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Abstract We prove completeness of the propositional modal logic S4 for
the measure algebra based on the Lebesgue-measurable subsets of the unit
interval, [0, 1]. In recent talks, Dana Scott introduced a new measure-based
semantics for the standard propositional modal language with Boolean connec-
tives and necessity and possibility operators, � and ♦. Propositional modal for-
mulae are assigned to Lebesgue-measurable subsets of the real interval [0, 1],
modulo sets of measure zero. Equivalence classes of Lebesgue-measurable
subsets form a measure algebra, M, and we add to this a non-trivial interior
operator constructed from the frame of ‘open’ elements—elements in M with
an open representative. We prove completeness of the modal logic S4 for the
algebra M. A corollary to the main result is that non-theorems of S4 can be
falsified at each point in a subset of the real interval [0, 1] of measure arbitrarily
close to 1. A second corollary is that Intuitionistic propositional logic (IPC) is
complete for the frame of open elements in M.

Keywords Measure algebra · Topological modal logic · Topological
semantics · S4 · Completeness · Modal logic · Probabilistic semantics

1 Introduction

In 1944, Tarski and McKinsey proved that the propositional modal logic S4 is
complete for any dense-in-itself metric space.1An important special case that

1See [5].
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has received much recent attention (see [1, 4, 6]) is completeness of S4 for
(topological interpretations over) the real line. In this paper we study the real
line from a measure-theoretic point of view, and prove that S4 is complete for
a measure algebra, M, based on the Lebesgue-measure structure of the real
interval, [0, 1].

The algebra, M, was introduced in recent talks by Dana Scott, not only
as a model for the standard propositional modal language (with Boolean
connectives and necessity, �, and possibility, ♦, operators), but also for higher
order logic and a modal set theory.2 M is the algebra of Lebesgue-measurable
subsets of the real interval [0, 1], modulo sets of Lebesgue-measure zero
(henceforth, null sets). Formulae are interpreted in M by assigning them to
elements in M, i.e. equivalence classes of Lebesgue-measurable sets. Thus,
under a fixed valuation, each formula also gets assigned a probability, namely
the probability corresponding to the measure of all sets in its equivalence class.
This allows us to speak of the probability of a modal formula under a given
valuation. Indeed, this was part of Scott’s original motivation in introducing
this new “probabilistic” semantics. “This provides rich ingredients,” Scott
writes, “for building many kinds of structures having non-standard random
elements.”[9]

My own motivation—and the motivation behind this paper—is in terms of
completeness. Tarski and McKinsey’s 1944 result can be thought of as a logical
investigation of the topological structure of the real line. In the topological
semantics, the modal operators � and ♦ are interpreted as topological interior
and closure, respectively. Here, in Scott’s semantics, we construct a non-trivial
interior operator for the algebra M, based on the open subframe of M— col-
lection of elements of M with open representatives (see Definition 3.9). The
modally expanded measure structure captures, in some sense, the Lebesgue
measure structure of the real interval [0, 1] (subsets of the interval are
identified just in case they differ by a set of measure zero), and its interior
operator behaves quite differently from the topological interior operator, as we
will see below. Just as Tarski and McKinsey investigated completeness of S4
for topological models, in particular topological models based on the reals, we
can investigate completeness for this (modally expanded) measure structure.
Indeed, there is no reason to restrict ourselves to Lebesgue-measure on the
real interval. We can look at measure-structures more generally—those based
on a given topological space with a measure defined on the Borel subsets—and
ask whether completeness holds. (We should mention at this point that many
such measure-structures are isomorphic to M by well known results, and thus
that the algebra M is one of the most important measure algebras (see [7]).
Thus the algebra M is one of the most important.)

The proof of completeness presented here uses ideas from more recent
proofs of Tarski and McKinsey’s 1944 result, but is essentially different

2The algebra itself is of course well known, but to my knowledge Scott was the first to interpret
propositional modal formulae in M in the way described here.



Completeness of S4 for the Lebesgue Measure Algebra

in that measure-theoretic notions take center-stage. The proof proceeds by
embedding the complete binary tree (defined below) in the algebra, M. We
transfer valuations over the tree to measurable subsets of the real line, and
finally to equivalence classes of such subsets. A simple and known embedding
of finite Kripke frames into the tree shows how such finite frames can be
embedded in M. Thus, completeness follows from completeness for the finite
frames, or alternatively, completeness for the tree.

In Section 2, we recall the algebraic semantics for the standard propositional
modal language. In Section 3, we introduce the measure algebra, M. In
Section 4, we explain the motivation for some of the constructions that follow.
In Section 5, we construct a map that allows us to transfer completeness of S4
from the complete binary tree to the real interval [0, 1]. This map is different
from other maps that appear in the literature, in that it has important measure-
theoretic properties that provide the key to transferring completeness to M.
In Section 6, we prove our main result: completeness of S4 for the algebra,
M. By the Gödel translation from Intuitionistic propositional logic (IPC) to
S4, this yields completeness of IPC for the frame of ‘open’ elements in M
(defined below).

2 Topological Semantics from an Algebraic Point of View

Let the propositional modal language L consist of a countable set, P = {Pi |
for all i ∈ N}, of atomic variables and be closed under binary connectives
→, ∨, ∧, ↔ and unary operators ¬, �, ♦. The modal logic S4 in the language
L consists of some complete axiomatization of classical propositional logic
PL, some complete axiomatization of the minimal normal modal logic K, and
finally the two special S4 axioms:

4 : �P → ��P

T : �P → P

We are interested in algebraic models of the modal system S4, or topo-
logical Boolean algebras. A topological Boolean algebra (henceforth TBA)
is a Boolean algebra with an interior operator, I, satisfying the following
properties:

(l1) Ia ≤ a
(l2) I(a ∧ b) = Ia ∧ Ib
(l3) I Ia = Ia
(l4) I(1) = 1

A complete TBA is a TBA that is a complete lattice—i.e. every collection of
elements has a supremum and infimum.

Example 1 (Topological field of sets) The set of subsets ℘(X ) of a topological
space X with set-theoretic meets, joins and complements, and where Ia
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denotes the (topological) interior of a, is a complete TBA and we denote it
by B(X ). More generally, any Boolean algebra, A, of subsets of a topological
space X that is closed under topological interiors is a TBA (A need not contain
all subsets of X ). We call any such algebra a topological f ield of sets. Note that
we reserve the notation B(X ) for the topological Boolean algebra generated
by all subsets of X .

Let A be a TBA and let f : P → A be a function assigning propositional
variables to arbitrary elements of the lattice A. We call any such function a
valuation. f can be extended to a function, hf , on the set of all formulae by
recursion as follows.

For any propositional variable P and any formulae φ and ψ let:

hf (P) = f (P)

hf (φ & ψ) = hf (φ) ∧ hf (ψ)

hf (φ ∨ ψ) = hf (φ) ∨ hf (ψ)

hf (¬φ) = −hf (φ)

hf (�φ) = I(hf (φ))

where symbols on the RHS denote (in order) the lattice meet, join and
complement. (The remaining binary connectives {→, ↔} and unary operator
{♦} are defined in terms of the above in the usual way.)

Let A be a TBA. For any formula, φ, and valuation, f , over A, we say φ

is satisf ied by f (A, f |= φ) iff hf (φ) = 1A (the top element in the algebra);
otherwise, φ is falsif ied by f . We say φ is satisf ied in A (A |= φ) iff φ is satisfied
by every valuation over A. Finally, for any class C of TBA’s, φ is satisf ied in C
(|=C φ) iff φ is satisfied in every TBA in C.3

We now define completeness in the usual way: A logic S is complete for
a class, C, of TBA’s if every formula that is satisfied in C is provable in S
(|=C φ ⇒ 	S φ). An equivalent formulation is more useful in what follows: S
is complete for C if any non-theorem of S is falsified in C (�S φ ⇒ |=C φ).

Note that if A is a topological field of sets, e.g. B(X ) for some topology X , it
makes sense to talk about truth at a point (much like truth at a world in Kripke
semantics for the standard propositional modal language). For any formula
φ, valuation f : P → B(X ), and point x ∈ X , we can say that φ is true at x
under f if

x ∈ hf (φ)

This ternary relation between a valuation, formula and point in the topological
space has no place in the general algebraic semantics (i.e. where A need not be

3This semantics can be generalized by defining a set of designated elements, DA, of A and letting
satisfaction by a valuation f over A be defined by: hf (φ) ∈ DA. The definition used in this paper
is the special case where DA = {1A}.
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a topological field of sets) and has no analog when it comes to the Lebesgue
measure algebra, M (defined below). Formulae are evaluated to equivalence
classes of Lebesgue-measureable subsets of [0, 1], but it makes no sense to
speak of an individual point in [0, 1] belonging to an equivalence class, hence
of a given formula being true at an individual point!

