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Abstract
According to the objective Bayesian approach to inductive logic, premisses induc-
tively entail a conclusion just when every probability function with maximal entropy,
from all those that satisfy the premisses, satisfies the conclusion.When premisses and
conclusion are constraints on probabilities of sentences of a first-order predicate lan-
guage, however, it is by no means obvious how to determine these maximal entropy
functions. This paper makes progress on the problem in the following ways. Firstly,
we introduce the concept of a limit in entropy and show that, if the set of probability
functions satisfying the premisses contains a limit in entropy, then this limit point is
unique and is the maximal entropy probability function. Next, we turn to the special
case in which the premisses are categorical sentences of the logical language. We
show that if the uniform probability function gives the premisses positive probabil-
ity, then the maximal entropy function can be found by simply conditionalising this
uniform prior on the premisses. We generalise our results to demonstrate agreement
between the maximal entropy approach and Jeffrey conditionalisation in the case in
which there is a single premiss that specifies the probability of a sentence of the lan-
guage. We show that, after learning such a premiss, certain inferences are preserved,
namely inferences to inductive tautologies. Finally, we consider potential pathologies
of the approach: we explore the extent to which the maximal entropy approach is
invariant under permutations of the constants of the language, and we discuss some
cases in which there is no maximal entropy probability function.
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1 Introduction

Inference under uncertainty remains one of the challenges of our time. While there
is widespread agreement that probabilities are well suited to capture uncertainty and
that Bayesian and Jeffrey conditionalisation are key principles of rationality, there
is significant disagreement about the proper choice of probabilities and their use.
One prominent approach to uncertain inference appeals to the Maximum Entropy
Principle of Jaynes [15]. This selects a probability function, from all those that agree
with the available evidence, that is as equivocal as possible in the sense that it has
maximum Shannon entropy [40]. TheMaximum Entropy Principle is often employed
as part of an objective Bayesian approach to inference [16, 43].

The use of the Maximum Entropy Principle on finite domains is well-understood.
A number of axiomatic characterisations highlight some of its most important prop-
erties, such as irrelevance of extraneous information, independence in the absence of
evidence of dependence, and invariance under uniform refinements of the underly-
ing finite domain [27, 28, 30, 31]. Furthermore, MaxEnt inference is known to agree
on finite domains with what one might call ‘baseline rationality’: Bayesian and Jef-
frey conditionalisation turn out to be special cases of MaxEnt inference [41]. While
Jeffrey conditionalisation can only deal with a single uncertain premiss at a time, of
the form P(F) = c, MaxEnt inference can handle multiple uncertain premisses of
more complex forms simultaneously. Given a fixed finite domain and premisses of a
suitable form, MaxEnt inference introduces an objective relation between premisses
and conclusions, independent of the inferring agent. This objectivity facilitates the
implementation of MaxEnt inferences in algorithms and automated systems1.

The application of MaxEnt to infinite domains is much less well understood.
Firstly, axiomatic characterisations have yet to be put forward. Second, MaxEnt
inference is only known to agree with Jeffrey conditionalisation on certain infinite
domains that lack a logical structure [5]. The focus of this paper is to shed some
light on the application of MaxEnt to infinite domains—in particular, to its use as
semantics for objective Bayesian inductive logic on infinite predicate languages.

There are two different explications of MaxEnt on infinite predicate languages.
One, due to Jeff Paris and his co-workers, takes limits of maximum entropy functions
on finite sublanguages [2, 29, 35, 37, 38]. The second explication considers maximal
entropy probability functions defined on the infinite language as a whole [18, 20, 36,
42, 44]. The limit approach provides a constructive means to determine the probabil-
ities for MaxEnt inference. However, this construction has problems: in some cases,
it does not yield an answer at all [29, 35]; in other cases the constructed probabilities
fail to satisfy the given premisses [19]. The maximal entropy approach can be used in
a wider range of situations [35, 36], but the approach is less constructive and it is less

1Note however that inference using MaxEnt can be computationally complex in the worst case—see Paris
[27, Chapter 10] and Pearl [34, p. 463], and also Goldman [10], Goldman and Rivest [11], Ormoneit and
White [26], Balestrino et al. [1], Chen et al. [6], Landes andWilliamson [21, 22]. We will not be concerned
with computational complexity in this paper.
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clear how to determine maximal entropy probability functions. It has however been
conjectured that both approaches agree where the limit approach is well defined [24,
44].

In this paper we study the second of these two approaches: the maximal entropy
approach. We first give a method for determining the maximal entropy probabil-
ity function in many general scenarios, by introducing the concept of a limit in
entropy (Theorem 16). Then we show that the maximal entropy approach generalises
both Bayesian conditionalisation (Theorem 34) and Jeffrey conditionalisation (The-
orem 41). This not only clarifies which probabilities the maximal entropy approach
picks out, but also gives a simple way to determine these probabilities and shows that
the maximal entropy approach agrees with baseline rationality.

