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The aim of this paper is to present category theory as a framework for an in re
interpretation of mathematical structuralism. The use of the term ‘framework’ is
significant. On the one hand, it is used in distinction from the term ‘foundation’.
As such, what I propose is that we consider category theory as a philosophical
tool that allows us to organize what we say about the shared structure of abstract
kinds of mathematical systems.1 On the other hand, the term ‘framework’ is
used in the sense of Carnap [1956]. That is, category theory is taken as a
language2 used to frame what we say about the shared structure of abstract
kinds of mathematical systems, as opposed to being a “background theory”
which constitutes what a structure is.3

12.1 Foundation versus Framework
In this section, I consider what it means to say that category theory is a

framework for mathematical structuralism, though not a foundation for math-
ematics. I will show, contra Feferman [1977] and Mayberry [1994], that the

1This in contrast to viewing category theory as a mathematical foundation that provides us with the “atoms”
(of meaning or reference) of mathematics itself, e.g., that it tells us what, or whether, a structure is.
2See Landry [1999; 2001] for further elaboration of what is meant by taking category theory as a language.
3In this sense, the use of a category-theoretic linguistic frame is in contrast, to, for example, Shapiro’s [1997]
ontological, ante rem, reading of the concept of structure which uses “structure theory” to frame the claim
that mathematical structures exist both over and above systems that exemplify them and independently of
language.
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reason category theory cannot provide a foundation for mathematics is not that
it depends on set theory as either an ontological or conceptual base. Rather
it is that category theory cannot be construed as being about either objects or
structures qua (actually or possibly) existing things. Relying on the work of
Lawvere [1966] and McLarty [1990], we will see the Feferman’s criticisms
miss their mark, and, moreover, we will see that category theory satisfies May-
berry’s criterion of being a “foundational sea” to the same degree that set theory
does. Yet, while category theory cannot provide a foundation for mathematics,
it remains, as Bell [1981] notes, “foundationally significant”.

12.1.1 Categories as “Structures”
Since Lawvere’s work with the category of categories has provided much

grist for the foundational mill, let us consider what he says of his aims in this
regard:

[i]n the mathematical development of recent decades one sees clearly the rise
of the conviction that the relevant properties of mathematical objects are those
which can be stated in terms of abstract structure rather than in terms of the
elements which objects were thought to be made of. The question naturally
arises whether we can give a foundation for mathematics which expresses whole-
heartedly this conviction concerning what mathematics is about and in particular
in which classes and membership in classes do not play any role. . . (Lawvere
quoted in Feferman, [1977], pp. 149-150).

It is as an answer to this challenge, then, that Lawvere [1966] “formulated a
(first-order) theory whose objects are conceived to be arbitrary categories and
functors between them”. (Feferman, [1977], p. 150). It is held, by Feferman
(and Bell [1981]), that the problem with such an account is that when it comes
to accounting for categories as themselves abstract “structures” and/or using
categories to account for abstract kinds of “structures”, one must appeal to
notions which fall outside the range of category theory.4 As Feferman explains:

when explaining the general notion of structure and of particular kinds of struc-
tures such as groups, rings, categories, etc., we implicitly presume as understood
the ideas of operation and collection; e.g., we say that a group consists of a
collection of objects together with a binary operation satisfying such conditions
. . . when explaining the notion . . . of functor for categories, etc., we must again
understand the concept of operation . . . (Feferman, [1977], p. 150).

4Specifically, Feferman claims that in either case, “[t]he logical and psychological priority if not primacy of
the notion of operation and collection is . . . evident” (Feferman, [1977], p. 150). And from this concludes
that “[i]t is evidently begging the question to treat collections (and the operations between them) as a category
which is supposed to be one of the objects of the universe of the theory to be formulated”. (Feferman, [1977],
p. 150.) Feferman’s claim can be understood as follows: if we assume that mathematics is the study of
abstract structure, then, insofar are categories themselves are structured (and, presumably, structured in terms
of operation and collection), we need a general account of the very notion of structure itself.
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That is, even if category theory can give a more general account of abstract kinds
of structure than can set-theory,5 we are still in need of a (meta) theory which
makes “use of the unstructured notions of operation and collection to explain
the structural notions to be studied”. (Feferman, [1977], p. 150). To this end
he provides a non-extensional type-free theory of operations and collections
wherein “much of ‘naïve’ or ‘unrestricted’ category theory can be given an
account. . . ” (Feferman, [1977], p. 149).6

Now, if one had stopped one’s inquiry here, one might be convinced, but as
Feferman goes on to note, the schemes offer by Grothendieck Universes and
the Gödel-Bernays theory of classes, readily offer the needed (meta) theory for
category theory (though not in terms of operation and collection).7 That is,
Feferman himself concedes that

there is no urgent or compelling reason to pursue foundations of unrestricted cat-
egory theory, since the schemes. . . serve to secure all practical purposes. . . The
aim in seeking a new foundation is mainly as a problem of logical interest mo-
tivated largely by aesthetic considerations (or rather by the inaesthetic character
of the present solutions). (Feferman, [1977], p. 155)

