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This paper considers the distributed 3-dimensional (3D) distance-based formation control of multiagent systems, where the agents
are connected based on an acyclic minimally structural persistent (AMSP) graph. A parameter is designed according to the desired
formation shape and is used to solve the problem that there are two formation shapes satisfying the same distance requirements.
The unknown moving velocity of the leader agent is estimated adaptively by the followers requiring only the relative position
measurements with respect to their local coordinate systems. In addition, the proposed formation controller provides a new way
for the agent to leave the initial coplanar location. The 3D formation control law is globally asymptotically stable and has been
demonstrated based on the Lyapunov theorem. Finally, two numerical simulations are presented to support the theoretical analysis.

1. Introduction

Cooperative control of a multiagent system has many appli-
cations such as surveillance, exploration, and search and
rescue missions. In particular, formation control problem is
one of the important aspects and has received significant
attention recently with the development of the information
communication technique [1–4].

According to the different requirements on the sensing
capability and the interaction topology, the existing forma-
tion control schemes are categorized into position-based,
displacement-based, and distance-based formation control.
In the position-based formation control, the desired positions
are given with respect to a global coordinate system, and the
global position sensing is required [5]. The desired displace-
ments are given and controlled in the displacement-based for-
mation, where the relative positions of the neighboring agents
are sensed with respect to a global coordinate system [6]. The
distance-based formation is prescribed by the desired intera-
gent distances, where the interagent distances are controlled
and the relative positions of the neighboring agents are sensed

with respect to their local coordinate systems [7–10]. The ori-
entations of the local coordinate systems need not be aligned
with each other. This means that a global sensing is not
required in the distance-based formation control. Moreover,
with the application of the rigid and persistent graph theory,
only a part of the interagent distances needs to be controlled.
Thus, the distance-based formation control has better cost-
effectiveness than the other two approaches.

One of the hotspot problems in the distance-based
formation control is how to maintain the formation shape,
while the agents are tracking a reference trajectory or mov-
ing with a reference velocity [11]. A number of research
works have considered the movement of formation in the
displacement-based control. However, only few results in
the distance-based control are available because of its
extreme complexity in analysis [12, 13]. Further, in some
real-world applications, such as the formation of unmanned
flight vehicles and submarines [14, 15], the agents are actu-
ally moving in a 3-dimensional (3D) space, which will make
the formation control scheme more complicated. Therefore,
the study of 3D distance-based formation control is gaining
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increasing attention [16, 17]. But they have not yet consid-
ered the movement of the formation. Then, Zhang et al. pre-
sented a 3D formation that can move with a given velocity
while achieving the desired formation shape by directly add-
ing a term of formation maneuvering velocity in the forma-
tion control law [18]. It is shown from the paper that the
agents should know the reference velocity so as to remove
the formation control error. In view of this, Kang et al.
designed a distance-based formation control law in the
leader-follower type with a moving leader [19, 20]. The fol-
lower agents in [19, 20] can estimate the velocity of the mov-
ing leader adaptively by only measuring the relative positions
from their neighboring agents, which promotes the develop-
ment of distance-based formation control. It is true that all
the agents should not be collocated at a common point ini-
tially when using the steepest descent control law in the
distance-based formation. The initial positions of the agents
are usually set to noncollinear and close to the target for-
mation shape [21, 22]. To solve this initial collinear prob-
lem, Park and Ahn modified the gradient control law by
introducing a rotation matrix into the controller, which
can change the descent direction and help the agents
escape from the collinear position [23]. In [24], a formation
control law was proposed based on two mutually perpendic-
ular vectors, which provided a way for the agents to leave the
initially collinear location. Another way to solve this prob-
lem is to set the initial velocity of the agent with a differ-
ent orientation from the line [25]. Although the formation
control problem with collinear initial positions of the
agents has been solved [23–25], it is still challenging when
the initial position of the agents is coplanar in the 3D
distance-based formation.

