s or 1s. Therefore, circle-free machines print endless
sequences of 0s and 1s. Turing calls circle-free machines “satisfactory”,
whereas circular machines are “unsatisfactory” because they become stuck
somewhere. They either reach a configuration from which there is no possible
move, or if they continue moving, they no longer print 0s or 1s.6

Whereas Turing’s machines start with empty tapes and should print end-
less binary sequences, “Turing machines” as the term is used in the modern
literature, begin with a finite binary code and should return a finite binary
code. According to this definition, machines that do not halt are “unsatis-
factory”. Therefore, instead of proving the impossibility of a machine that
can decide the circularity of machines, it is proven that there can be no
machine that solves the halting problem. In the following, however, I will
focus on Turing’s original conception of machines.

Turing provides two proofs of the impossibility of a machine D. In the
following, I primarily discuss Turing’s first proof, which relies on Cantor’s
diagonal argument. The principles of this proof are the same as those of
modern proofs of the unsolvability of the halting problem.

2.1 Turing’s First Proof

Turing’s first proof is very short an refers to an anti-diagonal sequence β of
an enumeration of computable sequences:7

In fact, by applying the diagonal process argument correctly,
we can show that there cannot be any such general process [i.e.,
a general process for determining whether a given number is the
description number (D.N.) of a circle-free machine]. The simplest
and most direct proof of this is by showing that, if this general
process exists, then there is a machine which computes β.

As Turing mentions, this proof applies Cantor’s diagonal argument,
which proves that the set of all infinite binary sequences, i.e., sequences
consisting only of digits of 0 and 1, is not countable. Cantor’s argument,
and certain paradoxes, can be traced back to the interpretation of the fol-
lowing FOL theorem:8

¬∃x∀y(Fxy ↔ ¬Fyy) (1)

6Cf. Turing (1936: 233).
7Cf. Turing (1936: 246).
8This reduction of the diagonal argument and its application to the analysis of para-

doxes has a long tradition, cf. Simmons (1993: 25), footnote 10.
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(1) is proven by reducing the corresponding existential claim to absurdity.
Interpreting (or instantiating) Fxy as “x shaves y” yields the barber

paradox; interpreting Fxy as “y ∈ x” yields Russell’s paradox. In Cantor’s
proof, the binary anti-diagonal sequence β is defined with respect to the
sequences αk comprising some enumeration of binary sequences, where k is
the index identifying each sequence in this enumeration. Let n be the index
representing the n-th position in the k-th sequence. Then, the sequences αk

can be represented by sequences of coefficients ak,n. Thus, the diagonal se-

quence β′ is defined as
∞∑
n=1

an,n · 10−n, and the corresponding anti-diagonal

sequence β requires bn 6= an,n. Therefore, the proof that β is not iden-
tical to any sequence αk in the enumeration corresponds to the following
interpretation of (1):

¬∃k∀n(bn = ak,n ↔ bn 6= an,n) (2)

Turing distinguishes between incorrect and correct applications of Can-
tor’s diagonal argument to computable sequences α. These are defined as
sequences that are computable by circle-free machines.9 Using the diagonal
argument to prove that the (enumerable) computable sequences are not enu-
merable is an incorrect application of the diagonal argument because it does
not consider the possibility that the anti-diagonal sequence β of the enumer-
ation of the computable sequences may be definable by a circular machine.10

Thus, β is simply not among the enumerable computable sequences that are
defined by circle-free machines.

In fact, a correct application of the diagonal argument presumes the
enumerability of the computable sequences. Therefore, instead of proving
the non-enumerability of the computable sequences, Cantor’s diagonal ar-
gument proves that the anti-diagonal sequence β of the enumeration of the
computable sequences is not computable. It follows that the concept of an
anti-diagonal computable sequence β is inconsistent because of (2). Conse-
quently, the concept of a circle-free β-machine, i.e., one that computes β,
is also inconsistent. The proof that such a β-machine does not exist is a
proof by contradiction that reduces the corresponding existential claim to
absurdity. The proven theorem is a tautology, i.e., an instance of a provable
FOL formula.

Turing proves the impossibility of a circle-free machine D based on this
proof through another proof by contradiction. If D exists, then β must

9Cf. (Turing 1936: 233).
10Cf. (Turing 1936: 246).
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be computable by a circle-free β-machine H composed of (i) the circle-free
machine D and (ii) a universal machine U that computes the sequence of a
circle-free machine from the standard description (S.D.) of said circle-free
machine that U receives as input, and, finally, (iii) a machine S switching 0
to 1 and vice versa. Turing proved in section 6 of his paper that U exists and
S trivially exists; therefore, it is impossible for D to exist because, according
to the diagonal argument, no circle-free β-machine exists.

Interestingly, Turing makes the following comment on his first proof of
the non-existence of D:

This proof, although perfectly sound, has the disadvantage
that it may leave the reader with a feeling that “there must be
something wrong”.

Turing calls his proof “perfectly sound” while simultaneously conceding,
without any further explanation, that some readers may not be convinced
by such a proof. Turing’s second proof, which I consider in section 2.5, does
not rely on Cantor’s diagonal argument. Turing seems to believe that scru-
ples regarding his proof concern (correct) applications of Cantor’s diagonal
argument and, thus, the particular method of proof, not what is proven. In
the following, I argue that this is not the case.11

2.2 Two Types of Proof by Contradiction

Because interpretations of theorem (1) have given rise to several well-known
instances of both theorems and paradoxes, an effort is made to distinguish
between “good” and “bad” diagonal arguments.12 However, before looking
for such a discrimination criterion, one should examine what the proofs of
the theorems based on interpretations of (1) actually prove.