To make his reasons compelling, then, Feferman needs to have demonstrated
that the notions of operation and collection themselves are, in some sense,
constitutive of the notion of structure, and he has not. Independently of Fe-
ferman offering-up these reasons, there are two possible, though not unrelated,
responses to his claim that we yet need, to account for mathematics as the
study of abstract structures, a non-extensional type-free theory of unstructured
operations and collections. One that structuree’ is not strictly a mathematical
notion, and hence, such problems need not be resolved by providing a foun-
dation for mathematics, but rather are best addressed by offering a philosophy
for mathematics (see § 12.3). The second, though not unrelated, response is
that a category qua a structured system is to be “algebraically” considered (see
§ 12.2). In either case, we note that category theory itself, i.e., without the

5Of the inadequacies of set theory as a foundation, Feferman says: “Since neither the realist (extensional)
or the constructivist (intensional) point of view encompasses the other, there cannot be any present claim to
universal foundation for mathematics. . . ” (Feferman, [1977], p. 151.)
6While Feferman agrees with Mac Lane that work in elementary topos theory (ETS) shows the “formal”
equivalence between ETS(Z) and ETS(ZF) and the theories of Z and ZF, respectively, he claims his point
stands; because the “use of ‘logical priority’ refers not to the relative strength of formal theories but to the
order of the definition of the concepts”. . . and “that the general concepts of operation and collection have
logical priority with respect to structural notions (such as ‘group’, ‘category’, etc) because the latter are
defined in terms of the former but are not conversely”. (Feferman, [1977], p. 152.)
7Another scheme, offer by Bell [1986;1988], is to characterize (up to categorical equivalence) topoi as
models of a higher-order, intuitionistically based, type theory; thus, allowing us to re-capture the sense in
which set-theory and category theory are “formally” equivalent, i.e., by allowing for the specification of
topoi as “local set theories”.



166 Elaine Landry

background schemes, cannot provide a foundation any more than set theory: it
cannot tell us what, or whether, structure is.8

12.1.2 The category of categories as a “Foundational Sea”
I now turn to consider Mayberry’s claim that, because sets and their mor-

phology are constitutive of the notion of structure, only set theory can provide a
foundation for mathematics. My aim is to show that, while it can be agreed that
“when we employ the axiomatic method we are dealing with structures”,9 it
simply does not follow that “when we are dealing with mathematical structures,
we are engaged in set theory”. (Mayberry, [1990], p. 19) In particular, I will
argue that there is no reason to hold that “each structure consists of a set or sets
equipped with a morphology”. (Mayberry, [1990], p. 19.)

Mayberry acknowledges that there are problems with his version of struc-
turalism founded on an ‘intuitive’ set theory, viz., that it cannot be used to talk
about the large categories,10 for example, the category of all (small) groups.
He further recognizes that

to consider such categories seems a quite natural extension of ordinary structural-
ism, it appears to request the next level up in generality in which the notion under
investigation is the notion of structure itself. (Mayberry, [1990], p. 35.)

His solution to this problem, however, is far from satisfying: it is to dismiss
talk of such structures by simply denying that they are structures. He says

[i]n fact, there can be no such structures, for the very notion of set is that of an
extensional plurality limited in size, and the notion of set is constitutive of our
notion of structure. (Mayberry, [1990], p. 35.)

The claim that the notion of set is that of an extensional plurality limited in size
is both ad hoc and misleading: the only justification that Mayberry’s privileg-
ing of ‘intuitive’ set theory has is that, given his claim that set is constitutive
of our notion of structure, it makes his conclusion, that ‘intuitive’ set theory
provides a foundation, follow. Consider, if, instead of defining a set intu-
itively as “an extensional plurality of determinate size, composed of definite

8Given set theory’s inability to form the category of all structures of a given kind (groups, topological spaces,
categories) and to form the category of all functors of any given category it cannot be used to ‘foundationalize’
category theory, and given category theory’s inability to refer to all categories as ‘objects’ in the categories
of categories, without making use of either Grothendieck Universes or a Gödel-Bernays theory of sets and
classes, it cannot be seen as providing a foundation in and of itself. (See Feferman, [1977], pp. 154–155 for
a brief but informative discussion of these issues.)
9That is, while it can be agreed that the aim of a structuralist foundation (or, more accurately, a structuralist
philosophy) is to capture the belief that the subject matter of mathematics is structured systems and their
morphology.
10Note, however, that it is not because it is large that the category of categories cannot be taken as a foundation.
For a discussion of the various interpretations of large categories, (see McLarty, [1995], pp. 105–110).
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property-distinguished objects” (Mayberry, [1990], p. 32) we define a cate-
gory ‘intuitively’ as an object of indeterminate size,11 composed of definite,
functorially-distinguished objects. Then, following Lawvere, we could con-
clude that category theory provides a foundation for mathematics.12

