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The aim of this paper is to put into context the historical, foundational
and philosophical significance of category theory. We use our histor-
ical investigation to inform the various category-theoretic foundational
debates and to point to some common elements found among those who
advocate adopting a foundational stance. We then use these elements to
argue for the philosophical position that category theory provides a frame-
work for an algebraicin re interpretation of mathematical structuralism.
In each context, what we aim to show is that, whatever the significance
of category theory, it need not rely upon any set-theoretic underpinning.

1. History

Any (rational) reconstruction of a history, if it is not merely to consist in a
list of dates and ‘facts’, requires a perspective. Noting this, the perspective
taken in our detailing the history of category theory will be bounded by our
investigation of category theorists’ top-down approach towards analyzing
mathematical concepts in a category-theoretic context. Any perspective
too has an agenda: ours is that, contrary to popular belief, whatever the
worth (mathematical, foundational, logical, and philosophical) of category
theory, its significance need not rely on any set-theoretical underpinning.

1.1 Categories as a Useful Language

In 1942, Eilenberg and Mac Lane started their collaboration by applying
methods of computations of groups, developed by Mac Lane, to a prob-
lem in algebraic topology formulated earlier by Borsuk and Eilenberg. The
problem was to compute certain homology groups of specific spaces.1
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1 Here is the problem: given a solenoid� in the sphere S3, how many homotopy classes

of continuous mappings f(S3 − �) ⊂ S2 are there? As its name indicates, a solenoid
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2 LANDRY AND MARQUIS

The methods employed were those of the theory of group extensions,
which were then used to compute homology groups. In the process, it
became apparent that many group homomorphisms were ‘natural’. While
the expression ‘natural isomorphism’ was already in use, because Eilen-
berg and Mac Lane relied on its use more heavily and specifically, a more
exact definition was needed; they state: ‘We are now in a position to give a
precise meaning to the fact that the isomorphisms established in Chapter V
are all “natural”.’ (Eilenberg and Mac Lane [1942b], p. 815) It was clear
from their joint work, and from other results known to them, that the
phenomenon which they refer to as ‘naturality’ was a common one and
appeared in different contexts. They therefore decided to write a short note
in which they set up the ‘basis for an appropriate general theory’ wherein
they restricted themselves to the natural isomorphisms of group theory.
(See Eilenberg and Mac Lane [1942a], p. 537.) In this note, they introduce
the notion of a functor, in general, and the notion of natural isomorphisms,
in particular. These two notions were used to give a precise meaning to
‘what is shared’ by all cases of natural isomorphisms. At the end of the
note, Eilenberg and Mac Lane announced that the general axiomatic frame-
work required to present natural isomorphisms in other areas,e.g., in the
areas of topological spaces and continuous mappings, simplical complexes
and simplical transformations, Banach spaces and linear transformations,
would be studied in a subsequent paper.

This next paper, appearing in 1945 under the title ‘General theory of
natural equivalences’, marks the official birth of category theory. Again,
the objective is to give a general axiomatic framework in which the notion
of natural isomorphism could be both defined and used to capture what
structure is shared in various areas of inquiry. In order to accomplish the
former, they had to define functors in full generality, and, in order to do
this, they had to define categories. Here is how Mac Lane details the order
of discovery: ‘we had to discover the notion of a natural transformation.
That in turn forced us to look at functors, which in turn made us look at
categories’ (Mac Lane [1996c], p. 136). Having made this finding, ‘the
conceptual development of algebraic topology inevitably uncovered the
three basic notions:category, functorandnatural transformation’ (Mac
Lane [1996c], p. 130) .

is an infinitely coiled thread. Thus, the complement of a solenoid in the sphere S3 is
infinitely tangled around it. Eilenberg showed that these homotopy classes were in one-
to-one correspondence with the elements of a specific homology group, which he could
not, however, compute. Although it seems to be a purely technical problem, its feasibility
leads to a better understanding and control of (co-)homology. Using a different method,
Steenrod discovered a way to compute various relevant groups, but the computations were
quite intricate. What prompted the collaboration between Eilenberg and Mac Lane was
the discovery that Steenrod’s groups were isomorphic to extensions of groups, which were
much easier to compute.
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It should be noted that, at this point, Eilenberg and Mac Lane thought
that the concept of a category was required only to satisfy a certain con-
straint on the definition of functors. Indeed, they took functors to be
(set-theoretical)functions, and therefore as needing well-defined domains
and codomains,i.e., as needing sets. They were immediately aware, too,
that the category ofall groups, or the category ofall topological spaces,
was an illegitimate construction from such a set-theoretic point of view.
One way around this problem, as they explicitly suggested, was to use the
concept of a category as a heuristic device, so that

. . . the whole concept of a category is essentially an auxiliary
one; our basic concepts are essentially those of afunctorand of
a natural transformation. . . The idea of a category is required
only by the precept that every function should have a definite
class as domain and a definite class as range, for the categories
are provided as the domains and ranges of functors. Thus one
could drop the category concept altogether and adopt an even
more intuitive standpoint, in which a functor such as ‘Hom’ is
not defined over the category of ‘all’ groups, but for each partic-
ular pair of groups which may be given. The standpoint would
suffice for the applications, inasmuch as none of our devel-
opments will involve elaborate constructions on the categories
themselves. (Eilenberg and Mac Lane [1945], p. 247)

This heuristic stance was basically the position underlying the status
of categories from 1945 until 1957–1958. Eilenberg and Mac Lane did,
however, examine alternatives to their ‘intuitive standpoint’, including the
idea of adopting NBG (with its distinction between sets and classes) as a set-
theoretical framework, so that one could say that the category of all groups
is a class and not a set. Of course, one has to be careful with the operations
performed on these classes and make sure that they are legitimate. But,
as Eilenberg and Mac Lane mention in the passage quoted above, these
operations were, during the first ten years or so, rather simple, which meant
that their ‘legitimacy’ did not pose much of a problem for using the NBG
strategy. The view that such ‘large’ categories are best taken as classes is
adopted, for instance, in Eilenberg and Steenrod’s very influential book
on the foundations of algebraic topology, and also in all other books on
category theory that appeared in the sixties. (See, for example, Eilenberg
and Steenrod [1952], Freyd [1964], Mitchell [1965], Ehresmann [1965],
Bucur and Deleanu [1968], Pareigis [1970].) Side-stepping the issue of
what categories are, Cartan and Eilenberg’s equally influential book on
homological algebra, which is about the role of certain functors, does not
even attempt to define categories! (See Cartan and Eilenberg [1956].)

The books by Eilenberg and Steenrod and by Cartan and Eilenberg con-
tained the seeds for the next developments of category theory in three
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important aspects. First, they introduced categories and functors into
mathematical practice and were the source by which many students learned
algebraic topology and homological algebra. This allowed for the assimil-
ation of the language and notions as a matter of course. Second, they used
categories, functors, and diagrams throughout and suggested that these
were the right tools for both setting the problems and defining the concepts
in these fields. Third, they employed various other tools and techniques
that proved to be essential in the development of category theory itself. As
such, these two books undoubtedly offered up the seeds that revolutionized
the mathematics of the second half of the twentieth century and allowed
category theory to blossom into its own.

1.2 Categories as Mathematically Autonomous

The [1945] introduction of the notions of category, functor, and natural
transformation led Mac Lane and Eilenberg to conclude that category the-
ory ‘provided a handy language to be used by topologists and others, and
it offered a conceptual view of parts of mathematics’; however, they ‘did
not then regard it as a field for further research effort, but just as a language
of orientation’ (Mac Lane [1988], pp. 334–335). The recognition that cat-
egory theory was more than ‘a handy language’ came with the work of
Grothendieck and Kan in the mid-fifties and published in 1957 and 1958,
respectively.2

Cartan and Eilenberg had limited their work to functors defined on
the category of modules. At about the same time, Leray, Cartan, Serre,
Godement, and others were developing sheaf theory. From the start, it
was clear to Cartan and Eilenberg that there was more than an analogy
between the cohomology of sheaves and their work. In 1948 Mac Lane
initiated the search for a general and appropriate setting to develop homo-
logical algebra, and, in 1950, Buchsbaum’s dissertation set out to continue
this development (a summary of this was published as an appendix in
Cartan and Eilenberg’s book). However, it was Grothendieck’s Tôhoku
paper, published in 1957, that really launched categories into the field.
Not only did Grothendieck define abelian categories in that now classic
paper, he also introduced a hierarchy of axioms that may or may not be
satisfied by abelian categories and yet allow one to determine what can
be constructed and/or proved in such contexts. Within this framework,
Grothendieck generalized not only Cartan and Eilenberg’s work, something
which Buchsbaum had similarly done, but also generalized various special

2 Mac Lane’s work on group duality was certainly important with hindsight, but was
not initially recognized as such by the mathematical community. In contrast, even at the
outset, it was clear that Grothendieck and Kan’s work was to have a profound impact on
the mathematical community.
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results on spectral sequences, in particular Leray’s spectral sequences on
sheaves.

In the context of abelian categories, as defined by Grothendieck, it
came to matter not what the system under study is about (what groups
or modules are ‘made of’), but only that one can, by moving to a com-
mon level of description,e.g., the level of abelian categories and their
properties, cash out the claim, via the use of functors, that ‘theXs
relate to each other the way theYs relate to each other’, whereX and
Y are now category-theoretic ‘objects’. Providing the axioms of abelian
categories3 thus allowed for talk about the shared structural features of
its constitutive systems,qua category-theoretic objects, without having
to rely on what ‘gives rise’ to those features. In category-theoretic ter-
minology, it allows one to characterize a type of structure in terms of
the (patterns of) functors that exist between objects without our having
to specify what such objects or morphisms are ‘made of’. As McLarty
points out:

[c]onceptually this [the axiomatization of abelian categories]
is not like the axioms for a abelian groups. This is an axiomatic
description of the whole category of abelian groups and other
similar categories. We pay no attention to what the objects and
arrows are, only to what patterns of arrows exist between the
objects. (McLarty [1990], p. 356)

More generally, since in characterizing a particular category, we need not
concern ourselves with what the objects and morphisms are ‘made of’,
there is no need to rely on set theory or NGB to tell us what the objects and
morphisms of categories ‘really are’. In the case of abelian categories, for
example, we note that ‘the basic [categorical] axioms let you perform the
basic constructions of homological algebra and prove the basic theorems
with no use of set theory at all’ (McLarty [1990], p. 356).

At about the same time,i.e., in the spring of 1956, Kan introduced the
notion of adjoint functor. Kan was working in homotopy theory, developing
what is now called combinatorial homotopy theory. He soon realized that
he could use the notion of adjoint functor to unify various results that he had
obtained in previous years. He published the unified version of these results,
together with new homotopical results, in 1958 in a paper entitled ‘Functors
involving c.s.s. complexes’. For this paper to make sense to the reader, Kan
had to write a paper on adjoint functors themselves. It was simply called
‘Adjoint functors’ and was published just before the paper on homotopy
theory in theAMS Transactions. It was while writing the paper on adjoint
functors that Kan discovered how general the notion was; specifically, he

3 Mac Lane [1950], did not completely succeed in his attempt to axiomatize abelian
categories. This was first done by Grothendieck [1957].
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noted the connection to other fundamental categorical notions,e.g., to the
notions of limit and colimit. As Mac Lane himself observed, it took quite a
while before the notion of adjoint functor was itself seen as a fundamental
concept of category theory,4 i.e., before it was taken as the concept upon
which a whole and autonomous theory could be built and developed. (See
Mac Lane [1971a], p. 103.)