The reason why a proof by contradiction that rests on the reduction
of a single existential claim to absurdity is suspicious becomes clear when
this type of proof by contradiction is compared with alternative proofs by
contradiction. Turing’s proof is not a proof by contradiction that proves the
negation of one of several assumptions. Such a proof does not prove a trivial

11In her reconstruction of Turing’s first proof, Floyd (2012: 33) seems to miss that
Turing reduces the non-existence of D to a primarily proved non-existence of a circle-
free β-machine by applying Cantor’s diagonal argument. That is why she believes that
Turing’s first proof does not provide a convincing argument for the non-existence of D.
According to my reconstruction, however, Turing’s first proof should be convincing to all
those (including Turing) who accept diagonal arguments in terms of interpretations of (1).

12Cf., e.g., Simmons (1993) and Sylvan (1992).
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tautology but rather negates only one of several consistent assumptions. By
contrast, a proof by contradiction resulting in an instance of (1) rests on
only one assumption that claims the existence of “something” that satisfies
an inconsistent propositional function. In this case, the proven theorem is
a trivial, meaningless tautology. Assuming the existence of a circle-free β-
machine or a circle-free machine D calls for something that is impossible
by definition. Therefore, strictly speaking, it is not proven that a certain
machine does not exist. Instead, it is proven that an assumption such as
that adopted for the proof cannot even be made because it does not refer to
any specific entity.

Wittgenstein distinguishes the use of proofs by contradiction in mathe-
matics from the use of similar proofs in physics. The former presume in-
consistent definitions, whereas the latter are based on a set of well-defined
assumptions that are inconsistent when taken together:13

The difficulty which is felt in connexion with reductio ad ab-
surdum in mathematics is this: what goes on in this proof?
Something mathematically absurd, and hence unmathematical?
How – one would like to ask – can one so much as assume the
mathematically absurd at all? That I can assume what is physi-
cally false and reduce it ad absurdum gives me no difficulty. But
how to think the – so to speak – unthinkable?

Wittgenstein’s critique of proofs by contradiction in mathematics does not
question the logical validity of such proofs, only the meaningfulness of what
is proven. This type of criticism explains why such proofs are judged as “per-
fectly sound” by, e.g., Turing, on the one hand, while remaining suspicious
for others, e.g., Wittgenstein, on the other. In contrast to Wittgenstein, I
do not wish to exclude proofs by contradiction that are based on several
meaningful assumptions from mathematics. Therefore, I merely will call
proofs by contradiction that result in tautologies “empty”.

2.3 Meaningless Tautologies

Let us call instances of logical theorems “tautologies”. Whether tautologies
are meaningful or lack sense is a controversial question. Wittgenstein is a
prominent advocate of the latter, as Quine is of the former.14 Similarly,

13Wittgenstein (1967: 147).
14Cf. Wittgenstein (1994), remark 4.461, Quine (1960: 25). Quine argues against

Wittgenstein’s doctrine that tautologies and contradictions lack sense by presuming the
validity of any sort of proof by contradiction in general and the validity of undecidability
proofs in particular. Therefore, he presumes precisely what is in question here.

6



whether contradictions (instances of contradictory formulas) and inconsis-
tent concepts lack sense remains a subject of much discussion. The questions
are whether tautologies or contradictions state anything of substance and
whether inconsistent concepts refer to anything of substance.

For those who answer these questions in the affirmative, logical formulas
lack sense in general; however, instances of such formulas are meaningful
and have truth values regardless of the type of logical formula from which
they arise. Different instances may differ in meaning. Therefore, different
instances of logical theorems may prove the truth of propositions that differ
in meaning.

However, this point of view is deficient, as can be shown by assign-
ing instances of one and the same formula to several structurally equiva-
lent formulas that differ only in their non-logical symbols. Thus, instead
of interpreting one and the same formula, say P ∨ Q, from two different
propositions, one of the two propositions may be assigned to P ∨ Q and
the other to, say, R ∨ S. In this case, structurally equivalent formulas that
are instantiated based on different propositions that are not tautologies or
contradictions are not logically equivalent, whereas all formulas instanti-
ated by tautologies (or contradictions) are logically equivalent. Thus, in
interpreting P ∨ ¬P and Q ∨ ¬Q from two different propositions (or sen-
tences), the logical equivalence of these two formulas shows that the two
propositions are also logically equivalent. Therefore, given that logically
equivalent propositions do not differ in meaning, all tautologies have the
same meaning. Furthermore, if meaningfulness is measured by the exis-
tence of logically independent propositions, then tautologies lack meaning
because they follow from any proposition. Therefore, all tautologies have
the “same” meaning, namely, none. The same holds for contradictions: they
are all logically equivalent and meaningless because every proposition fol-
lows from any contradiction. One might still maintain that tautologies are
true and contradictions are false; however, no content is labelled as true or
false. In this respect, the proof of a tautology proves nothing. From this
perspective, tautologies and contradictions both belong to non-extensional
contexts, such as meta-linguistic and intensional ones. Unlike in the usual
extensional contexts, expressions within tautologies and contradictions do
not refer to any entity.

The conception of tautologies and contradictions as meaningful is cor-
related with the view that contradictory propositional functions are mean-
ingful and refer to the empty set. This view expresses a purely extensional
account of logical semantics that does not distinguish between meaningful
but unsatisfied concepts and meaningless (unsatisfiable) concepts. Misled
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by a material mode of speech, one infers from the fact that expressions re-
fer to certain entities in other contexts that expressions within tautologies
and contradictions also refer to entities. However, inconsistent concepts do
not specify anything and, therefore, are unable to identify any sort of set,
including the empty set.