While it seems clear, then, that neither set theory nor category theory can be
a foundation in the sense of providing a theory which captures the idea that the
subject matter of mathematics is structures and their morphology, it should also
be clear that neither can it provide a foundation in the sense of providing “a sea
in which structures swim”.13 Thus, while it is right to conclude that, on Fefer-
man and Mayberry’s “structuralist” criterion, category theory cannot provide
a foundation for mathematics, this is not because it requires a prior notion of
either operation or collection or ‘intuitive’ set theory. It is because, if it is to be
counted as an “object language” for our talk of structures, it requires some prior,
meta-theoretical, notion of structure that category theory itself cannot provide.14

12.2 Structures and structured systems
If we accept, then, that mathematics is the study of abstract structure, we must

explain in what sense category theory provides the philosophical tool for orga-
nizing what we say about the shared structure of abstract kinds of mathematical
systems. I begin first with Corry’s [1996] historical investigation of the devel-
opment of the ‘algebraic’ notion of structure. The aim here is to distinguish the
set-theoretic path of the Bourbaki notion of structure from the algebraic path of
the category-theoretic notion. Given this distinction, two observations can be
made. The first, that the Bourbaki notion implicitly assumes an ontology out
of which structures are made, i.e., assumes that types of structures are kinds of
set-structured systems. The second, that this assumption leads to a reification
of structure, i.e., leads to interpreting structures themselves as independently

11By ‘indeterminate size’ it is meant that we can define a category as large, either in the Gödel-Bernays
sense, or in terms of Grothendieck Universes. That is, we do not have to restrict the size of a category by
characterizing its objects and morphisms in terms of sets.
12To see this, in the following quote by Mayberry, simply replace ‘set’ with ‘category’ and ‘universe of sets’
with ‘category of categories’. “The fons et origo of all confusion here is the view that set theory is just
another axiomatic theory and that the universe of sets is just another mathematical structure . . . The universe
of sets is not a structure; it is the world that all mathematical structures inhabit, the sea in which they all
swim.” (Mayberry, [1990], p. 35.)
13And this fact cannot be altered by claiming that either stands along the shore of these issues since it is
needed to provide a semantics for mathematics. As McLarty notes, “Mayberry . . . has simply confused
his own head with Lawvere’s. [By claiming that “the idea of denying intuitive set theory its function in
the semantics of the axiomatic method never entered Lawvere’s head in his treatment of the categories of
categories”. (Mayberry, [1977]).] Lawvere believes ‘intuitive’ categories, and spaces, and other structures
are just as real (or, more accurately, just as ideal) as ‘intuitive’ sets.” (McLarty, [1990], p. 364.)
14For example, even though the category of categories can be used to talk about the shared structure of
categories qua kinds of structured systems, it cannot be used to axiomatically define (all) categories qua
structures.



168 Elaine Landry

existing things. In contrast to such set-theoretic and/or ontological readings
of what structure is, I will use this history to point to a category-theoretic,
schematic15 interpretation of types of structured systems.

12.2.1 What kind structures number systems?
In the development of Abstract Algebra,16 the use of kinds of “structures”, as

tool and/or unifying concepts, is evident. This development has its beginning
in the various attempts at answering the question: “What structures number
systems?”. For Dedekind, the subject matter of “algebra”17 may be considered
in two different ways. On the one hand, we may consider the properties of
number systems qua collections, wherein we overlook the nature of the elements
involved. The tools which Dedekind used to talk about the algebraic structure of
number systems, considered as such, were groups, ideals and modules. On the
other hand, we may consider the properties of the elements of number systems
and the interrelations among ‘rational domains’ contained in it. For Dedekind,
the unifying concept for such an analysis was thought to be that of a field.18

Hilbert, continuing this “algebraic” analysis of number systems, maintained
the distinction between properties of numbers systems (though not qua collec-
tions) and properties of the elements of number systems and their interrelations:
he used invariants, ideas, rings, groups and fields as tools to talk about the lat-
ter. To talk about properties of number systems, he took a geometric turn, and
considered them qua postulational systems. The unifying concepts for talking
about number systems as such were the ‘logical’ (or meta-mathematical) prop-
erties of axiom systems themselves, namely, independence and consistency.
In addition to this “algebraic” investigation was Hilbert’s meta-mathematical
analysis, which took axiom systems and their properties as objects of study in
their own right. Thus, while we had, with Dedekind, that, in some sense, num-
ber systems themselves were the basis for algebraic analysis, the question at
hand was “Could in his [Hilbert’s] view the conceptual order be turned around

