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Abstract What is the proper attitude toward what is expressed by a vague sentence in
the face of borderline evidence? Some call this attitude “ambivalence” and distinguish it
from uncertainty. It has been argued that Classical Epistemicism conjoined with classical
probability theory fails to characterize this attitude, and that we must therefore abandon
classical logic or classical probabilities in the presence of vagueness. In this paper, I give
a characterization of ambivalence assuming a supervaluationist semantics for vague
terms that does not revise either. The theory, which I call the theory of
Superprobabilities, identifies the proper attitude toward a vague sentence, in the pres-
ence of exact borderline evidence, as the set of classical probabilities of the evidence on
eachmember of the set of all precisifications of a vague sentence. I defend the use of sets
of probabilities against objections by generalizing the theory of Superprobabilities to a
decision theory called Superrationality. I then compare the merits of the theory of
Superprobabilities to Classical Epistemicism and nonclassical probabilities theories with
respect to the problem of ambivalence.
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1 Introduction

Consider the vague predicate “is salty”. What is our typical belief about the stew being
salty when it tastes borderline salty?What should it be? One answer to both questions is
ambivalence and not uncertainty. The answer to the first, descriptive question rests on
phenomenological grounds. The feel of our attitude toward the proposition that the stew
is salty is one of being pulled in two directions. This is not the same as the feeling of not
being pulled in either direction. I am uncertain as to whether the stew is salty when I
have seen a bit of salt added but have not tasted the stew. But this attitude of uncertainty
does not feel like the one I have when I have tasted the stew as perceptively as possible,
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and it is clearly a borderline case of salty. This latter seems to be a genuine attitude, not
the lack of an attitude. If you march me through a continuum of cases as you add one
grain of salt at a time to the stew, I would start by being fully confident that it was not
salty, and I would end up fully confident that it was salty. In the middle, it would be
difficult to claim that I have no views at all about the saltiness of the stew. I have views
expressible in other terms, like “it is borderline salty” or “it is not clearly salty, but also
not clearly not salty”. Yet, the fact that I can express attitudes in other terms does not
answer the question of what I think about these terms, “is the stew salty?” The answer,
according to these phenomenological considerations, is ambivalence, a distinct attitude
from uncertainty.

According to the Conjunction problem for Classical Epistemicism, ambivalence,
and not merely uncertainty, is also the proper attitude to have toward the claim that
the stew is salty. (This problem is first offered in the work of Schiffer (Schiffer 2003),
and addressed extensively by MacFarlane (MacFarlane 2010)). According to
Classical Epistemicism, for every pot of stew, either the stew is salty or the stew is
not salty. A stew with absolutely no percentage of salt is not salty. A stew that is three
percent salt is salty. Therefore, by classical logic, there is an n such that a pot of stew
containing n% salt is not salty, but the same pot containing the same stew with n% +
one grain of salt is salty. Indeed, for all vague terms, there is a sharp-cutoff in a
continuum of cases where the term applies to all cases at or above (below) the cutoff,
and the negation of the term applies to all cases below (above) the cutoff. While this
conclusion strikes people as implausible, the explanation for this seeming implausi-
bility according to the Epistemicist is that no human is in a position to know the value
of n, and no one can conceive of what it would take to know the value of n. This
necessary ignorance follows from certain truths about the limits of human knowledge.
Where humans find themselves necessarily ignorant, like whether and where there is
a sharp-cutoff for applications of the term “salty”, they conclude that it is implausible
that there is such a thing . But since humans would be ignorant even if there were a
sharp-cutoff, the implausibility is no evidence against the existence of a sharp-cutoff.
The Epistemicist argues that in favor of the existence of the cut-off is (1) all of the
successes of first-order logic, (2) an argument that every other view will require some
kind of unknowable sharp-cutoff, in which case positing only one cut-off between
truth and falsity is simplest and most coherent, and (3) the insufferable problems
faced by all views denying a single sharp cut-off. 1

For the Conjunction Problem, note that Classical Epistemicism requires that the
rational attitude to take toward the stew being salty, when it tastes borderline salty, is
one of uncertainty, like the uncertainty we have if we lacked complete information
about the stew. When the stew tastes borderline salty, we do not know whether it is
salty, for it might just as likely be above or below the cutoff for saltiness given this
evidence. Thus we should be 50 % certain that the stew is salty. By parity of
reasoning, we should also be 50 % certain that the stew is spicy when it tastes
borderline spicy. The same will be true if the stew also tastes borderline sour. Let us
assume that being salty, spicy, and sour are independent.2 We now have the following

1 Classical Epistemicism is defended in (Williamson 1994), (Sorensen 1988), and (Sorensen 2001)
2 A false assumption, but no matter. Change the predicates to your favorite three that pick out independent
properties.
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evidence; the stew tastes borderline salty, and borderline spicy, and borderline sour.
What should be our attitude toward the proposition that the stew is salty, and spicy,
and sour? On the presumption that the rational attitude to take are degrees of certainty,
and the presumption that degrees of certainty ought to cohere with the laws of
probability, the answer is that we should be 12.5 % sure that the stew is all three.
That is, we should be pretty sure that the stew is not salty and spicy and sour. This
conclusion would be natural if there were in fact sharp cut-off points for salty, spicy,
and sour, as in Classical Epistemicism. If the cut-off points for each of these
predicates were unknown, what would be the probability that we have a stew which
is above all three cutoffs? Surely it would be far less than the probability that we are
above one cutoff in particular. Yet, this result seems intuitively wrong. Its intuitive
wrongness can be turned into an argument for the advocate of the Conjunction
Problem in the following way; let unappetizing be defined as the property a stew
has when it is salty and spicy and sour. The property of being unappetizing surely is
derivative from other properties, but our experiences of it can be basic. People can
experience something as being unappetizing prior to being able to understand and
articulate why. Imagine that you taste the stew, and it tastes to you borderline
unappetizing. According to Schiffer, parity of reasoning should make you 50 %
certain that the stew is unappetizing. But now we have a contradiction, for we cannot
be both 12.5 % and 50 % certain that the stew is unappetizing. Therefore, it is not the
case that the attitude to take toward the stew being salty is one of uncertainty, akin to
the uncertainty we have if we had no information about the stew. Instead, we should
be ambivalent, a distinct attitude from uncertainty.