A material mode of speech that pretends to reference entities mislead-
ingly suggests that different theorems should be correlated with different in-
terpretations of empty proofs by contradiction. However, considering equiv-
alence relations between expressions instead of presuming reference reveals
that such proofs do not prove anything specific because all types of tautolo-
gies can be replaced with one and the same symbol, >. This symbol no
longer depends on the value of any propositional function. It is an illusion
that meaningful existential claims about barbers, sets or machines can be
reduced to absurdity within empty proofs by contradiction.

2.4 Extensional Fallacy

Those who claim that empty proofs by contradiction prove anything of sub-
stance succumb to an “extensional fallacy”: misled by a material mode of
speech within a negated existential claim, they erroneously infer that some-
thing does not exist. However, this fallacy can be overcome by considering
that the logical form of the expression is a tautology and concluding from
this that the expression lacks meaning. This applies to Turing’s proof of
the non-existence of a circle-free β-machine. In fact, the concept of a circle-
free β-machine is simply inconsistent, and the corresponding theorem is an
empty tautology that does not prove anything.

Because empty proofs by contradiction do not prove anything, one might
ask for alternative interpretations that do justice to the intention to refer
to some entity. In fact, one refers to entities that satisfy some meaningful
concept as soon as the domain is restricted to a proper domain of definition.
In the case of Turing’s proof, for example, one might conceive of “x is a
machine that computes β” 15 as a partial function that is not defined for the
description number (D.N.) of the machine in question. However, according
to this understanding, it is not possible to prove the corresponding negative
existential claim, and the relevant β-machine is not circle-free. Therefore,
such a definition does not define the entity to which Turing intends to refer.

15Turing (1936: 246).
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2.5 Turing’s Second Proof

Although Turing believes his first proof to be “perfectly sound”, he has
a sense of the scruples one might feel against diagonal arguments based
on anti-diagonal sequences. Therefore, he delivers a second proof of the
impossibility of a machine D that he believes should not be met with similar
resistance.16 However, although this proof is not based on (1), it nevertheless
proves the same. Consequently, it is also an empty proof proving a tautology.
Thus, it cannot escape the extensional fallacy. This fallacy depends not on
the specific proof but rather on the interpretation of what is proven.

Because his second proof is based not on the anti-diagonal β but rather
on the diagonal β′, it does not rely on (2). In contrast to his first proof,
Turing’s second proof contains a more detailed description of a machine,
H′, that is stipulated to compute β′. In particular, Turing describes how to
compose H′ from D and the demonstrable existing universal machine U such
thatH′ is circle-free iffD is circle-free. As Turing explains,H′ and, therefore,
D are meant to be circle-free because they are stipulated to compute β′.17

However, in the case that H′ computes the value of the position of β′ that is
related to its own S.D., H′ cannot be circle-free because the computation of
the value of the function depends on the value of the very same function.18,19

Therefore, H′ and, consequently, D are simultaneously defined as circular
and circle-free. No machine that is proven not to exist is specified, but an
inconsistent concept that is unsatisfiable by definition is provided.

3 Proof of the Impossibility of FOLD

The aim of Turing20 is to provide a negative solution to Hilbert’s decision
problem: it is impossible to define a machine (denoted in the following by
FOLD, for “FOL Decider”) that can decide whether any given FOL formula
is an FOL theorem. Turing intends to prove the impossibility of FOLD
by showing that the existence of FOLD implies the existence of machines
that have already been proven to be impossible, such as E and D. Based

16Cf. Turing (1936: 246).
17Cf. Turing (1936: 247).
18Cf. Turing (1936: 247).
19Floyd (2012), section 2.2.3, and Floyd (2016a), section 4.5, emphasize the peculiar-

ity of this sort of argument that shows that applying a rule in the special case of self-
application is empty rather than contradictory. I agree. However, I go further than Floyd
in arguing that what Turing argues for is empty. In this respect, Turing’s second proof
suffers from the same problem as his first proof.

20Turing (1936).
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on the analysis presented in section 2, one might expect a proof showing
that the concept of FOLD is inconsistent and, therefore, that the mere
assumption of FOLD is meaningless. However, this is not the case. In fact,
Turing’s impossibility proof for FOLD differs significantly from his proofs
of the impossibility of D in its additional element of a formalization for
machines.

3.1 FOLD vs. D

Unlike D, H, H′ or E , FOLD is not defined by its ability to decide some
property of machines. Instead, FOLD is defined to address a purely logical
problem: to decide whether some logical formula follows from a finite set of
logical formulas. Unlike the assumption of D, the mere assumption of FOLD
is not inconsistent because the concepts of the provability and decidability
of FOL-formulae are well defined. Thus, although one has not yet specified
a machine that satisfies the requirements to be called FOLD, the concept of
such a machine is consistent.

That the existence of FOLD implies the existence of a machine E (and,
consequently, a machine D) follows only from the presumption that for every
machine M, some formalization of M and its configurations exists such
that the task of deciding on logical relations between logical formalizations
is interpretable as the task of deciding whether M ever reaches a certain
configuration. For example, deciding that the formalization of an arbitrary
machine is provable is interpretable as deciding that the formalized machine
is circle-free. Given this presumption, the task of deciding on the relevant
logical formalization is indeed as inconsistent as the concept of D. This is
because it is impossible for decisions on formalizations to be correlated with
the behaviours of formalized machines that include FOLD. This is evident,
e.g., from a machine TFOLDC composed of (i) a translation machine T that
translates machines, i.e. the sequences of instructions, and their states into
their formalizations, (ii) FOLD, and (iii) a machine C that does not print 0
or 1 iff FOLD decides that the provability is positive. When applied to its
own D.N., TFOLDC is circular iff TFOLDC is not circular according to the
interpretation of the logical decision of FOLD.