These results expose a surprising fact: where the maximal entropy approach
agrees with conditionalisation, the maximal entropy function can be found by condi-
tionalising a particularly simple probability function—the uniform distribution—on
particularly simple propositions—namely, quantifier-free propositions. This means
that in such cases, inferences in first-order inductive logic from constraints involv-
ing quantified propositions can be reduced to what are essentially finite inferences
involving quantifier-free premisses. As far as we are aware, the maximal entropy
approach is the only viable approach to inductive logic in which inference can be
simplified in this way.

We turn next to general features of the maximal entropy approach. We see that
certain inferences drawn in the absence of any premisses—inferences to inductive
tautologies—are preserved when a premiss is added (Section 7). We show that while
the notion of comparative entropy used to define the maximal entropy probability
functions can depend on the order of the constant symbols (Proposition 50), this
order is rendered irrelevant in all cases in which the maximal entropy approach sim-
plifies to Bayesian or Jeffrey conditionalisation (Theorem 51, Corollary 52). Finally,
it becomes clear why the maximal entropy approach fails to provide probabilities
in some cases. These cases are those where the premiss has zero prior probability.
Updating on events of zero prior probability is notoriously problematic. We investi-
gate the extent of these failures in Section 9, show that they arise in all levels of the
arithmetic hierarchy including and above �2 (Theorem 54), and provide a refinement
of the approach to handle these problematic cases.

It is worth noting the relation between this approach and perhaps the most well-
known approach to inductive logic, namely that of Rudolf Carnap (see, e.g., [4]).
In common with Carnap’s approach, we consider the problem of developing an
inductive logic involving sentences of a first-order predicate language. However, the
maximal entropy approach differs in two key respects. Firstly, our setting is more
general, as it considers premiss statements which attach probabilities or sets of prob-
abilities to sentences of the logical language, while Carnap considered only the
sentences themselves. Second, our approach is based on the idea of entropy max-
imisation, while Carnap’s approach appeals to Bayesian conditionalisation involving
exchangeable prior probability functions. The latter approach is susceptible to serious
objections [44, Chapter 4].
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2 Objective Bayesian Inductive Logic

An important class of probabilistic logics consider entailment relationships of the
following form [12]:

ϕ
X1
1 , . . . , ϕ

Xk

k |≈ ψY .
Here, ϕ1, . . . , ϕk, ψ are sentences of a logical language L and X1, . . . , Xk, Y are
sets of probabilities. This entailment relationship should be interpreted as saying:
ϕ1, . . . , ϕk having probabilities in X1, . . . , Xk respectively inductively entails that
ψ has probability in Y . In Sections 4 and 5 we will be particularly interested in the
special case in which the premisses are categorical: i.e., X1 = . . . = Xk = {1}. In
such a situation we will often omit the superscripts X1, . . . , Xk .

The objective Bayesian approach to inductive logic interprets probabilities as
rational degrees of belief. It takes the premisses on the left-hand side of the entail-
ment relationship to capture all the constraints on rational degrees of belief that are
inferred from evidence, and it uses Jaynes’ Maximum Entropy Principle to determine
a rational belief function with which to calculate the probability of a conclusion state-
ment ψ . Thus if L is a finite propositional language, X1, . . . , Xk are closed convex
sets of probabilities (i.e., closed intervals), and the premisses are consistent, an entail-
ment relationship holds just when the probability function with maximum entropy,
amongst all those that satisfy the premisses, gives a probability in Y toψ [43, Chapter
7].

This approach has been extended to the case in which L is a first-order predicate
language in the following way. Suppose L has countably many constant symbols
t1, t2, . . . and finitely many relation symbols U1, . . . , Ul . Let a1, a2, . . . run through
the atomic sentences of the formUiti1 . . . tik in such a way that those atomic sentences
involving only t1, . . . , tn occur before those involving tn+1, for each n. Consider the
finite sub-languages Ln, containing only constant symbols t1, . . . , tn.

Definition 1 (n-states) �n is the set of n-states of L, i.e., sentences of the form
±a1∧ . . .∧±arn involving the atomic sentences a1, . . . , arn of Ln, which only feature
the constants t1, . . . , tn.2 The n-states for L are thus the sentences

∧

1≤i≤l

1≤j1,...,jki
≤n

U
εj1 ,...,εjki

i tj1 . . . tjki

where ki is the arity of Ui , εj1, . . . , εjki
∈ {0, 1} and U1

i tj1 . . . tjki
= Uitj1 . . . tjki

and

U0
i tj1 . . . tjki

= ¬Uitj1 . . . tjki
.

Let SL, SLn be the sets of sentences of L,Ln respectively.

Definition 2 (Nϕ) For a single given sentence ϕ we use Nϕ to denote the greatest
index of the constants appearing in ϕ, i.e., the greatest number n such that tn occurs
in ϕ. If ϕ has no constants, we adopt the convention that Nϕ = 1.

2The n-states are sometimes referred to as ‘state descriptions’.



Determining Maximal Entropy Functions for Objective Bayesian...