Although the Conjunction problem is formulated as a problem for Epistemicism, it
is in fact a more general problem of characterizing the correct doxastic attitudes in the
presence of vagueness. Underlying the Conjunction problem is the idea that our
credence toward the conjunction of two vague conjuncts should not be significantly
lower than our credence toward each conjunct. Identifying ambivalence with uncer-
tainty under the Epistemicist view seems to violate this intuition. So what alternative
views of ambivalence correctly characterize this structural feature? Opponents of
Classical Epistemicism answer this question differently. For Schiffer (ibid. 198–207),
it is a distinct sui generis attitude, called Vagueness-Related Partial Belief, governed
not by the laws of probability, but according to the Lukasciewicz truth-tables for
continuum-valued logic. Instead of understanding the tables in terms of degrees of
truth, Schiffer understands them in terms of the condition for the rationality of this sui
generis attitude. For MacFarlane (ibid. §2.2), ambivalence is the attitude of taking a
proposition as being true to a certain degree. Both views must take into account cases
where we can be both rationally uncertain and ambivalent, like when we know a
spoonful of stew comes from one of two pots, one of which is definitely not salty, and
the other of which is borderline salty, but we do not know which pot has been
sampled. What should be our attitude toward the proposition that the spoonful of stew
is salty? MacFarlane shows that Schiffer’s view suffers from being mathematically
incoherent in these cases (MacFarlane 2006). In its place, MacFarlane offers a view
requiring continuum-valued logic. MacFarlane’s view thus rises and falls on all of the
same strengths and weaknesses of that particular analysis of vagueness. Others, for
instance (Field 2000), reject the classical laws of probability for a version of prob-
ability theory that takes into account a belief that the proposition is indeterminate. On
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Field’s view, the probability that the stew is salty, when it is clearly a borderline case,
is zero, as is the probability that the stew is not salty. When it is not so clearly a
borderline case, we might have a probability that the stew is salty, and the probability
that the stew is not salty, add up to less than one. But Field also rejects the data that
there is something counterintuitive about finding it highly unlikely that the stew is
salty, spicy, and sour when it tastes a borderline case of each ((Field 2011) §3). So
while Field’s view captures the idea that there is a distinct attitude toward borderline
claims, he does not feel the need to explain the Conjunction problem.3

In this paper, I present an account of ambivalence that, like the Epistemicist, identifies
it with uncertainty. However, unlike Epistemicism, the account presumes a
Supervaluationist semantics for vague terms. The view I offer responds to the
Conjunction Problem without positing a distinct sui generis attitude, nor a many-
valued logic, nor revises the theory of doxastic confidence as a theory of classical
probability. There may be independent reasons for taking one of these alternative routes,
but I would like to illustrate why these alternatives are not required as a solution to the
Conjunction problem. I begin by presenting a theory of how to acquire probabilities on
vague sentences where such sentences are given a certain kind of Supervaluationist
semantics. According to the theory of Superprobabilities, given some evidence E, the
rational attitude toward what is expressed by the sentence “The stew is salty” will be
some set of precise probabilities on E of every admissible precisification of “the stew is
salty”. The rational attitude toward what is expressed by “The stew is salty and spicy and
sour”will be some set of the precise probabilities on E of every precisified proposition in
the set of all admissible precisifications of “the stew is salty and spicy and sour.” The
theory of Superprobabilities deals with the Conjunction Problem by (1) making use of the
idea of imprecise probabilities, and (2) giving up the probabilistic analog of truth-
functionality for sentences, namely, probabilistic-functionality: It is false that for all
sentences S, R, where S and R are independent, that pr(S & R) is a function of pr(S)
and pr(R). However, probability-functionality for propositions is preserved: for all
propositions p, q where p and q are independent, pr(p & q) is the standard probability
function of pr(p) and pr(q). After a brief defense of the use of imprecise probabilities, I
then compare the theory of Superprobabilities with a Classical Epistemicist attempt to
deal with the Conjunction problem, and conclude that the considerations are not conclu-
sive in favor of either view.

2 Review of Supervaluationism

Assume a theory of propositions where a proposition must be precise. Perhaps
propositions are nonfuzzy sets of possible worlds. Perhaps propositions are made
up of objects, properties, and relations, and these things are not vague. There are ways
of making the assumption consistent with one’s favorite theory of propositions, but
let us take the characterization of propositions as made up of nonvague objects,
properties, and relations for illustrative purposes. If propositions must be precise, then
vague sentences like “the stew is salty” do not express a proposition. This is because
the vague term “salty” does not pick out a precise property, but admits of a range of

3 §5 below contains more discussion of Field’s view in relation to the Conjunction problem.
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possible precise properties. Ignoring higher-order vagueness for the moment, suppose
that 0–2 % salt content is clearly not salty, and over 3 % salt is clearly salty. Between
two and three percent salt are the borderline cases of saltiness. The (precise) property
of containing greater than 2.12 % salt is one possible property admissible as the
referent of “salty”. Another possible referent is the property of containing greater than
2.334 % salt. Thus, the sentence “the stew is salty” has a range of propositions it can
be classically precisified to express, namely, every proposition of the form ‘the stew
has greater than n % salt’ for all n between two and three. For any sentence “S”, let
the set of propositions the sentence can be precisifed into expressing be I(S). A
sentence is supertrue just in case every member of I(S) is true. A sentence is
superfalse just in case every member of I(S) is false. A sentence is neither supertrue
nor superfalse when there is at least one member of I(S) that is true, and one that is
false. A sentence “S” is precise when I(S) has exactly one member, and vague when
I(S) has more than one member. This, in a nutshell, is Supervaluationism.4

My task in this paper is not to advocate, or defend, a Supervaluationist semantics for
vague terms. It is to present a solution to the Conjunction problem assuming a
Supervaluationist semantics for vague terms. I see a solution to (or dissolution of) the
Conjunction problem as one element in a complete semantic, epistemological, and
metaphysical theory of vagueness. As such, the Supervaluationist version of the solution
ought to be investigated. The aim of this paper is to make such an investigation. In the
process, many of the existing demerits (andmerits) of a Supervaluationist semantics will
be set aside.

3 Superprobabilities

On the assumption that our fine-grained attitudes toward propositions must cohere
with the laws of probability, what should be our attitude toward the stew being salty
when all of our evidence points to the stew being a borderline case of saltiness? On
the Supervaluationist semantics just given, we cannot give an answer to this question,
as there is no single proposition that is expressed by the vague sentence. We might
have different probabilities for each candidate precisification of “the stew is salty”.
Nonetheless, in some circumstances, it seems that we can discern a single precise
probability for the truth of a vague sentence “the stew is salty”. For instance, if you
receive decisive evidence that there is absolutely no salt whatsoever in the stew, then
your credence that the sentence “the stew is salty” is true should be zero. Parity of
reasoning will give you a probability of one to “the stew is salty” when one’s
evidence is that the salt level is clearly very high, like 4 %. It is clear why this is
so. No matter what proposition one chooses as the precisification of “the stew is
salty”, the evidence renders that proposition to the same degree probable.
Generalizing, then, we can initially define the superprobability of a sentence “S”
on evidence E is n if and only if the probability of each proposition in I(S) on E is n. n
need not be zeroes and ones, as in our examples. If there were ten pots of stew in the

4 Supervaluationism is a semantics of vague terms originally given by (Dummett 1975) (Kamp 1975), (Fine
1975), (Lewis 1982) and defended admirably in (Keefe 2000) though these views can differ in details from
each other, and from the simplified summary here.
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other room, one of which contained 4 % salt, and nine of which contained 1 % salt,
and you were presented with a spoonful of stew sampled from the other room, the
superprobability of “this spoonful of stew is salty” would be one-tenth.