15I use the term ‘schematic’ in the sense of Goldfarb [2001].
16The reader is strongly encouraged to read Corry’s [1996] insightful and informative account of this. While
I stop short of fully accepting his account of the category theory’s ‘significance’, I note here a debt to, and
reliance on, his presentation of the ‘facts’ of the development of the notions of kinds and types of algebraic
and mathematics structures.
17The term ‘algebra’ is placed in quotes since at the time this was not a well defined field. It may be
characterized as the “theory of solving equations” (see Hasse, [1954], p. 11.)
18As Dedekind, himself, explains: “. . . I have attempted to introduce the reader to a higher domain, in which
algebra and the theory of numbers interconnect in the most intimate matter . . . I got convinced that studying
the algebraic relationship of number is most conveniently based on a concept that is directly connected with
the simplest arithmetic principles. I have originally used the term “rational domains”. Which I later changed
to “field”. (Werke, p. 400). . . The term [field] should denote here, in a similar fashion as in the natural
sciences, in geometry, and in the social life of men, a system possessing a certain completeness, perfection
and comprehensiveness, by mean of which it appears as a natural unity”. (Dedekind, [1894], p. 452.)
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so that the system of real numbers be dependent on the results of [the axiomatic
analysis of] algebra rather than being the basis for it?” (Corry, [1996], p. 172)19.

Appreciating the “foundational value” of the axiomatic method, Noether ap-
plied this shift in conceptual priority to Dedekind’s subject matters. That is, to
the properties of number systems qua collections (again, overlooking the nature
of the elements) she proposed ideals, modules, groups and rings as tools for
talking about their algebraic structure. Such tools, in light of Hilbert, where
themselves now considered qua axiom systems. In a similar vein, for systems
of abstract elements of any axiom system, the unifying concept was thought to
be abstract rings, or the axiomatic presentation of rings themselves. Whereas
Dedekind had considered properties of concrete elements of number systems
and the field-theoretic interrelations between them as unifying, Noether con-
sidered the properties of abstract elements of abstract rings qua axiom systems
as unifying. In this manner the unifying power is taken out of concrete number
systems and put into an abstract kind of axiomatically presented structured
system. As Corry explains:

Noether’s abstractly conceived concepts provide a natural framework in which
conceptual priority may be given to the axiomatic definitions [of concepts] over
the numerical systems considered as concrete mathematical entities. With Noether,
then, the balance between the genetic and the axiomatic point of view begins to
shift more consciously in favour of the latter. (Corry, [1996], p. 250)

These developments in the analysis of the algebraic structure of number
systems gave rise to the independent branch of study of Abstract Algebra,
wherein the focus of analysis was now the shared structure of the abstract
kinds of algebraic systems (e.g., groups, rings fields) considered in themselves
(typically considered qua axiom systems).20 That is, those very tools and/or
concepts that were once useful or unifying when talking about the algebraic
structure of concrete, number, systems are now seen as systems of study in
there own right.21

19Hilbert responded to such a query by distinguishing between the genetic and the axiomatic method, and,
at least as regards the ‘foundations’ of mathematics, he held a preference for the latter: he says, “In spite
of the high pedagogic value of the genetic method, the axiomatic method has the advantage of providing
a conclusive exposition and full logical confidence to the contents of our knowledge.” (Hilbert, [1900], p.
184) and “When we are engaged in investigating the foundations of a science, we must set up a system of
axioms which contains an exact and complete description of the relations subsisting between the elementary
ideas of the science. The axioms so set up are at the same time the definition of those elementary ideas, and
no statement within the realm of the science whose foundation we are testing is held to be correct unless it
can be derived from those axioms by means of a finite number of logical steps.” (Hilbert, [1902], p. 447.)
20Exemplifying this shift is van der Waerden’s Modern Algebra, in which “. . . different mathematical do-
mains are considered as individual instances of algebraic structures, and therefore undergo similar treatments;
they are abstractly defined, they are investigated by recurrently using a well-defined collection of key con-
cepts, and a series of questions and standard techniques is applied to all of them.” (Corry, [1996], p. 252.)
21As Hasse witnesses: “It is characteristic of the modern development of algebra that the tools specified
about [i.e., groups and fields] have given rise to far-reaching autonomous theories which are more and more
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12.2.2 What type structures abstract kinds of
mathematical systems

Given this structural approach to abstract algebraic systems, the next question
that arose was: What is the tool and/or unifying concept that allows us to talk
about such abstract kinds of systems as instances of the same mathematical
type? I begin first with Ore for whom the type which structures the various
kinds of algebraic systems is the lattice. More specifically, what “structures”
kinds of algebraic systems are the (union and cross-cut) properties of the lattice
of certain subsystems of any given system. Here, then, is where we note both
Hilbert’s axiomatic influence and Noether’s “set-theoretic”22 influence. What
is new, however, is that, in addition to overlooking the nature of the elements,
we overlook too their existence. As Ore explains:

In the discussion of the structure of algebraic domains, one is not primarily inter-
ested in the elements of these domains but in the relations of certain distinguished
sub-domains. . . For all these systems there are defined two operations of union
and cross-cut satisfying the ordinary axioms. This leads naturally to the introduc-
tion of new systems, which we shall call structures, having these two operations.
The elements of the structure correspond isomorphically with respect to union
and cross-cut to the distinguished subdomains of the original sub-domain while
the elements of the original domain are completely eliminated in the structure.
(Ore, [1935], p. 406.)