According to Mac Lane, category theory became an independent field
of mathematical research between 1962 and 1967. (See Mac Lane [1988].)
From the above, it is clear that abelian categories and adjoint functors
played a key role in that development. One also has to mention the work
done by Grothendieck and his school on the foundations of algebraic geo-
metry, which appeared in 1963 and 1964; the work done by Ehresmann
and his school on ‘structured categories’ and differential geometry in 1963;
Lawvere’s doctoral dissertation [1963]; and the work done on triples by
Barr, Beck, Kleisli, and others in the mid-sixties. Perhaps more telling
of its rising independence is the fact that the first textbooks on category
theory appeared during this period, these starting with Freyd [1964],
Mitchell [1965], and Bucur and Deleanu [1968]. The ground-breaking
work of Quillen [1967], although not concerned with ‘pure’ category
theory, but using categories in an indispensable way, should also be
mentioned.

One can thus summarize the shifts required to recognize category theory
as mathematically autonomous as follows:

1. In the first period, that is, from 1945 until about 1963, mathem-
aticians started with kinds of set-structured systems,e.g., abelian
groups, vector spaces, modules, rings, topological spaces, Banach
spaces,etc., moved to the categories of such structured systems
as specified by the morphisms between them, and then moved to
functors between the now defined categories (these functors usu-
ally going in one direction only). Insofar as kinds of set-structured
systems preceded the formation of a category, one could say that
categories themselves were taken as types of set-structured sys-
tems (or class-structured systems, depending on the choice of the
foundational framework) just as any other algebraic system.

2. In the sixties, it became possible to start directly with the categorical
language and use the notions of object, morphism, category, and
functor to define and develop mathematical concepts and theories in
terms of cat-structured systems. In other words, one need not first
define the types of structured systems one is interested in as kinds of

4 It is interesting to note that even in Freyd’s book,Abelian Categories, published in
1964, adjoint functors are introduced in the exercises, although Freyd himself was probably
one of the very first mathematicians to recognize the importance of the concept.
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set-structured systems and then move to the category of these kinds.
Instead one defines a category with specific properties, the objects of
which are the very kinds of structured systems that one is interested
in. Thus the objects and their properties are characterized by the
‘structure’ of the category in which they are considered; this structure
as presented by the (patterns of) morphisms that exist between the
objects. The ‘nature’ of both the objects and morphisms is left unspe-
cified and is considered as entirely irrelevant. Set-structured systems
and functions may, of course, then be used to illustrate, exemplify, or
represent (even in the technical, mathematical, sense of that expres-
sion) such ‘abstract’ categories, but they are not constitutive of what
categories are.

3. The category-theoretic way of working and thinking points to a
reversal of the traditional presentation of mathematical concepts
and theories,i.e., points to a top-down approach. This approach
is best characterized by an adherence to a category-theoretic ‘con-
text principle’ according to which one never asks for the meaning of
a mathematical concept in isolation from, but always in the context
of, a category.

An analogy with the concepts of spaces and points of spaces can be used
to further illuminate this last shift.5 It is well-known that two irreconcil-
able claims can be made about points and spaces: first, one can claim
that points pre-exist spaces—that the latter are ‘made of’ points; second,
one can claim that spaces pre-exist points—that the latter are ‘extracted’
or ‘boundaries’ of spaces,e.g., line segments. Bringing this situation
to bear on the category-theoretic case, the first claim corresponds to an
‘atomistic’ approach to mathematics, or, in the terminology of Awodey
[2004], to a bottom-up approach. This approach is clearly expressed in
Russell’s philosophical and logical work, and, more generally, in most (if
not all) set-theoretical accounts. The second claim, in contrast, corresponds
to an ‘algebraic’ approach to mathematics, or, again in the terminology
of Awodey [2004], to a top-down approach. It is this latter, top-down,
approach that finds clear expression in category theory as it has developed
since the mid-sixties. More to the point, the idea that this approach can be
(and should be) extended and applied to logic and, more generally, to the
foundations of mathematics itself is to be attributed to Lawvere, who first
made such attempts in his Ph.D. thesis [1963].

5 This, in fact, can be seen as much more than an analogy, since a categorical approach
to points of spaces has been developed in this manner, mostly under the influence of
Grothendieck, in a topos-theoretical framework. See Cartier [2001] for a survey.
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1.3 Categories and the Foundation of Mathematics

In the late fifties and early sixties, it seemed possible to define various
mathematical concepts and characterize many mathematical branches dir-
ectly in the language of category theory and, in some cases, it appeared to
provide the most appropriate setting for such analyses. As we have seen, the
concepts of functor and the branches of algebraic topology, homological
algebra, and algebraic geometry were prime examples. Lawvere took the
next step and suggested that even logic and set theory, and whatever else
could be defined set-theoretically, should be defined by categorical means.
And so, in a more substantial way, he advanced the claim that category the-
ory providedthesetting for a conceptual analysis of the logical/foundational
aspects of mathematics.

This bold step was initially considered, even by the founders of category
theory, to be almost absurd. Here is how Mac Lane expresses his first
reaction to Lawvere’s attempts:

[h]e [Lawvere] then moved to Columbia University. There he
learned more category theory from Samuel Eilenberg, Albrecht
Dold, and Peter Freyd, and then conceived of the idea of giving
a direct axiomatic description of the category of all categories.
In particular, he proposed to do set theory without using the
elements of a set. His attempt to explain this idea to Eilen-
berg did not succeed; I happened to be spending a semester in
New York (at Rockefeller University), so Sammy asked me to
listen to Lawvere’s idea. I did listen, and at the end I told him
‘Bill, you can’t do that. Elements are absolutely essential to
set theory.’ After that year, Lawvere went to California. (Mac
Lane [1988], p. 342)

More precisely, Lawvere went to Berkeley in 1961–62 to learn more about
logic and the foundations of mathematics from Tarski, his collaborators,
and their students. One should note, however, that Lawvere’s goal was to
find an alternative, more appropriate, foundation for continuum mechanics;
he thought that the standard set-theoretical foundations were inadequate
insofar as they introduced irrelevant, and problematic, properties into the
picture. In his own words:

[t]he foundation of the continuum physics of general materials,
in the spirit of Truesdell, Noll, and others, involves powerful
and clear physical ideas which unfortunately have been sub-
merged under a mathematical apparatus including not only
Cauchy sequences and countably additive measures, but also
ad hocchoices of charts for manifolds and of inverse limits of
Sobolev Hilbert spaces, to get at the simple nuclear spaces of
intensively and extensively variable quantities. But as Fichera
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lamented, all this apparatus gives often a very uncertain fit
to the phenomena. This apparatus may well be helpful in the
solution of certain problems, but can the problems themselves
and the needed axioms be stated in a direct and clear manner?
And might this not lead to a simpler, equally rigorous account?
These were the questions to which I began to apply the topos
method in my 1967 Chicago lectures. It was clear that work
on the notion of topos itself would be needed to achieve the
goal. I had spent 1961–62 with the Berkeley logicians, believ-
ing that listening to experts on foundations might be a road
to clarifying foundational questions. (Perhaps my first teacher
Truesdell had a similar conviction 20 years earlier when he
spent a year with the Princeton logicians.) Though my belief
became tempered, I learned about constructions such as Cohen
forcing which also seemed in need of simplification if large
numbers of people were to understand them well enough to
advance further. (Lawvere [2000], p. 726)

With an eye toward presenting a ‘simpler, equally rigorous account’,
Lawvere, in his Ph.D. thesis submitted at Columbia under Eilenberg’s
supervision, started working on the foundations of universal algebra and,
in so doing, ended by presenting a new and innovative account of mathem-
atics itself. In particular, he proposed to develop the whole theory in the
category of categories instead of using a set-theoretical framework. The
thesis contained the seeds of Lawvere’s subsequent ideas and, indeed, had
an immediate and profound impact on the development of category theory.
As Mac Lane notes:

Lawvere’s imaginative thesis at Columbia University, 1963,
contained his categorical description of algebraic theories, his
proposal to treat sets without elements and a number of other
ideas. I was stunned when I first saw it; in the spring of
1963, Sammy and I happened to get on the same airplane from
Washington to New York. He handed me the just completed
thesis, told me that I was thereader, and went to sleep. I didn’t.
(Mac Lane [1988], p. 346)

One of the key features of Lawvere’s thesis is the use of adjoint functors;
they are precisely defined, their properties are developed, and they are
used systematically in the development of results. In fact, they constitute
the main methodological tool of this work. More generally, the results
themselves use categories and functors in an original way. As McLarty
explains:

[h]e [Lawvere] showed how to treat an algebraic theory itself
as a category so that its models are functors. For example the
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theory of groups can be described as a category so that a group
is a suitable functor from that category to the category of sets
(and a Lie group is a suitable functor to the category of smooth
spaces, and so on). (McLarty [1990], p. 358)

By both adopting a top-down approach and undertaking our analyses in
a category-theoretic context, we can claim that an algebraic theoryis a
category and its mathematical modelsare functors.6 Thus, our analysis
of the very notion of an algebraic theory is itself characterized by purely
categorical means, that is, by categorical properties in the category of
categories. The category of models of an algebraic theory is amenable to
the same analysis and, moreover, Lawvere showed how to ‘recover’ the
theory from the category of models.

In 1964, Lawvere went on to axiomatize the category of sets and, in the
same spirit, axiomatized the category of categories in 1966. It is import-
ant to emphasize that Lawvere did not, contrary to what Mac Lane had
initially thought, try to ‘get rid of’ sets and their elements. Rather, he
conceived of sets as being, like any other mathematical entity, part of the
categorical universe. Such an analysis of the concept of category, in gen-
eral, and of the concept of set, in particular, can thus be seen as an example
of the use of the context principle: we are to ask about the meaning of
these concepts only in the context of the universe of categories. Sets do
play a role in mathematics, but this role should be analyzed, revealed, and
clarified in the category-theoretic context.7 More generally, this suggests
that a mathematical concept, no matter what it is, is always meaning-
ful (should be analyzed) in a context and that the universe of categories
provides the proper context. Thus, the concept set ought to be analyzed by
first considering categories of sets. One ought not start with sets and func-
tions, rather, one should begin by looking for a purely category-theoretic
context in which the characterization of set-structured categories can be
given; this in the same way that abelian, algebraic, and other categories
had been characterized. (See Blanc and Preller [1975], Blanc and Don-
nadieu [1976], and McLarty [1991] for more on using, in the spirit of
Lawvere, the category of categories as such a context, and McLarty [2004]
for more on using the elementary theory of the category of sets (ETCS) in
a like manner.)

As is well known, Lawvere’s foundational research did not stop there.
Not long after completing the preceding work, Lawvere, inspired by

6 For more detail on how a group can be described as a functor, see Adamek and Rosicky
[1994], p. 138.

7 In particular, Lawvere tried to tackle the issue of ‘small’ and ‘large’ categories in a
categorical context. Joyal and Moerdijk [1995] provide a different but revealing illustration
of the way a categorical approach can handle questions of size in algebraic set theory.
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Grothendieck’s use of toposes in algebraic geometry, formulated, in collab-
oration with Miles Tierney, the axioms of an elementary topos. As we have
previously remarked, Lawvere’s motivation was to find the appropriate
setting for, or proper foundation of, continuum mechanics. (See Kock
[1981], Lavendhomme [1996], and Bell [1998] for various aspects of this
development.) More specifically, Lawvere was attempting to analyze the
notion of ‘variable set’ as it arises in sheaf theory. He thus saw the the-
ory of elementary toposes as the proper context for such an analysis and,
indeed, as providing for a ‘generalization’ of set theory; this as analogous
to the generalization from integers or reals to rings and R-algebras. As
things turned out, the concept of an elementary topos was to have more far-
reaching results,e.g., it turned out to be adequate for conceptual analyses of
forcing and independence results in set theory. (See Tierney [1972], Bunge
[1974] for early applications. See also Freyd [1980], Scedrov [1984], Blass
and Scedrov [1989], [1992].)