In this paper, we aim to propose an adaptive 3D
distance-based formation control law for a multiagent sys-
tem with four kinds of agents, where the underlying graph
of the formation is an acyclic minimally structural persis-
tent (AMSP) graph. Compared with the global leader, first
follower, and second follower, it is more difficult to design
the controller for the ordinary follower, which follows three
agents and has the problem of trapping in a plane. The
proposed formation controller of the ordinary follower
constructs a vector perpendicular to the plane determined
by its three leaders, which provides a new way for the ordi-
nary follower to leave the coplanar location. Moreover, a
parameter is designed according to the desired formation
shape and is used in the formation controller to solve the
problem that there are two formation shapes satisfying
the same distance requirements. The unknown moving
velocity of the leader is adaptively estimated by the fol-
lowers requiring only the relative position measurements
with respect to their local coordinate systems. The 3D for-
mation control law is globally asymptotically stable and has
been demonstrated based on the Lyapunov theorem. The
outline of this paper is listed as follows. Background and
preliminaries are introduced in Section 2. The procedure
of distributed formation control scheme design with the
velocity estimator is presented in Section 3. Numerical sim-
ulations are completed in Section 4, and we reach a conclu-
sion in Section 5.

2. Background and Preliminaries

2.1. Graph and Formation Structure. The formation problem
of a multiagent system is modeled by a directed graph G ,
which consists of a vertex set V = 1, 2,⋯, n and a directed
edge set ℰ = i, j : i, j ∈V , i ≠ j . The vertices represent the
agents, and the weighted edges represent the interagent dis-
tance constraints. The neighboring set of agent i is defined
asN i = j ∈V ∣ i, j ∈ℰ . A directed edge from i to jmeans
that agent i can measure the relative position between agent i
and j. Then, we call agent i a “follower” of agent j and corre-
spondingly call agent j a “leader” of agent i. The formation
shape can be maintained during any continuous motion, if
the underlying graph is rigid and the distance constraints of
each agent are satisfied. A formation graph is minimally per-
sistent if it is rigid and constraint consistent with the mini-
mum possible number of edges [26–28].

For a 3D minimally persistent formation, the sum of the
degrees of freedoms (DOFs) of agents is always six [29].
Then, there exist various structures of the formation graph,
according to the different distributions of these 6 DOFs
among non-0-DOF agents. Moreover, the concept of struc-
tural persistence should be taken into consideration for 3D
application [29]. For example, the graph in Figure 1(a) is an
acyclic minimally structural persistent (AMSP) graph, while
the graph in Figure 1(b) is minimally persistent but not struc-
turally persistent with two free leaders.

In this paper, the AMSP graph is applied to construct the
3D leader-follower formation structure, which is the most
convenient structure to design distributed control schemes.
In the AMSP graph, there are one 3-DOF agent called the
global leader, one 2-DOF agent called the first follower, one
1-DOF agent called the second follower, and some 0-DOF
agents called ordinary followers.

2.2. Problem Statement. In the distance-based formation, the
desired formation is prescribed by the desired interagent dis-
tances. The desired distance between agent i and agent j is
denoted by dij > 0 and apparently dij = dji. It is assumed that
each agent imeasures the relative positions of its neighboring
agents via an onboard sensor with respect to its local coordi-
nate system i∑. The orientations of the local coordinate sys-
tems are not aligned with each other. All the agents move in a
3-dimensional space. Although the control law of each agent
is implemented in i∑ in practice, it is more convenient to
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Figure 1: Examples of graph in a 3D space: (a) an acyclic minimally
structural persistent graph; (b) minimally persistent but not
structurally persistent graph.
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represent the agents with respect to a global coordinate sys-
tem g∑ for stability analysis. In addition, the state in i∑ can
be transformed into g∑ by a suitable coordinate transforma-
tion. In this paper, the state of each agent will be represented
with respect to g∑. The position and the velocity of agent
i at time t in g∑ are denoted by pi t = Xi, Yi, Zi