3 The Lebesgue Measure Algebra, M

In this section we define our central object of study: the measure algebra, M.
We prove that M is a complete Boolean algebra, and that the sublattice of
‘open’ elements in M (see Definition 3.9) forms a complete Heyting algebra.

Definition 3.1 Let A be a Boolean algebra. We say that a non-empty subset
I ⊆ A is an ideal if

1. For all a, b ∈ I, a ∨ b ∈ I
2. If a ∈ I and b ≤ a, then b ∈ I

If I is closed under countable suprema, we say I is a σ -ideal.

We can construct new Boolean algebras from existing ones by quotienting
by an ideal. If A is a Boolean algebra and I ⊆ A is an ideal, we define the
correspondence ∼ on A by:

x ∼ y iff (x � y) ∈ I

where � denotes symmetric difference.4 Letting A/I be the set of equivalence
classes and |x| be the equivalence class corresponding to x ∈ A, the operations
∨, ∧ and − on A/I are defined in the obvious way:

|x| ∨ |y| = |x ∨ y|
|x| ∧ |y| = |x ∧ y|

−|x| = | − x| (1)

It is easy to verify that A/I is a Boolean algebra with top and bottom elements
|1A| and |0A|, respectively. From the definitions of ∨ and ∧ we can reconstruct
the lattice order ≤: for any |x|, |y| ∈ A/I,

|x| ≤ |y| iff |x| ∧ |y| = |x|

4Note that differences and symmetric differences are defined in any Boolean algebra, not just in
fields of sets. In particular, x − y is x ∧ −y, and x � y is (x − y) ∨ (y − x).
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Lemma 3.2 Let A be a Boolean Algebra and I an ideal in A. Then for any
elements a, b in the quotient algebra A/I, the following are equivalent:

(i) a ≤ b
(ii) For any representatives A of a, and B of b, there exists some N ∈ I with

A ≤ B ∨ N.
(iii) For any representative A of a there exists a representative B of b with

A ≤ B.

Proof

(i) → (ii) Suppose a ≤ b and let a = |A|, b = |B|. Then |A ∧ B| = |A| ∧
|B| = |A|, so A ∧ B ∼ A. Thus A − B = A − (A ∧ B) = N for
some N ∈ I. It follows that A ≤ B ∨ N.

(ii) → (iii) This follows from the fact that B ∨ N ∼ B for N ∈ I.
(iii) → (i) If A≤ B, then |A| ∧ |B|=|A ∧ B|=|A|, and a=|A|≤|B|=b . 
�

We want to add measure-structure to Boolean algebras. The simplest such
structures are Boolean algebras carrying a finitely additive measure. We are
interested, however, in Boolean σ -algebras carrying a countably additive
measure. The relevant definition is given below.

Definition 3.3 A measure, μ, on a Boolean σ -algebra,5 A, is a real-valued
function μ on A that satisfies countable additivity: If {Fn}n∈N is a countable
collection of elements in A with Fn ∧ Fm = 0A for all n, m ∈ N, then

μ

(∨
n

Fn

)
=

∑
n

μ(Fn)

We say that a measure, μ, on a Boolean σ -algebra is normalized if μ(1) = 1.
We say that μ is positive if μ(a) = 0 iff a = 0A.

Definition 3.4 (Halmos) A measure algebra is a Boolean σ -algebra, A,
together with a positive, normalized measure, μ, on A.

Fact 3.5 Let μ be a normalized measure on a Boolean σ -algebra, A, and let U
be the set of elements a ∈ A with μ(a) = 0. Then,

(i) U is a σ -ideal in A
(ii) The quotient A/U is a Boolean σ -algebra.
(iii) There exists a unique measure ν on A/U def ined by

ν(|a|) = μ(a)

Moreover, ν is positive and normalized.

5A Boolean σ -algebra is a Boolean algebra that is closed under countable joins (and meets).
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Proof

(i) If a ≤ b , and μ(b) = 0, we write b = a ∨ (b − a). But then μ(a) ≤ μ(b),
by additivity of μ, so μ(a) = 0. If {an | n ∈ N} is a countable collection of
elements in A with μ(an) = 0 for all n ∈ N, then by countable subaddi-
tivity of μ, μ(

∨
n an) ≤ ∑

n μ(an) = 0.
(ii) We need to show that the quotient algebra A/U is closed under count-

able joins. Let {an | n ∈ N} be a collection of elements in A/U , with
an = |An| for each n ∈ N. We claim

∨
n an = | ∨n An|. Clearly | ∨n An|

is an upper bound on {an | n ∈ N}. If b = |B| is an upper bound on
{an | n ∈ N}, then |An| = an ≤ |B|, and An ≤ B ∨ Nn for some Nn ∈ U
(see Lemma 3.2). But then

∨
n An ≤ B ∨ ∨

n Nn, and
∨

n Nn ∈ U (since
U is a σ -ideal). So | ∨n An| ≤ |B| = b.

(iii) The proof can be found in, e.g., [2]. 
�

Definition 3.6 (The Lebesgue Measure Algebra, M) Let Leb([0, 1]) be the
σ -algebra of Lebesgue-measurable subsets of the unit interval [0, 1], and let
Null be the set of subsets of [0, 1] with Lebesgue-measure zero. Then by
Fact 3.5, the quotient algebra, Leb([0, 1])/Null, is a measure algebra. We
denote it by M and refer to it as the Lebesgue measure algebra.

In what follows, we use uppercase letters A, B, C... to denote subsets of
[0, 1] and lower-case letters a, b , c... to denote elements of M. Equivalence
classes of measurable sets are denoted with a bar above the relevant set
(e.g. a = A, 0M = ∅, 1M = [0, 1] ). We use ‘measure (A)’ or simply ‘m(A)’
to denote the measure of the set A. The definitions in (1) give: for any
elements a, b ∈ M with a = A and b = B: a ∨ b = A ∪ B, a ∧ b = A ∩ B and
−a = [0, 1] − A.

Lemma 3.7 For any sets A, B ∈ Leb([0, 1]),

A ∼ B if f A ≤ B and m(A) = m(B)

Proof The left–to–right direction is obvious. For the right–to–left direction,
suppose A ≤ B and m(A) = m(B). Then A ⊆ B ∪ N for some N ∈ Null, so
m(A − B) = 0. Furthermore,

m(B − A) = m(B) − m(B ∩ A) = m(A) − m(B ∩ A) = m(A − B)

and we have m(B − A) = 0. Thus A � B ∈ Null and A ∼ B. 
�

Lemma 3.7 tells us that all representatives of a given element in M have the
same measure. This allows us, in evaluating formulae to M, to speak of the
probability of a given formula under a fixed valuation.
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Proposition 3.8 M is a complete Boolean algebra

Proof 6 We show that any well-ordered subset S of M has a least upper
bound. The proof is by transfinite induction on the order type of S. Let S have
order type α and write S = {pγ | γ < α}. For β < α, let qβ = sup {pγ | γ < β}
(existence follows from the inductive hypothesis). If α is a limit ordinal then
{qβ | β < α} is a non-decreasing sequence of elements in M and {m(qβ) | β < α}
is a non-decreasing sequence of reals. But note that there are only countably
many distinct reals in this sequence (for each “jump” between two reals in
the sequence, there is a distinct rational number.) It follows from Lemma 3.7
that there are only countably many distinct elements ‘qβ ’ in the sequence
{qβ | β < α}. But M is closed under countable suprema (see Fact 3.5 (ii)), so
sup S = sup {qβ | β < α} exists. 
�

By contrast, Leb([0, 1]) is not a complete Boolean algebra. If, e.g., S is
a non-measurable subset of [0, 1], then the collection {{x} | x ∈ S} has no
supremum in Leb([0, 1]). Note that the Lebesgue measure, μL, on Leb([0, 1])
is not a positive measure - any non-empty countable set has measure zero, but
is not equal to the bottom element, ∅. Indeed, it is proved in [2] that every
(positive, normalized) measure algebra is complete.

Definition 3.9 We say an element a ∈ M is open if some representative A of a
is an open subset of [0, 1]. We denote the set of open elements in M by G.

The next proposition states that not all elements of M are open.