According to Turing, this argument proves the non-existence of FOLD
(as T and C trivially exist). However, in section 3.5, I argue that this
conclusion is based on a fallacy. As an alternative to Turing’s conclusion,
one might question the presumption that for every machine M (including
machines that contain FOLD), there is a correct formalization such that the
logical implications of the formalizations are correlated with the sequence
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of configurations of M. However, for now, it is sufficient to note that a
material mode of speech allows one to speak of “a circle-free machine D” in
the same manner as one may speak of “a machine FOLD” but that in doing
so, one loses sight of the fact that one refers to a well-defined machine in
only one of these cases. Unlike D, FOLD is not non-existent in the sense of
being defined inconsistently.

3.2 Turing’s Undecidability Proof

Turing’s proof of the impossibility of FOLD is based on his proof of the
impossibility of a machine E that can decide whether an arbitrary machine
M will ever print 0. The proof of the impossibility of E , in turn, proves that
E must contain D in addition to other well-defined machines. Therefore,
it is based on the proof of the impossibility of D. I ignore the details of
the proof of the non-existence of E because the principles of this proof are
similar to those considered in section 2.

The specific type of configuration (or even state21) is irrelevant to un-
decidability proofs of FOL; the question is whether M ever reaches that
configuration (or state). Modern proofs of the undecidability of FOL are
predominantly based on the impossibility of a machine that solves the halt-
ing problem instead of the impossibility of a machine that can decide whether
a given symbol is ever printed. Turing refers to E instead of D because no
“circular” or “circle-free” configuration exists. In the following, I gener-
ally abstain from these peculiarities of Turing’s undecidability proof. My
critique concerns all undecidability proofs based on the formalization of ma-
chines and their configurations.22

An undecidability proof of the type presented by Turing provides an
effective procedure for formalizing machines and their configurations and
proves that a machine M reaches a specific configuration c iff the formal-
ization of c logically follows from the formalization of M and its initial
configuration. Therefore, given FOLD, one possesses a machine that can
decide whether M will ever reach a certain configuration c.

21States are constituents of configurations. A configuration (in Turing’s words, a “com-
plete configuration”) consists of the number of the scanned square, the complete sequence
of all symbols on the tape, and the state of the machine (in Turing’s words, the “m-
configuration”), cf. Turing (1936: 232).

22In fact, my critique applies to all types of proofs of the undecidability of FOL (or
fragments of FOL) because they all essentially involve logical formalization. Church, e.g.,
proved the undecidability of FOL shortly before Turing by formalizing recursive functions
instead of machines. However, I abstain from undecidability proofs that are not based on
the concept of a machine to keep the terminology as simple as possible.
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Turing formalizes the existence of a configuration containing a printed 0
with the following formula:

∃s∃t(N(s) ∧N(t) ∧RS1(s, t)) (3)

The intended interpretation of N(x) is “x is a natural number”, and that
of RS1(x, y) is “in the complete configuration x (of M), the symbol on the
square y is [0]”23. M refers to the formalized machine; the configurations
and squares of the machine are symbolized by numbers. In the following,
I use ∆ to refer to some formalization of the existence of a specific config-
uration (or state) in question. Therefore, Turing’s formula (3) is a specific
instance (FOL-formula) of the meta-variable ∆. In undecidability proofs
based on the halting problem, ∆ represents a formula that formalizes the
existence of a halting state. For simplicity, I will also use ∆ as an abbrevi-
ation for some formalization of the existence of some specific configuration
(or state) and Γ as an abbreviation for some formalization of a machine M
and its initial configuration.

Turing introduces additional intended interpretations, =i, to formalize
(i) the successor function, (ii) the description of the scanned square, and
(iii) the description of the state of a machine. On this basis, he describes a
general formalization procedure for constructing a formula Γ that represents
the instructions of a given machine M and its initial configuration. Similar
to Turing, I abbreviate the formalization of these instructions as Des(M).
In addition, I denote the formalization of the initial configuration by I(M).
Des(M) and I(M) are components of Γ. A proof of the undecidability
of FOL in the manner used by Turing consists of a proof of the following
equivalence:

BC: M reaches configuration c iff Γ ` ∆.

The intended interpretation =i of ∆ on the right-hand side is identical to
the statement on the left-hand side. Therefore, the following equivalence is
also intended to hold: =i(∆) is true iff M reaches configuration c. Turing
abbreviates his formula of the conditional Γ → ∆ that corresponds to the
right-hand side of BC as Un(M). Therefore, in his case, the following is to
be proven: M will print 0 iff ` Un(M).

Turing proves each direction of the equivalence with a separate lemma.
Lemma 1 proves the left-to-right direction. In this case, Turing’s proof
provides a schema for proving Un(M) given that M prints 0. In contrast

23Turing (1936: 259).
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to Lemma 1, the proof of Lemma 2, which proves the right-to-left direction,
is very short and does not refer to any syntactic considerations. Instead,
the proof of Lemma 2 is based on semantics. Because my criticism refers to
Lemma 2, I quote the complete proof below:24,25

Lemma 2. If Un(M) is provable, then S1 [i.e. 0] appears on
the tape in some complete configuration of M.

If we substitute any propositional functions for function vari-
ables in a provable formula, we obtain a true proposition. In
particular, if we substitute the meanings tabulated on pp. 259-
260 in Un(M), we obtain a true proposition with the meaning
“S1 appears somewhere on the tape in some complete configu-
ration of M”.

In the following, I show that this proof rests on a fallacy.

3.3 Empty vs. Semantic Proofs

Taken literally, Turing’s proof of Lemma 2 considers the instantiation of
Un(M). This formula is provable by supposition. Therefore, its instantia-
tion is a tautology. Consequently, one might apply the analysis presented
in section 2 and object to Turing’s claim that no proposition with a certain
meaning is proven because a tautology is meaningless.