T ∈ R3 and

vi t = VX
i , VY

i , VZ
i

T ∈ R3, respectively. The dynamics of
agent i is modeled as a single integrator:

pi t = ui t , 1

where ui ∈ R3, i = 2,… , n, is the control input of agent i.
z ij ∈ R3 is used to represent the relative position vector
as follows:

z ij = pi − pj 2

In this paper, only the relative position z ij can be
measured directly by agent j, where agent j is a follower
of agent i. A follower is responsible for maintaining the
desired distances from its leaders, while the leader does
not perform any action to maintain the distance. Then,
the formation control procedure is to design a decentralized
formation control law for each follower agent such that

lim
t→∞

z ij = dij 3

3. Results

In this section, firstly, we design the formation control
laws for an AMSP formation with four agents (one global
leader agent ν1, one first follower agent ν2, one second fol-
lower agent ν3, and one ordinary follower agent ν4). Then,
the proposed formation control laws are extended to an
AMSP formation with n n ≥ 4 agents.

3.1. Controller Design for Formation with Four Agents. The
global leader does not follow any other agents and deter-
mines where the entire formation goes. The control input
for the global leader is shown as

u1 = v, 4

where v is the designed velocity of the entire formation. We
consider the situation that the velocity of the leader is not
known to all the followers. And an adaptive method is
applied to estimate the velocity of the leader.

The first follower only follows the global leader and
maintains the desired distance towards the global leader.
The control law with an estimator for the first follower is
shown as follows:

u2 = v̂ 2 + e12 z 12,v̂2 = z 12e12, 5

where e12 = z 12
2 − d212 and v̂2 is the estimation for v by the

first follower.

The second follower follows the global leader and the first
follower. The control law with an estimator for the second
follower is shown as follows:

u3 = v̂ 3 + z 13e13 + z 23e13,v̂ = z 13e13 + z 23e23, 6

where e13 = z 13
2 − d213, e23 = z 23

2 − d223, and v̂3 is the
estimation for v by the second follower. In addition, the con-
vergences of the first follower and second follower to the
desired formation have been proven in [20].

Assumption 1. In this paper, the desired formation is real-
izable. All the corresponding desired distances satisfy the
triangular inequality constraints. For example, d12 < d13 +
d23, d23 < d12 + d13 and d13 < d12 + d23. Further, the first
follower and the second follower have converged to the
desired formation by the controllers and estimators. That
is, z 12 → d12, z 13 → d13, z 23 → d23, p2 → v, and
p3 → v are known.

Therefore, in this paper, we focus on designing the con-
troller for the ordinary follower, which follows three agents
and measures the relative positions of the three neighbors.
It should be noted that the formation is not globally rigid,
as the agents are connected based on an AMSP graph.
Obviously, there exist two different formations for the ordi-
nary follower that satisfy the same distance requirements in
a 3D space, shown in Figure 2. In the sequel, we call the
formation in Figure 2(a) as orientation 1 and the formation
in Figure 2(b) as orientation 2. To achieve the global con-
vergence of the system, a new formation control law with
an adaptive estimator for the ordinary follower is proposed
as follows:

u4 = e14 ⋅ z 12 × z 13 + e24 ⋅ z 12 + e34 ⋅ z 13 + v̂ 4, 7

v̂4 = e14 ⋅ z 12 × z 13 + e24 ⋅ z 12 + e34 ⋅ z 13, 8

e14 = z 12 × z 13 ⋅ z 14 − E14, 9

e24 = z 24 ⋅ z 12 − E24, 10

e34 = z 34 ⋅ z 13 − E34, 11
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Figure 2: Two different formations for the ordinary follower that
satisfy the same distance requirements: (a) orientation 1; (b)
orientation 2.
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where v̂4 is the estimation for v by the ordinary follower.
The cross product z 12 × z 13 is a vector perpendicular
to the plane determined by z 12 and z 13, which provides
a way for the ordinary follower to escape from the coplanar
position. E14 is the inner product of z 12 × z 13 and z 14
when the expected formation is achieved, E24 is the inner
product of z 24 and z 12 when the expected formation is
achieved, and E34 is the inner product of z 34 and z 13
when the expected formation is achieved. E24 and E34 for
the two different formations are the same as follows:

E24 =
d224 − d212 − d214

2
,

E34 =
d234 − d213 − d214

2

12

E14 is designed according to the desired formation
shape and is used in the formation controller to solve the
problem that there are two different formation shapes satis-
fying the same distance requirements. When the expected
formation is as shown in Figure 2(a), E14 is designed by
(13). When the expected formation is as shown in
Figure 2(b), E14 is designed by (14).