Proposition 3.10 M �= G

Proof The proof is postponed until Section 5.3, where we introduce ‘thick’
Cantor sets. 
�

In the next proposition we show that open elements in M form a com-
plete Heyting algebra. Recall that a complete Heyting algebra is a complete
lattice that satisfies the following infinite distributive law: For any x ∈ A and
{ai | i ∈ I} ⊆ A,

x ∧
∨

i

ai =
∨

i

(x ∧ ai) (2)

6This proof was suggested to the author by Dana Scott. In fact, the more general claim that every
(positive, normalized) measure algebra is complete is proved in [2]. The proof procedes by showing
that an algebra is complete iff it satisfies the countable chain condition, and that any measure
algebra so defined satisfies this condition.
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Proposition 3.11 G is a complete Heyting algebra.7

Proof We need to show that G is a complete lattice. Let {ai | i ∈ I} ⊆ G, and let
ai = Ai for each i ∈ I, with Ai an open representative of ai. Let {(pn, qn) | n∈N}
be the collection of open rational intervals (open intervals with rational
endpoints) contained in some (or other) Ai. We claim that

∨
i ai = ⋃

n(pn, qn).
Clearly RHS is an upper bound on {ai | i ∈ I} (this follows from the fact that
each open set, Ai is equal to the union of rational intervals contained in
it). Suppose b = B is an upper bound on {ai | i ∈ I} with b ∈ G.8 For each
i ∈ I, choose Ni ∈ Null such that Ai ⊆ B ∪ Ni. For each n ∈ N, choose i(n)

such that (pn, qn) ⊆ Ai(n). We have:
⋃

n(pn, qn) ⊆ ⋃
n Ai(n) ⊆ B ∪ ⋃

n Ni(n),
where

⋃
n Ni(n) ∈ Null. So

⋃
n(pn, qn) ≤ B = b , proving the claim. This shows

that every collection of elements in G has a supremum. What about infima?
Consider now the collection of {b j | j ∈ J} of lower bounds in G9 on {ai | i ∈ I}.
This collection has a supremum, b . We claim that b = ∧

i ai. The proof is
similar to the previous and is left to the reader.

Note that the proof shows that
∨

i ai = ⋃
i Ai, where Ai is any open

representative of ai (for i ∈ I). We use this fact to show that G satisfies the
distributive law (2), as follows. Let x = X, with X an open representative.
Then,

x ∧
∨

i

ai = X ∧
⋃

i

Ai

= X ∩
⋃

i

Ai

=
⋃

i

(X ∩ Ai)

=
∨

i

(X ∩ Ai)

=
∨

i

(x ∧ ai)


�

7In general, infima in G and M do not coincide. Example: For each n ∈ N, let Kn denote the
set of points belonging to “remaining intervals” at the n-th stage of construction of K (defined
in Section 5.3). Then Kn ∈ G for each n ∈ N, but infM{Kn | n ∈ N} = K, and infG{Kn | n ∈ N} = ∅
(where infM and infG denote infima in M and G, respectively).
8The reader can verify that the condition b ∈ G does no work in the proof. Indeed, this shows that
suprema in M and G coincide. This is not the case for infima (see footnote 6).
9It is crucial that we take lower bounds in G and not in the larger M. In general, the set of lower
bounds in G and M do not coincide! See footnote 6.
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We want to transform the Boolean algebra, M, into a TBA. To do this, we
equip M with the unary operator I defined as follows:

Ia = sup
{
b open | b ≤ a

}
(3)

for any element a ∈ M. A natural question is: Why not define the operator I
in terms of the interior operator on underlying sets (just as Boolean operations
on M are defined in terms of Boolean operations on underlying sets):

I(A) = I(A) (3*)

A simple example shows that definition (3*) is not correct (i.e. not well-
defined). Let A = [0, 1] − Q. Then A ∼ [0, 1]. But Interior (A) = ∅, and
Interior ([0, 1]) = [0, 1]. So according to (3*), [0, 1] = I(A) = ∅.

Indeed, the example shows that the interior operator in the topological
fields of sets Leb([0,1]) and B([0, 1]) behaves quite differently from the interior
operator in M. This is crucial in what follows, where, despite this difference,
we aim to transfer valuations over B([0, 1]) to M.

Proposition 3.12 I is an interior operator.

Proof Let a, b ∈ M. Axiom (l1) is obvious. For (l2), note that I(a ∧ b) ≤ I(a)

and I(a ∧ b) ≤ I(b). So I(a ∧ b) ≤ Ia ∧ Ib . For the reverse inequality, note
that Ia ≤ a and Ib ≤ b . Thus Ia ∧ Ib ≤ a ∧ b . Moreover, (Ia ∧ Ib) ∈ G. It
follows that Ia ∧ Ib ≤ sup {c ∈ G | c ≤ a ∧ b} = I(a ∧ b). For (l3) note that
Ia ∈ G, and Ia ≤ Ia, giving Ia ≤ sup {c ∈ G | c ≤ Ia}. By (l1) we also have
I Ia ≤ Ia. Finally for (l4), note that [0, 1] ∈ G. Thus I [0, 1] = sup {c ∈ G | c ≤
[0, 1]} = [0, 1]. 
�

Corollary 3.13 The Measure Algebra, M, with unary operator I is a TBA.

Proof Immediate from Propositions 3.8 and 3.12. 
�

In general, there is no easy way to calculate the supremum of an uncount-
able collection of elements in M, as indicated by the non-constructive proof
of Proposition 3.8. However, when we calculate Ia, we take the supremum of
a collection of open elements, and arbitrary joins of open elements are well-
behaved (see proof of Proposition 3.11). The following proposition shows how
to calculate the interior operator in M in terms of underlying sets.

Proposition 3.14 Let a ∈ M and let {(pn, qn) | n ∈ N} be an enumeration of
open rational intervals (open intervals with rational endpoints) contained in
some (or other) representative A of a. Then, Ia = ⋃

n (pn, qn).

Proof The proof is similar to the proof of Proposition 3.11. We need to show
that

⋃
n(pn, qn) = sup {c ∈ G | c ≤ a}. Suppose that c ∈ G and c ≤ a. Then c = C

for some open representative C and C ⊆ A for some representative A of a (see
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Lemma 3.2). Since C is open, C can be written as the union of open rational
intervals contained in C. Each such interval is also contained in A, so C ⊆⋃

n(pn, qn), and c ≤ ⋃
n(pn, qn). This shows

⋃
n(pn, qn) is an upper bound on

{c ∈ G | c ≤ a}. Now suppose that b = B is an upper bound on {c ∈ G | c ≤ a}.
Then, for each n ∈ N, (pn, qn) ≤ b , and (pn, qn) ⊆ B ∪ Nn for some Nn ∈ Null.
So

⋃
n(pn, qn) ⊆ B ∪ ⋃

n Nn and
⋃

n(pn, qn) ≤ b . This shows that
⋃

n(pn, qn) is
the least upper bound on {c ∈ G | c ≤ a}. 
�

We state without proof an obvious corollary which represents the interior in
M in terms of open sets rather than rational intervals:

Corollary 3.15 For any a ∈ M,

Ia =
⋃

{O open | O ⊆ A for some representative A of a}

Note from Corollary 3.15 that Ia ∈ G for any a ∈ M. Thus, as expected,
boxed formulae (i.e. formulae of the form �φ for some φ ∈ L) are evaluated
to open elements in M.

4 Motivation

Our aim is to prove completeness of S4 for M. Can we leverage complete-
ness of S4 for the class of finite topologies—or, better yet, can we leverage
completeness of S4 for the real interval [0, 1]—to this end? Here is a natural
first thought. If α is a non-theorem of S4 then, by completeness of S4 for
the unit interval, there is a valuation f : P → B([0, 1]) that falsifies α (i.e.
hf (α) �= [0, 1]). So long as f (P) is Lebesgue-measurable for every P ∈ P, we
can define the corresponding valuation, f , over M by

f = q ◦ f

where q : Leb([0, 1]) → M is the quotient map (thus, f (P) = f (P), for all
P ∈ P). The obvious question is: Does f falsify α in M?

In general, the answer is no. Here are two problems:

(A1) Null sets vanish in M. For example, if f (P) = [0, 1] − Q, then f (P) =
f (P) = [0, 1] − Q = [0, 1]. Thus P is falsified by f at each rational point
in the interval [0, 1], but f does not falsify P in M.

(A2) The quotient map, q, does not preserve interiors. The same coun-
terexample as above illustrates the point. If f (P) = [0, 1] − Q, then
hf (�P) = Interior(hf (P)) = ∅, but h f (�P) = I(h f (P)) = I(hf (P)) =
I([0, 1] − Q) = [0, 1]. So while f falsifies �P at every point in the
interval [0, 1], f does not falsify �P in M.
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Thus for any propositional variable, P, we have (by definition)

h f (P) = hf (P)

but we do not have, for arbitrary formula φ in the language L,

h f (φ) = hf (φ)

The examples above show that the simple idea of taking valuations, f , that
falsify α in B([0, 1]) and composing with the quotient map does not always
produce valuations that falsify α in M. To get around the difficulties, we
need, for each non-theorem, α, of S4, a valuation f : P → B([0, 1]) with f (P)

Lebesgue-measurable (for each P ∈ P) that satisfies:

(B1) m(h f (¬α)) > 0
(B2) h f (φ) = hf (φ)

for each formula φ in the language L. (B2) poses by far the greatest challenge,
and in fact motivates much of the work that follows.