However, this literal interpretation does not do justice to Turing’s proof.
Un(M) is of the form Γ→ ∆. The proposition “S1 appears somewhere on
the tape in some complete configuration ofM” (or “M reaches configuration
c” in general) is an instance of (3) (or ∆ in general). Turing’s proof of
Lemma 2 argues for the truth of this proposition given ` Γ → ∆. Because
of the correctness and completeness of FOL, one can also use ∀=(=(Γ) =
F ∨ =(∆) = T ) instead of ` Γ → ∆. Therefore, the implication from right
to left in BC can also be written as follows:

BC’: If ∀=(=(Γ) = F ∨ =(∆) = T ), then =i(∆) = T

Turing’s proof uses universal quantifier elimination on the left-hand side of
BC’, replacing = with =i. In addition, he presumes that =i(Γ) = T because
M and its initial configuration are given and =i(Γ) is nothing but a descrip-
tion of M and its initial configuration. Then, =i(∆) = T follows through

24Turing (1936: 277).
25By “the meanings tabulated on pp. 259-260”, Turing refers to the intended interpre-

tations of the function variables used in Un(M), such as N(x) and RS1(s, t); see above,
p. 12.
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the application of disjunctive syllogism. Contrary to some arbitrary =i of
a formula Γ → ∆ that is assumed to be provable, the intended interpreta-
tion, =i(∆), is a meaningful proposition. Thus, proving that the intended
interpretation of ∆ is true, given that Γ→ ∆ is provable, is not meaningless.

However, Turing’s proof of Lemma 2 presumes that for any machine
M, formulas Γ and ∆ exist such that Turing’s intended interpretations,
=i(Γ) and =i(∆), are among the (logically possible and, thus, admissible)
interpretations = of Γ and ∆. My criticism of Turing’s proof is related to
this presumption.

Contrary to the empty proofs by contradiction of the non-existence of
D, Turing’s undecidability proof of FOL rests on several assumptions that
together imply that some unsolvable problem should be solvable by applying
FOLD to decide on the relevant formalizations. In addition to the (auxiliary)
assumption of the existence of FOLD, it is assumed that for any machine
M, there exists a correct formalization Γ→ ∆ that allows one to infer from
` Γ→ ∆ that M reaches a certain configuration c.

Turing justifies the correctness of his formalization by means of a general
semantic principle sP, which may be summarized as follows (cf. the first
sentence of the proof of Lemma 2 quoted above):

sP: Any instance of a provable formula is a true proposition.

The problem with sP is its implication that any instance of a provable for-
mula is also an admissible interpretation of that formula. As we will see,
this is not the case.

In applying sP, Turing refers explicitly to his intended interpretations
of function variables (predicates). In addition, he refers implicitly to the
ordinary truth functional interpretation of logical constants. Other unde-
cidability proofs than Turing’s do not refer explicitly to sP. However, they
also rest on a semantic justification of Lemma 2 (or some analogous lemma)
that implicitly presumes sP. For example, they presume the contrapositive
of sP by arguing that ∆ does not follow from Γ if the intended interpretation
of ∆ is false but the intended interpretation of Γ is true.26

sP concerns the interpretation of FOL formulas. Therefore, it goes be-
yond pure formal logic. Note that sP also reaches outside pure formal seman-
tics because the intended interpretations are provided in terms of specific
expressions that instantiate logical formulas or their parts. Formal seman-
tics, however, need not presume more than that formulas are interpreted
from truth values and function variables are interpreted from sets. It does

26Cf. Boolos et al. (2003: 130).
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not depend on the assumption that specific sentences instantiate formulas
that indeed refer to truth values, nor the assumption that specific ordinary
predicates instantiate function variables that indeed refer to sets. There-
fore, sP does not follow from the correctness of FOL that is justified by
formal semantics independent of specific instantiations of formulas. Indeed,
the correctness of a calculus does not imply that specific sentences instan-
tiating formulas satisfy the principles of formal semantics. Those sentences
and their constituents may, e.g., not satisfy the principle of extensionality.
Clearly, a proof of correctness does not imply that arbitrary machines and
their configurations are capable of being correctly formalized.

As I illustrate in the following section, sP is not a valid principle. In-
deed, numerous counter-examples exist. Recently, problems with logical
formalizations and the methodological difficulty of justifying such formal-
izations have been discussed in great detail by logicians with philosophical
backgrounds.27 The problem of finding and justifying correct formalizations
is only one aspect of adequate logical formalizations. It seems that the
widespread praxis of logical formalization conceals the fact that formaliza-
tions require justification and may fail. As I illustrate in the following, the
instantiation of logical formulas is not sufficient to conclude that inferences
between instances also behave according to the laws of logic.

3.4 Counter-examples for sP

In specifying counter-examples for sP, I consider only “effective formaliza-
tions”. Effective formalizations are defined by purely syntactic considera-
tions. They simply involve replacing grammatical predicates with logical
predicates. However, effective formalizations do not imply that the logical
constants of the formalizations correspond to paraphrases of the logical con-
stants in the formalized propositions. For example, propositions of the form
“F s are Gs”, such as “humans are mortals”, may be effectively formalized
as ∀x(Fx → Gx). However, effective formalizations do not (i) refer to the
meanings of predicates, (ii) refer to inferences of propositions, (iii) consider
the context dependence of the meanings of expressions, or (iv) logically anal-
yse propositions to reveal their “real logical forms”. Turing’s formalizations
are effective formalizations. Therefore, I consider only problems relating to
effective formalizations.

