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Abstract

We consider to what extent the fundamental question of space-time singularities
is relevant for the philosophical debate about the nature of space-time. After review-
ing some basic aspects of the space-time singularities within GR, we argue that the
well-known difficulty to localize them in a meaningful way may challenge the received
metaphysical view of space-time as a set of points possessing some intrinsic properties
together with some spatio-temporal relations. Considering the algebraic formulation
of GR, we argue that the space-time singularities highlight the philosophically mis-
leading dependence on the standard geometric representation of space-time.

1 Introduction

Despite Earman’s invitation to consider more carefully the question of space-
time singularities (Earman 1995), only few literature in space-time philosophy
has been devoted to this foundational issue.1 This paper aims to take up this
invitation and to carry out philosophical investigations about space-time sin-
gularities in the framework of the contemporary debate about the status and
the nature of space-time. Indeed, there are two main positions with respect to
space-time singularities and their generic character due to the famous singu-
larity theorems: first, they can be thought of as physically meaningless, only
revealing that in these cases the theory of general relativity (GR) breaks down
and must be superseded by another theory (like a future theory of quantum
gravity (QG) for instance).2 Therefore, as such space-time singularities do not
tell us anything physically relevant. Second, space-time singularities can be
taken more ‘seriously’: they can well be considered as physically problematic

∗vincent.lam@unil.ch
†Department of Philosophy & Centre romand for logic, history & philosophy of science, CH-1015

Lausanne, Switzerland
‡First version: March 13, 2006

1



but nevertheless as involving some fundamental features of space-time. In this
sense, their careful study at the physical, mathematical and conceptual level
may be helpful in order to understand the nature of space-time as described
by GR. This paper aims to investigate this line of thought. In this frame-
work, the question of space-time singularities is actually a fascinating one,
which may be related at the same time to the question of the ‘initial’ state of
our universe and to the question of the fundamental structure of space-time.

Roughly, the main question of this paper is the following one: in a sci-
entific realist perspective and assuming that the space-time singularities tell
us something about the nature of space-time (again, this assumption is not
evident), what do they tell us? The (tricky) problem of the very definition of
space-time singularities is an essential part of the question.

In Section 2, we will review the main concepts necessary to give an account
of space-time singularities within GR. In particular we will see that the various
attempts to define the space-time singularities in terms of local entities (like
some kind of ‘holes’ or ‘missing points’ for instance) fail. We will then argue
in subsection 3.1 that this may constitute a strong argument for considering
space-time singularities rather as a non-local property of space-time. The
central part of the paper consists in evaluating the possible consequences of
space-time singularities for the metaphysical conception of space-time.

Even if taken ‘seriously’, space-time singularities are however not a satis-
factory part of GR. In this perspective, we will briefly consider in subsection
3.2 some recent theoretical developments within the algebraic formulation of
GR regarding the space-time singularities. These developments draw some
possible physical (and indeed mathematical) consequences of the above men-
tioned aspects. This algebraic approach to space-time takes the non-local
aspects of the space-time singularities as revealing that space-time is non-
local and pointless at the fundamental level. The considerations about the
algebraic formulation of GR underline the fact that the metaphysical concep-
tion of space-time should not be dependent on a particular formulation (like
the inherently pointlike standard geometric one for instance), as it seems to
be often the case.

2 Some aspects of the singular feature of

space-time

2.1 Extension and incompleteness

At the present state of our knowledge, it seems to be quite commonly accepted
in the relevant physics literature that there is no satisfying general definition
of a space-time singularity (for instance, see Wald 1984, 212). In other terms,
the notion of a space-time singularity covers various distinct aspects that
cannot be all captured in one single definition. We certainly do not pretend
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to review all these aspects here. We rather want to focus on the first two
fundamental notions that are at the heart of most of the attempts to define
space-time singularities.