Definition 3 (Probability) A probability function P on L is a function P : SL −→
R≥0 such that:

P1: If τ is a tautology, i.e., |= τ , then P(τ) = 1.
P2: If θ and ϕ are mutually exclusive, i.e., |= ¬(θ ∧ ϕ), then P(θ ∨ ϕ) = P(θ) +

P(ϕ).
P3: P (∃xθ(x)) = supm P

(∨m
i=1 θ(ti)

)
.

A probability function is determined by the values it gives to the n-states—see,
e.g., Williamson [44, §2.6.3] and Gaifman [9]. We denote the set of probability
functions by P.

Of particular importance will be the equivocator function, P=, which gives the
same probability to each n-state, for each n.

Definition 4 (Equivocator Function) The equivocator function is the probability
function P= defined by:

P=(ωn)
df= 1

2rn
= 1

|�n|
for each n-state ωn ∈ �n and each n≥1.

Definition 5 (Measure) The measure of a sentence θ is the probability given to it by
the equivocator function. In particular, θ has positive measure if and only if P=(θ) >

0.

Definition 6 (Feasible Region) We use E to refer to the set of probability functions
that satisfy the premisses ϕ

X1
1 , . . . , ϕ

Xk

k , i.e.,

E
df= {P ∈ P : P(ϕ1) ∈ X1, . . . , P (ϕk) ∈ Xk}.

Two special cases will be particularly important in this paper. To distinguish the case
of a single categorical premiss, ϕ, we often write Eϕ instead of E. In the case of a
single uncertain premiss, ϕX, we write EϕX . Throughout, we shall assume that the X

are intervals or single probability values, and that the feasible region is non-empty,
E 
= ∅.

Definition 7 (n-entropy) The n-entropy of a probability function P is defined as

Hn(P )
df= −

∑

ω∈�n

P (ω) logP(ω).

The n-entropies, which only take into account the probabilities on finitely many n-
states, are then used to define a notion of comparative entropy on the infinite language
L as a whole:

Definition 8 (Comparative Entropy) We say that the probability function P ∈ P has
greater entropy than Q ∈ P, if and only if the n-entropy of P dominates that of Q
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for sufficiently large n, i.e., if and only if there is an N ∈ N such that for all n≥N ,
Hn(P ) > Hn(Q).

The greater entropy relation defines a partial order on the probability functions on
L. We will focus on the maximal elements in E of this partial ordering:

Definition 9 (Maximal Entropy Functions) The set of maximal entropy functions,
maxentE, is defined as

maxentE
df= {P ∈ E : there is no Q ∈ E that has greater entropy than P }.

In the simplest case there are no premisses:

Example 10 In the absence of any premisses, maxentE = maxentP = {P=}. To
see this note first that in the absence of premisses every probability function is in E,
i.e., E = P. Furthermore, for all n ∈ N it holds that Hn(P ) is maximal if and only
if P agrees with the equivocator P= on �n. Since every other probability function
Q ∈ P \ {P=} differs from P= for all large enough n, it holds that Hn(Q) < Hn(P=)

for all large enough n. Hence, P= has greater entropy than Q (Definition 8). Since
P= has greater entropy than all other probability functions Q 
= P= and P= ∈ E, we
have that maxentE = {P=} (Definition 9).

In this paper, we invoke the objective Bayesian notion of inductive entailment,
denoted by |≈◦ [44, §5.3]:

Definition 11 (Objective Bayesian Inductive Entailment) Premisses ϕ
X1
1 , . . . , ϕ

Xk

k

inductively entail ψY , denoted by ϕ
X1
1 , . . . , ϕ

Xk

k |≈◦ ψY , iff P(ψ) ∈ Y for all P ∈
maxentE.

In the absence of any premisses, we write |≈◦ ψY , which holds if and only if
P=(ψ) ∈ Y , i.e., if and only if the measure of ψ is an element of Y (Example 10).

Note that this definition applies where maxentE is non-empty. We consider the
case in which maxentE is empty in Section 9.

Definition 12 We will say that sentence ψ is an inductive tautology if |≈◦ ψ , i.e., if it
has measure 1. It is an inductive contradiction if |≈◦ ¬ψ , i.e., if it has measure 0. It is
inductively consistent if |
≈◦ ¬ψ , i.e., if it has positive measure. Sentences ψ and θ are
inductively equivalent if |≈◦ ψ ↔ θ .

Proposition 13 If ψ and θ are inductively equivalent then:

P=(ψ) = P=(θ)

and as long as ψ has positive measure:

P=(·|ψ) = P=(·|θ).
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Proof That ψ and θ are inductively equivalent implies that P=(ψ ∧¬θ) = P=(¬ψ ∧
θ) = 0. So,

P=(ψ) = P=(ψ ∧ θ) + P=(ψ ∧ ¬θ) = P=(ψ ∧ θ) + P=(¬ψ ∧ θ) = P=(θ).