To question sP, one might consider problems that relate to the truth-
functional definition of “→”, such as the paradox of implication or the so-

27Cf., e.g., Peregrin and Svoboda (2017), Peregrin and Svoboda (2013), Baumgartner
and Lampert (2008), Brun (2004), and Sainsbury (2001).
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called “ex falso quodlibet” or “verum ex quodlibet”. In these cases, formulas
are provable, whereas their instances are true only for a certain meaning
that is not intended. In particular, when a given formula Γ is contradictory,
Γ→ ∆ is trivially logically valid, and =i(∆) may still be false. However, I do
not consider examples of this sort because the critical point of Turing’s proof
concerns the interpretation of predicates (“function variables”). Instead, I
take for granted the truth-functional interpretations of logical constants and
the satisfiability of any formula Γ.

Thus, let us consider several typical problematic instances of valid ar-
gument schemata in FOL based on the interpretation of predicates. Sains-
bury28 offers the following example (4)/S2:

∀x(Fx→ Gx), Fa ` Ga (4)

(4) is a valid argument schema (and therefore, the corresponding implication
is a provable formula). Commonly, propositions of the form “F s are Gs. a
is F . Therefore, a is G” are identified as instances of (4). However, only
one of the following instances is valid:

S1: Humans are sensitive to pain. Harry is a human. Therefore, Harry is
sensitive to pain.

S2: Humans are evenly distributed over the Earth’s surface. Harry is a
human. Therefore, Harry is evenly distributed over the earth’s surface.

This example shows that one must distinguish admissible and inadmis-
sible instances to avoid invalid instances of a provable formula. Instances
are inadmissible iff their effective formalizations permit inferences on the
formal side that do not correspond to valid inferences of the formalized
propositions. Thus, instances are admissible iff the respective effective for-
malizations are correct. One cannot presume that instances of formulas
behave according to the logical rules that apply to the formulas. Roughly
speaking, the “real logical form” of an inadmissible instance is not iden-
tical to the logical form of its effective formalization. In the case of S2,
e.g., one would usually formalize “. . . is evenly distributed over the earth’s
surface” as a second-order predicate. Consequently, in S2, “humans” refers
to all humans collectively, not to each individual human. However, we are
not concerned with non-effective formalization strategies for immunizing sP
against counter-examples. Instead, we are concerned with counter-examples
for sP that arise because of effective formalizations.

28Sainsbury (2001: 50).
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A predicate in ordinary language cannot necessarily be considered an
admissible instance of a predicate in FOL. Another well-known example of
a predicate that does not behave as a predicate of FOL is the predicate “to
exist”. Often, it is better formalized by the existential quantifier than as
a first-order predicate, e.g., to refute ontological proofs of the existence of
God.

Predicates of another sort are related to so-called “opaque contexts”, in
which certain positions of predicates do not refer to objects in the domain.
The following example (5)/S4 is attributable to Montague:29

∃x(Fax ∧Gx) ` ∃xGx (5)

S3: Hans loves a woman. Therefore, a woman exists.

S4: Hans seeks a unicorn. Therefore, a unicorn exists.

(5) is usually accepted as a correct formalization of propositions such as
S3. Therefore, let us effectively formalize propositions of the form “someone
F s a G” as ∃x(Fax ∧ Gx). However, S4 is not valid in a natural reading.
Montague uses this as an argument for his intensional logic. Quine argues
that “x seeks y” is not an admissible instance of a first-order predicate
because the position to the right of “seek” is opaque (non-referential).30

As in the previous case, we are not concerned with the analysis of this
specific example; instead, we are concerned only with the fact of inadmissible
instances and, consequently, incorrect effective formalizations.

Another type of counter-example for sP is induced by predicates that can
be diagonalised, such as “x is false” or “x is a predicate that does not apply
to itself”. In such cases, even the most plain logically valid argument schema
yields instances that are not clearly valid. Consider, e.g., the following valid
argument schemata of propositional logic:

` ¬(P ↔ ¬P ) (6)

` P ∨ ¬P (7)

As long as one does not diagonalise predicates such as “x is false” by
substituting a name for x that refers to the resulting phrase, valid instances
of (6), and (7) result. However, in the special case of diagonalisation, one
might argue that the resulting propositions are true iff they are not true
or that they are not either true or false (and nothing else). From this, one

29Montague (1966: 266).
30Cf. Quine (1960), §30.
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might infer that the respective instances of (6), or (7) are not true. Again,
one may provide various types of strategies for analysing and/or avoiding
this situation. One might, for example, reject the presumption that in-
stances of x are capable of referring in the diagonal case. Diagonalisation,
so to speak, induces opaque positions. Alternatively, one might reject the
application of logic in the diagonal case because the resulting propositions
do not satisfy the bivalence principle. As another alternative, one might in-
troduce a distinction between meta-language and object language to avoid
incorrect effective formalizations. However, for our purposes, it is sufficient
to accept the possibility of incorrect effective formalizations. The instantia-
tion of logical formulas is no guarantee that their instances behave as their
logical counterparts do with respect to inferential implications.

This enumeration of various types of counter-examples for sP is far from
complete. There are no clear-cut criteria that guarantee a correct effective
formalization; what seems to work in some cases might fail in syntactically
similar cases. Furthermore, no consensus exists regarding how to analyse
such cases or how to avoid incorrect formalizations. However, all that is
relevant with regard to Turing’s proof is that sP is not a valid principle
on which a proof can be based. One cannot infer from the provability of
a formula that a particular intended interpretation is true. Indeed, it may
well be that the intended interpretation is not included among the admissible
instances of a provable formula.