E14 = 6 ⋅ V , 13

E14 = −6 ⋅ V , 14

where V is the expected volume of the tetrahedron con-
structed by the agents v1, v2, v3, and ν4, which can be cal-
culated by the Carley-Menger determinant:

V =
1
288

0 1 1 1 1

1 0 d212 d213 d214

1 d212 0 d223 d224

1 d213 d223 0 d234

1 d214 d224 d234 0
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Lemma 3.1. The distance error and velocity estimation error
of the ordinary follower are bounded (i.e., e14, e24, e34, and
v1 − v̂4 are bounded).

Proof 1. Define the following Lyapunov function:

Vp = e214 + e224 + e234 + v − v̂4
2, 16

which is continuously differentiable and satisfies that Vp ≥ 0
with equality if and only if e14 = 0, e24 = 0, e34 = 0, and v1
− v̂4 = 0. Based on Assumption 1, it is known that z 12
and z 13 are not collinear. Then, z 12 × z 13 is perpendicular
to the planar defined by z 12 and z 13. Thus, the three non-
coplanar vectors of z 12 × z 13, z 12, and z 13 can form a
base of R3 space. Then, v and v̂4 can be reexpressed as follows:

v = α ⋅ z 12 × z 13 + β ⋅ z 12 + χ ⋅ z 13, 17

v̂ 4 = α ⋅ z 12 × z 13 + β ⋅ z 12 + χ ⋅ z 13, 18

where α, β, and χ are the corresponding components of

v, while α, β, and χ are the corresponding components of
v̂4. Then,

Vp = e214 + e224 + e234 + α − α ⋅ z 12 × z 13

+ β − β ⋅ z 12 + χ − χ ⋅ z 13
2

≤ e214 + e224 + e234 + α − α ⋅ z 12 × z 13
2

+ β − β ⋅ z 12
2
+ χ − χ ⋅ z 13

2

= V1 + V2 + V3 ≜ VΘ,

19

where

V1 = e214 + α − α ⋅ z 12 × z 13
2,

V2 = e224 + β − β ⋅ z 12
2
,

V3 = e234 + χ − χ ⋅ z 13
2

20

The time derivative of V1 is

V1 = 2e14e14 − 2e14 α − α ⋅ z 12 × z 13
2

= 2e14 α ⋅ z 12 × z 13
2 − e14

⋅ z 12 × z 13
2 − z 12 × z 13 ⋅ v̂

− 2e14 α − α ⋅ z 12 × z 13
2

= 2e14 α ⋅ z 12 × z 13
2 − e14

⋅ z 12 × z 13
2 − z 12 × z 13

⋅ α ⋅ z 12 × z 13 + β ⋅ z 12 + χ ⋅ z 13

− 2e14 α − α ⋅ z 12 × z 13
2

= 2e14 α − e14 − α ⋅ z 12 × z 13
2

− 2e14 α − α ⋅ z 12 × z 13
2

= −2e214 ⋅ z 12 × z 13
2 ≤ 0

21

The time derivative of V2 is

V2 = 2e24e24 − 2e24 β − β ⋅ z 12
2

= 2e24 z 12 ⋅ β ⋅ z 12 − e24 ⋅ z 12 − β ⋅ z 12

− 2e24 β − β ⋅ z 12
2

= 2e24 β − e24 − β ⋅ z 12
2

− 2e24 β − β ⋅ z 12
2

= −2e224 ⋅ z 12
2 ≤ 0

22
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The time derivative of V3 is