By similar reasoning, P=(ϕ ∧ ψ) = P=(ϕ ∧ θ) for any sentence ϕ. Hence,

P=(ϕ|ψ) = P=(ϕ ∧ ψ)

P=(ψ)
= P=(ϕ ∧ θ)

P=(θ)
= P=(ϕ|θ)

for any sentence ϕ, as required.

While the objective Bayesian approach provides appropriate semantics for induc-
tive logic, it is often not obvious how to determine the maximal entropy functions in
order to ascertain whether a given entailment relationship holds. This is because the
definition of maxentE seems to require a sort through members of E in order to find
those with maximal entropy—a process that would be unfeasible in practice. This
paper seeks to address the question of how to determine maximal entropy functions.

Section 3 introduces the concept of a limit in entropy in order to characterise
maxentE in terms of certain limits of n-entropy maximisers. This gives a constructive
procedure for determining maxentE when E contains a limit in entropy.

In Sections 4 and 5 we consider an important special case—that in which the
premisses are categorical sentences ϕ1, . . . , ϕk (without attached probabilities) and
where the maximal entropy function can be obtained simply by conditionalising the
equivocator function.

3 Limits in Entropy

This section adapts the techniques of Landes et al. [24, §5] in order to characterise
maxentE in terms of certain limits of n-entropy maximisers. Landes et al. [24] were
concerned with a very different question: that of showing that the above objective
Bayesian semantics for inductive logic, which appeals to maximal entropy functions,
yields the same inferences as those produced by the Barnett-Paris limit approach
discussed in Section 1. Nevertheless, the results of Landes et al. [24, §5] can be
straightforwardly adapted to the present problem. The proofs of the two results in
this section, which are close to those of Landes et al. [24, Proposition 36] and Landes
et al. [24, Theorem 39], have been provided in Appendix 1.

We will consider the set of n-entropy maximisers for each n:

Hn
df= {P ∈ E : Hn(P ) is maximised}.

We now introduce the key concept of this section:

Definition 14 (Limit in Entropy) P ∈ P is a limit in entropy of P1,P2, . . . ⊆ P,
if there is some sequence Qn ∈ Pn such that |Hn(Qn) − Hn(P )| −→ 0 as
n −→ ∞. P ∈ P will be called a limit in entropy of E if it is a limit in entropy of
H1,H2, . . ..
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Limits in entropy of E are of special interest because they are also limit points in
terms of the L1 distance,

‖P − Q‖n
df=

∑

ω∈�n

|P(ω) − Q(ω)| .

Proposition 15 If P is a limit in entropy of E, then there are functions Qn ∈ Hn, for
n ≥ 1, such that ‖Qn − P ‖n −→ 0 as n −→ ∞.

This property enables us to characterise the set of maximal entropy functions more
constructively, in terms of a limit of n-entropy maximisers:

Theorem 16 (Limit in Entropy) If E contains a limit in entropy P , then

maxentE = {P }.

Note that there can be at most one limit in entropy P of E. This is because E is
closed and convex (by the closure and convexity of X1, . . . , Xk) and the n-entropy
maximiser of a closed, convex set is uniquely determined on Ln. Thus, the Hn can
have at most one L1 limit point.

Theorem 16 provides a simple procedure for showing that a hypothesised function
P is in fact a maximal entropy function: show that it is a limit in entropy of n-entropy
maximisers, and show that it is in E. (Note that this is only a sufficient condition: if
E contains no limit in entropy, then Theorem 16 does not allow us to infer anything
about maxentE.) [24, Lemmas 40, 44] provide some tools for demonstrating that a
hypothesised function is a limit in entropy of E.

Example 17 Suppose we have a single premiss ∀xUx{c} where L has a single unary
predicate U and c ∈ [0, 1]. (We will often omit the curly braces and write ϕc instead
of ϕ{c} in such cases.) Since there is a single unary predicate in the language, the
number rn of atomic sentences of Ln is n. For c > 0 and sufficiently large n, the
n-entropy maximiser gives probability c to the n-state Ut1 ∧ . . . ∧ Utn, which we
abbreviate by θn, and divides the remaining probability 1 − c amongst all other n-
states:

P n(ωn) =
{

c : ωn = θn
1−c
2n−1 : ωn |= ¬θn.

If c = 0, on the other hand, P n = P= for all n.
By the argument of Landes et al. [24, Example 42], the following probability

function is a limit in entropy:

P(ωn) =
{

c + 1−c
2n : ωn = θn
1−c
2n : ωn |= ¬θn.

P ∈ E because P(∀xUx) = limn→∞ P(θn) = c. Hence by Theorem 16,
maxentE = {P }.

Example 18 Consider a single categorical premiss U1t1 ∨ ∃x∀yU2xy. In this case,
Hn is the set of probability functions in E whose restrictions to the sublanguage Ln



Determining Maximal Entropy Functions for Objective Bayesian...

match the equivocator function on Ln, Hn = {P ∈ E : P�Ln
= P=�Ln

} for all
n. Thus the equivocator function is the unique limit in entropy of E. However, the
equivocator function is not in E, because P=(U1t1 ∨ ∃x∀yU2xy) = 1/2 < 1 (see
Example 22), so it cannot be the maximal entropy function. Indeed, as will become
apparent later (Theorem 34), maxentE = {P=(·|U1t1)}.