Perhaps even more significantly, it was then shown that an arbitrary
elementary topos is equivalent, in a precise sense, to an intuitionistic higher-
order type theory. Furthermore, the axioms of an elementary topos, when
written as a higher-order type theory, were shown to be algebraic, i.e., they
were shown to express basic ‘equalities’. In this sense, categorical logicis
algebraic logic. (See, for instance, Boileau and Joyal [1981], Lambek and
Scott [1986].) As a further example, a category of sets was shownto bean
elementary topos. Thus, in Lawvere’s sense of the term, one can say that
topos theory is a ‘generalization’ of set theory.8 Speaking then to Lawvere’s
aims, it seems entirely possible to perform foundational research in a topos-
theoretical setting, or, more generally, in a category-theoretic setting. But
one must guard against a possible ambiguity concerning what is meant by
the term ‘foundational’, for it turns out to mean different things to different
mathematicians. However, despite these variations, it seems possible to
state what is shared amongst category theorists interested in foundational
research. It is to these variations, and to their common basis, that we
now turn.

2. Categorical Foundations

We will admittedly be rather sketchy here and seek to give only an over-
view of the different ‘foundational’ positions found in the category-theory
literature. We believe that five different positions can be identified: these
are characterized by the works of Lawvere, Lambek, Mac Lane, Bell and
Makkai. We will first detail these positions and then describe what we take
to be the common standpoint of the categorical community.

8 One has to be very cautious about what this claim entails. For an excellent account of
the misuses of topos theory in foundational work, see McLarty [1990].
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12 LANDRY AND MARQUIS

2.1 Lawvere

Lawvere’s views on mathematical knowledge, the foundations of
mathematics, and the role of category theory have evolved through the
years. But, as we have seen, from his Ph.D. thesis onwards we find the
conviction that category theory provides the proper setting for foundational
studies. What Lawvere has in mind when considering foundational ques-
tions should be emphasized at the outset, for his considerations presume a
creative mixture of philosophical and mathematical preoccupations. In his
1966 paper ‘The category of categories as a foundation of mathematics’,
Lawvere claims that ‘here by “foundation” we mean a single system of
first-order axioms in which all usual mathematical objects can be defined
and all their usual properties proved’ (Lawvere [1966], p. 1). It is to this
very conservative view of what a foundation ought to be that the axioms
for a theory of the category of categories, which would be strong enough to
develop most of mathematics (including set theory), are herein proposed.

It is important to note that, although Lawvere himself is aware of using
the term ‘foundations’ differently at different times, his purpose is already
both clear and steadfast: to provide the context in which a mathematical
domain may be characterized categorically so that a top-down approach to
the analysis of its concepts may be undertaken,e.g., in the same way that
abelian categories, algebraic categories,etc., are characterized, namely
by those categorical properties expressed by adjoint functors and/or by
additional constraints (e.g., by exactness conditions, by the existence of
specific objects,etc.). Thus although Lawvere’s [1966] explicit founda-
tional goal is to develop a first-order theory,9 his underlying motivation is
perhaps more clearly expressed in another paper that was published in 1969,
entitled ‘Adjointness in foundations’. There we read that ‘[f]oundations will
mean here the study of what is universal in mathematics’ (Lawvere [1969],
p. 281), the assumption being that what is universal is to be revealed by
adjoint functors. Speaking then to his preference for top-down analyses in
a categorical context, Lawvere here asserts that

[t]hus Foundations in this sense cannot be identified with any
‘starting-point’ or ‘justification’ for mathematics, though par-
tial results in these directions may be among its fruits. But
among the other fruits of Foundations so defined would presum-
ably be guide-lines for passing from one branch of mathematics
to another and for gauging to some extent which directions of
research are likely to be relevant. (Lawvere [1969], p. 281)

9 As was shown by Isbell [1967], Lawvere’s original attempt was technically flawed, but
not irrevocably. Isbell himself suggested a correction in his review, and Blanc and Preller
[1975], Blanc and Donnadieu [1976], and McLarty [1991] all have made different proposals
to circumvent the difficulty.
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Examples of such ‘other fruits’ provided by category theory were already
numerous when Lawvere expressed the foregoing sentiment: Eilenberg
and Steenrod’s work in algebraic topology; Cartan and Eilenberg’s and
Grothendieck’s results in homological algebra; Grothendieck’s writings in
algebraic geometry; and, finally, Lawvere’s work in universal algebra and,
as he hoped, continuum mechanics.10

It should be clear from the above quote that Lawvere does not have an
‘atomistic’, or bottom-up, conception of the foundations of mathematics;
there is no point in looking for an ‘absolute’ starting-point, a portion of
mathematical ontology and/or knowledge that would constitute its bedrock
and upon which everything else would be developed. In fact, Lawvere’s
position, far more than being top-down, is deeply historical and dialect-
ical. (See Lawvere and Schanuel [1998].) This belief in the underlying
foundational value of the historical/dialectical origins of mathematical
knowledge has been explicitly expressed in a recent collaboration with
Robert Rosebrugh:

[a] foundation makes explicit the essential features, ingredi-
ents, and operations of a science as well asits origins and
general laws of development. The purpose of making these
explicit is to provide a guide to the learning, use, and further
development of the science. A ‘pure’ foundation that forgets
this purpose and pursues a speculative ‘foundation’ for its
own sake is clearly a nonfoundation. (Lawvere and Rosebrugh
[2003], p. 235; italics added)

It is clear that, for Lawvere, the proper setting for any foundational study
ought to be a category (and in some cases, a category of categories). For
most purposes, this background framework need not, for practical pur-
poses, be made explicit, nor need it be used to any great depth, but since
the underlying foundational goal is to state the universal/essential features
of the science of mathematics by taking a top-down approach to the charac-
terization of mathematical concepts in terms of category-theoretic concepts
and properties thereof, it needs to be presumed. Notice, too, that there is
no such thing asthe foundation for mathematics; the overall framework
itself is assumed as evolving. This assumption, in combination with the
historical/dialectical nature of mathematical knowledge, means that rather
than being prescriptive about what constitutes mathematics, ‘foundations’
are to be descriptive about both the ‘origins’ and the ‘essential features’
of mathematics.11 (See Lawvere [2003], where the dialectical approach is
explicitly adopted.) In the spirit of the aforementioned use of the context

10 Other similar examples of this kind of ‘foundations’ not involving categories abound;
Weyl’s work on Riemann surfaces is but one remarkable case.
11 We should also point out that Lawvere has recently launched a different foundational

program: he has presented, and is still developing, a general classification of categories and
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14 LANDRY AND MARQUIS

principle, Lawvere’s descriptive account of foundations allows us to see
how the universe of categories is taken as providing the context for both
analyzing concepts in terms of their ‘essential features’ and, indeed, for
understanding mathematics as a science of what is ‘universal’.

2.2 Lambek

Lambek’s work in the foundations of mathematics is radically different
from Lawvere’s. Although he is also clearly concerned with the history of
mathematics,e.g., Anglin and Lambek [1995], this interest does not seem
to be reflected in his more philosophically motivated work.12 Lambek has
focused on investigating how the standard philosophical positions in the
foundations of mathematics, namely, logicism, intuitionism, formalism,
and Platonism, square with a categorical, or more specifically, a topos-
theoretical approach to mathematics. In this light, he adopts a thoroughly
logical standpoint toward foundational analyses, a point of view that he
takes as being consistent with the standard conception of foundational
work. Identifying toposes with higher-order type theories, Lambek has
tried to show that:

1. The position framed by the so-called free topos, or more precisely, by
pure higher-order intuitionistic type theory, is compatible with that
of the logicist13 and might be acceptable to what he calls moderate
intuitionists, moderate formalists, and moderate Platonists. Lambek
justifies this claim as follows:

the free topos is a suitable candidate for the real (meaning
ideal) world of mathematics. It should satisfy a moderate
formalist because it exhibits the correspondence between
truth and provability. It should satisfy a moderate Platon-
ist because it is distinguished by being initial among all
models and because truth in this model suffices to ensure
provability. It should satisfy a moderate intuitionist, who
insists that ‘true’ means ‘knowable’, not only because it
has been constructed from pure intuitionistic type theory,
but also because it illustrates all kinds of intuitionistic

toposes that is clearly philosophically motivated. For instance, one can talk of intensive
categories and extensive categories, the distinction resting on simple categorical proper-
ties which themselves are meant to capture the difference between intensive qualities and
extensive qualities. Similarly, some toposes are categories of spaces. The goal is to provide
a categorical characterization of those toposes that are categories of spaces and, in so doing,
yield a characterization of the notion of space itself.
12 See, however, Lambek [1981].
13 His position on this issue has evolved somewhat. In 1991, for example, he did not

believe that a logicist could accept such a position.
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principles. The free topos would also satisfy a logicist
who accepts pure intuitionistic type theory as an updated
version of symbolic logic and is willing to overlook the
objection that the natural numbers have been postulated
rather than defined. (Lambek [1994], p. 58)

2. There is no ‘absolute’ topos that could satisfy the classical Platon-
ist, although Lambek and Scott [1986] suggest that the moderate
Platonist might accept any Boolean topos (with a natural-number
object) in which the terminal object is a non-trivial indecomposable
projective.14 (See Lambek [2004].)

Some, such as Mac Lane in his review of Lambek and Scott, have
objected to Lambek’s approach. However, the motivation for Mac Lane’s
objection is not entirely clear; it may stem from his belief that there is
more than one adequate foundational system for mathematics. The result-
ing nominalism15 and the underlying assumption that a type theory isthe
fundamental system that one has to adopt16 might also be the culprit. To
have to make this assumption in the first place is taken by some as being
unnecessarily complex and as not reflecting the ways in which mathem-
aticians think and work. Lambek too has noted its more formal limitations,
viz., that ‘[t]ype theory as presented here suffices for arithmetic and ana-
lysis, although not for category theory and modern metamathematics’.17

Yet despite this acknowledgment Lambek maintains that type theory can
be a foundation at least to the degree that set theory can, and moreover,
that it can provide for a philosophy more agreeable than those inspired by
set-theoretical investigations.