Acquiring a superprobability when we have evidence of clear saltiness is easy, but
what about cases of borderline evidence? That is, suppose that a piece of evidence E
makes one member of I(S) n degrees probable, and another memberm degrees probable,
where m≠n. What should be our probability that “S” is true? A concrete case will help
illustrate. Imagine a simple, two-way precisifiable predicate “on campus”, where a
person is clearly on campus if she is in region A, clearly not on campus if she is in
region C, and a vague case of “on campus” if she is in region B. “On campus” can
therefore be precisified as being in region A, or being in region A+B. Now imagine, for
the sake of simplicity, that region A+B is 50 acres, region C is 50 acres, and region A is
three-quarters the area of region B. See the Fig. 1 below for an illustration.

Our friend Rachel has come to town, and we know for certain that she is in region
A+B+C, but we have no evidence whatsoever where she is exactly within that
region. In this circumstance, we will say that our evidence of Rachel’s location is
inexact.5 Our state of evidence should therefore make us 1/2 certain that Rachel is in
C, 3/8 certain that she is in A, and 1/8 certain that she is in B. Now how certain should
we be that Rachel is on campus?

The evidence we have makes different precisifications of “Rachel is on campus”
probable to different degrees. On the precisification that “Rachel is on campus”
expresses the proposition that Rachel is in region A, we should be 3/8 certain, and
on the precisification that “Rachel is on campus” expresses the proposition that
Rachel is region A+B, we should be 1/2 certain. This raises the question; what
degree of certainty ought we to have on the truth of “Rachel is on campus” given that
the degree our evidence justifies depends on the precisification? Here is at least one
intuitive constraint: whatever it is, it cannot be below the minimum, or above the
maximum, probability of the evidence on each member of I(S). In this case, it cannot
be below 3/8 and above 1/2.6 But within such a constraint, two strategies for
proceeding suggest themselves. One is to somehow generate a precise degree of
certainty as a function of the different probabilities of each members of I(S). I call this
the Aggregation strategy. The Aggregation strategy could have you in some way
average the two to get a degree of certainty, say 7/16. The average can be linear or
weighted, or some other method of generating a precise number, subject to the
intuitive constraint. The Aggregation strategy allows for a general definition of
superprobability as follows: n is the superprobability of a sentence “S” on evidence
E just in case n is the result of aggregating every probability of E on each member of
I(S). As long as the Aggregation function abides by the intuitive constraint, then this

5 Here I am following Williamson’s usage of “exactness” and “inexactness” from (Williamson, ibid).
6 This constraint is not compatible with Field’s view, on the assumption that we are fairly to absolutely
certain that Rachel is not a clear case of being on campus. Field’s view results in a very low probability
(possibly 0) that Rachel is on campus. Interestingly, (Dietz 2008) proves that Field’s non-additive
probability calculus follows from a supervaluationist semantics for vague terms when joined with a
construal of degrees of belief as (precise) unconditional bets on the truth of propositions expressed by
vague sentences, where a bet is lost when we end up with a borderline case. Given Dietz’ work, the
Supervaluationist must therefore reject this characterization of degrees of belief in vague contexts or
otherwise accept Field’s calculus. This particular constraint alone seems to me to put a lot of pressure on
Dietz’ characterization of degrees of belief. The reason for this will be given in § 6 below.
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definition allows for the special case where there is an n such that E on every member
in I(S) is n, which is our initial definition of a superprobability.

Another strategy I call theMushy Credence strategy. If Rachel is at least 3/8 probable
to be on campus, and at most 1/2 probable to be on campus, then we can simply be
between 3/8 and 1/2 certain that Rachel is on campus, not some other precise probability.
According to the Mushy Credence strategy, our confidence that Rachel is on campus is
the interval [min I(S), max I(S)], where min I(S) is the lowest probability of the evidence
on amember of I(S), andmax I(S) is the highest probability of the evidence on amember
of I(S). The Mushy Credence strategy skirts the difficult issue of choosing between
competing aggregation functions and identifies intervals as the best model for our
doxastic attitude on vague sentences. TheMushy Credence Strategy allows for a general
definition of superprobability as follows: [n, m] is the superprobability of a sentence “S”
on evidence E just in case n is the minimum of E on I(S), andm is the maximum of E on
I(S). This definition allows for the special case where n=m, which is our initial definition
of a superprobability.

3.1 Updating Superprobabilities

To illustrate the theory at work, let us take a couple of simple examples of evidence
you can acquire about Rachel’s location. Suppose that you now gain decisive
evidence that Rachel is not in C. Your total evidence is still inexact, but now you
can narrow down Rachel’s location to region A+B. What should be your new
probability that Rachel is on campus? Below is the result of updating each individ-
ual proposition in I(S) and acquiring a new probability according to both the
Aggregation and Mushy Credence strategy, where simple linear averaging is used
as the aggregation function.

Evidence Pr(Rachel is in A) Pr(Rachel is in B) Pr(Rachel is on Campus)

Rachel is not in C 3/4 1/4 Aggregation 7/8

Mushy [3/4, 1]

What about the case where we come to know the exact coordinates of Rachel’s
location, and it is in region B? This is now a case of exact evidence. This plays the
role of the kind of evidence Schiffer discusses in raising the Conjunction problem. It
seems that there can be no more information we can acquire as to Rachel’s location,

Fig. 1 Rachel’s location
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and it is within the region that counts as a borderline case of being on campus. What
should our probability be that Rachel is on campus, on the views we are discussing?

Evidence Pr(Rachel is in A) Pr(Rachel is in B) Pr(Rachel is on Campus)

Rachel is in B 0 1 Aggregation 1/2

Mushy [0, 1]

The Aggregation view of 1/2 is numerically the same as Schiffer’s intuition in his
original formulation of the Conjunction problem, and is the same as the Classical
Epistemicist view. The Mushy-Credence view of [0,1] makes the attitude distinct from
the numerically precise attitudes of probabilities associated with uncertainty. Which
view should we choose as the better strategy to solve the Conjunction problem?

4 Superprobabilities and the Conjunction Problem

Let the predicate “wearing a hat” be vague and two-ways precisifiable. It can either refer to
the property of wearing a hat on the top of your head, or wearing a hat anywhere on your
body (including the top of your head). Rachel is in town, and definitely in A+B+C, and
you know she brought her hat, although half of the time she keeps it in her luggage. Of the
half of the time it is somewhere on her body, three-quarters of the time it is on the top of
her head, and a quarter of the time it is on her shoulder. You don’t have any evidence as to
whether the hat is anywhere on her body. What is the probability that Rachel is wearing a
hat on campus? This is the issue of the probability of the conjunction of vague sentences.
Starting off with the evidence at hand, the sentence “Rachel is wearing a hat on campus” is
now 2×2ways precisifiable. It can express one of the following four propositions {Rachel
is wearing a hat on top of her head in region A, Rachel is wearing a hat on top of her head
in region A+B, Rachel is wearing a hat anywhere on her body in region A, Rachel is
wearing a hat anywhere on her body in region A+B}. The following matrix gives the
probabilities of the evidence on each of these four propositions, as a function of the
probabilities of the conjuncts given the evidence:

In region A, 3/8 In region A+B, 1/2

Hat on head, 3/8 9/64 3/16

Hat on body part, 1/2 3/16 1/4

We are now in a position to compare the probabilities of each conjunct and each
conjunction with a certain kind of evidence that should be rather uncontroversial.
When the evidence is rather inexact, where we have both ambivalence and uncer-
tainty, we get the following results on the probabilities of the conjunction:

Mushy Rule Aggregation

[9/64, 1/4] Average = .19

Weighted = .29
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For the Aggregation strategy, the first number is the linear average, the second is the
result of giving twice as much weight to 3/16 as the others. This now leads us to the
controversial case of the Conjunction problem. Essential to the problem is the case when
we have exact evidence that places Rachel within the borderline of each of two
independent properties. The anti-Epistemicist intuition is supposed to be that our
doxastic attitude ought to be the same (or close to the same) with respect to the
conjunction as it is with respect to each conjunct. The relevant case, in our toy example,
is when we have decisive evidence of Rachel’s exact location in region B, and decisive
evidence that Rachel has a hat on her shoulder. The following table indicates the
respective probabilities on each of these propositions given this evidence.

Classical Epistemicism Mushy Supervaluationism Aggregation Supervaluationism

Conjunct Conjunction Conjunct Conjunction Conjunct Conjunction

1/2 1/4 [0, 1] [0, 1] 1/2 .19, .29

The Aggregation strategy still requires us to be much less certain in a vague
conjunction than in each vague conjunct, but it does better than Classical
Epistemicism if we go with a certain kind of weighted average manner of aggrega-
tion. This, however, depends highly on some nonarbitrary assignment of weights, and
the strategy cannot account for the strong Schifferian intuition that credence in a
vague conjunction ought to be the same as credence in each conjunct. The
Supervaluationist, then, ought to adopt the Mushy Credence strategy, which yields
precisely the same attitude in the conjunction as the conjunct, namely, the same
interval probability. As already noted, the Mushy Credence strategy has the added
benefit that, as a model of uncertainty, it can capture the phenomenological differ-
ences between ambivalence and uncertainty. On the Aggregation strategy, there really
is no difference, except one of strength, between credences in vague sentences in
which one is uncertain, and ones in which one is ambivalent. On the Mushy Credence
strategy, that difference is captured by an imprecise probability rather than a precise
one. The theory of Superprobabilities is also not a revision of classical probability
theory. Our probabilities on propositions are fully classical and can even be fully
precise. Only at the level of what is expressed by sentences (which is not fully
propositional) does there appear to be a departure from classical probabilities. As an
initial attempt at a Supervaluationist solution to the Conjunction problem, I propose
the theory of Superprobabilities together with the Mushy Credence strategy.

5 Superprobabilities and Constraints on Rational Action

The idea of an imprecise probability has been around for quite some time in the
literature on fine-grained belief (for instance, (Walley 1991), (van Fraassen 1995),
(Joyce 2005)), and it has recently had its share of detractors. Before proceeding to
investigate the comparative merits of the theory of superprobabilities with Classical
Epistemicism, I would like to take a moment to respond to one of the central
objections to imprecise, or interval-valued probabilities recently made in the litera-
ture. Unfortunately, I cannot respond to all of these recent objections (see (Joyce
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2010) for extensive responses), so I choose one that I believe the application of
imprecise probabilities to vagueness is particularly effective at addressing.

One of the complaints, voiced prominently by Adam Elga (Elga 2010) and Cian
Dorr (Dorr 2010), is that there does not appear to be a way for advocates of fine-
grained probabilities to make sense of certain constraints on rational actions required
of a theory of uncertainty. The central case presented in Elga’s paper is one where
someone is presented with two bets occurring over time that appear to be jointly
rationally irrefusable, but each of which a theory of imprecise probabilities renders
rationally refusable. Suppose that you have some credence in P, you are offered a bet,
Bet A, where you are out $10 if P is false, but gain $15 if P is true. You care about
nothing other than money, and your value of money is perfectly linear. Then, before
any change in your epistemic position with respect to P, or any change in the value of
your money, you are offered a bet, bet B, where you gain $15 if P is false, and lose
$10 if P is true. It seems clear that you are rationally required to accept at least one of
those bets regardless of your credences. However, argues Elga, some interval-valued
credences will make it permissible for you to rationally reject both bets. For instance,
if your credence was between 0.1 and 0.8, then it is rationally permissible for you to
reject bet A, and rationally permissible for you to reject bet B. This is assuming that,
because it is consistent with your beliefs that the probability of P is above .6, it is
permissible for you to reject bet A. Because it is consistent with your beliefs that the
probability of P is below 0.6, it is permissible for you to reject bet B. Finally, the
argument goes, since it is permissible to reject A, and permissible to reject B, then it is
permissible to reject the total book of bets A and B. Since this is incompatible with
the rational requirement to accept at least one of the bets, argues Elga, it is false that
rationality permits imprecise probabilities (Elga ibid., page 4).

The solution to this problem on the theory of superprobabilities is a natural
generalization of the theory, the theory of Superrationality. A single bet, book of
bets, or series of bets, that a sentence S is true is superfair just in case it is fair on all
precisifications of S. They are superrationally required just in case on every
precisification of S, they are rationally required. We most certainly bet using language
that is vague. I can certainly accept or reject bets that Rachel is on campus. But how
do I collect on these bets? If “S” is only true relative to some precisification, then the
rationality of my betting behavior will be relative to precisifications. It can be
rationally permissible to accept a bet relative to one precisification, but not another.
A bet is superrationally required just in case on every precisification, my probability
on that precisification, given my total evidence, makes that bet rationally required.
Superpermissibility we will define as permissible given my probabilities on at least
one precisification. We can identify rational requirement with being superrationally
required, and rational permissibility with being superpermissible. Given these defi-
nitions, we can satisfy all of Elga’s assumptions in his argument while denying that it
is permissible to reject the series of bets A and B, because on every precisification of
any vague sentence, it will be required that we not reject both bets A and B. That is,
whatever our probabilities on members of the class of precisifications, we will be
rationally required to accept at least one of bet A and bet B. This is true even though it
is not superrationally required to accept bet A, and not superrationally required to
accept bet B, and thus permissible to reject A, and permissible to reject B. This result,
odd as it may sound, is familiar territory for the Supervaluationist. According to
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Supervaluationism, “either the stew is salty or not salty” can be true, while neither
“the stew is salty” nor “the stew is not salty” is true. This is not a new bullet required
of the Supervaluationist to bite.

Does it matter that the bets in Elga’s case occur over time (or diachronically) and not
synchronically? One way of understanding a norm for diachronic rationality is that, if
you can foresee ahead of time a betting situation that occurs across two different future
times, and that the total evidence you will have across those times are such that some
series of betting situations ensures a guaranteed gain, then those series of future bets are
rationally required. This way of formulating a norm of diachronic rationality poses no
problem for the theory of Superrationality. Whenever you are fully disclosed, now, to be
offered a succession of bets, first A, and then B, and all of the correct conditions hold (as
Elga formulates them), you are superrationally required to do α just in case, on every
precisification of the sentences on which you are betting, your total foreseeable evidence
at the time of each bet for each precisificationmakesα rationally required. The sequence
of bets, rejecting bet A and then subsequently rejecting bet B, is foreseeably
superimpermissible in these circumstances.7 Therefore one is in advance,
superrationally required to accept bet B if in the future one first rejects bet A.