It is in this sense that the lattice-theoretic properties were taken as the unifying
concepts for algebra; lattice theory, itself, was taken by Ore as the formal tool
for providing a general structural account of the various kinds of algebraic
systems, and, quite possibly, as having “foundational significance” insofar as it
may further provide a structural account of the various kinds of mathematical
systems as well.23

In contrast to Ore, for Bourbaki a type of structure is a system of elements
that has a set-structure, that is, one overlooks the specific nature of the elements
in favour of their algebraic, order or topological structure. As Shapiro notes:

replacing the basic problem of classical algebra . . . Thus in the modern interpretation algebra is no longer
merely the theory of solving equations, but the theory of formal calculating domains, as fields, groups, etc.:
and its basic problem has now become that of obtaining an insight into the structure of such domains. . . ”
(Hasse, [1954], p. 11.)
22To explain the reading I give to Noether’s use of the term ‘set-theoretic’, I point to Corry’s telling remark
that: “[t]he expression “purely set-theoretic considerations”, in Noether’s usage, does not refer to concepts
nowadays related to the theory of sets (membership, power, etc.). It denotes arguments for proof in algebra,
which do not rely on the properties of the operation defining the [system] under inspection, but rather
properties of the inclusions and intersections of sub-[systems] of it. (Corry, [1996], p. 244) . . . Such an
approach would certainly correspond to the problem, mentioned by Alexandrov, of “axiomatizing the notion
of a group from its partition into cosets as the fundamental concept” (Corry, [1996], p. 248.)
23As Corry notes: “At that opportunity [the 1936 International Congress of Mathematicians at Oslo] Ore
claimed that the guidelines of his program, although originating with algebra, should not be limited to that
domain alone, and he envisioned that they would be applied in additional fields of mathematics as well.”
(Corry, [1996], p. 276.)
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According to Bourbaki, there are three great types of structures, or “mother
structures”: algebraic structures, such as group, ring, field; order structures,
such as partial order, linear order, and well order; and topological structures
[which provides a formalization of the concepts of limit, neighbourhood and
continuity]. . . (Shapiro, [1997], p. 176.)

Yet, as types of set-structured systems, one does not overlook the existence
of elements: what structures the elements of kinds of mathematical systems into
their respective types are the relations that hold between such systems qua set-
theoretically presented axiom systems. Like Hilbert and Noether, Bourbaki’s
attention was focused on the axiomatic method. Unlike Hilbert, who focused on
the logical properties of axiom systems, or Noether and Ore who focused on the
properties of the inclusions and intersections of subsystems, Bourbaki used
various set-theoretic types of structures qua axiom systems to unify what could
be said of the various kinds of mathematically structured systems.

What remains open for discussion is whether, and in what sense, Bourbaki
intended the theory of sets to be constitutive of the concept of structure,
i.e., intended it as an answer to the question: “What is structure?”. Whatever
their intention might have been, the tension between the account of set theory
as a formal language and the heuristic role of the formally, though implicitly,
defined concept of structure was pulling at the seams of their ‘algebraic’ struc-
turalism.24 In any case, whether set-theory was intended to be used founda-
tionally or heuristically, what appears to be true is that the efforts of Bourbaki
were interpreted, both mathematically and philosophically, as providing a set-
theoretically constitutive account of what structure is and, in so doing, shifted
from the algebraic tradition’s attempts to overlook the nature of the elements
of kinds of mathematical systems in favour of abstractly characterizing their
shared structure. As Bell explains:

With the rise of abstract algebra. . . the attitude gradually emerged that the cru-
cial characteristic of mathematical structure is not their internal constitution as
set-theoretical entities but rather the relationship among them as embodied in the
network of morphisms. . . However, although the account of mathematics they
[Bourbaki] gave in their Eléments was manifestly structuralist in intention, actu-
ally they still defined structures as sets of a certain kind, thereby failing to make
them truly independent of their ‘internal constitution’. (Bell, [1981], p. 351.)

For the Bourbaki structuralist what unifies kinds of mathematical systems
are types, and, more significantly, what appears to make these types “powerful
tools” for unification, is the constitutive character of set theory.25 In this manner,

24As they, themselves, note: “[t]he reader may have observed that the indications given here [of the concept
of structure] are left rather vague; they are not intended to be other than heuristic, and indeed it seems scarcely
possible to state general and precise definitions for structure outside the framework of formal mathematics”.
(Bourbaki, [1968], p. 347, footnote.), (Corry, [1996], p. 326.)
25Speaking to this “constitutive” reading, we note the following quotes of Bourbaki: “Each structure carries
with it its own language, freighted with special intuitive references derived from the theories which the
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types, or “structures”, as set-structured systems are turn into “things”. In con-
trast, the category-theoretic structuralist holds that what unifies kinds are types
as cat-structured systems, yet, what makes these types tools for unification, is
the schematic use of categories, in particular, and the organizational role of cat-
egory theory, in general. Wherein, then, lies this distinction? It is that, nothing,
in particular, is constitutive of what a category is. As Mac Lane explains:

[i]n this description of a category, one can regard “object”, “morphism”, “do-
main”, “codomain”, and “composites” as undefined terms or predicates. (Mac
Lane, [1968], p. 287, italics added.)