V3 = 2e34e34 − 2e34 χ − χ ⋅ z 13
2

= 2e34 z 13 ⋅ χ ⋅ z 13 − e34 ⋅ z 13 − χ ⋅ z 13

− 2e34 χ − χ ⋅ z 13
2

= 2e34 χ − e34 − χ ⋅ z 13
2

− 2e34 χ − χ ⋅ z 13
2

= −2e234 ⋅ z 13
2 ≤ 0

23

Then, the time derivative of VΘ is

VΘ =V1 +V2 + V3 ≤ 0, 24

which is negative semidefinite. From (19), VΘ is continu-
ously differentiable and satisfies that VΘ ≥ 0. Therefore, VΘ
t ≤VΘ 0 is bounded. From (19), it holds that Vp t ≤
VΘ t ≤VΘ 0 . In addition, Vp is continuously differentiable
and satisfies that Vp ≥ 0 from (16). Therefore, Vp is bounded,
and hence e14, e24, e34, and v − v4 are bounded.

Lemma 3.2. The distance errors converge to zero (i.e., e14 → 0,
e24 → 0, and e34 → 0 as t→∞).

Proof 2. From the fact that VΘ t is continuously differen-
tiable and bounded in Lemma 3.1, t

0VΘdt must converge
to a constant. Then, applying Barbalat’s lemma gives the
condition lim

t→∞
VΘ = 0 (i.e., lim

t→∞
V1 +V2 + V3 = 0). Based on

Assumption 1, z 12 × z 13, z 12, and z 13 are not zero. Thus,
we have lim

t→∞
e14 = lim

t→∞
e24 = lim

t→∞
e34 = 0.

Lemma 3.3. The velocity estimation error of the ordinary
follower converges to zero (i.e., v̂4 → v as t→∞).

Proof 3. Define a function Q1 as follows:

Q1 = z 12 × z 13 ⋅ z 14 25

Then, we have the time derivative of Q1 which is

Q1 = α ⋅ z 12 × z 13
2 − e14

⋅ z 12 × z 13
2 − z 12 × z 13 ⋅ v̂

= α ⋅ z 12 × z 13
2 − e14 ⋅ z 12 × z 13

2

− z 12 × z 13 ⋅ α ⋅ z 12 × z 13

+ β ⋅ z 12 + χ · z 13

= α − α − e14 ⋅ z 12 × z 13
2

26

From (9), Q1 = z 12 × z 13 · z 14 → E14 is obtained
because e14 → 0 is already verified in Lemma 3.2. Then, Q1
is continuously differentiable and bounded. Thus, from Bar-

balat’s lemma, Q1 → 0 is obtained (i.e., α − α − e14 ·
z 12 × z 13

2 → 0). Based on Assumption 1, z 12 × z 13 is
not zero. Further, e14 → 0 is already proved. To satisfy Q1
→ 0, α − α should converge to zero (i.e., α→ α). Define a
function Q2 as follows:

Q2 = z 24 ⋅ z 12 27

Then, we have the time derivative of Q2 which is

Q2 = z 12 ⋅ β ⋅ z 12 − e24 ⋅ z 12 − β ⋅ z 12

= β − β − e24 ⋅ z 12
2

28

From (10), Q2 = z 24 · z 12 → E24 is obtained because
e24 → 0 is already verified in Lemma 3.2. Then, Q2 is contin-
uously differentiable and bounded. Thus, from Barbalat’s

lemma, Q2 → 0 is obtained (i.e., β − β − e24 z 12
2 → 0).

Based on Assumption 1, z 12 is not zero. Further, e24 → 0 is

already proved. To satisfy Q2 → 0, β − β should converge to

zero (i.e., β→ β). Define a function Q3 as follows:

Q3 = z 34 · z 13 29

Then, we have the time derivative of Q3 which is

Q3 = z 13 ⋅ χ · z 13 − e34 ⋅ z13 − χ ⋅ z 13

= χ − χ − e34 ⋅ z 13
2 30

From (11), Q3 = z 34 · z 13 → E34 is obtained because
e24 → 0 is already verified in Lemma 3.2. Then, Q2 is contin-
uously differentiable and bounded. Thus, from Barbalat’s

lemma, Q3 → 0 is obtained (i.e., χ − χ − e34 · z 13
2 → 0).