Now this particular solution to the problem does not fully respond to the Elga
problem, as the problem is not formulated in terms of bets on vague sentences, but on
(precise) propositions. I do not take a stand on whether interval-valued probabilities on
propositions are ever warranted as our actual attitudes, or as a theoretical model of our
actual attitudes on proposition (in fact, as we will see in the final section, I ultimately
reject them for vague sentences). However, I do believe that the same solution to the
problem is available for such theorists. According to the standard mushy-credence
theorists, an interval probability [n, m] in P is the set of all classically precise probability
functions that give a value of n, m and all values between n andm, to P. This set is called
the Representor (van Fraassen, ibid. White, ibid.) Such a theorist, in the face of Elga’s
objection, can still claim that it is not permissible to reject the series of bets A and B. One
can define rational impermissibility as the property of being impermissible according to
every function in the Representor. One can define rational permissibility as the property
of being permissible according to at least one function of the Representor. These
definitions yield an exactly similar solution to the problem; it is permissible to reject
A because there are some functions in the Representor that permit rejecting A, and it is
permissible to reject B, because there are some functions in the Representor that permit
rejecting B. But there is no function in the Representor that permits rejecting the series
consisting of both A and B. Indeed, for any book of bets that one wants to evaluate for its
rational permissibility, if every classically precise probability function makes that book
impermissible, synchronically or diachronically, then it will be rationally impermissible
on this view, and thus we have no problem. Once again, we still have the standard
Supervaluationist problem; how can it be rationally required of us to accept either bet A

7 There is some evidence that Elga accepts this way of formulating the norms of diachronic rationality, as he
is explicit in stating that the setup of the bets are fully disclosed in advance, and that you see all of the
sequencing and payoffs in advance (Elga ibid., page 4). On this understanding of diachronic rationality, the
norms of diachronic rationality are a complex way of formulating your rational requirements now with
respect to what you foresee to be future payoffs, credences, and available actions across future times
((Skyrms 1993)).
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or bet B, but not be rationally prohibited from rejecting both bets? This is no more and
no less problematic than what we already know about Supervaluationism.

6 Superprobabilities versus Zero probabilities

The Supervaluationist approach from the previous sections assigns some positive
credence to a vague sentence in the face of borderline evidence. The motivation is
intuitive (though this motivation is admittedly far from an argument, nor do I present it
as such). If Rachel is a borderline case of being on campus given our inexact evidence, it
seems that we should not be less than 3/8 certain that she is on campus, since on any
precisification it is at least 3/8. Can this intuitive motivation be defended?

It is possible for an alternative Supervaluationist view that assigns a proba-
bility of zero to all borderline cases. Combining Hartry Field’s view (Field
2000) with Supervaluationism does exactly this. Field’s view does not presup-
pose a Supervaluationist semantics, nor is it presented as an extension of
Supervaluationism. Yet, a Supervaluationist might find certain features of his
view to be preferable to the theory of Superprobabilities. In fact, Richard Dietz
proves that a Supervaluationist semantics together with a certain construal of
betting applied to borderline cases allow one to give Dutch book theorems for
Field’s nonclassical probability calculus for vagueness (Dietz 2008). According
to Dietz, the generalization of betting on borderline cases that generate the
Dutch Book theorems for Field’s calculus is for a bet on P to be a bet that
pays if P is (super)true, and not to pay if P is not (super)true. Field’s view,
described in Supervaluationist vocabulary, makes it so that my probability that
S is equal to my probability that “S” is supertrue ([ibid.], pp. 16–17).
According to Supervaluationism, supertruth is truth, and naturally we would
want my probability that S to be equal to my probability that “S” is true. Thus,
if a stew is a borderline case of saltiness, then the sentence “the stew is salty”
is not supertrue. Thus, the sentence is not true. If someone tasted a stew and it
seemed clearly borderline salty, then that person has a probability 1 that the
stew is borderline salty. Thus, she should have probability zero in the
supertruth of the sentence “the stew is salty”, and thus she should have
probability zero in its truth. Therefore, she should have probability zero that
the stew is salty, contrary to the theory of Superprobabilities.

In addition to being able to deal with the identification of truth with supertruth,
Field’s view would assign any conjunction of borderline cases a zero probability, in
virtue of assigning each conjunct a zero probability. Thus, we would have the same
attitude warranted toward borderline conjunctions as we do borderline conjuncts, and
we have a solution to the Conjunction problem. Why is this particular view not better
for a Supervaluationist than the theory of Superprobabilities, which solves the
Conjunction problem but does not seem to capture the Supervaluationist identifica-
tion of truth with supertruth?

One reason I can see is that, while a Supervaluationist does identify truth with
supertruth, she should not identify the probability of S with the probability of “S” being
supertrue, as Field’s view requires. This is because it is essential to the Supervaluationist
view to denyDisquotationalism about truth. That is, a Supervaluationist denies that “S”
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is true if and only if S, given that truth is supertruth. This is because Disquotationalism
together with Supervaluationism entails the principle of bivalence, which is contrary to
Supervaluationism.8 Given this denial, the identification of one’s probability of P with
the probability of P being supertrue is problematic. It is problematic for the same reason
that identifying belief that P with belief that P is supertrue is problematic. Denying
Disquotationalism means the denial of the principle that for all S, if S, then “S” is
supertrue, where the variable “S” ranges over sentences in the object language.9

Therefore, there is an S, say σ, in which σ and it is not the case that “a” is supertrue.
As Supervaluationists, if we knew that it is not the case that “σ” is supertrue, then we
would want our degrees of belief in σ to come apart from our degrees of belief in “σ” is
supertrue, since σ. Butsince “σ” is supertrue gets probability zero in these cases, then
one wants some nonzero probability inσ. Field’s view precludes degrees of belief of this
kind, a preclusion that would make sense under Disquotationalism, but does not make
sense under its denial.10

Moreover, the account of rationality as superrationality has repercussions for
views identifying the proper attitude toward borderline cases to be degrees of belief
close to zero. If the natural generalization of supervaluationism for rational betting is
the theory of Superrationality, then giving a precise probability for a borderline case
that is zero or close to zero can lead to rational bets that are superimpermissible.
Looking back to the example of Rachel, suppose it is almost clear that Rachel is
aborderline case of being on campus. On the Field–Dietz view, we should have some
degree of belief close to zero that Rachel is on campus, call it α. On one
precisification, the evidence makes it 3/8 probable that she is on campus, and on
the other, it is half probable, so let α < 3/8. A bet paying $1 if Rachel is on campus,
and $0 if Rachel is not on campus will be sanctioned as at least a fair buy at the cost
of $3/8 regardless of the precisification (it will be an advantageous deal on the
precisification that makes it 1/2 probable). Thus, buying a bet at $3/8 will be
superfair, and so fair. But if the rational degree of belief that Rachel is on campus
is also α, then selling the same bet for $α will be fair. Sothe book consisting of a bet
bought at $3/8 and one sold at $α would both be sanctioned as fair, but would also be
superrationally impermissible, since it would guarantee a loss of 3/8-α for all
precisifications no matter what.