14 Lambek and Scott did not realize at that point that such a topos could be described
more simply by saying that the terminal object is a generator. It is not clear who was the
first to make this latter characterization.
15 Lambek has called his position ‘constructive nominalism’. (See Lambek

[1994], [1995]; Couture and Lambek [1991]; Lambek and Scott [1980], [1981],
[1986].)
16 The nominalism referred to here is a consequence of the fact that the free topos,

which is taken as the ideal world of mathematics, is the topos generated by pure type
theory. Hence all the entities involved are (equivalence classes) of linguistic entities. It
should be noted that these linguistic entities may be transfinite and that the type formation
may also be transfinite. As such it need not be feasible to either inscribe or utter these
expressions of these entities. It is indeed a very moderate form of both nominalism and
intuitionism.
17 This is less straight-forward than it might seem. In fact it is a quite delicate issue. It

is clear, however, that a substantial amount of category theory can be done internally,i.e.,
within a topos. See, for instance, McLarty [1992], Chapter 20. One of the subtler issues
that is left to be dealt with has to do, again, with large categories,e.g., the category ofall
groups.
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16 LANDRY AND MARQUIS

2.3 Mac Lane

Mac Lane’s position on foundations is somewhat ambiguous and has
evolved over the years. As a founder of category theory, he did not at
first see category theory as providing a general foundational framework.
As we have seen, he and Eilenberg thought of category theory as a ‘useful
language’ for algebraic topology and homological algebra. In the sixties,
under the influence of Lawvere, he reconsidered foundational issues and
published several papers on set-theoretical foundations for category theory.
(See Mac Lane [1969a], [1969b], [1971].) Although clearly enthusiastic
about Lawvere’s work on the category of categories, he never fully endorsed
that position himself. After the advent of topos theory in the seventies, he
advanced the idea that a well-pointed topos with choice and a natural-
number object might offer a legitimate alternative to standard ZFC, thus
going back to Lawvere’s ETCS programme but in a topos-theoretical set-
ting. The point underlying this proposal was to convince mathematicians
of thepossibilityof alternative foundations, and so was not aimed at show-
ing that category theory was a definite or ‘true’ framework. This proposal,
together with Mac Lane’s other pronouncements against set theory asthe
foundational framework, led to a debate with the set-theorist Mathias, and
ended with the publication of Mathias’s 2001 paper which sought to prove
some of the mathematical limitations of Mac Lane’s proposal. (See Mac
Lane [1992], [2000] and Mathias [1992], [2000], [2001].)

Mac Lane’s views on foundations follow from his convictions about the
nature of mathematical knowledge itself, which we cannot possibly hope
to address in detail here. In a nutshell, as set out in his bookMathema-
tics Form and Function, mathematics is presented as arising from a formal
network based on (mostly informal but objective) ideas and concepts that
evolve through time according to their function. It is in this light, of seeing
mathematics as form and function, that we are to understand why Mac Lane
has stated, on various occasions, his opinion concerning the inadequacy of
both foundations and ‘standard’ philosophical positions about mathemat-
ical ontology and knowledge. Thus, when we read his repeated calls for
new research in these areas (See Mac Lane [1981] and [1986].) we are to
understand that these appeals do not arise from a preference for either a
set-theoretic or category-theoretic perspective, but rather are to note that,
in their attempts to deal with mathematics as form and function, ‘none of
the usual systematic foundations or philosophies. . . seem. . . satisfactory’
(Mac Lane [1986], p. 455).

2.4 Bell

Bell’s position is somewhat akin to Lambek’s, but with certain important
differences. Like Lambek, Bell has an interest in the history of mathematics.
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(See Bell [2001].) While in 1981 Bell argued explicitlyagainstcategory
theory as a foundational framework, he also recommended the develop-
ment of a topos-theoretical ‘outlook’. Later, like Lawvere, he adopted a
distinctly dialectical attitude towards foundations, asserting, for example,
that ‘the genesis of category theory is an instance of the dialectical process
of replacing the constant by the variable’ and ‘the [dialectical process] of
negating negation. . . underlies two key developments in the foundations of
mathematics: Robinson’s nonstandard analysis and Cohen’s independence
proofs in set theory’ (Bell [1986], pp. 410, 421).

By 1986 he had also begun to attach more significance to the founda-
tional role of category theory, coming to view toposes and their associated
higher-order intuitionistic type theories, or in his terminology ‘local set
theories’, as providing a network of ‘co-ordinate systems’ within which
one could both fix and analyze, albeit onlylocally, the meanings of math-
ematical concepts. It should be pointed out, too, that Bell suggests that the
types in such a context be thought of as ‘natural kinds’, and so sets can only
be subsets of these natural kinds, whence the term ‘local’. In this respect,
these ‘local frameworks of interpretation’ came to be seen as serving a
role analogous to frames of reference of relativity theory. (See Bell [1981],
[1986], [1988].) It is precisely for this reason that, in contrast to Lambek,
Bell does not argue in favor of one specific topos, or kind of topos, as a
‘candidate for the real world of mathematics’. Rather, he endorses a plur-
alist top-down approach towards the foundations of mathematics. As he
explains:

the topos-theoretical viewpoint suggests that the absolute uni-
verse of sets be replaced by a plurality of ‘toposes of discourse’,
each of which may be regarded as a possible ‘world’ in
which mathematical activity may (figuratively) take place. The
mathematical activity that takes place within such ‘worlds’ is
codified within local set theories; it seems appropriate, there-
fore, to call this codificationlocal mathematics, to contrast
it with the absolute(i.e., classical) mathematics associated
with the absolute universe of sets.Constructive provabilityof
a mathematical assertion now means that it isinvariant, i.e.,
valid in everylocal mathematics. (Bell [1988], p. 245)

As in the case of Lambek’s proposal, it is recognized that category the-
ory itself cannot be developed fully in this framework, but it nonetheless
remains foundationally significant. This is because it speaks to the value
of taking a top-down approach to the analysis of mathematical concepts
from within a category-theoretic context, albeit a local one. And more so
because it speaks to the ‘algebraic’ structuralists’ attempt to overlook the
‘concrete’ (atomistic) nature of kinds of mathematical systems in favour

D
ow

nloaded from
 https://academ

ic.oup.com
/philm

at/article/13/1/1/1569366 by guest on 20 M
arch 2024



Philma: “nki005” — 2005/1/21 — 10:31 — page 18 — #18

18 LANDRY AND MARQUIS

of abstractly characterizing the shared structure of such kinds in terms of
the morphisms between them. Again, as Bell explains

. . .with the rise of abstract algebra. . . the attitude gradually
emerged that the crucial characteristic of mathematical struc-
tures is not their internal constitution as set-theoretical entities
but rather the relationship among them as embodied in the
network of morphisms. . . However, although the account of
mathematics they [Bourbaki] gave in theirÉlémentswas mani-
festly structuralist in intention, in actuality they still defined
structures as sets of a certain kind, thereby failing to make
them truly independent of their ‘internal constitution’. (Bell
[1981], p. 351)

2.5 Makkai

Makkai’s motivation is both philosophical and technical. Technically,
he takes very seriously the fact that a topos-theoretical perspective can-
not provide an adequate foundation for category theory itself. Thus, on
Makkai’s view, one has to face the question of the foundations of category
theory,i.e., the question of what is to be an appropriate metatheory. To this
end, and following Lawvere, Makkai’s aim is to provide a metatheoretic
description of a category of categories. From a logician’s point of view,
this means:

• providing a proper syntax for the theory, which is, according to
Makkai, provided by FOLDS, that is, first-order logic with dependent
sorts. (See Makkai [1997a], [1997b], [1997c], [1998].)

• providing a proper background universe for the interpretation of the
theory, e.g., a universe that would play an analogous role to the
one played by the cumulative hierarchy in set theory, and which is,
according to Makkai’s account, the universe of higher-dimensional
categories, or weakn-categories. (See Hermida, Makkai, and Power
[2000], [2001], [2002].)

• providing a theory as such that would be adequate for category theory
and, perhaps, a large part of ‘abstract’ mathematics. (See Makkai
[1998] for this and a short and very clear synthesis of his foregoing
papers.)

Philosophically, Makkai has explored how these issues are related to
mathematical structuralism, which he characterizes as follows:

I take it to be a tenet of structuralism that everything accessible
to rational inquiry is a structure; the conceptual world consists
of structures. (Makkai [1998], p. 155)
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Makkai’s fundamental contribution to a category-theoretically framed
structuralism is the idea that, in formal languages, the relation of iden-
tity for entities is not givena priori by first-order axioms. The relation of
identity isderivedfrom within a context. This position, then, is a natural
and coherent extension of a structurally interpreted context principle: one
has first to determine a context for talking about shared structure; then a
criterion of identity for objects having that structure is given by the context
itself. The simplest example of this is the suggestion that the notion of
isomorphism is the proper criterion of identity for objects in a category and
that it is defined by categorical means. In this sense a category acts as a
context for analyzing kinds of systems in terms of their shared structure.

The systematic development of this idea,i.e., the consideration that
types of (higher-level) categories can act as a context for analyzing the
shared structure of kinds of categories, may be seen as naturally leading
to higher-dimensional categories, also known as weakn-categories. (See
Leinster [2002] for a review of the various definitions in the literature.)
Although it is not yet clear whether such structuralism can be made sys-
tematic, Makkai’s work points to the belief, common among categorists,
that the category-theoretic methods of analysis that mathematicians use to
talk about kinds of structured systems in terms of their shared structure
(methods that have perhaps proved far more powerful in proving theorems
than older methods) also speak to the power of such methods to provide a
more adequate framework for a conceptual account of mathematics itself.

2.6 Some Common Elements

The first, and probably most important, common element present in all the
previous developments, and shared by all category theories and categor-
ical logicians, is the assumption that by adopting a top-down approach to
analyzing mathematical concepts the ‘shared structure’ between abstract
mathematical systems can be accounted for in terms of the morphisms
between them. For example, as we have seen in Lawvere’s [1969] work,
adjoint functors are taken to reveal fundamental structural connections
between kinds of abstract mathematical systems. Second, it is fair to say that
category theorists and categorical logicians believe that mathematics does
not require a unique, absolute, or definitive foundation and that, for most
purposes, frameworks logically weaker than ZF are satisfactory. Categor-
ical logic, for instance, is taken to provide the tools required to perform
an analysis of the shared logical structure, in a categorical sense of that
expression, involved in any mathematical discipline. Third, the categor-
ical perspective shows that it is not necessary to assume that mathematics
is ‘about’ sets. Although sets may in some contexts be descriptive,e.g.,
some types of categories might have a set structure, they are not constitutive
of the structure of categories themselves,i.e., types of categories need not
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be ‘built up from’ kinds of set-structured systems. In accordance with (or
perhaps as a consequence of) the previous claim, there is, from a categorical
perspective, no unique conception of a set, although the notion of topos,
in the categorical context, captures the fundamental structural character-
istics of the concept. Finally, category theorists and categorical logicians
endorse, either implicitly or explicitly, the aforementioned context prin-
ciple: the top-down approach to characterizing mathematical concepts in
a category-theoretic context is taken to be the means by which we should
analyze the ‘shared structure’ of mathematical concepts (presented as
objects and categories) in terms of the morphisms that exist between them.

3. Philosophical Implications

It should be obvious by now that category theory ought to have an impact
on current discussions of mathematical structuralism. In fact, we can
point to a common philosophical position that threads itself through the
foundational positions here considered, namely, the structuralist belief that
‘mathematics studies structure and that mathematical objects are nothing
but positions in structures. . .’ (Resnik [1996], p. 83). On the one hand,
however, it is far from clear that all category theorists, even those with a
foundationalist orientation, would call themselves structuralists.18 On the
other hand, perhaps the reason for this is that it is far from clear, unfor-
tunately, what structuralism amounts to. In this closing section we will
attempt to clarify the various interpretations and versions of philosoph-
ically positioned mathematical structuralism, and consider the extent to
which category theory can be used to frame a structuralist philosophy of
mathematics.