The first is the notion of extension of a space-time Lorentz manifold (to-
gether with the interrelated notion of continuity and differentiability con-
ditions).3 The idea is to insure that what we count as singularities are not
merely (regular) ‘holes’ or ‘missing points’ in our space-time Lorentz manifold
that could be covered (‘filled’) by a ‘bigger’ but regular space-time Lorentz
manifold with respect to some continuity and differentiability conditions (or
Ck-conditions). These latter conditions (together with the notion of exten-
sion) are therefore essential for any characterization of space-time singular-
ities. But, at this level, there are two major ambiguities that are part of
the difficulties to define space-time singularities. First, extensions are not
unique and all possible extensions must be carefully considered in order to
discard (regular) singularities that can be removed by a mere regular exten-
sion. Given some Ck-condition, we will always consider maximal space-time
Lorentz manifolds.4 A space-time singularity will therefore be defined with re-
spect to certain Ck-conditions (and indeed should be called a Ck-singularity;
these conditions are often implicit and not always mentioned). This fact leads
to the second difficulty: it is not clear what are exactly the necessary and
sufficient continuity and differentiability conditions for a space-time Lorentz
manifold to be physically meaningful.5

Strongly related with the idea of extension, the second essential notion
in order to give an account of space-time singularities is the notion of curve
incompleteness, which is the feature that is widely recognized as the most
consensual characterization so far of space-time singlarities (see for instance
Wald 1984, §9.1). Moreover, it is actually curve incompleteness that is pre-
dicted by the singularity theorems as the generic singular behaviour for a
wide class of solutions.6 The broad idea is that we should look at the behav-
ior of physically relevant curves (namely geodesics and curves with a bounded
acceleration) in the space-time Lorentz manifold for ‘detecting’ space-time sin-
gularities (which actually do not belong to the space-time Lorentz manifold):
in particular, the idea is that an (inextendible) half-curve of finite length (with
respect to a certain generalized affine parameter) may indicate the existence
of a space-time singularity. The obvious intuition behind this idea is that,
roughly, the (inextendible) curve has finite length because it ‘meets’ the sin-
gularity (it must be clear that this way of speaking is actually misleading in
the sense that the ‘meeting’ does not happen in the space-time Lorentz man-
ifold). Pictorially, anything moving along such an incomplete (non-spacelike)
curve (like an incomplete geodesic or an incomplete curve with a bounded ac-
celeration) would literally ‘disappear’ after a finite amount of proper time or
after a finite amount of a generalized affine parameter (again, we must be very
careful when using such pictures; for instance, the event of the ‘disappearance’
itself is not part of the space-time Lorentz manifold). In more formal terms,
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a (maximal) space-time Lorentz manifold is said to be b-complete if all inex-
tendible C1-half curves have infinite length as measured by the generalized
affine parameter (it is b-incomplete otherwise).7 The link with the initial in-
tuition comes from the fact that it can be shown that b-completeness entails
the completeness of geodesics and of curves with a bounded acceleration (but
not vice versa).

2.2 Boundary

The most widely accepted standard definition of a singular space-time is the
following one: a (maximal) space-time (Lorentz manifold) is said to be singu-
lar if and only if it is b-incomplete. However, b-incompleteness only indirectly
refers (if at all) to space-time singularities in the sense of localized singular
parts of space-time (like space-time points where something ‘goes wrong’).
Space-time singularities are actually not part of the space-time Lorentz mani-
fold (M, g) representing space-time (within GR) in the sense that they cannot
be merely represented by points p ∈ (M, g) (or regions) where some physi-
cal quantity related to the space-time structure (like the scalar curvature for
instance) goes to infinity.8

Boundary constructions can be understood as attempts to describe space-
time singularities directly in terms of local properties that can be ascribed to
certain boundary points ‘attached’ to the space-time Lorentz manifold. The
physical motivation is to do local physics, that is, to study the space-time
structure ‘near’ (or even ‘at’) the singularities. It will suffice for our purpose
here to only briefly consider some aspects of the so-called b- and a-boundary
constructions.

The main idea of the b-boundary construction is to consider the b-incomplete
curves to define (singular) boundary points (as their endpoints) that can be
‘attached’ to the space-time Lorentz manifold. Schmidt’s procedure provides
a way to construct such a (singular) boundary ∂M (called b-boundary) us-
ing the equivalence between the b-completeness of the space-time Lorentz
manifold (M, g) and the Cauchy completeness of the total space OM of the
orthonormal frame bundle π : OM → M (Schmidt 1971). In order to make
physical sense of the idea of localizing the space-time singularities with the
help of these boundary points, it is necessary to endow the singular bound-
ary with some differential or at least some topological structure. But it has
been shown that the b-boundary of the closed Friedman-Lemâıtre-Robertson-
Walker (FLRW) solution, which is part of the ‘standard model’ of contempo-
rary cosmology, consists of a single point that is not Hausdorff separated from
points of the space-time Lorentz manifold (Bosshard 1976; Johnson 1977).
Being not Hausdorff separated from points of M , this unique boundary point,
which should represent the two singularities of the closed FLRW model, is
actually ‘arbitrarily close’ to the points of M .9 It is then very difficult to give
physical meaning to such a behavior in terms of local entities or properties
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since any (regular) points p ∈ (M, g) has the singular boundary point in his
(arbitrarily small) neighborhood:10 at least any (usual) sense of localization
of the singularities, which is indeed one of the main motivations for bound-
ary points, seems then to be lost (Earman 1995, 36-37). Moreover, such bad
topological behavior has been shown to be a feature of all boundary construc-
tions that share with the b-boundary construction certain natural (and rather
weak) conditions (Geroch Can-bin and Wald 1982).