The Supervaluationist would have to reject the theory of Superrationality in order
to prefer the Field–Dietz view. But the theory is a very natural generalization of
Supervaluationism, since thinking that sentences express propositions only relative to
precisifications would very naturally lead to the view that bets on such sentences
being true would be rational relative to precisifications. It would be difficult for a

8 The argument is due to Williamson (ibid., pp. 162). If supertruth were disquotational, then “S” is
supertrue if and only if S. “Either S or not S” is supertrue, so by Disquotationalism, S or not S. If S, then
“S” is supertrue, and if not S, then “not S” is supertrue by Disquotationalism. So either “S” is supertrue or
“Not S” is supertrue, so either “S” is supertrue or “S” is superfalse. So either “S” is supertrue or “S” is
superfalse. Therefore, every sentence is either true or false, and there are no borderline cases, contrary to
Supervaluationism. Therefore, supertruth is not disquotational.
9 No Supervaluationist denies that if “S” is supertrue, then S.
10 The argument here presumes that, in the situation described, rationality should not preclude a positive
degree of belief in σ when σ.
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Supervaluationist to reject Superrationality without placing pressure on her principles
for accepting Supervaluationism.

For these reasons, I believe the Supervaluationist should not prefer Field’s
nonclassical probabilities to the theory of Superprobabilities, for the denial of
Disquotationalism and the denial of Superrationality do not seem to fit well with
Supervaluationism. This is not to say, however, that Field’s view is not superior to the
theory of Superprobabilties as an account of the appropriate attitudes toward vague
sentences and their conjunctions, assessed independently of Supervaluationism, or that
Dietz’ generalization of betting on borderline cases must be wrong. Perhaps the oddity
of separating one’s probability that S with one’s probability that “S is true is enough to
abandon Supervaluationism in favor of Field’s view. Perhaps Disquotationalism is
enough, as Williamson argues. These are some of the standard objections to
Supervaluationism, which are set aside in this paper. I do not claim that the theory of
Superprobabilities is to be preferred over Field’s view, only that Supervaluationist
considerations do not tell in favor of Field’s view over Superprobabilities.11

7 Epistemicism and the Conjunction Problem

Finally, let us evaluate the comparative merits of Epistemicism with Supervaluationism
in light of the Conjunction problem. Can the Epistemicist solve the Conjunction
problem on her own terms? According to a Classical Epistemicist, there is a matter of
fact as to whether A and only A is on campus, or whether A+B and only A+B is on
campus. Thus, distributing your credences as to whether Rachel is on campus when it is
clear that she is in region B will be a straightforward matter of distributing your
credences over a proposition in which you are ignorant, namely, whether A and only
A is on campus, or whether A+B is on campus. Assuming you have no reason to believe
that A and only A is any likelier to be on campus than A+B, you ought to be half sure in
each. This means that your probability that Rachel is on campus, assuming that her being
in region B is independent of whether B is on campus, will be 0.5, as the probability that
Rachel is on campus is the probability that Rachel is in B and B is on campus. Thus, in
the presence of evidence that Rachel is wearing a hat on her shoulder in region B, your
probability that Rachel is wearing a hat on campus will be 0.25 by the same reasoning,
using classical probabilities. But since we intuitively ought to take the same attitude
toward a vague conjunction as we do in each vague conjunct, Epistemicism together
with non-interval classical probabilities cannot accommodate this.

The Classical Epistemicist can either deny the claim that conjunctions should justify
the same attitude as conjuncts in cases of exact borderline evidence, or otherwise use the
same interval probabilities as the Superprobabilist in matters of ignorance over facts like
whether A and only A is on campus. The latter path does not strike me as particularly
promising, at least by Classical Epistemicist lights. Presumably, the reason to treat
ignorance of facts like whether B is on campus differently from other kinds of ignorance
is due to the fact that these are necessary truths about the nature of being on campus. But,
by Epistemicist lights, our lack of knowledge about certain necessary truths concerning

11 There is a lot more to say about the comparative merits of Field’s view with the theory of
Superprobabilities which should be reserved for future work.
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the nature of properties like being on campus, saltiness, or baldness, is not supposed to
follow from anything particularly special about our epistemic access to facts of these
kinds. Rather, we are supposed to lack knowledge because it is a general feature of all
knowledge. Roughly, within any domain, when our capacities give us true beliefs that
can easily be false, we cannot know. We do not know that region B is on campus for the
same reason that we do not know the number of blades of grass onWrigley field. So why
should the measure of our ignorance and uncertainty be any different between the two,
one imprecise and the other precise? Instead of “on campus”, imagine that there are
precise boundaries in a local ordinance as to whether region A, or region A+B, is owned
by Corporation C. It is now impossible to read that ordinance, as the ink has faded
beyond human legibility. From the point of view of our doxastic attitudes, the right
attitude in light of the evidence that Rachel is in region B is half certainty that Rachel is
on land owned by Corporation C. This is exactly analogous, by Classical Epistemicist
lights, as the case in which you assign a credence to Rachel being on campus. There is no
difference in kind between the ignorance of ownership by Corporation C, and ignorance
of being on campus. Thus, to treat ignorance of one by appeal to imprecise probabilities,
and the other by appeal to precise probabilities, is contrary to the spirit of Epistemicism.

Far more promising is a Classical Epistemicist denial of the claim that conjunc-
tions should justify the same attitude as conjuncts in cases of exact borderline
evidence. The Epistemicist can charge that advocates of the Conjunction problem
have committed the Conjunction fallacy. Cognitive scientists have for many years
shown that with respect to judgments concerning the probability of conjunctions,
humans can be systematically unreliable (Kahneman and Tversky 1983). When
people are asked to make a judgment on the comparative probability of a conjunct
like “Linda is a bank teller” and “Linda is a bank teller and active in the feminist
movement”, against a background of information that Linda was an intelligent,
politically active philosophy major in college, people are likelier to judge the
conjunction likelier than the conjunct, which is probabilistically incoherent. The most
common explanation for this fallacy is that people are employing some kind of
cognitive bias, the “representativeness bias.” The information in the conjunction
renders Linda more representative to us of people who were once active, intelligent,
philosophy majors in college. The advocate of the Conjunction problem could
similarly be charged with misjudging the likelihood of the conjunction of two vague
predicates, judging it to be likelier than the laws of probability require.

The Epistemicist must make this charge with some care. If the advocate of the
Conjunction problem is committing a fallacy, it is not the fallacy that a conjunction is
judged more probable than one of its conjuncts. There is no such judgment in this
case. Instead, it would be the subtler fallacy involved in people systematically
judging, due to a cognitive bias, some conjunction of independent properties to be
likelier than the product of the probabilities of its conjuncts. And, the mere fact that
the advocate of the Conjunction problem has apparently probabilistically incoherent
judgments cannot show that a fallacy has been committed, for that is precisely what
she takes to be a datum. What needs to be argued is that some cognitive bias like the
representativeness bias rather than vagueness serves as the likelier explanation of the
likelihood judgments present in the formulation of the Conjunction problem.