Our strategy is this. It is known that S4 is complete for the complete binary
tree, T2, defined below (the proof is by unraveling finite Kripke frames onto
T2). We construct a map, 
 : [0, 1] → T2, with “nice” topological properties,
and “nice” measure-theoretic properties. The nice topological properties en-
sure that 
 is “truth-preserving” (see Section 5.1). The nice measure-theoretic
properties ensure that any valuation f : P → B([0, 1]) constructed as a 
-
pullback of a valuation f ′ : P → B(T2)

10 does satisfy (B1) and (B2). Together
this ensures that the valuation f = q ◦ f falsifies α in M.

It should be noted that there is nothing special about the map, 
, (con-
structed in Section 5.4) from a topological point of view alone. Truth-
preserving maps that pull back valuations from finite Kripke frames (or from
the complete binary tree) to the real interval [0, 1] can be found in several
places in the literature. Tarski and McKinsey effectively did this when they
showed how, given a finite topological space X , to define a continuous, open
function from X onto [0,1]. More recent constructions appear in [1, 3, 4]. The
point of defining a new map, then, is to ensure the right measure-theoretic
properties. Indeed, this is what makes the proof of completeness of S4 for M
different from proofs of completeness for B([0, 1]).

5 Completeness Transfer from the Complete Binary Tree
to the Unit Interval

Our goal in this section is to construct a map, 
 : [0, 1] → T2, from the unit
interval to the complete binary tree (defined below), with ‘nice’ topological
properties and ‘nice’ measure-theoretic properties. We begin (Section 5.1)
by studying ‘truth-preserving’ maps between topological fields of sets. In

10I.e. f = [
−1] ◦ f ′.
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Section 5.2, we define the complete binary tree, and in Section 5.3, we prove
some key properties of the thick Cantor set—a set that figures heavily in the
construction of 
. Finally, in Section 5.4, we construct the map 
 : [0, 1] → T2,
and in Section 5.5, we prove that 
 has the desired topological and measure-
theoretic properties.

5.1 Truth Preserving Maps

In this section we study ‘truth-preserving’ maps. These maps allow us to trans-
fer completeness of S4 from one TBA to another. In the special case where
we deal with topological fields of sets, the key notion is that of an interior,
surjective map. The key notion in the more general algebraic semantics is that
of a TBA isomorphism. The definitions are given below.

Definition 5.1 Let A1 and A2 be TBA’s. A function π : A1 → A2 is a TBA
homomorphism if it preserves Boolean and Interior operations:

π(−a) = −π(a)

π(a ∧ b) = π(a) ∧ π(b)

π(Ia) = I(π(a))

(where in the final equation, ‘I’ on the LHS is the interior operator in A1
and ‘I’ on the RHS is the interior operator in A2. We occasionally leave out
subscripts for purposes of notational simplicity.) We say that π : A1 → A2 is a
TBA isomorphism of A1 into A2 if π is a TBA homomorphism and is injective.
Note that this somewhat non-standard definition of isomorphism does not
require surjectivity. See [8].

Lemma 5.2 Suppose that A1 and A2 are TBA’s and that π : A1 → A2 is a
TBA homomorphism. Let f ′ : P → A1 be any valuation over A1 and def ine
the valuation f : P → A2 by f (P) = π ◦ f ′(P). Then for any formula α in the
propositional modal language, L,

hf (α) = π ◦ h f ′(α)

If π is a TBA isomorphism, then (also)

hf ′(α) = 1A1 if f hf (α) = 1A2

Proof The proof is by induction on the complexity of α. The base case is true
by definition of f , and we prove only the modal clause:

hf (�φ) = I(hf (φ))

= I(π ◦ hf ′(φ)) (by inductive hypothesis)

= π(I(hf ′(φ))) (since π a TBA homomorphism)

= π ◦ hf ′(�φ)
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For the second part of the lemma (where π is an TBA isomorphism), note
that if hf (α) = 1A2 , then by the previous part, π ◦ hf ′(α) = 1A2 . But since π is
injective, hf ′(α) = 1A1 . Conversely, if h f ′(α) = 1A1 , then hf (α) = π ◦ h f ′(α) =
π ◦ 1A1 = 1A2 . 
�

Let X and Y be topological spaces. Recall that a map, f : X → Y is
continuous if the inverse image of every open set in Y is open in X . f is open
if the image of any open set in X is open in Y . A map that is both open and
continuous is interior.

Lemma 5.3 Let X and Y be topological spaces, and form the corresponding
topological f ield of sets B(X ) and B(Y). If g : X → Y is interior and surjective,
then [g−1] : B(Y) → B(X )11 is a TBA isomorphism.

Proof Suppose S1, S2 ∈ B(Y), with S1 �= S2. WLOG, let y ∈ S1, y /∈ S2. Then
since g is surjective, there exists x ∈ X with g(x) = y. But then x ∈ [g−1](S1)

and x /∈ [g−1](S2), proving that [g−1] is injective.
We need to show that [g−1] preserves lattice operations. The Boolean

operations are straightforward and we prove only the modal clause: i.e. for
any a ∈ B(Y), [

g−1] (Ia) = I
([

g−1] (a)
)

By continuity of g, we know that [g−1](Ia) is open in X . Moreover, since Ia⊆a,
we have [g−1](Ia) ⊆ [g−1](a). Thus [g−1](Ia) is an open subset of [g−1](a).
To see that it is the largest such subset, suppose O ⊆ [g−1](a) is open in X .
Then, since g is open, g(O) is an open subset of a, hence g(O) ⊆ Ia. But then
O ⊆ [g−1](Ia). 
�

Proposition 5.4 Suppose that X and Y are topological spaces and g : X → Y
is an interior, surjective map. Let f ′ : P → B(Y) be a valuation function and
def ine f = ([g−1] ◦ f ′). Then for every formula α of the modal language L
we have:

h f (α) = [
g−1] ◦ h f ′(α)

and
h f ′(α) = 1B(Y) if f hf (α) = 1B(X )

Proof Immediate from the previous two lemmas. 
�
5.2 Complete Binary Tree

In this section we define the complete binary tree, T2, a topological space for
which S4 is complete. The tree is an extension of the (better known) infinite

11The map [g−1] is defined on B(Y). It takes subsets of Y to their pullbacks in X (where X and Y
are the underlying sets of X and Y , respectively)—i.e. for S ⊆ Y, [g−1](S) = {x ∈ X | g(x) ∈ S}.
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binary tree: in addition to finite nodes, it contains limit nodes that can be
thought of as infinite branches of the infinite binary tree. In Section 5.4, we will
construct an interior, surjective map, 
 : [0, 1] → T2, that allows us to transfer
completeness from T2 to B([0, 1]).

Definition 5.5 (Complete Binary Tree) Take alphabet � = {0, 1} and con-
struct the set � f (�c) of all finite (countable) strings over �. For any s ∈ � f ,
and t ∈ �c, let s ∗ t denote the concatenation of s with t. For any s ∈ � f ,
let Us = {s ∗ t | t ∈ �c}, i.e. the set of all (possibly infinite) strings with initial
segment s. We include as a finite string the empty string, or ‘root’, of T2, and
denote it by 〈·〉. Let B = {Us | s ∈ � f } ∪ {∅}. Note that B is closed under finite
intersections (For any s, t ∈ � f either Us ⊆ Ut, Ut ⊆ Us or Us ∩ Ut = ∅) and
contains the empty set and the whole space, hence is a basis for some topology
J over �c. We let T2 = (�c,J ) and refer to it as the complete binary tree.
(See Fig. 1).

For any two nodes s and t of T2, we say that t is an ancestor of s if s = t ∗ t′
for some (possibly empty) t′ ∈ �c. We also say s is a descendant of t. (If t′ is
the empty string, then s = t and s is both an ancestor and descendant of t.) If
s = t ∗ 0 or s = t ∗ 1 we say s is an immediate descendant of t. We refer to points
in � f as f inite nodes of the tree, and to points in �c − � f as limit nodes.

Proposition 5.6

(i) �c, the underlying set of T2, is uncountable,
(ii) T2 is non-Alexandrof f.