3.1 Mathematical Structuralism as a Philosophical Position

The slogan that mathematics studies structure is itself interpreted in at
least two different ways. On the first interpretation, the slogan amounts to
the claim that mathematics is aboutstructures(Bourbaki [1950], [1968];
Resnik [1996], [1999]; and Shapiro [1996], [1997]). On the second
interpretation, it amounts to the claim that mathematics is about sys-
tems that ‘have’ a structure, or that mathematics is aboutstructured
systems(Mac Lane [1996b]; Awodey [1996], [2004]; and Hellman [1996],
[2001], [2003]). Setting aside this difference for the moment, mathematical

18 See, for example, Taylor [1999] who claims that his position is closer to a form of
logicism than to anything else. And, as we have seen, Lambek [1994] considers himself
a nominalised platonist.
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structuralism is further found at two distinct levels: the concrete and the
abstract.19

Before attending in detail to these interpretations and levels, and to
situate our claims with respect to the current philosophical literature, we
note Hale’s [1996] distinction between what he calls model-structuralism,
abstract-structuralism, and pure-structuralism. What Hale (and Hellman
[1996]) calls model-structuralism, we will characterize as structuralism at
the concrete level; and what he calls abstract-structuralism, will character-
ize as bottom-up, ‘set theoretic’,20 ante remstructuralism at the abstract
level. Structuralists of this stripe seek to define what an abstract struc-
ture is, as an independently existing entity, by abstractly considering
concrete kinds of set/place-structured systems and by considering those
abstractly considered kinds as constitutive of what an abstract structure is.
In Hale’s words:

[according to the abstract-structuralist]. . . structures. . . are
entities in their own right, akin in some respects to model-
structures, but distinguished from them by the fact that their ele-
ments have no non-structural properties, but are to be conceived

19 At the abstract level of structural analysis, this difference of interpretation can be taken
as corresponding to Shapiro’s ([1996], [1997])ante rem/in re distinction or Dummett’s
[1991] mystical/hard-headed distinction. In this paper, at both the concrete and abstract
levels of analysis, we speak of systems that have a structure; this is a means of indicating
that we take the aim of the structuralist to provide an account of the shared structure
of mathematical systems in terms of their being an instance of the same kind or type,
as opposed to having to answer the questions: ‘What is a structure?’, or ‘What are the
kinds or types that are constitutive of what a structure is?’. For example, Bourbaki held
both that there are types of structuresand that sets are constitutive of these types and
so that a ‘structure’ is an abstractly considered type of set-structured system. Speaking
to this analysis of structures in terms of types, we note Shapiro’s claim that ‘according
to Bourbaki, there are three great types of structures, or “mother structures”: algebraic
structures, such as group, ring, field; order structures, such as partial order, linear order,
and well order; and topological structures [which provide a formalization of the concepts of
limit, neighbourhood, and continuity]. . .’ (Shapiro [1997], p. 176). What Shapiro leaves out
is the manner in which set-theory is taken as constitutive of these types: that ‘[e]ach [type of]
structure carries with it its own language, freighted with special intuitive references derived
from the theories which the axiomatic analysis. . . has derived the structure. . . Mathematics
. . . possesses the powerful tools furnished by the theory [i.e., set theory] of the great type of
structures; in a single view, it sweeps over immense domains, now unified by the axiomatic
method. . . ’ (Bourbaki [1950], pp. 227–228) so that ‘. . . whereas in the past it was thought
that every branch of mathematics depended on its own particular intuitions which provided
its concepts and primary truths, nowadays it is known to be possible, logically speaking,
to derive practically the whole of mathematics from a single source, the theory of sets’
(Bourbaki [1968], p. 9).
20 To appreciate why we consider both Bourbaki and Shapiro’s notion of ‘structure’ as a

bottom-up ‘set-theoretic’ conception we point the reader to Shapiro’s ([1997], p. 96) claim
that ‘set theory and the envisioned structure theory are notational variants of each other. In
particular, structure theory without the reflection principle is a variant of second-order ZFC’.
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as no more than ‘bare positions’21 in the structure. . . On this
approach, an abstract-structure is just is what is left when,
beginning with a model-structure, we abstract away from all
that is inessential, leaving behind only what is common to all
other model-structures isomorphic to it. (Hale [1996], p. 125)

Finally, what he calls pure-structuralism, we will characterize as top-down,
‘algebraic’,in re22 structuralism at the abstract level:

. . . [it] has no truck with abstract-structures as entities at
all . . . the theory tells us what holds true of any collection of
objects satisfying a certain structural description, but speaks of
no one such collection of objects. The terms of the theory. . . are
not to be understood as genuine singular terms. . . not even
bare positions in an abstract-structure—but rather are to be
interpreted as purely schematic or variable. (Hale [1996],
p. 125)

We pause here to point out that while Hellman is typically read (see Hale
[1996]) as advancing a modalized version of pure,in re, structuralism, we
prefer to interpret him as arguing for a top-down, ‘non-algebraic’, in re
structuralism at the abstract level. While, as anin re structuralist, he does
not claim that ‘structures’ exist or that they are made up of ‘objects’, he does
hold that statements about possible types of abstract structured systems are
determined by assertions about possible systems, so that the terms of any
‘theory’ of structured systems are not purely schematic or variable but
rather are terms of ‘modalized assertions’. This with the result that

[c]ategorical axioms of logical possibility of various types of
structures replace ordinary existence axioms of MT [model
theory] or CT [category theory] and typical mathematical
theorems are represented as modal universal conditionals
asserting what would necessarily hold in any structure of the
appropriate type that there might be. (Hellman [1996], p. 102)

Having noted the way in which we intend our terminology to be under-
stood, we now turn to consider these distinctions in greater detail. At the
concretelevel, mathematical structuralism (or model-structuralism)23 is

21 Shapiro [1997] refers to such an abstractly considered ‘bare positions’ account as the
ante rem‘places-are-objects perspective’, and distinguishes this from thein re ‘places-are-
offices perspective’.
22 Another term for in re structuralism iseliminative structuralism, since thein re

structuralist eliminates talk of ‘structures’ in favor of talk of systems that ‘have’ a structure.
23 Dummett [1991], as we shall see, argues that the term ‘structuralism’ ought to only

be applied to structuralism at the abstract level,i.e., that model-structuralism ought not be
labeled structuralism.
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the philosophical position that the subject matter of a particular mathem-
atical theory is concrete kinds of structured systems (models) and their
morphology. A particular kind of mathematical object, then, is nothing
but ‘a position in a concrete system’ that has a kind of structure; and a
particular mathematical theory aims to characterize such kinds of objects
‘up to isomorphism’, that is, in terms of the shared structure of those
concrete systems in which they are positions. For example, the theory of
natural numbers, as characterized by the Peano axioms, may be seen as
providing a framework24 for presenting those concrete kinds of structured
systems (models) that have the same natural-number structure (that are
isomorphic). Its objects,i.e., natural numbers, may then be presented as
nothing but positions in a concrete system that is structured by the axioms25

that characterize that kind,e.g., may be presented as von Neumann ordin-
als, Zermelo numerals, or, indeed, as any other object which shares the
same structure. If all concrete systems that exemplify this structure are
isomorphic, we say that the natural-number structure and its morphology
determine its objects ‘up to isomorphism’.26

24 At the concrete level, to say that the axioms provide a framework is not intended
to be read as the ‘formalist’ claim that a theory ought to be viewed syntactically as an
empty form or uninterpreted calculus devoid of content. One could equally interpret this
semantically; one could say that, though framed by its axioms, a theory is the collection of
all its isomorphic models,i.e., is the collection of all its concrete systems that have the same
kind of structure. One must also distinguish, then, the formalist claim that a mathematical
theory is about contentless form from the essentialist/Fregean claim that a mathematical
theory is about independently existing ‘objects’, and so, too, from the structuralist claim that
a mathematical theory is about concrete systems that satisfy the axioms that are claimed
to characterize a kind of structure, so that akind of object is characterized by being a
position in any concrete system that satisfies the axioms. (For a similar point, see also
Benacerraf’s ([1965], pp. 285–294) distinction between the formalist, the Fregean, and
what he calls the ‘formist’.) Such a structuralist view of particular mathematical theories
as axiom systems is characterized by Weyl ([1949], pp. 25–27): ‘. . . an axiom system is a
logical mold of possible sciences. . . . A science can determine its domain of investigation up
to an isomorphic mapping. In particular it remains quite indifferent as to the “essence” of its
objects. . .’. Weyl then goes on to distinguish further between what we call the concrete and
the abstract levels of structuralism. That is, while a particular mathematical theory, what he
calls ‘a science’, can be presented in terms of all those concrete systems (models) that share
the same kind of structure, ‘[p]ure mathematics. . . develops the theory of logical “molds”
without binding itself to one or the other among possible concrete interpretations. . .’ We will
show, in the next paragraph, how this aim of ‘pure mathematics’ corresponds to top-down,
‘algebraic’, structuralism at an abstract level.
25 To get the isomorphism results needed,i.e., to guarantee categoricity in the logical

sense of the term, we assume that the axioms are second-order.
26 In reference, then, to Benacerraf [1965], structuralism at the concrete level implies

that there are no numbers as ‘objects’qua things whose essence can be individuated inde-
pendently of the role they play in a concrete system of a given kind. There are, in our
terminology, onlykinds of objectsqua positions in concrete systems that have the same
kind of structure,i.e., that can be individuated only up to isomorphism. We note, however,
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So, at the concrete level, the structuralist has three possible replies
to the question: ‘What are natural numbers?’. First, she may reply, in
Hilbertian style,27 that they are positions inanyconcrete system that has
the appropriate kind of structure,i.e., in any interpretation that satisfies the
axioms that are taken to characterize the natural-number structure,e.g.,
that satisfies the Peano axioms. That is, in reply to the question: ‘What
allows us to talk about particular objects as instances of the same kind
of structure?’, the Hilbert-inspired structuralist replies: ‘The axioms that
are claimed to characterize the kind of structure in question provide us
with a frameworkthat in turn allows us to characterize as objects “up to
isomorphism” all those positions that “have” the same kind of structure.’
Second, likewise in Hilbertian-style, the structuralist may simply reject
the question ‘What are natural numbers?’ and argue that such a framework
does not licence us to talk about natural numbers as objects at all; rather one
ought to eliminate talk of (reference to) natural numbers as objects. All such
seeming reference is to be understood as a convenient device for ‘filling-in’
the following schema: ‘Let a structure of a kind (e.g., a natural-number
structure) be given (based on the assumption of possibility), then. . .’,
where the ‘. . .’ introduces constants that are only schematic,i.e., that are
allowed by the axiomsquadefining conditions, and so spell out the given
kind of structure, but are not thought of as genuinely referring to natural
numbers as objects at all.

In either case, as a Hilbert-inspired structuralist, one eschews the
Fregean demand that, before we turn to talking about natural numbers (as,
for example, objects that saturate concepts in the context of a sentence), one
must first provide abackground theoryfor talking about natural numbers as
“objects”28quaindependently existing things. This Frege-inspired position

that Benacerraf moves, bottom-up, from the concrete to the abstract level of analysis by
abstractly considering all such positions in concrete systems of a given kind as ‘elements’
of an abstract kind, i.e., as elements of anω-sequence. (See also Benacerraf [1996] for
a re-evaluation of this.)
27 In what follows we are not attempting to read either Hilbert or Frege as structuralists.

There are many reasons for avoiding such claims; for example, even if one could so interpret
Hilbert’sGrundlagen der Geometriein this light, his subsequent neo-Kantian aim of found-
ing all of mathematics on a finitary/intuitive arithmetic certainly precludes any structural
analysis of arithmetic and so too of mathematics. In addition, Frege’s assumption that there
is a fixed universe of discourse certainly precludes the structuralist/model-theoretic picture
we have presented. However, the interested reader is strongly encouraged to see Shapiro
[1996], pp. 161–170, and [1997], pp. 152–170, for a reconstruction of Hilbert as anin re
structuralist and Frege as anante remstructuralist.
28 To assist the reader, when we use the term ‘object’ or ‘structure’ in an ontological

sense,i.e., in the sense of existing independently of us and of language, we write “object”
and “structure”.
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represents the third possible reply: natural numbers are “objects” that exist,
as Shapiro ([1997], p. 168) explains, ‘. . . in exactly the same way as any
other objects, including horses, planets, Caesars, and pocket watches.’29

On this view, then, axioms are truths or assertions about “objects” that are
in the background theory. It is to this Hilbert/Frege distinction between
viewing an axiom system as a framework, or scaffolding or schemata,30

and viewing axioms as truths or assertions of some background theory31

that a category-theoretic account of mathematical structuralism has much
to say.