4 Categorical Premisses and Bayesian Conditionalisation

We now consider an important special case: that in which the premisses are cate-
gorical sentences ϕ1, . . . , ϕk of L, i.e., there are no attached sets of probabilities
X1, . . . , Xk , or equivalently, X1 = . . . = Xk = {1}. Let ϕ be the sentence
ϕ1∧. . .∧ϕk . In this section and the next, we consider E = Eϕ

df= {P ∈ P : P(ϕ) = 1}
and we show that there are several cases in which maxentE can be found simply by
conditionalising the equivocator function on ϕ.

Our first result directly applies Theorem 16:

Corollary 19 If P=(·|ϕ) is a limit in entropy of Eϕ , then

maxentEϕ = {P=(·|ϕ)}.

Note that the condition that P=(·|ϕ) is a limit in entropy of Eϕ presupposes that
the probability function P=(·|ϕ) is well defined, i.e., that ϕ has positive measure,
P=(ϕ) > 0.

Proof P=(·|ϕ) is contained in Eϕ because P=(ϕi |ϕ) = 1 for each i = 1, . . . , k.
Hence, Theorem 16 applies.

Corollary 20 If Hn contains P=(·|ϕ) for sufficiently large n, then

maxentEϕ = {P=(·|ϕ)}.

Proof If P=(·|ϕ) ∈ Hn for sufficiently large n, then P=(·|ϕ) is a limit in entropy of
Eϕ . Hence, Corollary 19 applies.

Corollary 20 is useful because where it applies it provides a particularly simple
procedure for determining maxentEϕ . Also, it shows that the move to the infinite
does not disrupt agreement between the Maximum Entropy Principle and condition-
alisation: as long as conditionalising on ϕ maximises n-entropy for each sufficiently
large n, it maximises entropy on the language as a whole. Because of its interest, we
provide an alternative, more direct proof of Corollary 20 in Appendix 2.

Example 21 Suppose we have a single categorical premiss ϕ = ∃xUx, where
L has a single unary predicate symbol U . P=(∃xUx) = P=(¬∀x¬Ux) = 1 −
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limn→∞ P=(
∧n

i=1 ¬Uti) = 1 − limn→∞ 1/2n = 1. So, for all ψ ∈ SL,

P=(ψ |ϕ) = P=(ψ |∃xUx) = P=(ψ ∧ ∃xUx)

P=(∃xUx)

= P=(ψ ∧ ∃xUx) + P=(ψ ∧ ¬∃xUx)

= P=(ψ).

P= ∈ H1,H2, . . ., so Corollary 20 applies and maxentEϕ = {P=}.

Example 22 Suppose we have categorical premisses Ut2 → V t3, ∀x∃yWxy, where
L has unary predicate symbols U and V and a binary relation symbol W . Now
P=(Ut2 → V t3) = 1 − P=(Ut2 ∧ ¬V t3) = 1 − 1/4 = 0.75 and

P=(∀x∃yWxy) = 1 − P=(∃x∀y¬Wxy)

= 1 − lim
n→∞ P=

(
n∨

i=1

∀y¬Wtiy

)

≥ 1 − lim
n→∞

n∑

i=1

P=(∀y¬Wtiy) = 1.

So P=((Ut2 → V t3) ∧ ∀x∃yWxy) = 0.75, and P=(·|(Ut2 → V t3) ∧ ∀x∃yWxy) =
P=(·|Ut2 → V t3) (Proposition 13). This latter function is in H3,H4, . . ., so
Corollary 20 applies and maxentEϕ = {P=(·|Ut2 → V t3)}.

Finally, we note an important consequence of Corollary 20:

Theorem 23 If ϕ is satisfiable and logically equivalent to a quantifier-free sentence,
then

maxentEϕ = {P=(·|ϕ)}.

Proof Suppose θ is a quantifier-free sentence that is logically equivalent to ϕ. Since θ

is logically equivalent to a satisfiable sentence, it is also satisfiable. The equivocator
function is ‘regular’, i.e., it gives every satisfiable, quantifier-free sentence positive
probability [32, Chapters 10 and 26]. Hence P=(θ) > 0 and, since ϕ is logically
equivalent to θ , P=(ϕ) > 0. Moreover, the logical equivalence of θ and ϕ implies
that P=(·|ϕ) = P=(·|θ) and Eϕ = Eθ , so maxentEϕ = maxentEθ . As we shall
show below, P=(·|θ) ∈ Hn for all n ≥ Nθ , where Nθ is the greatest index of the con-
stant symbols appearing in the quantifier-free sentence θ . The theorem then follows
because, by Corollary 20, maxentEϕ = maxentEθ = {P=(·|θ)} = {P=(·|ϕ)}.