Fig. 1 First few levels of the complete binary tree, T2. Each node, t, has a ‘left’ successor (t∗0) and
a ‘right’ successor (t∗1)
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Separation axioms:

(iii) T2 is T0,
(iv) T2 is not T1 (hence non-Hausdorf f and non-metrizable)

Proof

(i) By a bijection between the set of infinite strings over � = {0, 1} and the
interval [0, 1];

(ii) The intersection of basic opens U0, U00, U000, ... (i.e. the countable se-
quence 000...) is not open;

(iii) Let s, t ∈ �c, s �= t. The interesting case is where s = t ∗ t′ or t = s ∗ t′ for
some t′ ∈ �c. Let s = t ∗ t′. Then either t′ is a limit or a finite node. If t′ is
finite, then s ∈ Us and t /∈ Us. If t′ is a limit node, then there exists a finite
node, t′′, ‘between’ t and s with s ∈ Ut′′ and t /∈ Ut′′ ;

(iv) Take, for instance, t = 0 and s = 00: there is no open set containing t that
does not contain s. 
�

T2 = (�c,J ) is a topological space, and we can construct the corresponding
topological field of sets B(T2). Let f : P → B(T2) be a valuation over T2.
Suppose that for some formula ψ , and some limit node t, t ∈ hf (ψ) and s ∈
hf (ψ) for only finitely many ancestors, s, of t. Then we say that f is a degenerate
valuation. The following proposition states that we can ignore degenerate
valuations over T2 for the purposes of completeness.

Proposition 5.7 S4 is complete for T2. In particular, if α is a non-theorem of S4,
then α is falsif ied at the root of T2 by a non-degenerate valuation (〈·〉 /∈ hf (α)

for some non-degenerate f : P → B(T2)).

Proof The proposition follows from the unraveling of finite Kripke frames
onto the complete binary tree, and the fact that all non-theorems are falsified
at the root of some finite frame. The unraveling map assigns limit nodes of
the complete binary tree to worlds that label infinitely many nodes of the
associated branch. For this reason the relevant valuations over the tree are
non-degenerate. See [4]. 
�

5.3 Thick Cantors

Recall the construction of the Cantor set. We begin with the interval [0, 1]. At
stage n = 0 of construction, we remove the open middle third

( 1
3 , 2

3

)
, leaving

“remaining intervals”
[
0, 1

3

]
and

[ 2
3 , 1

]
. At stage n = 1, we remove the open

middle thirds of each of these intervals, leaving remaining intervals
[
0, 1

9

]
,[ 2

9 , 1
3

]
,
[ 2

3 , 7
9

]
and

[ 8
9 , 1

]
, etc. The Cantor set, C, is the set of points remaining

after infinitely many stages of construction.
An easy argument due to Dana Scott shows that the decision to remove

middle thirds (as opposed to fourths, fifths, etc.) in the construction of C plays
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Fig. 2 First five stages
of construction of the
Smith–Volterra–Cantor
set, K

no role in the fact that C has measure zero. Let Cn be the set resulting from
removing open middle intervals of proportional length 1/n at each stage of
construction. After removing the first middle interval we produce scaled copies
of Cn on the intervals

[
0, n−1

2n

]
and

[ n+1
2n , 1

]
, giving,

m (Cn) = 2
n − 1

2n
m (Cn)

and m (Cn) = 0.
We can, however, construct a set that is ‘Cantor-like’ (sharing all topological

properties with C) and yet has non-zero measure. The trick is to remove
successively smaller portions of the remaining intervals. The set we end up
with is sometimes called a ‘thick’ or ‘fat’ Cantor set. The particular version of
it below has measure = 1/2, but this is not necessary—sets of arbitrary positive
measure can be constructed in similar fashion.12

Definition 5.8 Begin with the interval [0, 1], and at stage n = 0 of construction,
remove the open middle interval of length 1

4 , leaving remaining intervals[
0, 3

8

] ∪ [ 5
8 , 1

]
. At stage n = 1, remove open middle 1

16 ’s from each interval,
leaving

[
0, 5

32

] ∪ [ 7
32 , 3

8

] ∪ [ 5
8 , 25

32

] ∪ [ 27
32 , 1

]
, etc. In general, at stage n of con-

struction, remove open middle intervals of length
( 1

4

)n+1 from each remaining
interval. The set of points remaining after infinitely many stages of construc-
tion is the Smith–Volterra–Cantor set. We call it the ‘thick’ Cantor set and
denote it by K.13 (See Figs. 2 and 3).

What is the measure of K? Note that at each finite stage of construction of
K, 2n intervals of length

( 1
4

)n+1 are removed, so the total measure of points
removed is ∑

n≥0

2n
(

1
4

)n+1

=
∑
n≥0

(
1
2

)n+2

= 1
2

and m(K) = 1 − 1/2 = 1/2.

Proposition 5.9 Let O be an open set with K ∩ O �= ∅. Then K ∩ O has non-
zero measure.

12To construct a thick Cantor set with measure 1 − ε, remove middle intervals of length
2ε

( 1
4

)n+1. Over the course of the construction we remove a total measure of 2ε
∑

n≥0 2n
( 1

4

)n+1 =
2ε

∑
n≥0

( 1
2

)n+2 = 2ε
( 1

2

) = ε.
13Figures 2 and 3 are licensed by Creative Commons.
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Fig. 3 The set K. After white
intervals have been removed,
the black points which remain
make up K

Proof Let O be open and x ∈ K ∩ O. Then, since x ∈ K, x is in a re-
maining interval at each stage of construction of K. Let Rn,x denote the
remaining interval containing x at stage n of construction. The length of re-
maining intervals tends to zero, so for N large enough, RN,x ⊆ O. But, by sym-
metry, m (K ∩ RN,x) = ( 1

2

)N+2
> 0. (At stage N of construction, there are 2N+1

remaining intervals and they split the measure of K equally). Thus

m
(
K ∩ O

) ≥ m
(
K ∩ RN,x

)
> 0 
�

We can construct a ‘scaled copy’ of K by starting from the interval
[a, b ] instead of [0, 1], and removing successively middle segments of length
(b − a)

( 1
2

)2n+2. In fact, we can carry out the construction of K on any closed,
open, or half-open interval [a, b ], (a, b), [a, b), (a, b ]. If we start from the open
interval (a, b), the resulting set is not closed (compact, etc.) and hence differs
in important properties from K. Nevertheless, with slight abuse of notation,
we refer to all such constructions as ‘scaled copies’ of K. Clearly the measure
of a scaled copy of K on any of the intervals [a, b ], (a, b), [a, b), (a, b ] is just
1
2 (b − a).

We state without proof an obvious corollary to Proposition 5.9:

Corollary 5.10 Let K∗ be a scaled copy of K. If O is open and O ∩ K∗ is non-
empty, then O ∩ K∗ has non-zero measure.

We are now in a position to prove Proposition 3.10, which states that M �= G
(see Section 3). The example is due to Dana Scott, but we give a different
proof here.

Proof of Proposition 3.10 We claim that K /∈ G (and thus M �= G). We need
to show that for any open set O, K � O. Suppose O ⊆ [0, 1] is open and
O ∼ K. We know O ∩ K �= ∅ (else K ⊆ O � K and m(K) > 1). Let x ∈ O ∩
K. By the proof of Proposition 5.9, there exists N ∈ N with RN,x ⊆ O (where
Rn,x is, again, the remaining interval at stage n of thick Cantor construction
containing x). But at stage n + 1 of construction of K, we remove from RN,x

an open interval, I, of non-zero measure. So I ⊆ O − K ⊆ O�K and O � K.
⊥. 
�

Lemma 5.11 Let I be any interval (closed, open, half-open) and let K(I) be the
scaled copy of K on I. Then K(I) approaches both endpoints of I.



Completeness of S4 for the Lebesgue Measure Algebra

Proof We assume I is an open interval and write I = (a, b) (the proof for the
other cases is identical). Consider the ‘left-most’ remaining interval at each
finite stage of construction of K(I), and denote it by (a, rn]. Then rn → a (since
the length of remaining intervals tends to zero) and rn ∈ K(I) for all n ∈ N. For
the proof that K(I) approaches b , simply replace ‘left-most’ with ‘right-most’
remaining intervals and make appropriate substitutions. 
�

Lemma 5.12 Let I be any interval (open, closed, half-open), and let K(I) be
the scaled copy of K on I. Then I − K(I) is a disjoint union of open intervals
(i.e. intervals removed at f inite stages of construction of K(I)). Let LI (RI) be
the set of left (right) endpoints of these intervals. Then, for any x ∈ K(I), points
in LI (RI) approach x.

Proof Fix ε > 0. Again, since x ∈ K(I), x belongs to a ‘remaining interval’,
Rn,x, at each finite stage, n, of construction. As before, the length of Rn,x

tends to zero, so for some N ∈ N, length (RN,x) < ε. But at stage N + 1 of
construction, we remove an interval, (l, r), from RN,x. Moreover, l ∈ L(I), and
r ∈ R(I), and |x − l| < ε and |x − r| < ε. 
�

5.4 Construction of the Map 
 : [0, 1] → T2

We construct the map, 
 : [0, 1] → T2, in stages, much like the Cantor set.
The function is based quite heavily around thick Cantor sets. Indeed, the
pullback, under 
, of the root, 〈·〉, of T2, is just the thick Cantor set, K, with
midpoints (defined below), and the pullback under 
 of any finite node of T2
is a countable disjoint union of scaled copies of K (with midpoints).