In light of these considerations, the Epistemicist can make the following case. The
Conjunction fallacy appears most prominently in conjunctions pairing an event made
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likely relative to some background information with an event made unlikely relative to
that information (Wells 1985). Linda seems likelier to be a bank teller and active in the
feminist movement than a bank teller because the conjunction contains a conjunct that is
likely relative to the background information about Linda. The fallacy all but disappears
in conjunctions pairing events that are made unlikely relative to some background
information. For instance, if one were to ask which is likelier given Linda’s background,
that she is a bank teller, or that she is a bank teller andworks atMcDonalds, there does not
appear to be much (fallacious) intuitive pull to the conjunction being likelier. If the
advocate of the Conjunction problem really were committing some kind of Conjunction
fallacy, we would expect structurally similar intuitions. Applying this to the case of vague
predicates in the face of borderline evidence, suppose we have exact evidence that makes
Joe a borderline case of bald, and a borderline case of fat. Add to this information that Joe
is dating someone who tends to prefer hairy men who aren’t very thin and aren’t very fat.
We would expect the advocate of the Conjunction problem to judge that Joe is bald and
fat to be likelier than that Joe is bald. This I do not think tells in the Epistemicist’s favor, as
I do not find such an intuition, even a fallacious one, available for me. On the other hand,
if we instead add that Joe is dating a woman who tends to prefer hairy and thin
men, we should end up with an intuition that Joe is bald and fat to be significantly
less likely than that Joe is bald. I cannot speak for Schiffer and MacFarlane here,
but it does not strike me as crazy that this latter intuition is a correct description of
our judgments here. But, the Epistemicist can then claim that the difference between
this case and the original case that leads to the Conjunction problem are no
different with respect to Joe’s being a borderline case of both bald and fat. So
the argument goes, the advocate of the Conjunction problem has committed a
fallacy in the case where the background makes the vague conjuncts equally likely,
as in the original case of the Conjunction problem.

The Epistemicist charge here is promising, but not conclusive. First, there is always
denying the intuition. Here it can be done sensibly. After all, the advocate of the problem
has already hypothesized that we have exact evidence of Joe’s hair count and body
composition. Why does this exact evidence not just screen off the evidence about the
preferences of Joe’s date? If it did, we should end up about as sure that Joe is bald and fat
with this information as without this information. If Joe’s hair count and body compo-
sition doesn’t screen off such evidence, then one explanation is that predicates like “is
bald” and “is fat” are not completely dependent on exact number of hairs or exact body
composition, but are in some sense “response-dependent.” If so, in the case given, the
preferences of the woman Joe is dating is evidentially relevant because it partly
constitutes what it is to be bald. But then, this would undermine the supposition that
we have exact evidence that Joe is a borderline case of baldness and fatness, which is a
presupposition of the Conjunction problem. Finally, even without denying the intuition,
by the lights of Schiffer and MacFarlane, in the case where you add information about
the woman Joe is dating, you are adding evidence to the borderline evidence that might
warrant a revision of your existing beliefs, which does not undermine the idea that the
conjunction in light of only borderline evidence is as likely as each conjunct. The lesson
here is that constructing test cases to establish that advocates of the Conjunction problem
are committing a fallacy is not a straightforward task.

An independent line of reasoning can help the Epistemicist here that a fallacy is
being committed. Consider the conjunction of being salty and being spicy. There are
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four kinds of exact evidence we can have that a stew is salty and spicy. We can have
exact evidence that makes it clear that the stew is salty, and clear that the stew is
spicy. For example, you taste the stew and it tastes like a habanero pepper soaked
in olive brine. We can have exact evidence that makes it borderline that the stew is
salty, and borderline that the stew is spicy, like when you taste it and it tastes like
club soda with a spritz of raw ginger. We can also have mixed exact evidence, like
the taste of olive brine with a spritz of ginger, or club soda with habanero syrup.
We can call these kinds of evidence, CLEAR & CLEAR, BORDERLINE &
BORDERLINE, CLEAR & BORDERLINE, and BORDERLINE & CLEAR evi-
dence, respectively. Absent details of specific cases, it is hard to say anything
general numerically about how these kinds of evidence support conjunctions, but
this much seems at least intuitively correct. All things being equal, your proba-
bility that P & Q, where both are vague, given CLEAR & CLEAR evidence in
favor, should be higher than your probability that P & Q given BORDERLINE &
BORDERLINE evidence, which itself should be lower than your probability that P
& Q given CLEAR & BORDERLINE in favor. It also seems that all things being
equal, CLEAR & BORDERLINE evidence should justify the same probability as
BORDERLINE & CLEAR evidence. These intuitions about evidential support
generate the following general structure relating to the kinds of evidence we can
have in the truth of something vague:

General Structure
pr (P &Q| CLEAR and CLEAR) > pr (P &Q| CLEAR and BORDERLINE) =
pr (P &Q| BORDERLINE and CLEAR) > pr P &Q| BORDERLINE and
BORDERLINE)

This intuitive structure allows the Classical Epistemicist to deny the strong,
Schifferian claim that the probability that a stew is salty and spicy, given exact borderline
evidence of each, should be the same as the probability that the stew is salty, given exact
borderline evidence of saltiness. Consider the case in which borderline evidence justifies
a 0.5 probability that the stew is salty, and one has absolutely clear evidence that the stew
is spicy. This would push the probability that the stew is spicy to 1. By the laws of
probability, this makes the probability that the stew is spicy and salty to be 0.5. But then,
by the General Structure above, the probability that the stew is salty and spicy, given
borderline evidence of saltiness, and borderline evidence of spiciness, must be lower
than 0.5, contrary to the strong Schifferian intuition. Because the General Structure is
intuitively plausible independently of Classical Epistemicism, it can be used to deflate
the objection posed by Schiffer.

However deflating, though, advocating the General Structure is not itself sufficient to
solve the Conjunction problem. The structure implies that, in the right conditions, the
probability that the stew is salty and spicy given borderline evidence of each must be
below 0.5. It does not say that it is okay for it to drop to .25. In general, there is still the
Schiffer-inspired intuition that it seems wrong to become very sure that a stew is not
salty, spicy, and sour just because one has exact borderline evidence of all three.
Classical Epistemicism together with classical probabilities still seem to require us to
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be very sure that a stew is not the conjunction of a group of vague predicates too easily
and quickly. This intuition has not been denied with the General Structure.12 Classical
Epistemicism will have a very difficult time abiding by the General Structure and
accommodating this much weaker intuition involved in generating the Conjunction
problem. It is hard to see how one can save the classical laws of probabilities without
having the probability that P & Q, on borderline evidence, be anything other than .25.