It remains to show that P=(·|θ) ∈ Hn for all n ≥ Nθ .
There are two cases: either P=(θ) = 1 or P=(θ) < 1.
If P=(θ) = 1 then P= ∈ Eθ = {P ∈ P : P(θ) = 1} and P=(·|θ) = P=(·).

Since P=�Ln
is the unique probability function on Ln with maximum n-entropy and

P= ∈ Eθ , P= ∈ Hn for all n≥Nθ , as required.



Determining Maximal Entropy Functions for Objective Bayesian...

So suppose that P=(θ) < 1 and suppose for contradiction that P=(·|θ) 
∈ Hm for
some m ≥ Nθ . Then there is some R ∈ Eθ such that Hm(R) > Hm(P=(·|θ)). That
R ∈ Eθ implies R(θ) = 1 and R(·|θ) = R(·).

Now define probability function Q by:

Q(·) = R(·|θ)P=(θ) + P=(·|¬θ)P=(¬θ).

Here P=(·|¬θ) is a well-defined probability function because by assumption,
P=(θ) < 1, i.e., P=(¬θ) > 0. Since Q is a convex combination of probability
functions, it is a well-defined probability function.

However, we find that Q has greater m-entropy than the equivocator function:

Hm(Q) = −
∑

ω∈�m

Q(ω) logQ(ω)

= −
∑

ω∈�m

Q(ω ∧ θ) logQ(ω ∧ θ) −
∑

ω∈�m

Q(ω ∧ ¬θ) logQ(ω ∧ ¬θ)

= −
∑

ω∈�m

Q(ω|θ)Q(θ) log (Q(ω|θ)Q(θ)) −
∑

ω∈�m

Q(ω|¬θ)Q(¬θ) log (Q(ω|¬θ)Q(¬θ))

= −
∑

ω∈�m

Q(ω|θ)Q(θ) logQ(θ) −
∑

ω∈�m

Q(ω|¬θ)Q(¬θ) logQ(¬θ)

−
∑

ω∈�m

Q(ω|θ)Q(θ) logQ(ω|θ) −
∑

ω∈�m

Q(ω|¬θ)Q(¬θ) logQ(ω|¬θ)

= −Q(θ) logQ(θ)
∑

ω∈�m

Q(ω|θ) − Q(¬θ) logQ(¬θ)
∑

ω∈�m

Q(ω|¬θ)

−
∑

ω∈�m

Q(ω|θ)Q(θ) logQ(ω|θ) −
∑

ω∈�m

Q(ω|¬θ)Q(¬θ) logQ(ω|¬θ)

= −Q(θ) logQ(θ) − Q(¬θ) logQ(¬θ)

−
∑

ω∈�m

Q(ω|θ)Q(θ) logQ(ω|θ) −
∑

ω∈�m

Q(ω|¬θ)Q(¬θ) logQ(ω|¬θ)

= −P=(θ) logP=(θ) − P=(¬θ) logP=(¬θ)

−P=(θ)
∑

ω∈�m

R(ω|θ) logR(ω|θ) − P=(¬θ)
∑

ω∈�m

P=(ω|¬θ) logP=(ω|¬θ)

= −P=(θ) logP=(θ) − P=(¬θ) logP=(¬θ)

−P=(θ)
∑

ω∈�m

R(ω) logR(ω) − P=(¬θ)
∑

ω∈�m

P=(ω|¬θ) logP=(ω|¬θ)

> −P=(θ) logP=(θ) − P=(¬θ) logP=(¬θ)

−P=(θ)
∑

ω∈�m

P=(ω|θ) logP=(ω|θ) − P=(¬θ)
∑

ω∈�m

P=(ω|¬θ) logP=(ω|¬θ)

= Hm(P=).

The sixth equality holds in virtue of the fact that Q(·|θ) is a probability function
and �m is a partition of sentences, so

∑
ω∈�m

Q(ω|θ) = 1.
However, that Hm(Q) > Hm(P=) contradicts the fact that, for each n, P=�Ln

is
the unique probability function on Ln that maximises n-entropy. Thus P=(·|θ) ∈ Hn

for all n≥Nθ , as required.
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This result can be thought of as an analogue of [39, Result 1], which demonstrates
agreement between the Maximum Entropy Principle and conditionalisation in the
case in which the domain is finite. In the next section, we show that this result can
be extended to the situation in which ϕ is not logically equivalent to a quantifier-free
sentence.