In what follows, we say that an interval, I ⊆ [0, 1], is uniformly labeled by
a function f : [0, 1] → T2 if there exists a node s ∈ T2 such that f (x) = s for
all x ∈ I. We say that an interval, I, is a maximal, uniformly labeled (MUL)
interval under f if I is uniformly labeled by f and there does not exist I′

� I
with I′ uniformly labeled by f . (For the purposes of this paper, intervals are
always non-trivial.)

For any interval I, let K(I) be the scaled copy of K on I. Then I − K(I)
is a disjoint union of open intervals {(aI

n, b I
n

) | n ∈ N} and for each n ∈ N we

let AI
n = (

aI
n,

b I
n−aI

n
2

)
and BI

n = ( b I
n−aI

n
2 , b I

n

)
.
(
i.e. AI

n is ‘open left half’ and BI
n is

‘open right half’ of
(
aI

n, b I
n

))
. Let A(I) = ⋃

n AI
n and B(I) = ⋃

n BI
n. (Think of

A(I) as the open left half and B(I) as the open right half of the thick Cantor
complement). (See Fig. 4.)

Fig. 4 Three intervals
(
aI

i , b I
i

)
(i = 1, 2, 3) in I − K(I) for some interval I. Midpoints m1, m2 and

m3 belong to the set M. The shaded region of the diagram belongs to A(I)
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We construct 
 in stages, as follows.

Definition 5.13 (Stagewise labeling functions, 
n : [0, 1] → T2)
Let 
0(x) = 〈·〉 for all x ∈ [0, 1].
For any x ∈ [0, 1] and any n ∈ N:


n+1(x)=

⎧⎪⎨
⎪⎩


n(x) ∗ 0 if x∈ A(I) for some I that is a MUL interval under 
n)


n(x) ∗ 1 if x∈ B(I) for some I that is a MUL interval under 
n)


n(x) otherwise

Thus, e.g.:

• 
0 labels all points in the interval [0, 1] by the root, 〈·〉, of T2.
• 
1 labels all points in A([0, 1]) by 0 (‘left successor’ of the root), and labels

all points in B([0, 1]) by 1 (‘right successor’ of the root). It leaves all other
points labeled by the root.

• 
2 labels as follows: If I is a MUL interval under 
1 and points in I are
labeled by 0 (under 
1), then 
2 labels all points in A(I) by 00 (‘left
successor’ of 0), and all points in B(I) by 01 (‘right successor’ of 0).
If I is a MUL interval under 
1 and points in I are labeled by 1 (under

1), then 
2 labels all points in A(I) by 10 (‘left successor’ of 1), and all
points in B(I) by 11 (‘right successor’ of 1).

2 leaves all other points labeled as they were by 
1.
etc.

Note that for any interval I, midpoints of the intervals
(
aI

n, b I
n

)
are in neither

A(I) or B(I). Thus, if I is a MUL interval under 
n, whose points are labeled
by node t, then under 
n+1, midpoints of the intervals

(
aI

n, b I
n

)
remain labeled

by t. We denote the set of ‘midpoints’ introduced at finite stages of labeling by
M (M should not be confused with our notation, M, for the Measure Algebra).
Note that M is countable (only countably many points are added to M at
each finite stage of labeling, 
n), and thus, from a measure-theoretic point
of view, negligible. In what follows, we say that a node, t, labels all points in
a set A plus midpoints, to mean that t labels all points in A and some points
in M.

Some points x ∈ [0, 1] “stabilize” over successive labelings and some do not.
More precisely, some but not all points satisfy the following condition:

∃N ∈ N such that ∀n ≥ N, 
n(x) = 
N(x) (*)

(As an example of a point that stabilizes, consider 1
2 , or any point in M.)

Our final labeling function agrees with stagewise labeling functions on points
that stabilize, but assigns limit nodes of T2 to all points that do not stabilize.
We define the function, 
 : [0, 1] → T2 as follows.
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Definition 5.14 ‘Final’ labeling function, 
 : [0, 1] → T2.


(x) =
{


N(x) if x satisfies (*)

t otherwise

where N is the stage at which x stabilizes, and t is the unique countable
sequence over {0, 1} that has 
n(x) as initial segment for each n ∈ N.

The following observation sums up the construction, 
.

Observation Level-n nodes in T2 label points in [0, 1] for the first time at
stage n. If t is any level-n node (n ≥ 1), then at stage n, t labels all points
in a countable disjoint union of open intervals. If I is a MUL interval under

n whose points are labeled by t, then at stage n + 1, only points in K(I)
(plus midpoints) remain labeled by t. These points remain labeled by t under
successive labeling functions. Thus, under the final labeling function, 
, the
pullback of any finite node is a countable disjoint union of scaled copies of K
(plus midpoints).

5.5 Proof of Key Lemmas

Over the course of the next several lemmas, we prove that 
 is an interior,
surjective map, and that it has a key measure-theoretic property, stated in
Corollary 5.18. The proof of these results is quite technical, and the reader
can skip ahead to the next section, where completeness of S4 for M is proved.

Again, let M denote the set of midpoints in [0, 1] (see Section 5.4), and note
that M is countable, hence M ∈ Null.

Lemma 5.15 Let t be any f inite node of T2. Let O ⊆ [0, 1] be an open set with
O ∩ (
−1(t) − M) �= ∅. Then O ∩ 
−1(t) has non-zero measure.

Proof This follows from the observation that 
−1(t) − M is a countable dis-
joint union of scaled copies of K. If O ∩ (
−1(s) − M) �= ∅, then O intersects
one of these scaled copies of K. By Corollary 5.10, O ∩ (
−1(s) − M) has non-
zero measure, hence also O ∩ 
−1(s) has non-zero measure. 
�

In the next two lemmas, we refer to ‘open intervals’ in A(I), B(I) and
I − K(I), and to left and right ‘endpoints’ of A(I), B(I), and I − K(I). The
meaning should be clear: A(I), e.g., can be written uniquely as a disjoint union
of open intervals and ‘open intervals in A(I)’ are these intervals. ‘Endpoints’
of A(I) are simply endpoints of these intervals. (Likewise for B(I) and
I − K(I).)
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Lemma 5.16 Let I be a MUL interval labeled by t at some f inite stage n, and
again let K(I) be the scaled copy of K on I. Then 
−1(t ∗ 0) − M approaches
all left endpoints of I − K(I) and 
−1(t ∗ 1) − M approaches all right endpoints
of I − K(I).

Proof Left endpoints of I − K(I) are simply left endpoints of A(I), and right
endpoints of I − K(I) are simply right endpoints of B(I). 
−1(t ∗ 0) − M is a
thick Cantor on each open interval in A(I), hence, by Lemma 5.11, approaches
endpoints of A(I). Likewise, 
−1(t ∗ 1) − M is a thick Cantor on each open
interval in B(I), hence approaches endpoints of B(I). 
�

Lemma 5.17 Let s and t be f inite nodes of T2 with s a descendant of t. If O ⊆
[0, 1] is open with O ∩ (
−1(t) − M) �= ∅, then O ∩ (
−1(s) − M) �= ∅.

Proof We assume s �= t (the case where s = t is trivial). We show that 
−1(s) −
M approaches any point in 
−1(t) − M. Assume first that s is an immediate
successor of t. WLOG s = t ∗ 0, and we let x ∈ 
−1(t) − M. Then x belongs
to an interval I first labeled by t at some finite stage n and x ∈ K(I). By the
previous lemma, 
−1(s) − M approaches left endpoints of I − K(I), and by
Lemma 5.12, these endpoints in turn approach all points in K(I). (If we had let
s = t ∗ 1, then 
−1(s) − M would approach right endpoints of I − K(I), which
also approach all points in K(I).) By induction on the “distance” in T2 from t
to s, the claim is true for any finite descendant s of t. 
�

Corollary 5.18 Let s and t be f inite nodes of T2 with s a descendant of t. If
O ⊆ [0, 1] is open with O ∩ (
−1(t) − M) �= ∅, then O ∩ 
−1(s) has non-zero
measure.

Proof Immediate from Lemmas 5.15 and 5.17. 
�

Lemma 5.19 
 is continuous.

Proof Let U be a basic open set in T2. Then U is generated by some finite
node s. Suppose x ∈ 
−1(U). It follows that 
(x) = s ∗ t where t ∈ �c. By the
construction of 
, this means that at some stage n of labeling, x was in an open
MUL interval, I, that got labeled by s. But then x ∈ I ⊆ 
−1(U) and 
−1(U)

is open. 
�

Lemma 5.20 
 is open.

Proof Let O ⊆ [0, 1] be open and let t ∈ 
(O). We show that if t is a
finite node, then Ut ⊆ 
(O) and if t is a limit node, then for some (finite)
ancestor t′ of t, Ut′ ⊆ 
(O). The proof is fairly intricate and is left to the
Appendix.