With the help of the central notion of extension or envelopment, the a-
boundary construction aims to truly capture the idea of ‘missing points’, ac-
cording to which space-time singularities have to be considered as points in
a ‘bigger’ manifold. More precisely, the motivation of the a-boundary con-
struction is that singularities in a space-time Lorentz manifold have to be
considered as points (or subsets) of the topological boundary of the (image of
the) manifold with respect to an envelopment (such subsets are called bound-
ary sets). In order to overcome the already mentioned difficulty of the non-
uniqueness of the possible envelopments of a given manifold (subsection 2.1),
the a-boundary is defined as a set of equivalence classes of boundary sets
(with respect to different envelopments) under a relevant equivalence relation
(called the mutual covering relation, see Scott and Szekeres 1994). The a-
boundary points representing (essential) space-time singularities are further
defined with respect to incomplete curves. Avoiding the technical details,
it is sufficient for our purpose here to emphasize that a space-time singu-
larity is then represented by an equivalence class of boundary sets, most of
which are in general not singletons (and not even necessarily connected). In
this framework, any interpretation of a space-time singualrity as a pointlike
or local space-time entity to which local properties could be ascribed seems
problematic too (Curiel 1999, 133-36).

3 Singular feature and space-time meta-

physics

3.1 A non-local feature of space-time

We have seen that space-time singularities cannot be merely described by
space-time Lorentz manifold points (or regions) where something ‘goes wrong’
(where the scalar curvature ‘blows up’ for instance). This is actually inti-
mately related to the dynamical nature of the space-time structure as de-
scribed by GR: space-time singularities are indeed singularities of the space-
time structure itself and there is no a priori fixed (space-time) structure or
entity with respect to which the space-time singularities could be defined. The
point is that the very characterizations of space-time singularities within GR,
in terms of curve (b-)incompleteness or with the help of boundary construc-
tions, do not enable us to conceive space-time singularities as meaningful
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local entities or properties, which are defined here to be those that can be
associated with (and determined at) a space-time point and its (arbitrarily
small) neighborhood. In order to be physically meaningful, such definition of
local entities and propeties requires that a (topological) separation assump-
tion holds among the space-time points. For instance, it seems meaningful
to require that distinct local properties can be associated with (determined
at) distinct space-time points together with their disjoint (arbitrarily small)
neighbourhood, no matter how close to one another they are (Hausdorff con-
dition). Such (topological) separation assumption lies then at the heart of
the definition of local entities and properties and is in general part of the
standard differential geometric representation of space-time, in which, there-
fore, “a significant amount of locality is being presupposed” (Earman 1987,
453). As we have seen above, this aspect of locality can be violated by space-
time singularities in some physically important cases. In general, there is no
clear and necessary link between the singular behaviour of space-time and the
existence of any particular local entities like space-time (boundary) points
or local properties instantiated at particular space-time (boundary) points
(this is clearly underlined in Curiel 1999; see also Dorato 1998, 340). In this
sense, this singular behaviour seems to constitute an irreducible non-local
feature of space-time.11 More precisely and as a consequence of this non-
local aspect, the singular behaviour of space-time cannot be reduced to (is
not supervenient on) some intrinsic properties12 instantiated at some partic-
ular space-time (boundary) points. In this perspective, it bears some analogy
with some other non-local aspects of the space-time structure, like the grav-
itational energy and, in a certain sense, some (irreducible) global topological
properties. But it does not merely amount to the widely recognized non-
supervenience of space-time relations on intrinsic properties of the space-time
points13 (Cleland 1984). Whereas a particular space-time relation needs to
be instantiated between particular space-time points, what we want to stress
here is that space-time may possess some fundamental features that are ac-
tually independent of the existence of any particular space-time points (and
of any intrinsic properties instantiated at particular space-time points). Such
non-local features of space-time may challenge therefore the received atom-
isitic (local) view of space-time (and of the world) as a set of points possessing
some intrinsic properties together with some space-time relations (like within
Lewis’ thesis of Humean supervenience).14 So, it seems that not only quan-
tum physics, but also classical general relativistic physics may threaten this
traditional metaphysical conception of the world.15