Based on Assumption 1, z 13 is not zero. Further, e34 → 0 is
already proved. To satisfy Q3 → 0, χ − χ should converge
to zero (i.e., χ→ χ).

In conclusion, from (17) and (18), it is straightforward to

obtain that v̂4 → v, because α→ α,β→ β, and χ→ χ.

Theorem 3.4. The ordinary follower converges to the desired
states by using the controller in (7) and estimator in (8)
(i e , e14 → 0, e24 → 0, e34 → 0, v̂4 → v, and p4 → v as
t→∞). That is, the system converges to the desired formation.

Proof 4. From Lemma 3.1, it was proven that the distance
errors e14, e24, and e34 and the velocity estimation error v1
− v̂4 are bounded. Further, the convergence of distance
errors e14, e24, and e34 to zero is obtained. In addition to the
convergence of velocity estimator v̂4 to v, from (7), the veloc-
ity of the ordinary follower p4 converges to v. As a result, all
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of the agents converge to the desired formation as follows:
p2 → v, p3 → v, p4 → v, z 12 → d12, z 13 → d13, z 23
→ d23, z 14 → d14, z 24 → d24, and z 34 → d34.

3.2. Extension to n-Agent Case. Then, we extend the pro-
posed formation control law to an AMSP formation with
n (n ≥ 4) agents. Based on the AMSP graph, each ordinary
follower i (4 ≤ i ≤ n) has exactly three neighbors, which are
denoted by j, k, and w (1 ≤ j, k,w ≤ i − 1), respectively.
Without loss of generality, dji, dki, and dwi denote the
expected distance between the corresponding agents,
respectively. From the previous analysis, the convergence
of four agents to the desired formation was achieved.
Therefore, based on the control law designed for agent ν4
((7) and (8)), the control law for agent νi can be inferred
inductively as follows:

ui = eji ⋅ z jk × z jw + eki ⋅ z jk + ewi ⋅ z jw + v̂i,

v̂i = eji ⋅ z jk × z jw + eki ⋅ z jk + ewi ⋅ z jw,

eji = z jk × z jw ⋅ z ji − Eji,

eki = z ki ⋅ z jk − Eki,

ewi = z wi ⋅ z jw − Ewi,

31

where v̂i is the estimation for v by agent νi. Eji is the inner

product of z jk × z jw and z ji when the expected forma-

tion is achieved, Eki is the inner product of z ki and z jk when
the expected formation is achieved, and Ewi is the inner prod-
uct of z wi and z jw when the expected formation is achieved.
Eki and Ewi for the two different formations are the same and
calculated as follows:

Eki =
d2ki − d2jk − d2ji

s
,

Ewi =
d2wi − d2jw − d2ji

2

32

Eji is designed according to the desired formation shape
and is used in the formation controller to solve the problem
that there are two different formation shapes satisfying the
same distance requirements. When the expected formation
is as shown in Figure 2(a), Eji is designed by (33). When
the expected formation is as shown in Figure 2(b), Eji is
designed by (34).

Eji = 6 ⋅ Vi, 33

Eji = −6 ⋅ Vi, 34

where Vi is the expected volume of the tetrahedron con-
structed by the agents νj, νk, νw, and νi, which can be
calculated by the Carley-Menger determinant:

Vi =
1
288

0 1 1 1 1

1 0 d2jk d2jw d2ji

1 d2jk 0 d2kw d2ki

1 d2jw d2kw 0 d2wi

1 d2ji d2ki d2wi 0

35

Assume that the n − 1 agents constructed by an AMSP
graph converge to the desired formation. Add a new agent
to the graph of n − 1 agents.

Then, the graph of n agents is still an AMSP graph,
as the added agent follows three agents. The neighbors
of the added agent belong to the graph of n − 1 agents and
converge to the desired formation as assumed. Then, the
lemmas and theorems in Section 3 can be applied to the
added agent by replacing the name of the agent. As a result,
the n agents converge to the desired formation if the n − 1
agents converge. Since both the basis and the inductive steps
have been performed, by mathematical induction, the agents
globally converge to the desired formation under the control
law with an adaptive estimator.