29 This is where the difference between the Fregean and Shapiro’sante remstructuralism
becomes apparent. The Fregean holds that there is a fixed and absolute domain of “objects”,
while theante remstructuralist holds that ‘[w]hen it comes to mathematics, the Fregean
all inclusive domain gives way to the ontological relativity urged here. Each mathematical
objectis a placein a particular structure. . .’ (Shapiro [1997], p. 169; italics added). We will
see, however, that, once we move to structuralism at the abstract level, Shapiro retains the
Frege-style demand for a background theory that fixes the meaning of the term ‘structure’; by
taking up his objects-are-places view we can conclude that a “structure”isa place-structured
system.
30 Our use of the term ‘framework’, then, is intended to accord with Hilbert’s claim that

‘ . . . it is certainly obvious that every theory is only a scaffolding or schema of concepts
together with their necessary relations to one another, and that the basic elements can
be thought of in any way one likes. . . . One only needs to apply a reversible one-one
transformation and lay it down that the axioms shall be correspondingly the same for all
transformed things’ (Hilbert [1899], pp. 40–41). And so it is to be understood in light of
Hilbert’s use of the axiomatic method, as implemented in hisGrundlagen. Bernays best
sums up this use as follows:

[a] main feature of Hilbert’s axiomatization of geometry is that the axiomatic
method is presented and practiced in the spirit of the abstract conception
of mathematics that arose at the end of the nineteenth century and which
has been adopted in modern mathematics. It consists in. . . understanding
the assertions (theorems) of the axiomatized theory in a hypothetical sense,
that is, as holding true for any interpretation. . . for which the axioms are
satisfied. Thus, an axiom system is regarded not as a system of statements
about a subject matter but as a system of conditions for what might be called
a relational structure. (Bernays [1967], p. 497)

For an informative overview of the Frege/Hilbert debate and its relation to theante rem/in
re debate see Shapiro [1996], [1997].
31 This second position, as exemplified by Hellman’sin re modal-structuralism, is thus

Hilbertian to the extent that the ‘standard’ axioms encountered in ordinary mathematics
are treated as schematic,i.e., are treated as ‘defining conditions’ on systems said to have
a given kind of structure. Yet external, Fregean, modal-existence axioms as assertions also
are needed to speak to the ‘assumption of possibility’ of their being a system having the
structure in question. This means that the ‘standard’ axioms show up in the antecedents
of modalized, universally quantified conditionals in which the primitive constants of the
axiom system in question have been replaced by variables.
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3.2 Interpretations and Varieties of Mathematical Structuralism

At the next level, theabstract level, mathematical structuralism may be
characterized as the philosophical position that the subject matter of math-
ematics itself is abstract kinds of structured systems (or what others have
called abstract structures) and their morphology. Viewed from this level,
an abstract kind of mathematical object is nothing but ‘a position in an
abstract system’ that itself has an abstract kind (or type32) of structure, and
an abstract mathematical theory aims to characterize such types of abstract
systems in terms of their shared structure. It is at this abstract level of
inquiry, then, that one encounters the question: ‘What are (abstract) struc-
tures?’. In response to this question one finds, in the philosophical literature,
two interpretations and three varieties of philosophically positioned math-
ematical structuralism. The two interpretations, already touched upon in
brief, are:ante rem(realist) andin re (nominalist) structuralism. Shapiro
explicates these as follows: theante remstructuralist believes

that structures exist as legitimate objects of studyin their own
right. According to this view, a given structure existsinde-
pendently of any system that exemplifies it. . . Mathematical
objects, such as natural numbers, are places in these structures.
So numerals, for example, aregenuine singular terms denoting
genuine objects, the objects beingplaces[as opposed to place-
holders] in a structure. (Shapiro [1996], pp. 149–150; italics
added)

The in re structuralist, by contrast, believes that

[a] statement of arithmetic isnot taken at face valueas a
statement about a particular collection of objects. Instead, a
statement of arithmeticis a generalization over all systems of a
certain type. . . Thus, [in restructuralism] does not countenance
mathematical objects, or structures for that matter, asbona fide
objects. Talk of numbers is convenient shorthand for talk about
all systems that exemplify the structure. Talk of structure gen-
erally is convenient shorthand for talk about systems of objects.
(Shapiro [1996], p. 150; italics added)

Foregoing, for the moment, Shapiro’s conflation here of structuralism at
the concrete and abstract levels, these two interpretations correspond, in a
rough and ready way, to the Hilbert/Frege distinction at the concrete level.

32 We have used the term ‘type’ here to express the claim that abstract systems can be
taken as instances of the same type of structure by satisfying those axioms that are taken
to characterize that type. This is intended in a way analogous to the claim that concrete
systems can be taken as instances of the same kind of structure by satisfying those axioms
that are taken to characterize that kind.
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That is, in response to the question: ‘What are abstract structures?’, thein re
structuralist says, in Hilbertian or ‘algebraic’ style: ‘They are anything that
satisfy the axioms that are taken to characterize the abstract kind, or type, of
structure under consideration’. This is because, given our Hilbertian stance,
the question can be re-phrased as: ‘What framework allows us to talk about
abstract kinds of structured systems as instances of the same type?’ That
is, for the in re ‘algebraic’33 structuralist, an abstract kind of structured
system is an object only if it can be considered as a position in another type
of structured system.34 One foregoes talking about abstract structures as
“objects” in favour of talking about abstract kinds of systems that ‘have’ a
type of structure. Thus one eschews, once again, the Fregean demand that,
before talking about abstract structured systems as objectsquapositions in
a type of structured system, one must first provide a background theory for
talking about (making assertions about) types of structures, or “structures”,
themselves as “objects”qua independently existing things.

Failing, then, to heed Resnik’s counsel that abstract structuralism is
not committed to asserting the independent existence of “structures”, yet,

33 In contrast to Shapiro, who focuses his abstract structural analysis on what he calls
‘concrete, non-algebraic, theories’, we intend our top-down ‘algebraic’ analysis to apply to
both of what he calls ‘algebraic’ and ‘non-algebraic’ theories. In a similar vein, while Hale
[1996] sees pure-structuralism as applying only to algebraic theories, we see it as applying
to both. For more on this distinction, see Shapiro [1997], especially pp. 40–41, 50, 73n,
and 133. See Resnik [1996] and Hellman [1996], [2003], for views that, like ours, consider
both algebraic and non-algebraic theories. Note, however, that Resnik takes axioms to be
assertions and Hellman takes certain modal-existence axioms to be assertions.
34 While Resnik is often characterized as anante remstructuralist in Shapiro’s sense, he

does not believe, as Shapiro does, that realism about structures must be guaranteed by an
ontology of “structures” that exist both independently of us and of language. In fact (see
next footnote) he would agree with thein re structuralist that an abstract kind of structured
system is an object only if it can be considered as a position in another type of structured
system. For Resnik, we affirm realism about structures, neither by adopting an ontology
nor by accepting an axiom system, but rather by committing ourselves to a language of
interpretation. As Resnik explains:

[t]his . . . is how first-order structuralists can affirm their realism. In other
words, they can make the language of mathematics their own, if they have
not already done so, and simply assert the appropriate axioms. Until we
[interpret the language of, say, number theorists in terms of ours or make it
ours by learning it] their sentences might as well be schemata. Yet once we
make their language part of our own we can apply our truth-predicate to it,
and attribute truth-values to its sentences. (Resnik [1996], p. 98)

So Resnik’s realism, orante remstructuralism, is born out of linguistic considerations,
not ontological ones. Thein re structuralist, in contrast, does not countenance objects or
structures as real “objects”, linguistic or otherwise, and so only needs toacceptthe axioms
as schemata, as opposed to needing toassertthem.
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in response to this worry,35 three varieties of mathematical structuralism
have been proposed. These are: theset-theoretic, thesui generis, and the
modal.36 In essence, these varieties seek to speak to the Fregean demand
for pre-conditions for the independent existence of abstract structures; they
suggest set-theory, structure-theory, or modal-logic as background theor-
ies37 (or meta-languages) that allow us to talk about “structures” as either
actually or possibly existing “objects”. As such they allow us to say that
either set-theory, structure-theory, or modal logic, provides the conditions
for our assertingthe actuality or possibility of an abstract system’sbeing
a structure of the appropriate type. In any case, in taking structures to be
“objects”, we either run into the problems of having to assume a found-
ational ‘background ontology’ and/or of the ‘reification of structure’, or
we make mathematics dependent on a primitive notion/logic of possibility.
The end result being that structuralism provides no improvement, either
ontological or epistemological, over platonism.38

Where does category theory fit in among all these interpretations and
varieties of mathematical structuralism? One could claim that categories
are, after all, types of structured sets, and thus that a structuralism framed
by category theory falls under the set-theoretic variety of structuralism.39

As we indicated in the opening paragraph of this paper, we believe that

35 Typically, the worry of the abstract structuralist is, as Resnik explains: ‘. . . whether
first-order structuralism is strong enough for this realism’. Yet Resnik successfully dissolves
this worry by pointing out that,

structuralism even when combined with realism, isnotcommitted to holding
that number theory, analysis and set theoryassert the existence of structures.
Indeed, a general mathematical theory of structures asserts the existence
of structuresonly by representing them as positions in other structures, so
structuralism in not committed to viewing structures as entities at all”. (Resnik
[1996], p. 96; italics added)

Yet, while not committed to asserting the independent existence of “structures”, Resnik, as
anante remstructuralist, is committed to asserting the truth of the axioms.
36 See Hellman [2001], for an excellent overview of these varieties and the problems

associated with each.
37 That Shapiro himself sees structuralism in this Fregean light is evidenced by his claim

that ‘. . . on anystructuralist programme, some background theory is needed. The present
options are set theory, modal model theory, andante remstructure theory’ (Shapiro [1997],
p. 96; italics added).
38 See Hale [1996] for an informative discussion of why what he calls abstract-

structuralism, be it set or place inspired, can do little to overcome the ontological problems
traditionally associated with mathematical platonism. And more so for a thoughtful cri-
ticism of why a modalized version of pure-structuralism faces serious epistemological
problems.
39 There is no doubt, too, that the proponents of thesui generisand the modal approaches

have made similar claims,i.e., that category theory falls under the general strategy they
have put forward; see, in particular, Shapiro [1997], pp. 87–88, and Hellman [1996], p. 104.
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this claim fails to do justice to the actual practice of category theory and,
more importantly, fails to recognize the fact that category theoryis both
a foundational and philosophical alternative.

Our claim is that, in taking abstract kinds of structured systems, cat-
egories included, as “objects” (either possible or actual), allante rem
varieties of philosophically interpreted mathematical structuralism have
failed us. Underlying this mistaken stance is the aforementioned confla-
tion of concrete and abstract levels of structuralism, which derives from
the assumption that abstract kinds of structured systems or “structures”
qua “objects” are ‘made up’ ofabstractly consideredconcrete kinds of
structured systems. Such a bottom-up structuralist holds that one moves to
“structures” at the abstract level by abstractly considering a kind of concrete
system. The set-theoretic structuralist, for example Bourbaki, construes an
abstract kind of object as an ‘element’ in an abstractly considered concrete
kind of set, so that a type of structure is ‘made up’ of appropriately related
abstractly considered set-structured systems.40 And, likewise, the place-
theoretic structuralist, for example Shapiro, construes an abstract kind of
object as a place,i.e., as an abstractly considered concrete kind of posi-
tion, so that a ‘structure’ is ‘made up’ of an appropriately related, abstractly
considered, system consisting of places-as-objects.