Like Bourbaki, we thus characterize the shared structure of abstract kinds of
mathematical systems qua a type of structured system.26 Yet unlike Bourbaki
we need not take set, or, indeed, any particular kind of set, to be constitutive of
what these types are themselves types of (though, of course, we might). Again,
as Mac Lane explains:

Bourbaki’s concepts defined “mathematical structures” by taking an abstract set
and appending to it an additional construct, in category theory there is no subordi-
nation of “mathematical structures” to sets, and this is the source of the supremacy
of this theory over Bourbaki. (Mac Lane, [1980], p. 382.)

Moreover, in the spirit of Lawvere [1966], we can use Cat (or CAT) as the
type used to talk about what structures these kinds of cat-structured systems,
again, without having to appeal to set as constitutive of what this type is a type of.
What we must note, however, is that, contra Lawvere, we, like our set-theoretic
cousins, cannot use category theory as a formal language, or foundation. That
is, we cannot use it to answer the question: “What is a mathematical structure
qua a either a kind or type of category?”. As Corry explains,

[i]n no sense, however, has category theory provided, to this day, a definite, or
even a provisionally satisfactory answer to the question of what is a “mathematical
structure” . . . . Neither does category theory provide ultimate foundations for
mathematics. (Corry, [1996], p. 389, italics added.)

axiomatic analysis . . . has derived the structure. . . Mathematics has less than ever been reduced to a purely
mechanical game of isolated formulas; more than ever does the intuition dominate the genesis of discoveries.
But henceforth, it possesses the powerful tools furnished by the theory of the great type of structures; in a
single view, it sweeps over immense domains, now unified by the axiomatic method . . . ” (Bourbaki, [1950],
pp. 227–228) and further that “. . . whereas in the past it was thought that every branch of mathematics
depended on its own particular intuitions which provided its concepts and primary truths, nowadays it is
known to be possible, logically speaking, to derive practically the whole of mathematics from a single source,
the theory of sets.” (Bourbaki, [1968], p. 9.)
26For example, Set, Top, Group are types, i.e., kinds of cat-structured systems, that allow us to talk about
the shared structure of abstract kinds of mathematical systems in terms of their being instances of the same
type.



Category Theory as a Framework for Interpretation 173

12.3 A schematic in re interpretation of mathematical
structuralism

The final section of this paper brings together the above investigations to
present a category-theoretically framed in re interpretation of philosophically
positioned mathematical structuralism. The objective of this section is to show
that it is in following the Bourbaki tradition too closely and, thereby, not appre-
ciating the algebraic alternative, that philosophically interpreted mathematical
structuralism has most failed us. Seen in this light, my aim is to first argue
that category-theoretic analysis ought to be best seen as answering “What are
the types that “structure” abstract kinds of structured systems?” (as opposed
to speaking to the foundational/ontological claim that “structures” are) and,
second, to separate these analyses from those which end with claims that types
of structured systems, or “structures”, are set-structured (or place-structured)
“things”.

12.3.1 Levels, interpretations and varieties of
mathematical structuralism

Mathematical structuralism can be construed as the philosophical position
that the subject matter of mathematics is structured systems and their morphol-
ogy,27 so that mathematical objects are nothing but “positions in structured
systems” and mathematical theories aim to describe such objects and systems
via their shared structure. At the level at which we consider concrete kinds
of structured systems, i.e., the level where ‘system’ means ‘model’, we have
objects as positions in models and can use either isomorphisms or embeddings
to talk about the shared structure of such kinds. For example, the theory of
natural numbers aims to describe concrete systems of the natural-number struc-
ture, as characterized by the Peano axioms, so that its objects may be seen as
von Neumann ordinals, Zermelo numerals, or any other object which shares
the same structure, or morphology. If all systems that share this structure are
isomorphic, we say that the natural-number structure and its morphology de-
termine its objects up to isomorphism. Analogous, then, to the shift in levels
that one finds in the mathematical history of the development of the notion
of algebraic structure, at the next level of philosophical analysis one finds the
question: “What structures abstract kinds of structured systems”? In answer
to this question, in the philosophical literature, one finds two interpretations of

27Note here that I have changed the slogan of structuralism from “mathematics is about structures and their
morphology” to “mathematics is about structured systems and their morphology”. This shift is intentional,
it means to indicate that the aim of the structuralist is to account for the shared structure of mathematical
systems in terms of kinds or types, as opposed to answering the question: “What is a structure?”, or “What
are the kinds or types that are constitutive of what a structure is?” This shift is further discussed in § (12.3.2).
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mathematical structuralism: ante rem and in re. The latter is aligned with a
realist view of structures insofar as it holds that “structures exist as legitimate
objects of study in their own right. According to this view, a given structure
exists independently of any system that exemplifies it . . . ” (Shapiro, [1996],
pp. 149-150). In re structuralism, in contrast, is aligned with a nominalist
view of structures insofar as it eliminates talk about structures in favour of talk
about systems: “it does not countenance mathematical objects, or structures for
that matter, as bona fide objects . . . Talk of structure generally is convenient
shorthand for talk about systems of objects”. (Shapiro, [1996], p. 150.)