Lemma 5.21 
 is surjective.
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Proof This follows from the fact that 
 is open, and the root, 〈·〉, is in the range
of 
—e.g. 


( 1
2

) = 〈·〉.

Proposition 5.22 Let f ′ : P→B(T2) be any valuation over T2 and let f : P →
B([0, 1]) be def ined by f (P) = [
−1] ◦ f ′(P) for all P ∈ P. Then for any
formula, φ, in the modal language, L,

hf (φ) = [

−1] ◦ h f ′(φ)

Moreover,

h f ′(φ) = 1B(T2) if f hf (φ) = 1B([0,1])

Proof Immediate from Lemmas 5.19, 5.20, 5.21 and Proposition 5.4.

The following lemma and proposition tell us that the 
-pullback of any
subset of T2 is a Lebesgue-measurable set. Moreover, although the finite nodes
are only a countable subset of an uncountable tree, the pullback of these nodes
takes up all the measure of the real interval [0, 1]!

Lemma 5.23 Let F be the set of f inite nodes of T2. Then 
−1(F) is measurable,
and

m
(

−1(F)

) = 1

Proof Note that for any finite node t, 
−1(t) − M is Borel (since it is a
countable disjoint union of scaled copies of K). Also, 
−1(t) ∩ M is countable,
hence Borel. It follows that 
−1(t) is Borel. Finally, 
−1(F) = ⋃

t∈F 
−1(t) is a
countable union of Borel sets, hence Borel (and measurable).

We say a finite node t is a level-n node if it is n steps from the root, 〈·〉, or,
equivalently, is a string of length n in � f . For the second part of the lemma,
note that there are 2n level-n nodes for each n ∈ N. Let En = measure (
−1(t)),
and let Sn = measure (
−1(Ut)) where t is any level-n node. (By symmetry,
these quantities do not depend on which level-n node we pick.) Then

measure
(

−1(F)

) =
∑
n≥0

2n En

To calculate En, note that:14

(i) En = Sn/2
(ii) S0 = 1 and Sn+1 = Sn/4

14Why? (i) follows from the fact that for every MUL interval, I, labeled by t at stage n, only
K(I) (plus midpoints) remains labeled by t in subsequent stages. (ii) follows from the fact that

−1(Ut) is a disjoint union of MUL intervals, I, labeled by t at stage n, and 
−1(Ut∗0 ∪ Ut∗1) is
the set I − K(I) (minus midpoints) on each such interval, I. We know m(I − K(I)) = 1

2 m(I), and

−1(Ut∗0) = 
−1(Ut∗0), giving (ii).
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Solving, we get Sn = ( 1
2

)2n and En = ( 1
2

)2n+1. Finally:

measure
(

−1(F)

) =
∑
n≥0

2n En =
∑
n≥0

2n
(

1
2

)2n+1

=
∑
n≥0

(
1
2

)n+1

= 1


�

Proposition 5.24 Let S be any subset of T2. Then 
−1(S) is Lebesgue-
measurable.

Proof From the proof of Lemma 5.23, we know that 
−1(t) is Borel for any
t ∈ F. Since S ∩ F is countable, 
−1(S ∩ F) = ⋃

t∈S∩F 
−1(t) is a countable
union of Borel sets, hence Borel. Moreover, 
−1(S ∩ L) has Lebesgue-
measure zero (again, by Lemma 5.23). So 
−1(S) = 
−1(S ∩ F) ∪ 
−1(S ∩
L) = B ∪ N for some Borel set B and N ∈ Null. 
�

6 Completeness of S4 for the Lebesgue Measure Algebra M

We want to transfer valuations over B([0, 1]) to the Measure Algebra, M.
In Section 4, we reasoned as follows. For any valuation f : P → B([0, 1]) we
can define f over M by letting: f (P) = f (P) (so long as f (P) is Lebesgue-
measureable for each P ∈ P). If, for any formula φ, of the modal language L,

h f (φ) = hf (φ) (4)

we would have a proof of completeness for M along the following lines. For
any non-theorem α of S4, let f : P → B([0, 1]) be a valuation that falsifies
α at each point on a Lebesgue-measurable set of non-zero measure (i.e.
m (hf (α)) < 1). Then by (4), h f (α) = hf (α), but since m (hf (α)) < 1, hf (α) �=
[0, 1] and α is falsified in M by f .

The problem with this approach is that in general, Eq. 4 is not true (see (A2)
in Section 4). The construction of 
 was aimed at getting around this prob-
lem. Because of the special measure-theoretic properties of 
, any valuation
f : P → B([0, 1]) defined as a 
-pullback of a valuation f ′ : P → B(T2) does
satisfy Eq. 4. More precisely,

Lemma 6.1 Let f ′ : P → B(T2) be a non-degenerate valuation over T2, and let
f (P) = 
−1 ◦ f ′(P) and f (P) = f (P). ( f is well-def ined by the fact that f (P)

is a measurable set for each propositional variable P—see Lemma 5.24.) Then
for any formula α of the modal language L,

h f (α) = hf (α)
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Proof By induction on the complexity of α. The Boolean cases are straightfor-
ward, and we prove only the modal clause. For simplicity of notation we let
h′ = h f ′ , h = hf and h = h f , and show that

h(�φ) = h(�φ) (5)

We already know that

h(�φ) = Interior (h(φ)) =
⋃

{O open | O ⊆ h(φ)}, and

h(�φ) = I (h(φ)) = sup {c ∈ G | c ≤ h(φ)}
= sup {c ∈ G | c ≤ h(φ)} (by inductive hypothesis)

=
⋃

{O open | O ⊆ X for some representative X of h(φ)}
(by Proposition 3.14)

=
⋃

{O open | O ⊆ h(φ) ∪ N for some N ∈ Null}

Thus, proving Eq. 5 amounts to showing:

⋃
{O open | O ⊆ h(φ) ∪ N for some N ∈ Null} =

⋃
{O open | O ⊆ h(φ)}

The inequality (≥) is obvious. We prove (≤). We need to show that for some
S ∈ Null,⋃

{O open | O ⊆ h(φ) ∪ N for some N ∈ Null} ⊆ Interior (h(φ)) ∪ S

In particular, we let S = M ∪ 
−1(L) (i.e. the union of the set of midpoints
and the points labeled by limit nodes of T2). S is a null set because both M and

−1(L) are null sets (see Proposition 5.23). Note on notation: In the remainder
of this paper we sometimes write Ac for [0, 1] − A (where A is a subset
of [0, 1]).

Let O ⊆ [0, 1] be open with O ⊆ h(φ) ∪ N for some N ∈ Null and let x ∈ O.
Suppose (toward contradiction) that x /∈ Interior (h(φ)) ∪ S. Letting t = 
(x),
we know (since x /∈ S) that t is a finite node. Since x /∈ Interior (h(φ)), we know
x /∈ h(�φ). But then by Proposition 5.22, t /∈ h′(�φ), and so t /∈ Interior (h′(φ)).
It follows from the topology on T2 that there is some descendant, s, of t with
s /∈ h′(φ). Again by Proposition 5.22, 
−1(s) ⊆ (h(φ))c. We can assume s is
finite by the fact that f ′ is non-degenerate. But now (
−1(t) − M) ∩ O �= ∅
(since x ∈ O, x /∈ M). So by Corollary 5.18, 
−1(s) ∩ O has non-zero measure.
We have,


−1(s) ∩ O ⊆ h(φ) ∪ N and


−1(s) ∩ O ⊆ (h(φ))c
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giving 
−1(s) ∩ O ⊆ N and contradicting the fact that LHS has non-zero
measure. ⊥. 
�

Corollary 6.2 Let f ′ be a non-degenerate valuation over T2, and let f (P) =

−1 ◦ f ′(P) and f (P) = f (P), as above. Then for any formula, α, of the modal
language, L,

h f (α) = [0, 1] if f m (hf (α)) = 1

Proof The corollary follows immediately from Lemma 6.1 and the fact that for
any Lebesgue-measurable set A ⊆ [0, 1], A ∼ [0, 1] iff m(A) = 1. 
�

Theorem 6.3 S4 is complete for M.

Proof Let α be a non-theorem of S4. Then α is falsified at the root, 〈·〉, of T2
by some non-degenerate valuation f ′ : P → B(T2) - i.e. 〈·〉 /∈ h f ′(α). Define the
valuations f , f as follows:

f (P) = 
−1 ◦ f ′(P)

f (P) = f (P)

Then 〈·〉 ∈ h f ′(¬α), and by Proposition 5.22, 
−1(〈·〉) ⊆ hf (¬α). Thus, K ⊆

−1(〈·〉) ⊆ (hf (α))c, so m(hf (α)) < 1. By Corollary 6.2, h f (α) �= [0, 1], and α

is falsified in M. 
�

We know, from Tarski’s proof of completeness of S4 for the reals, that any
non-theorem, α, of S4 can be falsified at a point in the real interval, [0, 1] (i.e.
there is a valuation, f : P → B([0, 1]), and point x ∈ [0, 1] with x /∈ hf (α)). The
next corollary states that if α is a non-theorem of S4, there exists a valuation,
f : P → B([0, 1]), that falsifies α at each point in a subset of [0, 1] of measure
arbitrarily close to 1.