This should prevent us from limiting our ontological considerations about
space-time only to local properties and entities. In particular, we should not
put too much ontological weight on local and intrinsic properties of space-time
points (as well as on space-time points themselves). Indeed, this sceptical at-
titude towards space-time points and their possible intrinsic properties may
well receive support from the GR-principle of active general covariance (or of
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invariance under active diffeomorphisms) and the related hole argument. Due
to this fundamental physical principle, a wide range of philosophers of physics
and physicists agree on the fact that, within GR, space-time points cannot be
physically individuated (and therefore ‘localized’), possessing intrinsic prop-
erties for instance, independently of the space-time relations (structure) as
represented by the metric (see for instance Dorato 2000, Rovelli 2004, ch.2).

As regards the ontological status of space-time, taking into consideration
(‘seriously’) the singular feature of space-time (and more generally non-local
- or global - aspects of space-time) seems to favour a non-atomistic space-
time metaphysics, be it substantivalist or relationalist. Such conception is
understood in the broad sense of an ontology that does not give priority to
local entities, like space-time points or pointlike bits of matter, with or without
intrinsic properties, over the global structure in which they are embedded, like
the space-time or world structure with its non-local aspects. Of course, this
broad metaphysical framework can be refined, according to the ‘ontological
space’ one leaves to local entities.16 We argue that both substantivalism and
relationalism need to accommodate these non-atomistic (or structural) and
non-local (or global) aspects.17 Indeed, within a scientific realist perspective,
this focus on structures has strong flavours of a structural realist metaphysics.

According to a rather radical approach to the question of the singular
behaviour of space-time, it may be the case that the moral of the ‘space-
time singularities problem’ is that the very concept of a space-time point (or
pointlike bits of matter) is challenged at the fundamental level.18 The singular
feature would then reveal the fundamental non-local and non-pointlike (or
pointless) nature of space-time, which would need to be described in other
mathematical (non-pointlike or pointless) terms. These could be algebraic.

3.2 Algebraic approaches

If the philosophical analysis of the singular feature of space-time is able to
shed some new light on the possible nature of space-time (as we have tried to
show), one should not lose sight of the fact that, although connected to funda-
mental issues in cosmology, like the ‘initial’ state of our universe, space-time
singularities involve unphysical behaviour (like, for instance, the very geodesic
incompleteness implied by the singularity theorems or some possible infinite
value for physical quantities) and constitute therefore a physical problem that
should be overcome.19 We now want to consider some recent theoretical devel-
opments that directly address this problem by drawing some possible physical
(and mathematical) consequences of the above considerations.

Indeed, according to the algebraic approaches to space-time, the singular
feature of space-time is an indicator for the fundamental non-local character
of space-time: it is conceived actually as a very important part of GR that re-
veals the fundamental pointless structure of space-time. This latter cannot be
described by the usual mathematical tools like standard differential geometry,
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since, as we have seen above, it presupposes some “amount of locality” and
is inherently pointlike. The mathematical roots of such considerations are to
be found in the full equivalence of, on the one hand, the usual (geometric)
definition of a differentiable manifold M in terms of a set of points with a
topology and a differential structure (compatible atlases) with, on the other
hand, the definition using only the algebraic structure of the (commutative)
ring C∞(M) of the smooth real functions on M (under pointwise addition
and multiplication; indeed C∞(M) is a (concrete) algebra). For instance, the
existence of points of M is equivalent to the existence of maximal ideals of
C∞(M).20 Indeed, all the differential geometric properties of the space-time
Lorentz manifold (M, g) are encoded in the (concrete) algebra C∞(M). More-
over, the Einstein field equations and their solutions (which represent the var-
ious space-times) can be constructed only in terms of the algebra C∞(M).21