The above proof can be understood as follows. ϕ and θ being logically equiva-
lent guarantees that (i) P(·|ϕ) = P(·|θ) and (ii) maxentEϕ = maxentEθ , while
θ being quantifier-free ensures that (iii) maxentEθ = {P=(·|θ)}, thanks to Corol-
lary 20. Putting these three facts together, we have that maxentEϕ = maxentEθ =
{P=(·|θ)} = {P=(·|ϕ)} for any ϕ that is logically equivalent to quantifier-free θ .
However, (i) does not require full logical equivalence—it is sufficient that ϕ and θ are
inductively equivalent, i.e., |≈◦ ϕ ↔ θ , by Proposition 13. The plan of the next section
is to show that maxentEϕ = {P=(·|ϕ)} for any ϕ that is not an inductive contradic-
tion, by finding some quantifier-free θ which is inductively equivalent to ϕ, and then
demonstrating that (ii) holds. (iii) again holds because θ is quantifier-free, and (i)-
(iii) then yield the desired conclusion that maxentEϕ = maxentEθ = {P=(·|θ)} =
{P=(·|ϕ)} for any ϕ that is not an inductive contradiction.

5 Bayesian Conditionalisation and Support

This section demonstrates more general agreement between the maximal entropy
approach and Bayesian conditionalisation. As above, we consider categorical sen-
tences ϕ1, . . . , ϕk and abbreviate ϕ1 ∧ . . . ∧ ϕk by ϕ. First we introduce a quantifier-
free sentence, the support of ϕ, which we will show is inductively equivalent to ϕ

(see Proposition 28). This will allow us to use the strategy outlined at the end of
the last section to show that the maximal entropy approach agrees with Bayesian
conditionalisation whenever ϕ has positive measure.

Definition 24 (Support) Let sentence ϕn be the disjunction of those n-states ω that
are inductively consistent with ϕ, i.e., n-states ω such that |
≈◦ ¬(ω ∧ϕ). Equivalently,
these are the n-states ω such that ω ∧ ϕ has positive measure. Thus,

ϕn df=
∨

{ω ∈ �n : P=(ω ∧ ϕ) > 0}.
If there are no n-states inductively consistent with ϕ, we take ϕn to be an arbitrary
contradiction on Ln.

We call ϕn the inductive support of ϕ on Ln, or simply the n-support of ϕ. ϕNϕ

will be referred to as the support of ϕ.3 We use |ϕn| to denote the number of n-states
in the n-support ϕn, i.e., the number of n-states inductively consistent with ϕ.

Our main result of this section, Theorem 34, will show that when ϕ has positive
measure, the maximal entropy function is the equivocator function conditional on

3Recall that Nϕ is the greatest index of the constants appearing in ϕ, or 1 if no constants appear in ϕ.
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ϕ, or, equivalently, the equivocator conditional on the support of ϕ. This provides
a straightforward way of determining the maximal entropy function in the case in
which the premisses are categorical inductive non-contradictions.

We will first prove some technical lemmas to which the main result will appeal.
The first lemma invokes the concept of exchangeability:

Definition 25 (Constant Exchangeability) Let θ(x1, x2, . . . , xl) be a formula of L
that does not contain constants. A probability function P on SL satisfies constant
exchangeability if and only if for all such θ and all sets of pairwise distinct constants
t1, t2, . . . , tl , and t ′1, t ′2, . . . , t ′l it holds that

P(θ(t1, t2, . . . , tl)) = P(θ(t ′1, t ′2, . . . , t ′l )).

Equivalently, for all n ∈ N and all n-states ωn, νn ∈ �n, if ωn can be obtained from
νn by a permutation of the first n constants then P(ωn) = P(νn).

Paris and Vencovská [32, Corollary 6.2] show the following: if probability func-
tion P on SL satisfies constant exchangeability and P(ϕ ∧ ψ) = P(ϕ) · P(ψ),
whenever ϕ, ψ are quantifier-free sentences of L that mention no constants in com-
mon, then P(ϕ ∧ψ) = P(ϕ) ·P(ψ) for any sentences ϕ, ψ of the language L which
do not mention any constants in common. This has an important consequence:

Proposition 26 (Zero-one law for constant-free sentences) Every constant-free
sentence has measure 0 or 1.

Proof P= satisfies constant exchangeability and the assumption of Paris and Ven-
covská [32, Corollary 6.2] is thus satisfied. Let ϕ be a sentence that does not mention
any constant. Then ϕ, ϕ are two sentences that do not mention any constants in
common. Since probability functions assign logically equivalent sentences the same
probability we now easily find

P=(ϕ) = P=(ϕ ∧ ϕ) = P(ϕ) · P(ϕ).

So, P=(ϕ) = P=(ϕ)2. This means that P=(ϕ) must be either zero or one.

Hence, every inductively consistent constant-free sentence is an inductive tautol-
ogy: P=(ϕ) > 0 for constant-free ϕ implies that P=(ϕ) = 1.

We are obliged to Jeff Paris for pointing out the following analogue of Paris and
Vencovská [32, Corollary 6.2] and Proposition 28 which follows from it.

Lemma 27 Let ωn be an n-state and suppose that the probability function P on
SL satisfies constant exchangeability and P(ϕ ∧ ψ |ωn) = P(ϕ|ωn) · P(ψ |ωn) for
all pairs of quantifier-free sentences ϕ, ψ with shared constants among {t1, . . . , tl},
l ≤ n. Then P(ϕ ∧ ψ |ωn) = P(ϕ|ωn) · P(ψ |ωn) for all ϕ, ψ ∈ SL whose shared
constants are among {t1, . . . , tl}.
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Proof The result follows by a straightforward adaptation of the proof of Paris
and Vencovská [32, Corollary 6.2] and proceeds by induction on the quantifier
complexity of ϕ ∧ ψ when written in Prenex Normal Form.