3.5 Fallacy of Substitution

I call the fallacy that arises from inferring the truth of an instance from
the fact that it is an instance of a provable formula (or a valid argument
schema) “the fallacy of substitution”. This fallacy rests on the unreliable
semantic principle sP. Turing’s proof of Lemma 2 is a straightforward ex-
ample of this fallacy. Contrary to logical fallacies, such as “affirmation of
the consequence”, fallacies of substitution cannot be detected through logic.
Instead, prima facie, those fallacies seem to be justified by logic. Only an
argument that reaches beyond logic by pointing to the problem of inadmis-
sible interpretations can reveal that a straightforward application of logic is
not justified.

This situation poses a general problem facing all types of arguments con-
cerned with instances of a logical formula: how can one justify the admissi-
bility of the instances under consideration? Any justification must evidently
extend beyond logic. This is particularly applicable to meta-logical proofs,
such as Turing’s undecidability proof. Such proofs judge the properties of
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pure, formal logic, such as the decidability of FOL-provability, by repre-
senting these properties within the language of FOL. Such a representation
makes use of intended (or “standard”) interpretations. Thus, it must be jus-
tified that these interpretations are, in fact, admissible in all cases (including
diagonalisation).

Therefore, one might reject the entire concept of judging upon formal
properties, such as decidability and provability, by employing intended inter-
pretations.31 However, in the following section, I explain why Turing’s proof
provides a reason not only for such general doubt but also for specific doubts
regarding the use of sP to formalize the input of machines including FOLD
(or some logic machine in general) in the special case of diagonalisation.

3.6 Formalization of the Diagonal Case

Turing’s machines are not physical machines but rather sets of instructions.
Starting from some initial configuration, they induce a sequence of config-
urations. Turing translates instructions and configurations into ordinary
propositions that are instances of his logical formalizations. I do not criti-
cize this translation. The problem of correct formalizations is not a problem
specific to the formalization of natural language. Instead of ordinary propo-
sitions, one might use a standardized or artificial language to describe ma-
chines and their configurations. I simply identify configurations with their
descriptions in terms of sentences that are instances of logical formulas.32

The problem of correctly formalizing a machine M is, therefore, identical
to the problem of formalizing the description of M’s configurations. The
question is whether the logical consequences of the formalization of a ma-
chine’s instructions and its initial configuration correspond to the machine’s
sequence of configurations.

Turing’s proof presumes that for any machine M, some correct formal-
ization exists. According to his proof, FOLD would make it possible to
decide whether any arbitrary machine M can ever reach a certain config-
uration based on the corresponding formalization Γ → ∆. Proofs of the
impossibility of a machine are based on critical diagonal cases of machines
that contain the machine that is proposed to decide a given property of

31This seems to be the position of Wittgenstein, cf. Wittgenstein (1967), part I, ap-
pendix I in relation to Gödel’s proof, cf. especially the “notorious paragraph” §8, where
Wittgenstein recommends “to give up the interpretation” instead of inferring that Gödel’s
formula G is undecidable.

32Below, I also call these instantiated formulas simply “descriptions” for brevity. This
ambiguous use is conventional, cf., e.g., Boolos et al. (2003: 130).
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that machine. The proof proves that there is no consistent solution in such
cases. When the problem in question is to be solved by applying FOLD, the
critical diagonal case is a machine MD that contains FOLD evaluating the
formalization of MD. The question is whether in such cases, the existence
of a correct formalization is ensured: are the logical consequences of logical
formulas correlated with sequences of configurations of MD?

Turing infers the truth of =i(∆) by assuming Γ ` ∆. His conclusion is
valid only when a formalization Γ exists for M and its initial configuration
such that =i(Γ) = T and =i is an admissible instance of =(Γ), cf. the argu-
ment based on BC’ on p. 13. In the following, I challenge this presumption
with respect to the formalization of MD.

In his formalization of machinesM, Turing considers only machines with
the initial configuration defined by an empty tape. His formalization of the
initial configuration is the same for all M, namely, ∀yRS0(u, y)∧ I(u, u) (u
refers to the number that has no predecessor, i.e., 0).33 According to Tur-
ing’s intended interpretation, this formula is instantiated by “all squares in
the initial configuration (ofM) are empty, and the initial square is scanned”.
The restriction to machines with initially empty tapes is remarkable because
Turing also considers machines that start with a certain standard description
S.D. or description number D.N. The consideration of such “meta”-machines
is essential for considering impossible machines that decide their own prop-
erties. Furthermore, Turing’s “universal machine”, U , is a machine that
prints the configurations of a machine with the S.D. from which U begins.
For all these meta-machines, the intended interpretation =i of a formula Γ
that contains ∀yRS0(u, y) ∧ I(u, u) is trivially false. Thus, Turing seems to
presume in his formalization of M that meta-machines occur only within
composed machines that start with empty tapes. One might imagine a ma-
chine MD that starts with an empty tape that first generates the D.N. of a
machine that starts with an empty tape, then generates Γ from D.N. and
∆, and finally returns Γ → ∆ (or the respective binary code) to FOLD for
evaluation.

Following Post, one alternative is to release the restriction to machines
M that start with empty tapes. Furthermore, any machine must function
whether it receives its input from another machine or directly. In particular,
one must be able to interpret the relationship between the input and output
of a machine in terms of a function that the machineM computes indepen-
dently of how M receives its input. Finally, it does not matter whether we
consider the input to FOLD in terms of logical formulas or the binary code.

33Cf. Turing (1936: 260).
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Therefore, let us assume in the following that FOLD is initialized directly
with formalizations of machines M and their initial configurations.