Much more can be said about whether an advocate of the Conjunction problem can be
successfully charged with committing a fallacy. This seem to me the best direction to take
with respect to a defense of Epistemicism against this charge. Since it is not my goal to
defend Epistemicism, or any particular view about the semantics of vague terms, I will not
pursue this line any further. I nonetheless take it to be worthwhile to investigate the
comparativemerits of a Supervaluationist attempt at dealing with the Conjunction problem,
on the assumption that it is a genuine problem, setting aside the (very real and in my view
nonobvious) issue as to whether it is based on a fallacy. If it is, then everyone ought to steer
clear of the Conjunction problem as telling in favor or against any views of vagueness.

8 Superprobabilities and the Problem of the General Structure

The Classical Epistemicist attempt at responding to the Conjunction problem ex-
plored in the previous section raises a problem with the theory of Superprobabilities.
That is, the General Structure is incompatible with the theory of Superprobabilities as
currently formulated. This might be okay, since the General Structure is an
Epistemicist attempt at solving the Conjunction problem, and the theory of
Superprobabilities is a Supervaluationist view. Nonetheless, the General Structure is
independently intuitively plausible, and it entails that the judgment we have that
Rachel is wearing a hat on campus, given that she is wearing a hat on her shoulder in
region B, cannot be equal to the judgment we have that Rachel is wearing a hat on her
shoulder, in region A. This, however, is precisely the result of the current formulation
of Superprobabilities. For someone who takes the General Structure seriously, it is a
strike against the theory of Superprobabilities.13

I believe that this issue arises because I have hitched the theory of Superprobabilities
to existing theories of imprecise probabilities. This is the theory of an imprecise
probability as an interval, where an interval is a Representor. However compelling such
a theory is for the modeling of ordinary imprecise credences in propositions, it is both
too strong and too weak for an account of credences in vague sentences. It is too strong
because it carries unnecessary formal baggage. If we look at the case of the credence in
the truth of “Rachel is on campus”, given that she is in A+B+C, the credence is either
3/8 or 1/2. It is not the entire interval between 3/8 and 1/2. There should be no
probability function placing a credence of 3/7 that “Rachel is on campus” as part of
the representation of my credence, for there is no proposition in I(S) that the evidence
makes 3/7 probable. Rather than taking the set of all probabilities between 3/8 and 1/2,

12 In fact, MacFarlane’s view (ibid.) has it so that classical probabilities together with the denial of classical
logic lead to probabilities that satisfy the General Structure, but also saves the weaker Schiffer-inspired
intuition.
13 It might be an argument in favor of exploring the Aggregation Strategy discussed above.
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the set should only be {3/8, 1/2}. In general, the set of probabilities representing my
credences should not be the entire interval [min I(S), max I(S)], but simply the set of all
probabilities of E on each member of I(S).

On the other hand, the use of interval-valued probabilities also makes us lose some
kinds of information we can otherwise use to represent my state of mindwith respect to a
vague sentence. Consider the case of our credence that “Rachel is wearing a hat on
campus”, when our evidence is that she is in region A+B+C with her hat. The first
matrix above shows that this is the set of probabilities: {9/64, 3/16, 1/4}. But that is not
all that it shows. The probability 3/16 that she is on campus is twice as likely as either
9/64 or 1/4, because twice as many precisifications yield that probability on the given
evidence. This is not irrelevant information. Consider the extreme case where a set of
precisifications of “S” has 100 members, and the evidence makes 99 of these proposi-
tions 100 % likely, while making one 50 % likely. Another set of precisifications of “R”
has 100 members with the evidence making half of them 50 % likely and the other half
100 % likely. There seems to be a genuine difference in the attitude we ought to take
with respect to what is expressed by these sentences. That information should not be
excluded from the way we are modeling our credences.

Instead, I submit that we should model our credences as the set of probabilities
generated by the evidence on each member of I(S), followed by a second, higher-
order set of probabilities on each member of that set generated by the frequency of
appearances of a particular probability among the set of precisifications. In the case of
“Rachel is wearing a hat on campus”, we can write it this way, {9/64, 3/16, 1/4}, pr
(9/64) = 1/4, pr (3/16) = 1/2, and pr (1/4) = 1/4. I believe that this new way of
modeling imprecise credences in vague sentences can help capture the General
Structure while simultaneously keeping all of the benefits of the theory of
Superprobabilities. According to the Conjunction problem, we ought to have the
same attitude in a conjunction as the conjuncts when we have exact borderline
evidence of each. The theory of Superprobabilities accomplishes this by having the
attitude in “Rachel is wearing a hat on campus”, when we know that Rachel is
wearing a hat on her shoulder in region B, be {0, 1}. This is the same as the attitude in
each conjunct on the same evidence. It also captures the idea that ambivalence feels
differently from uncertainty, which is modeled as a single number.14

But in addition, in the case when we know that Rachel is wearing a hat on her
shoulder in region A, we have BORDERLINE and CLEAR evidence, whereas whenwe
know that Rachel is wearing a hat on her shoulder in region B, we have BORDERLINE
and BORDERLINE evidence. The General Structure requires a lower credence given
the latter evidence. This is now captured in the higher-order distribution over our first-
order set of probabilities. In the case of BORDERLINE and CLEAR evidence, we have
pr (0) = 1/2, pr (1) = 1/2. In the case of BORDERLINE and BORDERLINE evidence,
we have pr (0) = 3/4, pr (1) = 1/4. Our higher-order probabilities say that it is much
likelier now to be zero given BORDERLINE and BORDERLINE evidence than it is

14 This idea also captures recent views, expressed in (Caie 2012) and (Barnett, D. “Vagueness and
Rationality”, unpublished manuscript) claiming that the semantic properties of sentences, like vagueness
or indeterminacy, infects our attitudes about that which is expressed by those sentences. In other words, if a
sentence is vague, our attitude about its truth should be also. {0, 1} is a vague attitude between belief and
disbelief. The theory of Superprobabilities coheres with these independent arguments for this conclusion,
though I do not take a stand on the merits of these arguments.
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with BORDERLINE and CLEAR evidence. We have therefore captured the way in
which ambivalence can respect the General Structure; it is respected as second-order
uncertainty.

9 Conclusion

The Supervaluationist can solve the Conjunction problem, originally raised by
Schiffer, with a generalization of supervaluationism to probabilities and decision
theory. However, this paper has not been an argument for these generalizations. I
have not given an argument for, or defense of, Supervaluationism, and such gener-
alizations rest entirely on Supervaluationism. Nonetheless, I have argued the theory
of Superprobabilities and Superrationality has within its means the ability to give
Supervaluationists a well-motivated and coherent means to deal with the Conjunction
problem, and to address the issue of assigning credences to vague sentences gener-
ally. I have also highlighted the ways in which seeing probabilities within a
Supervaluationist framework allows one to bypass certain problems that arise else-
where for the theory of imprecise credences. A lot must be taken on board, however,
for the entire package of Supervaluationism, Superprobabilities, and Superrationality
to be accepted. The Classical Epistemicist, on the other hand, has a defensible, though
inconclusive case that the Conjunction problem rests on a mistake, and that therefore
it should not be taken as raising special problems for Epistemicism.
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