To further inform this debate, I rely on Aristotle’s distinction between prior
in place and prior in definition.28 Against the ante rem structuralist, a category-
theoretically framed in re interpretation of mathematical structuralism implies
that there are no “structures”, qua “things”, over and above kinds of structured
systems. As such, structures are not prior in place. Against the in re structuralist,
categories qua schema are prior in definition insofar as they are needed, as an
organizational tool (see Mac Lane [1992]), to talk about the shared structure of
abstract kinds of structured systems as instances of the same type. Category
theory, then, defines what a type of structured system is, but remains silent as
to the claim that structure is.

Failing to heed Resnik’s counsel (see Resnik, [1996], p. 96) that structuralism
is not committed to asserting the existence of structures, yet, in response to this
worry, three varieties of mathematical structuralism have been proposed, these
are: the set-theoretic, the sui generic, and the modal.29 In essence, these are
suggested as “background theories” that allow us to talk about “structures”
as either actually or possibly existing “things”: they allow us to answer that
either set-theory, structure-theory, or modal logic, provide the conditions for
the actuality (or possibility) of a system being a “structure” of the appropriate
kind.

12.3.2 The Bourbaki versus the “Algebraic” tradition
I now turn to my claim is that it is in following the Bourbaki tradition (which

takes structures as set-structured “things”) too closely and, thereby, not appre-
ciating the algebraic alternative of mathematical structuralism that philosoph-
ically interpreted mathematical structuralism has most failed us. Witnessing
this is Dummett’s remark that:

28See the last two books, viz., M, N, of the Metaphysics (1076a5 – 1093b30), where Aristotle discusses
mathematical objects and Ideas, and the manner in which these are prior in definition yet not, contra the
Platonist, prior in place. See also Metaphysics Book V (1018b9–1019a14) where he discusses the various
ways in which something can be correctly called prior to another.
29See (Hellman [2001]) for an excellent overview of these varieties and the problems associated with each.
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There is an unfortunate ambiguity in the standard use of the word ‘structure’,
which is often applied to an algebraic or relational system - a set with certain
operations or relations defined on it, perhaps with some designated elements;
that is to say, a model considered independently of any theory which it satisfies.
This terminology hinders a more abstract use of the word ‘structure’; if, instead
we use ‘system’ for the forgoing purpose, we may speak of two systems as having
an identical structure, in this more abstract sense, just in case they are isomorphic.
The dictum that mathematics is the study of structure is ambiguous between these
two senses of ‘structure’. If it is meant in the less abstract sense, the dictum is
hardly disputable, since any model of a mathematical theory will be a structure in
this sense. It is probably usually intended in accordance with the more abstract
sense of ‘structure’; in this case, it expresses a philosophical doctrine that may
be labelled ‘structuralism’. (Dummett, [1991], p. 295.)

While Dummett’s analysis is, in some sense, helpful, it conflates two things:
algebraic and set-theoretic accounts of types of structured systems, and concrete
and abstract accounts of kinds of structured systems. Systems qua models can be
used to account for the shared structure of a concrete kind of structured system,
i.e., for the shared structure of the elements and/or properties of natural numbers
qua set-structured systems. However, as we will see, algebraically read systems
qua schematic types, as opposed to Bourbaki read “structures” qua set-theoretic
types, may also be used to account for the shared structure of abstract kinds
of structured systems. Instead, then, on focusing on the clarification of, and
providing background theories for, the notion of structure as a “thing”, I will
focus on clarification of, and providing a framework for, the notion of a system
as a schema. Thus, my aim as an algebraic structuralist is not the analysis of
the constitutive character or modal status of “structures”, but the analysis of the
shared structure of abstract kinds of structured systems.30

I begin, then, with an abstract notion of a system, since, as we will see, this is
where we find our corresponding notion of a cat-structured system. In its most
general sense, a cat-structured system, then, has ‘objects’ and ‘morphisms’ as
its abstract kinds which are structured by the category-theoretic axioms. So
that, the schema for a type of structured system, i.e., for a kind of mathematical
system qua a category is

. . . anything satisfying these axioms. The objects need not have ‘elements’, nor
need the morphisms be ‘functions’. . . We do not really care what non-categorical