Now, the algebraic structure of C∞(M) can be considered as primary (in
exactly the same way in which space-time points or regions, represented by
manifold points or sets of manifold points, may be considered as primary)
and the manifold M as derived from this algebraic structure. Indeed, one can
define the Einstein field equations from the very beginning in abstract alge-
braic terms without any reference to the manifold M as well as the abstract
algebras, called the ‘Einstein algebras’, satisfying these equations. The stan-
dard geometric description of space-time in terms of a Lorentz manifold (M, g)
can then be considered as inducing a mathematical (Gelfand) representation
of an Einstein algebra. Without entering into too many technical details,
the important point for our discussion is that Einstein algebras and sheaf-
theoretic generalizations thereof reveal the above discussed non-local feature
of (essential) space-time singularities from a different point of view.22 In the
framework of the b-boundary construction M = M ∪∂M (see subsection 2.2),
the (generalized) algebraic structure C corresponding to M can be prolonged
to the (generalized) algebraic structure C corresponding to the b-completed
M such that CM = C, where CM is the restriction of C to M ; then in the
singular cases (like the closed FLRW solution), only constant functions (and
therefore only zero vector fields)23 can be prolonged. This underlines the non-
local feature of the singular behaviour of space-time, since constant functions
are non-local in the sense that they do not distinguish points. This fun-
damental non-local feature suggests non-commutative generalizations of the
Einstein algebras formulation of GR, since non-commutative spaces are highly
non-local (see for instance Demaret Heller and Lambert 1997 and references
therein). We will not discuss this matter here. It is sufficient for us to stress
that, in general, non-commutative algebras have no maximal ideals, so that
the very concept of a point has no counterpart within this non-commutative
framework. Therefore, according to this line of thought, space-time, at the
fundamental level, is completely non-local (pointless indeed). Then it seems
that the very distinction between singular and non-singular is not meaningful
anymore at the fundamental level; within this framework, space-time sin-
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gularities are ‘produced’ at a less fundamental level together with standard
physics and its standard differential (commutative) geometric representation
of space-time (see Heller 2001 and references therein).

Although these theoretical developments are rather speculative, it must
be emphasized that the algebraic representation of space-time itself is “by no
means esoteric” (Butterfield & Isham 2001, §2.2.2). Starting from an alge-
braic formulation of the theory, which is completely equivalent to the stan-
dard geometric one, it provides another point of view on space-time and its
singular behaviour that should not be dismissed too quickly. At least it un-
derlines the fact that our interpretative framework for space-time should not
be dependent on the traditional atomistic and local (pointlike) conception of
space-time (induced by the standard differential geometric formulation). In-
deed, this misleading dependence on the standard differential geometric for-
mulation seems to be at work in some reference arguments in contemporary
philosophy of space-time, like in the hole argument24 or in the field argument
(Field 1980, 35). According to the latter argument, field properties occur at
space-time points or regions, which must therefore be presupposed. Such an
argument seems to fall prey to the standard differential geometric represen-
tation of space-time and fields, since within the algebraic formalism of GR,
(scalar) fields - elements of the algebra C∞ - can be interpreted as primary
and the manifold (points) as a secondary derived notion.25

4 Conclusion

Taking up Earman’s invitation to consider space-time singularities ‘seriously’
has led us to deal with fundamental issues about the nature of space-time. In-
deed, we have seen that space-time may possess some fundamental non-local
features, like the singular feature, that challenge the traditional atomistic
view about space-time (as in Lewis’ Humean supervenience thesis). Accord-
ing to this received view, space-time is conceived as a set of points, at which
intrinsic properties are instantiated, together with the space-time relations.
Indeed, the very concept of a space-time point seems to lie at the heart of the
challenge. It cannot be merely postulated anymore (as in the field argument),
since it is indeed a secondary derived notion within the algebraic formulation
of GR. This latter formualtion may with reason be considered as deserving to
play a role in the interpretative issues about space-time - at least to the same
extent as the standard differential geometric formulation does. Actually, the
alleged interpretational problems with respect to space-time singularities may
find part of their roots in the misleading dependence on the atomisitc and
local conception of space-time, which is actually induced by this standard
differential geometric representation of space-time. And this gives a struc-
turalist flavour to space-time as described by GR and independently of the
formulation. But this is a story for another time.
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Notes
1Some notable exceptions are Earman 1996, Curiel 1999 and Mattingly 2001 for

instance.
2They may merely not occur in our universe if one of the (necessary) hypotheses

of the singularity theorems were violated, see Mattingly 2001. For a detailed physical
discussion of these hypotheses, see Senovilla 1997.