4. Simulations

In this section, two simulations are presented to support our
theoretical analysis. Firstly, we will show that two different
formation shapes that satisfy the same distance require-
ments are achieved, respectively. Then, the simulation ver-
ifies that the ordinary follower can leave the initial coplanar
location even when the velocity of the leader agent is in the
same initial plane.

4.1. Two Different Formation Shapes. The initial positions of
the five agents are given in a plane: pi 0 2 cos 2π/5 i , 2 sin
2π/5 i , 0 T, i = 1, 2, 3, 4, 5. The velocity of the leader agent

is given as v = −1 5, −1, 0 5 T. The desired distances between
agents are assigned as follows: d12 = d13 = d23 = 2 23, d14 =
d24 = d34 = 2 25, and d15 = d25 = d35 = 2 2. Then, the
parameters are calculated as follows: E24 = E34 = −6, V4 = 4
3, E25 = E35 = −6, and V5 = 2 3 . It is clear that the

underlying graph of the desired formation is an AMSP
graph, and there exist two different formations that satisfy
the same distance requirements, which can be achieved
based on the proposed control law as follows.

Case 1.Agent ν4 and agent ν5 are set to the same Orientation
1. Then, E14 = 6 ·V4 = 24 3 and E15 = 6 · V5 = 12 3 . The
trajectories of agents in a 3D space are illustrated in
Figure 3. It shows that agent ν4 and agent ν5 are on the same
side of the plane determined by the agents ν1, ν2, and ν3.

Case 2. Agent ν4 is set to Orientation 2, while agent ν5 is set
to Orientation 1. Then, E14 = −6 · V4 = −24 3 and E15 = 6 ·
V5 = 12 3 . The trajectories of agents in a 3D space are
shown in Figure 4. It shows that agent ν4 and agent ν5 are
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on the different sides of the plane determined by the agents
ν1, ν2, and ν3.

It is shown from Case 1 and Case 2 that the two different
formation shapes satisfying the same distance requirements
can be achieved by designing different E14 and E15. Further,
the five agents approach the desired formation and maintain
the formation shape while moving. The distance errors of the
formation converge to zero quickly as shown with time in
Figures 5 and 6.

4.2. Escape from the Initial Coplanar Position. As shown in
Section 4.1, the agents can leave the initial coplanar location
for the reason that the velocity of the leader agent is not in the
plane. Moreover, based on the proposed formation control-
ler, the ordinary follower can leave the initial coplanar loca-
tion even when the velocity of the leader agent is also in the
plane. Thus, in this section, the velocity of the leader agent

is set as v = −1 5, −1, 0 T. The other simulation conditions
are set the same as those of Case 2 in Section 4.1. Then, the
trajectories of agents in a 3D space are illustrated in
Figure 7. It shows that agent ν4 and agent ν5 leave the initial
coplanar location and approach the desired formation. The
distance errors of the formation converge to zero quickly as
shown with time in Figure 8.

5. Conclusion

In this paper, we investigate a decentralized 3D formation
control law for a multiagent system. The proposed approach
can achieve the different formation shapes that satisfy the
same distance requirements, which extends the existing
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distance-based 3D formation control laws. Although the
underlying AMSP graph of the formation is not globally
rigid, the multiagent system is still globally asymptotically
stable. Moreover, a stable 3D formation motion can be real-
ized, even when the initial positions of the agents are copla-
nar and the velocity of the leader agent is also in the plane.
The performed numerical simulation results show the effec-
tiveness of the formation control strategy.

In the future, we will further design more advanced for-
mation control algorithms with robustness in mind. With
the development of the adaptive neural network [30, 31],
learning control [32], adaptive observer, and parameter
estimation [33–35], the dynamics of the agent can be
extended to the scenarios involving unknown nonlinear
dynamics and external disturbances to further validate this
formation control scheme.
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