Corollary 6.4 Suppose α is a non-theorem of S4. Then for any ε > 0, there
exists a valuation, f : P → B([0, 1]), and a measurable set, S, with m(S) < ε

and hf (α) = S. Likewise, for any ε > 0 there exists a valuation g : P → M, and
a measurable set, S, with m(S) < ε and hg(α) = S.

Proof Sketch Let ε > 0. We define a function 
∗ : [0, 1] → T2, using thick
Cantor sets of measure 1 − ε, but otherwise identical to 
. Let K∗ be the
thick Cantor set of measure 1 − ε. Then stagewise labeling functions, 
∗

n, are
constructed as in Definition 5.13, but using K∗ instead of K. Again, let 
∗ be
the limit of stagewise labeling functions, 
∗

n (see Definition 5.14). Then the



Completeness of S4 for the Lebesgue Measure Algebra

root of T2 is pulled back, under 
∗, to K∗ (plus midpoints), a set of measure
1 − ε. We now simply repeat the argument given in the proof of Theorem 6.3.
If α is a non-theorem of S4, let f ′ : P → B(T2) be a non-degenerate valua-
tion that falsifies α at the root, 〈·〉, of T2. Defining f : P → B([0, 1]) as the

∗-pullback of f ′ ( f = [
∗−1] ◦ f ′), we know that K∗ ⊆ 
−1(〈·〉) ⊆ (hf (α))c.
Letting S = hf (α), we have m(S) ≤ ε. Furthermore, defining g : P → M by
g(P) = f (P), we have hg(α) = hf (α) = S.15 
�

As a final corollary, we prove that Intuitionistic propositional logic (IPC)
is complete for the frame G. Let the propositional language L0 consist of a
countable set, P = {Pn | n ∈ N}, of atomic variables and be closed under binary
connectives →, ∨, ∧, ↔ and unary operator ¬. Recall that G is a complete
Heyting algebra. In particular, for any elements x, y ∈ G, there exists an
element, x ⇒ y ∈ G, called the relative pseudo-complement of x with respect
to y and defined by:

sup {c ∈ G | c ∧ x ≤ y}

Semantics For any valuation f : P → G assigning propositional variables to
arbitrary elements of G, we define the extension hf by: hf (φ → ψ) = hf (φ) ⇒
hf (ψ). hf is defined in the usual way on {&, ∨}. (‘¬φ’ abbreviates ‘φ → ⊥’ and
‘φ ↔ ψ ’ abbreviates ‘φ → ψ & ψ → φ’.)

For any formula 
 ∈ L0, let T(φ) be the Gödel–Tarski translation of φ given
inductively as follows:

T(P) = �P for all propositional variables P

T(⊥) = ⊥
T(φ ∨ ψ) = T(φ) ∨ T(ψ)

T(φ ∧ ψ) = T(φ) ∧ T(ψ)

T(φ → ψ) = �(T(φ) → T(ψ))

Gödel and Tarski showed that 	I PC α iff 	S4 T(α) for any formula α ∈
L0. Moreover, for any valuation f : P → M, we can define the valuation,

15Lemma 5.23 still holds under this construction. The new recursive equations for Sn and En are
as follows: S0 = 1, Sn+1 = ε

2 Sn and En = (1 − ε) Sn. Solving, we get: En = (1 − ε)
(

ε
2

)n. So

measure
(

−1(F)

)
=

∑
n≥0

2n En =
∑
n≥0

2n (1 − ε)
( ε

2

)n = (1 − ε)
∑
n≥0

εn = 1
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fI : P → G, by fI(P) = hf (�P). It is easy to show16 that for any formula,
α ∈ L0, T(α) ∈ L1 and

h fI (α) = hf (T(α))

In particular, hf (T(α)) ∈ G for each α ∈ L0 (the Gödel translation of any
formula is evaluated to an open element).

Corollary 6.5 I PC is complete for G.

Proof Suppose �I PC α. Then �S4 T(α). By completeness of S4 for M,
there is a valuation f : P → M with hf (T(α)) �= [0, 1]. But letting fI be
defined as above, we have h fI (α) = hf (T(α)) �= [0, 1], so α is falsified under
fI in G. 
�
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Appendix

Proof of Lemma 5.20 The proof makes use of the following two claims:

Claim 1 If I is a MUL interval under 
n, whose points are labeled by a
finite node, t, then Ut ⊆ 
(I).

Claim 2 If I is any interval, then I − K(I) is a countable disjoint union of
open intervals {(ak, bk) | K ∈ N}. If x ∈ K(I) or x is an endpoint of
I, then for any open O with x ∈ O, (ak, bk) ⊆ O for some k ∈ N.

(The proof of Claim 1 can be found in [4], and Claim 2 follows quite easily
from construction of the thick Cantor set.)

16The proof is by induction on the complexity of α. For propositional variables, P, the claim is true
by definition of fI . The interesting case is φ → ψ , which we prove as follows:

h fI (α) = hf (T(α))

= h fI (φ) ⇒ h fI (ψ)

= supG {c ∈ G | c ∧ h fI (φ) ≤ h fI (ψ)}
= supG {c ∈ G | c ∧ h f (T(φ)) ≤ h f (T(ψ))}
= supM {c ∈ G | c ≤ −h f (T(φ)) ∨ h f (T(ψ))}
= supM {c ∈ G | c ≤ h f (T(φ) → T(ψ))}
= I(h f (T(φ) → T(ψ)))

= hf (�(T(φ) → T(ψ)))

where supG and supM denote suprema in G and M respectively. In fact, suprema coincide in G
and M, so subscripts are unnecessary (see footnote 7).
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There are two cases: t(= 
(x)) is a limit node, and t is a finite node. If (case
1) t is a limit node then, by construction of 
, for each n ∈ N, x belongs to some
MUL interval In,x under 
n, with m(In,x) → 0. Since O is open, we know that
for large enough N, IN,x ⊆ O. Letting t′ = 
N(x) (i.e. x’s label at stage N), we
know that t′ is a (finite) ancestor of t. Moreover, by Claim 1, Ut′ ⊆ 
(IN,x) ⊆

(O). We have

t ∈ Ut′ ⊆ 
(O)

as needed.
If (case 2) t is a finite node, then for some n ∈ N, x belongs to a MUL interval

I under 
n whose points are labeled by t. Moreover, x /∈ A(I) and x /∈ B(I)
(else 
(x) a strict descendant of t). There are two subcases: x ∈ K(I) or x /∈
K(I).

• If (subcase 1) x ∈ K(I), then, letting I − K(I) be the disjoint union of open
intervals {(ak, bk) | k ∈ N}, we know (by Claim 2) there exists k ∈ N with
(ak, bk) ⊆ O. By construction of the finite labeling functions,

(
ak,

bk−ak
2

)
is a

MUL interval under 
n+1, all of whose points are labeled by t∗0. Similarly,( bk−ak
2 , bk

)
is a MUL interval under 
n+1, all of whose points are labeled

by t∗1. So by Claim 1,

Ut∗0 ⊆ 


(
ak,

bk − ak

2

)
⊆ 
(O)

and

Ut∗1 ⊆ 


(
bk − ak

2
, bk

)
⊆ 
(O)

It follows that Ut ⊆ 
(O).
• If (subcase 2) x /∈ K(I), then x is the midpoint of some interval (ak, bk) in

I − K(I). Let AI
k = (

ak,
bk−ak

2

)
, and let BI

k = ( bk−ak
2 , bk

)
. Note first that

t∗0, t∗1 ∈ 
(O)

(Why? K
(

AI
k

) ⊆ 
−1(t∗0) and points in K
(

AI
k

)
approach endpoints of AI

k
(by Lemma 5.11), hence approach x.) Second, note that

Ut∗00, Ut∗01, Ut∗10, Ut∗11 ⊆ 
(O)

(Why? Letting AI
k − K(AI

k) be the disjoint union of open intervals
{(c j, d j) | j ∈ N}, we know, by Claim 2, that for some j ∈ N, (c j, d j) ⊆
O. But

(
c j,

d j−c j

2

) ⊆ A
(

AI
k

)
and A

(
AI

k

)
is a MUL interval under 
n+2

whose points are labeled by t∗00. But then, by Claim 1, Ut∗00 ⊆ 
(O). By
symmetry, the same holds for Ut∗01, Ut∗10, and Ut∗11.)
We conclude that Ut ⊆ 
(O). 
�
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