We again pause to note that we do not intend here to read Hellman’s
modal approach as a bottom-upante remvariety of structuralism; on the
contrary, it is obviously meant as anin re interpretation. As indicated by the
title of his 1996 article ‘Structuralism without structures’, Hellman clearly
does not see “structures” asactuallyexisting independently of any system
that has a given type of structure. However, his modal aim appears nonethe-
less to be founded on the (external) Fregean assumption that one requires
pre-conditions for the possibility that there is a system of the appropriate
type. It is in this sense that we characterize Hellman’s view as a top-
down, ‘non-algebraic’,in re structuralist position. While, for Hellman, the
axioms for any type of structured system need not be assertory/true in the
robust ontological Fregean sense, certain modal-existence axioms need to
be assertory to guarantee the assumption of possibility that such a type can
be given (Hellman [2003], p. 7). This with the result that ‘Fregean axioms
only appear externally, as it were, in the form of modal-existence axioms
(mainly of infinity) and comprehension principles governing wholes
and pluralities.’41 Modal structuralism, then, is intended to apply to this
assertory requirement, yet it is this same requirement that leaves Hellman
vulnerable to the objection that even his modalized version of structural-
ism must be concerned with whether there are enough possible objects to

40 See footnote 18 for an explanation of this claim.
41 Hellman, e-mail correspondence.
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‘make up’ his possible types of structured systems.42 Thus, for all varieties
it is assumed that certain conditions, either truth conditions or modal con-
ditions, for the assertion of the actual existence of “structures” or possible
existence of types of structured systems must be providedbeforewe seek to
give a framework for what we can say about the shared structure of abstract
kinds of structured systems.

In all cases, in concerning ourselves with background theories and/or
pre-conditions of existence or assertion, we seem inevitably returned to
Hale’s abstract-structuralism, with little room left for pure-structuralism.
Witnessing the confusion that this engenders is Dummett’s remark that:

[t]here is an unfortunate ambiguity in the standard use of the
word ‘structure’, which is often applied to an algebraic or rela-
tional system—a set with certain operations or relations defined
on it, perhaps with some designated elements; that is to say,
a model considered independently of any theory which it satis-
fies. This terminology hinders a more abstract use of the word
‘structure’; if, instead we use ‘system’ for the foregoing pur-
pose, we may speak of two systems as having an identical
structure, in this more abstract sense, just in case they are iso-
morphic. The dictum that mathematics is the study of structure
is ambiguous between these two senses of ‘structure’. If it is
meant in the less abstract sense, the dictum is hardly disputable,
since any model of a mathematical theory will be a structure in
this sense. It is probably usually intended in accordance with
the more abstract sense of ‘structure’; in this case, it expresses
a philosophical doctrine that may be labeled ‘structuralism’.
(Dummett [1991], p. 295)

While Dummett’s analysis is in some sense helpful, in that it separates the
concrete level from the abstract level, it, too, confuses top-down (pure in
Hale’s sense) accounts with those that are bottom-up (abstract in Hale’s
sense),i.e., it confuses accounts that presume that abstract structures as
objects must be presented as positions in types of abstract structured sys-
tems with accounts that presume either that abstract structures as types
of “objects” must be ‘made up’ of abstractly considered concrete kinds
of objects, like sets or places, or that assertions about types of systems
must be modalized. These latter presumptions, however, are merely a
residue of the Fregean assumption that axioms are assertions, as opposed to
schemata. How, then, does bottom-up structuralism differ from top-down
structuralism? In the case of bottom-up structuralism, one must first provide

42 See Hale [1996] and Shapiro [1997] for a discussion of the problems associated with
having to justify this assumption. Note too that Shapiro [1997], p. 93, foregoes any demand
for justifying this assumption and simply adds the claim that ‘there is at least one structure
that has an infinite number of places’ as an axiom of his structure theory.
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a Frege-inspired background theory. In the case of top-down structuralism,
this requirement is simply dropped in favour of providing a Hilbert-inspired
framework.

3.3 StructuresversusSchemata

In light of this difference, and in line with our Hilbertian path, we will focus
on clarifying, and providing a framework for, the notion of an abstract
system as aschema, instead of focusing on clarifying, and providing back-
ground theories for, the notion of an abstract structure as an “object”. Thus,
our aim as anin re, yet ‘algebraic’, structuralist is not the analysis of the
constitutive character of “structures” or the modal status of assertions about
types of structured systems, but rather the analysis of the shared structure
of abstract systems in terms of types of structured systems.43 And, as cat-
egory theorists, in addition to taking such a top-down approach, we heed
our adherence to the aforementioned context principle and so consider this
analysis from within a category-theoretic context.

As explained, the problem with standard structural approaches is that
they cleave to the residual Fregean assumption that there is one unique
context that provides us with the pre-conditions for the actual existence of
“structures” or for the possible existence of types of structured systems.
As we previously tried to illustrate, in a categorical framework the context,
though systematized by the category-theoretic axioms, varies, and so a
mathematical concept has to be thought of in a context that can be varied
in a systematic fashion. It is our claim that, in this sense, a categorical
framework provides us with the conditions acontexthas to satisfy in order
for us to talk about or do mathematics. Such a framework allows us to attend
to how abstract kinds of structured systems may be seen as instances of the
same type, and further provides us with the proper means to understand
how such structural contexts may vary and yet are, nonetheless, still related
to one another.

Consider, by way of illustration, Hale’s [1996] example of group theory
as a purely structural theory. Group theory must be presented in a certain

43 It should be underscored, however, that Hellman [2003], does appreciate the distinction
between the algebraic-schematic use of categories (what he calls the ‘algebraico-
structuralist’ perspective, p. 9), but his suggestion that the ‘problem of the “home address”
remains’ (pp. 8, 15) clearly indicates that he is still thinking of structures (be they categories
or toposes) as “objects” requiring conditions for the possibility of existence. In fact, if, on
the algebraic approach, the aim of structuralism is to account for the shared structure of
abstract kinds of structured systems in terms of schematic types, as opposed to answering
‘What is (or where is!) a structure?’, then why should we be troubled by the fact that ‘[b]y
themselves they [the category-theoretic axioms] assert nothing’ that ‘They merely tell us
what it is to be a structure of a certain kind’ and thus are ‘unlike the axioms of set theory,
[in that] its axioms are not assertory?’ (p. 7).
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language, and categories can be used to carve out contexts for that purpose.
The models of the theory can be represented as functors from the theory
considered as a category to another category with the right properties, which
can themselves be abstractly represented in the language of category theory,
i.e., in a Cartesian category. At this stage, we are already ina category of
categories (notice that we are in not inthecategory of categories). One can
then investigate groups in a specific context: in a category of differential
manifolds, an internal group is aLie group; in a category of groups, an
internal group is anAbeliangroup,etc. In other words, what the terms of
the theory refer to depends on an underlying category-theoretic context and
the latter can vary and yet be expressed in a systematic way so as to reveal
its type of structure,e.g., to reveal its group structure.

Against Hale and Shapiro, the same ‘algebraic’ analysis applies equally
well to non-algebraic theories,e.g., to theories of natural numbers or real
numbers or sets. One can write down the usual axioms for such structured
systems and interpret them in various contexts; and what an appropriate
context is can be precisely specified using a categorical framework. Thus,
we do not have to say that

[non-algebraic theories]. . . go against the thesis [of pure-
structuralism]. Such theories are replete with what appear to be
singular terms for particular mathematical objects. . . . which
form their ostensible subject matter. The pure structuralist must
hold that the surface syntax of such theories presents an entirely
misleading appearance, to be dispelled by some suitably elim-
inative paraphrase [like that provided by modal-structuralism].
(Hale [1996], p. 125)

What is misleading here is the reintroduction of the idea that there is a
unique context for all such theories,i.e., that the singular terms to be
organized according to their type have to be uniquely interpreted. The terms
of the theory are variable precisely because the contexts of interpretation
are variable, but they are nonetheless related to one another systematically,
i.e., are related in another specifiable context.

We believe, then, that the real difference between abstract-structuralism
and pure-structuralism, and the reason why the terminology turns out from
our point of view to be misleading, is that the distinction relies upon the
process of abstraction itself. This point is left entirely open in the literature
(with, of course, the notable exception of Awodey [2004]). The question
at hand is: ‘What, for the mathematical structuralist, is the direction of
abstraction?’. More specifically, is abstraction top-down or bottom-up?
Do webegin withor arrive at the notion of an abstract system? Does this
notion depend on the ‘things’ upon which the abstraction process is carried
out? As we mentioned, for the abstract, bottom-up, structuralist an abstract
kind of structured system isarrived atby abstractly considering a concrete
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systemqua a system of a specific kind. The ‘details’ of the underlying
system might be forgotten, but the abstract system depends directly on
the ‘structure’ of these concrete systems. Our claim is that, as the history
of mathematics and the history of category theory show, the abstraction
process, once it has at its disposal an appropriate language that allows
one to express identity conditions adequately, yields anautonomous level
of description, which does not depend on an underlying system and/or
any background theory. Moreover, it is in this respect that we claim that
category theory provides a framework that allows one tobegin withthe
notion of an abstract system.

Once the abstract level has reached this autonomy, one begins with
abstract kinds of structured systems: this autonomy becomes ontologic-
ally significant once criteria of identity are given and used systematically
throughout. In other words, the identification of the various abstract kinds
of structured systems depends solely on the criterion provided by the
new level of description. For instance, groups were long considered to
be groupsof permutations (in algebra) or groupsof transformations (in
geometry). As such, the identity of a group was thought to be determ-
ined by, or depend upon, a previously given entity with its own criterion
of identity, e.g., a geometry presented axiomatically or algebraically. We
claim that for groups to be considered purely abstractly, mathematicians
had to have an axiomatic presentation of the concept together with a cri-
terion of identity for the entities that fall under that concept,i.e., had
to have the correct notion of group isomorphism, which was then used
intrinsically to determine which groups there are. As sketched above,
category theory provides just such an axiomatization and so provides us
with an autonomous language together with criteria of identity for such
contexts.

Pure-structuralism as characterized by a top-down account of an abstract
system is now truly pure in the following sense: the axioms for a category
provide the framework, or scaffolding, for what we can say about abstract
kinds of structured systems independently of what those kinds are ‘made
of’. Taking our top-down approach webegin withthe notion of anabstract
system; we do not seek toarrive at this notion by abstractly considering a
kind of concrete system. In its most general sense, then, an abstract system
is considered in a Hilbertian, ‘algebraic’, sense, as aschemafor our talk
of the shared structure of an abstract kind of structured system: it allows
us to talk about such abstract kinds of structured systems as instances of
the same type without our having to consider what these types are types of.
Considered then from within a category-theoretic context, a cat-structured
abstract system has ‘objects’ and ‘morphisms’ as its abstract kinds, which
are structured by the category-theoretic axioms. This means that a type of
cat-structured system,i.e., an abstract kind of structured systemquaa type
of category
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. . . is anythingsatisfying these axioms. The objects need not
have ‘elements’, nor need the morphisms be ‘functions’. . . We
do not really care what non-categorical properties the objects
and morphisms of a given category may have; that is to say, we
view it ‘abstractly’ by restricting to the language of objects and
morphisms, domains and codomains, composition, and identity
morphisms. (Awodey [1996], p. 213)

That is, the axioms for a category provide the context from within which
we can analyze the shared structure of abstract kinds of structured systems
in terms of the morphisms that exist between them.