30We note, however, that Hellman [2002], does appreciate the distinction between the algebraic-schematic
use of categories (what he calls the ‘algebraico-structuralist perspective’, p. 9), but his suggestion that the
“problem of the ‘home address’ remains” (p. 8, p. 15), clearly indicates that he is stilling thinking of
“structures” (be they categories of toposes) as ‘things’ requiring ‘conditions for the possibility of existence’.
In fact, however, if, on the algebraic approach, the aim of structuralism is to account for the shared structure
of kinds of mathematical systems in term of schematic types, as opposed to answering “What is (or where is!)
a structure?” then why should we be troubled by the fact that “[b]y themselves they [the category-theoretic
axioms] assert nothing. They merely tell us what it is to be a structure of a certain kind” (p. 7) and thus are
“unlike the axioms of set theory, [in that] its axioms are not assertory.” (p. 7.)
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properties the objects and morphisms of a given category may have; that is to say,
we view it ‘abstractly’ by restricting to the language of objects and morphisms,
domains and codomains, composition, and identity morphisms. (Awodey [1996],
p. 213.)

At once we see important differences: on the category-theoretic view, not
only are there are no “objects” as either sets-with-structure (see Dummett,
[1991], p. 295) or places-with-structure (see Shapiro, [1997, pgs. 73, 93]),
there are no “structures” as either (equivalence types of) systems-with-structure
or “the abstract form of a system, highlighting the interrelationships among
the objects. . . ” (Shapiro [1997], p. 74.) What this means is that the Bour-
baki conception of a system (of a system whose “objects” are “positions in a
set-structure”,31 or “places in a structure”32) is to be considered as a kind of
structured system: it is not the archetype of either the concept ‘system’ or the
concept ‘structure’. A category, too, neither constitutes a privileged system
or structure: it is a schematic type. It functions as a philosophical tool used
to organize what we can say about the shared structure of the various abstract
kinds of mathematically structured systems. The value, then, of this schematic
notion of a cat-structured system is that it can be used to capture the shared
structure of abstract kinds of structured systems, independently of its specific
set-structure (independently of what its kinds are).33

We have shown, then, that if category theory is taken as the framework for
what we say about the shared structure of abstract kinds of mathematical sys-
tems, then, we can account for a schematic in re interpretation of mathematical
structuralism.34 Against the ante rem structuralist, this category-theoretically
framed in re interpretation of mathematical structuralism implies that there
are no “structures‘”, qua “things” over and above kinds of structured systems.

31We can, however, present the underlying structure of a Bourbaki system, or equivalently present the kind
of any set-structured system as a kind of cat-structured, by taking our objects to be sets and our morphisms
to be functions. The result is the type of structured system called Set. But this does not mean that objects
are sets and morphisms are functions, it means in this type of system propositions that talk about objects
and morphisms can be interpreted as being about kinds of sets and functions.
32Shapiro’s structure-theory itself is framed by ZF+ Coherence axiom.
33For example, in the kind of category called Top, we present the topological-structure by taking objects as
kinds of topological spaces and morphisms as kinds of continuous mappings, independently of what those
kinds are kinds of. As Awodey explains: “. . . suppose we have somehow specified a particular kind of
structure in terms of objects and morphisms . . . Then that category characterizes that kind of mathematical
structure, independently of the initial means of specification. For example, the topology of a given space is
determined by its continuous mappings to and from the other spaces, regardless of whether it was initially
specified in terms of open sets, limit points, a closure operator, or whatever. The category Top thus serves
the purpose of characterizing the notion of ‘topological structure’.” (Awodey [1996], p. 213.)
34Simply put, to talk about the shared structure of abstract kinds of mathematical systems in terms of kinds
of cat-structured systems, there is no need for either set theory or structure theory or modal logic over and
above category theory: a category acts as a schematic type that can be used to frame what we say about the
shared structure of abstract kinds of mathematical systems, (in terms of types of cat-structured systems like
Set, Group, or Top), and for kinds of cat-structured systems, (in terms of the types Cat or CAT). And, more
significantly, it does so without our having to specify what these kinds are kinds of.
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As such, categories as structures are not prior in place. Against the typical in
re structuralist, however, categories as schema are prior in definition insofar
as they are needed, as an organizational tool (Mac Lane [1992]), to talk about
the shared structure of abstract kinds of structured systems as instances of the
same type. Herein, then, lies the “foundational significance” (Bell, [1981]) of
using category theory to frame an in re structuralist philosophy of mathematics:
while the notion of a cat-structured system is privileged as a schema (is prior
in definition) it is not reified as a constituting a structure (is not prior in place).
Category theory, then, can act as the other theoretical language (see Carnap
[1956]) because it permits us to talk about abstract kinds of structured systems
qua cat-structured systems without our having to claim that category theory is
either a “thing language” or that Cat (or CAT) is a “thing world”. Thus, to be
an algebraic in re structuralist about abstract kinds of mathematical systems,
we need not provide a “background theory”, that provides the conditions for
the actuality (or possibility) of what, or whether, a category qua a structure is.
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