3An extension of a space-time Lorentz manifold (M, g) is any space-time Lorentz
manifold (M ′, g′) of same dimension where (M ′, ϕ) is an envelopment of M and such
that ϕ∗(g) = g′|ϕ(M) holds.

4A space-time Lorentz manifold (M, g) is maximal with respect to some Ck-
condition if there is no extension (M ′, g′) where the metric g′ is Ck at the boundary
∂′M of ϕ(M) in M ′.

5A possible guideline would be to require that these conditions secure that the
fundamental laws of GR, that is, the Einstein field equations and the Bianchi identity,
are well defined, see Earman 1995, §2.7.

6However, the notion of curve incompleteness does not encompass all aspects of
space-time singularities (like for instance certain aspects linked with the violation of
the cosmic censorship).

7The generalized affine parameter u for a C1-half-curve γ(t) is defined by u :=∫ t

0
(
∑3

α=0(V
α(t))2)

1
2 dt, where V (t′) = V α(t′)eα(p), p = γ(t′), is the tangent vector

expressed in the parallel propagated orthonormal basis eα.
8Space-time is represented within GR by a pair (M, g), where M is in general

assumed to be a ‘nice’ (paracompact, connected, Hausdorff, oriented) 4-dimensional
differentiable manifold and g is a Ck (k ≥ 2 in general) Lorentz metric, solution of
the Einstein field equations and defined everywhere on M .

9A topological space M is Hausdorff if ∀p, q ∈ M, p 6= q,∃ open sets U, V ⊂ M
such that p ∈ U and q ∈ V and U∩V = ∅; p and q are said to be Hausdorff separated.
So, if two points of a topological space (like M) are not Hausdorff separated, it is not
possible for them to find two (‘arbitrarily small’) disjoint neighborhoods (open sets):
it is in this topological sense that they can be considered as ‘arbitrarily close’.

10The same problem arises in the case of the Schwarzschild solution.
11From the semantical point of view, this favours then the “adjective conceptions

of space-time singularities” (Earman 1995, 28).
12In the standard view, intrinsic properties are those whose instantiation is inde-

pendent of accompaniment or loneliness, see Langton and Lewis 1998.
13Or pointlike bits of matter; the main claim here does not side with any position

in the substantivalism-relationalism debate, but for simplicity we mainly use the
space-time points talk.

14To include merely the non-local features of space-time in the supervenience basis
would be a rather ad hoc solution.

15Butterfield has recently argued that also classical mechanics excludes this atom-
istic conception about space-time and the world, which, following Lewis, he calls
‘pointillisme’ (Butterfield 2006).

16For instance, we have just seen that there is a strong argument against intrinsic
properties of space-time points, reducing therefore their ontological weight: at best,
they are on the same ontological footing as space-time relations, their identity being
entierly determined by relational properties, see Esfeld and Lam 2007.
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17Indeed, it seems that it is exactly what it is done in the recent ‘sophisticated’
substantivalist and relationalist positions that seek to account for the hole arguement,
see Rickles and French 2007 and references therein.

18This amounts to reducing the ‘ontological space’ of local entities to zero, i.e.
rejecting them from our ontology.

19However this does not entail that GR is either false or incomplete, see Earman 1996.
20A maximal ideal of a commutative algebra A is the largest proper subset of -

indeed a subgroup of the additive group of - A closed under multiplication by any
element of A. The corresponding maximal ideal of C∞(M) to a point p ∈ M is the
set of all vanishing functions at p.

21The original idea is due to Geroch 1972.
22There are indeed several algebraic approaches to GR. For instance, according

to the Abstract Differential Geometry program of Mallios and Raptis, space-time
singularities are merely direct artifacts of our mathematical (C∞-)representation of
space-time: indeed, they simply disappear once GR is written in purely algebraic
(sheaf-theoretic) terms, see Mallios and Raptis 2003. In the following, we rather
brielfy consider the (less radical) approach of Heller, which emphasizes some inter-
esting points for our discussion.

23In the algebraic formalism, vector fields are abstract ‘derivations’.
24The hole argument has been recently discussed in (Bain 2003) within the frame-

work of the algebraic formulation of GR.
25And this does not even take into account the fact that, within sheaf-theoretic or

non-commutative generalizations, the very concept of a point may be challenged at
the fundamental level.

13