For example, suppose one wanted to give a characterization of abstract
kinds of set-structured systems in terms ofthecategory of sets. Consider
what this would mean:the category of sets would be a category satisfy-
ing additional axioms expressed in the language of category theory,e.g.,
having finite limits and colimits, exponentials, a subobject classifier,etc.
(See, for instance, Lawvere’s [1964] original proposal or Lawvere and
Rosebrugh [2003], Chapters 6 and 9.) One would then try to show that any
two categories satisfying these axioms have to be categoricallyequivalent
(not isomorphic). It is only in this way that one could talk aboutthecat-
egory of sets. It is not that it isunique, but that it is uniqueup to a specified
criterion of identity. However, we are simplifying the situation somewhat:
the notion of equivalence used would, itself, also be part of a context. Be
that as it may, the category of sets would be specified without our having
to consider what the abstract kind ‘set’ is ‘made of’ (e.g., without our hav-
ing to consider it as being made up of elements or consider it as being an
element of a class) and so, too, without our having to specify the axioms
that ‘give rise’ to systems having this structure (e.g., ZF, ZFC, GB).

Returning to the philosophical implications, at once we see import-
ant differences from the standard bottom-up accounts of mathematical
structuralism: on the category-theoretic view, not only are there are no
abstract kinds of “objects”,e.g., either sets-with-structure (Dummett
[1991], p. 295) or places-with-structure (Shapiro [1997]), there are
no abstract kinds of “structures”,e.g., either ‘(equivalence types of)
systems-with-structure’ or ‘the abstract form of a system, highlighting the
interrelationships among the objects’ (Shapiro [1997], p. 74). This means
that the bottom-up conception of an abstract kind of system (of an abstractly
considered concrete kind of system whose abstract “objects” are ‘positions
in a set-structure’, or ‘positions in a place-structure’) is to be considered as
a type of abstract kind of structured system: it is not, however,thearchetype
of either the concept ‘system’ or the concept ‘structure’. As Corry explains
of Mac Lane [1980]:

Bourbaki’s concepts defined ‘mathematical structures’ by tak-
ing an abstract set and appending to it an additional construct,
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in category theory there is no subordination of ‘mathematical
structures’ to sets, and this is the source of the supremacy of
this theory over Bourbaki. (Corry [1996], p. 382)

A category, too, is neither a privileged abstract kind of system nor is it an
abstract Fregean “structure”quaan “object”: it is a Hilbertian style abstract
structurequaa schematic type, to be used as a framework for expressing
what we can say about the shared structure of the various abstract kinds of
structured systems in terms of ‘having’ the same type of structure. Again,
as Mac Lane makes clear:

. . . a structure is essentially a list of operations and relations
and their required properties, commonly given as axioms, and
often so formulated as to be properties shared by a number of
possibly quite different specific mathematical objects. . . [A]
mathematical object ‘has’ a particular structure when specified
aspects of the objects satisfy the (standard) list of axioms for
the structure. This notion of ‘structure’ is clearly an outgrowth
of the widespread use of the axiomatic method in mathematics
[as exemplified by Hilbert’sGrundlagen]. (Mac Lane [1996b],
pp. 174 and 176)

3.4 An Algebraicin re Interpretation

The value of this top-down, ‘algebraic’, or schematic, notion of structure is
not that it provides a ‘constitutive foundation’ for mathematics, but rather
that it can be used to provide a ‘descriptive foundation’ for what we mean
by the structuralist claim that (pure) mathematics studies structure, where
we interpret this as the claim that mathematics is about systems that ‘have’
a structure, or is about structured systems.44 In this sense, category theory
provides a framework for a top-downin re interpretation of mathematical
structuralism; a category provides a context from within which we can
analyze the shared structure of abstract kinds of structured systems,inde-
pendentlyof any abstractly considered concrete kind of structured system,
e.g., independently of its set-structure or place-structure or, more generally,
independently of what its abstract kinds are ‘made of’.

For example, in the type of category calledTop, we present the shared
topological-structure of any abstract kind of structured system by taking

44 If one sees, as Mac Lane seems to, the task of a philosophy of mathematics to be,
in addition to adopting a structuralist stance, that of providing for an epistemologically
tractable account of both the form and function of mathematics, then one might agree with
him that the notion of structure as here presented ‘seems at best just one possible aspect of
an adequate philosophy of mathematics. Such an adequate philosophy is not now available’
(Mac Lane [1996b], p. 183). But if one sees a structuralist philosophy of mathematics as
adequate, then this notion of structure appears to be the best one possible.
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‘objects’ as abstract kinds of topological spaces and ‘morphisms’ as abstract
kinds of continuous mappings, independently of what those abstract kinds
are kinds of.45 Awodey nicely describes the situation as follows:

. . . suppose we have somehow specified a particular kind of
structure in terms of objects and morphisms. . . Then that cat-
egory characterizes that kind of mathematical structure, inde-
pendently of the initial means of specification. For example,
the topology of a given space is determined by its continuous
mappings to and from the other spaces, regardless of whether
it was initially specified in terms of open sets, limit points, a
closure operator, or whatever. The categoryTop thus serves the
purpose of characterizing the notion of ‘topological structure’.
(Awodey [1996], p. 213)

Similarly, as detailed above, we can present the shared abstract kind of
structure of any set-structured system as a type of cat-structured system,
by taking our ‘objects’ to be sets and our ‘morphisms’ to be functions. The
result is the type of category calledSet. In this context the type of category,
Set, allows us to talk about the shared structure of all abstract kinds of set-
structured systems46 as instances of the same abstract kind, without our
having to ask what these kinds are kinds of. In any case, we may say that
the result of our so framing the abstract kind of set-structured system is the
type of category calledSet. But this does not mean that the ‘objects’are
sets and that ‘morphisms’are functions; it means rather, that in this type
of system, propositions that talk about ‘objects’ and ‘morphisms’ can be
interpreted as being about abstract kinds of sets and functions. So, Shapiro
is simply mistaken to claim that

45 That Hellman has not appreciated the distinction between constitutive and descript-
ive aims is witnessed by his claim that ‘the categorical foundationalist cannot take these
[topological] notions for granted. The very notions of “open set”, “collection of open sets
closed under finite intersections and arbitrary union”, “inverse image of an open set”, and
“continuous function” must bebuilt up somehow from categorical primitives’ (Hellman
[2003], p. 8; italics added). If the category theorist’s aim is to give a constitutive account
of, say, ‘topological space’, then he might, as Hellman suggests, need to consider the ‘pre-
conditions of intelligibility’ of this concept. If, however, his aim is descriptive then he can,
as Awodey suggests, begin by assuming such preconditions have be laid down.
46 For instance, in his recent book with Rosebrugh, Lawvere [2003] presents axioms for

categories of sets, which include what he calls variable sets and constant sets. One of the
goals of this book is to present a purely axiomatic conception ofabstractsets, which have
properties, according to Lawvere, different from variable or cohesive sets. Those properties
are, mainly: abstract sets form a category with finite limits and colimits and exponentiation;
they have a Boolean two-valued subobject classifier; and they satisfy the categorical version
of the axiom of choice and an axiom of infinity. Thus, sets, be they variable or constant,
form a topos, but abstract sets form a special kind of topos,i.e., they satisfy additional
properties.
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[t]he category theorist characterizes a structure or type of
structure in terms of structure-preserving functions, called
‘morphisms’, between systems that exemplify the structures.47

(Shapiro [1997], p. 93)

As explained above, any category-theoretic context is not intended as a
characterization of what a “structure”, or type of structure, is; what such a
category theorist, who takes structure-preserving ‘morphisms’ as functions,
characterizes is a type of category,viz., Set, but this is not intended as an
archetype for a “structure”quaa category.

We are now in a position to see how Shapiro’s mistake undermines
his argument for the necessity of ‘structure theory’48 over and above
category theory: to wit, not every structuralist programme requires a back-
ground theory that tells us what “structures”qua “objects” are, because
a top-down, ‘algebraic’, approach, framed in the language of category
theory, does not require structures as “objects”, either possible or actual,
nor does it require axioms as truths or assertions. Thus, contra Shapiro,
yet in line with Hellman and Resnik, we neednot claim that categories
exist as “objects” independently of any abstract system that exemplifies
them: categories too are only claimed to exist in virtue of their being
an ‘object’ in some (possibly higher-level) type of cat-structured system.
The frameworks for such systems could be provided, as McLarty [2004]
points out, via the category-of-categories approach (by CCAF axioms)
or via the elementary theory of the category-of-sets approach (by ETCS
axioms).49

Foregoing, then, Fregean concerns of pre-conditions for the exist-
ence of categories, categories can, as schematic types, act as Hilbertian

47 We should point out that, as early as 1945, Eilenberg and Mac Lane had already given
two examples of categories that were not ‘made up’ of set-structured systems and structure-
preserving functions; specifically they showed that: i) any groupG can be considered to
be a one-object category with the morphisms being the elements of the group, and ii) any
posetP can be considered as a category with the objects being the elements of theP and
the morphisms given by the ordering relation. Interestingly enough, Eilenberg and Mac
Lane did not mention these cases in their original list of examples of categories, but they
are introduced and used as heuristic devices.
48 See Shapiro [1997], pp. 93–97, for the characterization and justification of his structure

theory.
49 As McLarty [2004], p. 43, points out, the question of the existence of categories is not

a question of whether its axioms are assertory or not:

Indeed category theoryper sehas no such [assertory] axioms, but that is
no lack, since category theoryper seis a general theory applicable to many
structures. Each specific categorical foundation offers various quite strong
existence axioms.
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frameworks; the category-theoretic axioms need not be truths (as Shapiro
requires) nor need they make assertions (as Resnik or Hellman require)
to be useful for our analysis of the shared structure of abstract kinds of
structured systems in terms of their having the same type of structure.
Thus, as Bernays says of Hilbert’s conception of an axiom system,50

a category, as a schematic type, is to be regarded not as a system of
statements about a subject matter,i.e., about either “structures” or about
possible types of structured systems, but rather is taken as a context spe-
cifying those conditions for what might be called a relational structure,
i.e., for what might be called a type of structure in Mac Lane’s sense of
the term.

Simply put, to talk about the shared structure of abstract kinds of struc-
tured systems in terms of types of cat-structured systems, there is no need
for either set theory or structure theory or modal logic. A category can
(and does) act as a schematic type that is used to frame what we say about
the shared structure of abstract kinds of mathematical systems, in terms of
types of cat-structured systems, and for types of cat-structured systems, in
terms of the abstract types of categories. And, speaking against the need
for any background theory, it does sowithout our having to specify what
either kinds or types are ‘made of’. Thus, to be an ‘algebraic’in restructur-
alist about abstract kinds of mathematical systems, we need not state what
a structureis, nor need we say what a categoryqua a structureis, in the
ontological or modal sense of ‘is’. All we need to do is provide the appro-
priate context from within which we can talk about the shared structure of
these abstract kinds in terms of schematic types,i.e., in terms of types of
cat-structured systems.

We have shown that if category theory is taken as the framework for what
we say about the shared structure of abstract kinds of mathematical systems,
then we can account for an interpretation of mathematical structuralism
that respects both the category theorist’s top-down approach and his use
of the category-theoretic context principle. More significantly, we can use
this framework to provide an interpretation that, against both the standard
ante remandin re interpretations, neither requires a ‘theory of structures’
nor demands the elimination of types of structured systems as objects,
and that, against the various varieties, does not require us to replace, or
even reconstruct, talk of the shared structure between abstract kinds of
structured systems with talk of either set-structures, place-structures, or
modalities.

50 See footnote 30.
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