Let us consider an assumed machineMD denoted by FOLDC, cf. p. 10,
that starts from its own formalization Γ. The formalization Des(M) of the
instructions of the machine, as one part of Γ, poses no problems. In partic-
ular, Turing’s formalization procedure ensures that Des(M) is satisfiable.
However, the formalization I(M) of the initial state, the other essential part
of Γ, is undefinable in this case. Regardless of what formula is intended to
describe the initial configuration, some part of this formula must describe
exactly this formula (or its binary code). This is impossible because the de-
scription of the symbols on a tape must be longer with respect to the filled
squares than the symbols described on the tape. In particular, this applies
to Turing’s means of formalizing the configurations of his machines. It is
impossible to state, without more than one symbol filling only one square,
what symbol is described and where it is within a certain configuration.
Therefore, it is impossible to interpret some part of any formula Γ as de-
scribing precisely that same formula Γ. This may be stated in another way:
to describe certain configurations, the description must have a certain logi-
cal form, and this condition is not satisfied in the diagonal case.34 As in the
case of the counter-examples for sP discussed in section 3.4, the syntax and
formal semantics of FOL are simply not appropriate for the formalization
of the problem in question. In this respect, there exists no formula Γ such
that its intended interpretation, =i(Γ), describes the instructions and initial
configuration of FOLDC. This may be restated as follows: regardless of
what is offered as a formalization Γ of FOLDC and its initial configuration,
it cannot imply a correct formalization of the initial configuration of the
tape in this case.

This reasoning for the non-existence of a correct formalization of FOLDC
starting from its own formalization does not rely on the fact that the hypo-
thetical assumed machine FOLD does not exist. This is so because the same
argument is valid if FOLD is replaced by a well-known and existing theorem
prover TL. Because applying Lemma 2 presumes that Γ ` ∆, no principal
difference from FOLD exists in this case that is decidable by the “semi-
decider” TL. Assuming that TLC is initialized with its own formalization
similarly results in a diagonal case in which the intended interpretation of
the formalization implies that the machine decides its own behaviour. The
impossibility of a correct formalization in such cases is based not on the
non-existence of the relevant machine but rather on the fact that the in-

34Cf. Wittgenstein (1994), remarks 3.33 and 3.332.
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tended interpretation =i is not among the admissible interpretations of any
logical formula. It is not the logic machines that cannot exist but rather
the correctness of their formalizations in the diagonal case. To maintain
the contrary is similar to inferring that the counter-examples discussed in
section 3.4 do not exist because there are no correct effective formalizations
of those examples.

Even if one attempts to circumvent this argument by preceding FOLD
with another machine whose input is described by Γ, the problem remains
that FOLD must be capable of deriving descriptions from Γ that must, in
turn, be described. Consider, e.g., a machine CTFOLDC such that a copy
machine C copies the D.N. of CTFOLDC and a translation machine T gen-
erates I(CTFOLDC) and Des(CTFOLDC) from each binary code and,
finally, returns Γ → ∆ to FOLD. However, deriving descriptions from Γ
gives rise to configurations that, in turn, involve descriptions that must be
derived. In such a case, it cannot be presumed that the logical consequences
of Γ correspond to the sequences of configurations of the machine: unlike in
a non-diagonal case, it is impossible to correlate one-to-one derivations of
formalizations of configurations from Γ with configurations of CTFOLDC
starting from its own D.N. This fact affects the existence of a correct formal-
ization and, therefore, the question of whether the intended interpretation
is among the possible interpretations of a logical formula. However, there
is no reason why the possibility of a purely logical decision concerning the
provability of a logical formula should be affected by a circular definition of
descriptions of configurations describing descriptions that are, in turn, de-
scribed. The resulting problems are evidently problems of interpretation and
not of algorithmic logic. Diagonalisation rules out an isomorphism between
sequences of configurations and the logical relations of assumed formaliza-
tions. The result of this is that there is no correct formalization in the
diagonal case.

Formalizing logic machines yields problems similar to those that arise
in the case of formalizing diagonalisable predicates, cf. above p. 17. The
correctness of a formalization is not ensured in the diagonal case. This says
nothing about the possibility of diagonal functions, only about the possibility
of correct logical formalizations in such cases.

According to this argument, there is no reason to maintain the impossi-
bility of deciding FOL-theoremhood. When a correct formalization of some
proposition, P , is presumed, FOLD could also be used to decide whether P
is true. However, not all propositions are decidable in this way because not
all propositions are definable within the language of FOL. It is, for example,
not possible to decide through logical formalization whether any arbitrarily
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chosen machine M ever halts.

4 Undecidability vs. Undefinability

According to the analysis presented here, proofs of the impossibility of D
or FOLD prove not undecidability theorems but undefinability theorems.
In the case of D, such a machine that is intended to be circle-free is not
definable. In the case of FOLD, such a machine is definable and may exist,
but FOLD and its configurations are not fully definable within the language
of FOL.

When one interprets Turing’s proofs as undecidability proofs, one is mis-
led by a material mode of speech that interprets certain instances of logical
formulas, without reservation, as statements about machines. Instead, one
should first ask whether the relevant instances are consistently interpretable
in terms of statements about machines. Any intended interpretation of a
logical formula makes use of some other language in place of FOL. The rela-
tionship between the language used for interpretation and FOL is not unique.
Instances of provable formulas need not be meaningful or true; indeed, they
may well (i) lack sense by virtue of being tautological, (ii) be nonsensical in
that they lack unambiguous truth values, or (iii) be false. Concluding that
any instance of a provable formula is a meaningful and true proposition is a
fallacy, be it an extensional fallacy or a fallacy of substitution. Turing’s un-
decidability proof of FOL is based on these two types of fallacies. Therefore,
his proof is invalid. There is no compelling reason to give up the search for a
decision procedure for FOL. The problems encountered when defining such
a procedure are logical in nature and cannot be resolved by considerations
that are beyond pure logic.
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