The result holds by assumption when ϕ ∧ ψ is quantifier free. For the induction
step it is sufficient to consider

∃x1, . . . , xrθ(x1, . . . , xr , �t) ∧ ∃x1, . . . , xsψ(x1, . . . , xs, �t ′) (1)

where all constants appearing in both �t and �t ′ are included in {t1, . . . , tl}. To see that
this is sufficient notice that by Eq. 1,

P(∃�xθ ∧ ∀�yψ) = P(∃�xθ) − P(∃�xθ ∧ ¬∀�yψ) = P(∃�xθ) − P(∃�xθ ∧ ∃�y¬ψ)

= P(∃�xθ) − (P (∃�xθ) · P(∃�y¬ψ)) = P(∃�xθ) − (P (∃�xθ) · (1 − P(∀�yψ)))

= P(∃�xθ) − P(∃�xθ) + P(∃�xθ)P (∀�yψ)

= P(∃�xθ)P (∀�yψ)

and,

P(∀�xθ ∧ ∀�yψ) = 1 − P(∃�x¬θ ∨ ∃�y¬ψ)

= 1 − P(∃�x¬θ) − P(∃�y¬ψ) + P(∃�x¬θ ∧ ∃�y¬ψ)

= 1 − P(∃�x¬θ) − P(∃�y¬ψ) + P(∃�x¬θ) · P(∃�y¬ψ)

= P(∀�xθ) + P(∀�yψ) − 1 + (1 − P(∀�xθ)) · (1 − P(∀�yψ))

= P(∀�xθ) · P(∀�yψ).

To show (1) let u1, u2, u3, . . . be distinct constants containing those in �t and
u′
1, u

′
2, u

′
3, . . . distinct constants containing those in �t ′ such that {u1, u2, u3, . . .} and

{u′
1, u

′
2, u

′
3, . . .} are disjoint except for the constants shared in �t and �t ′.

By Paris and Vencovská [32, Lemma 6.1],

lim
n→∞ P

⎛

⎝

⎛

⎝
∨

i1,...,ir≤n

θ(ui1 , ui2 , . . . , uir , �t)
⎞

⎠ ↔ ∃x1, . . . , xrθ(x1, . . . , xr , �t) |ωn

⎞

⎠ = 1

and

lim
n→∞ P

⎛

⎝

⎛

⎝
∨

i1,...,is≤n

ψ(u′
i1
, u′

i2
, . . . , u′

is
, �t ′)

⎞

⎠ ↔ ∃x1, . . . , xsψ(x1, . . . , xs, �t ′) |ωn

⎞

⎠ = 1.

Then for every ε > 0 there is N large enough such that for all n ≥ N

P

⎛

⎝

⎛

⎝
∨

i1,...,ir≤n

θ(ui1 , ui2 , . . . , uir , �t)
⎞

⎠ ↔ ∃x1, . . . , xrθ(x1, . . . , xr , �t) |ωn

⎞

⎠ > 1 − ε

4

and

P

⎛

⎝

⎛

⎝
∨

i1,...,is≤n

ψ(u′
i1
, u′

i2
, . . . , u′

is
, �t ′)

⎞

⎠ ↔ ∃x1, . . . , xsψ(x1, . . . , xt , �t ′) |ωn

⎞

⎠ > 1 − ε

4
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by Paris and Vencovská [32, Lemma 3.7],

P
(
∃x1, . . . , xrθ(x1, . . . , xr , �t) ∧ ∃x1, . . . , xsψ(x1, . . . , xs, �t ′) |ωn

)
−

P

⎛

⎝
∨

i1,...,ir≤n

θ(ui1 , ui2 , . . . , uir , �t) ∧
∨

i1,...,is≤n

ψ(u′
i1
, u′

i2
, . . . , u′

is
, �t ′) |ωn

⎞

⎠ <
ε

2
.

But

P

⎛

⎝
∨

i1,...,ir≤n

θ(ui1 , ui2 , . . . , uir , �t) ∧
∨

i1,...,is≤n

ψ(u′
i1
, u′

i2
, . . . , u′

is
, �t ′) |ωn

⎞

⎠

equals

P

⎛

⎝
∨

i1,...,ir≤n

θ(ui1 , ui2 , . . . , uir , �t) |ωn

⎞

⎠ · P
⎛

⎝
∨

i1,...,is≤n

ψ(u′
i1
, u′

i2
, . . . , u′

is
, �t ′) |ωn

⎞

⎠

by the induction hypothesis, and taking n large enough we have:

P

⎛

⎝
∨

i1,...,ir≤n

θ(ui1 , ui2 , . . . , uir , �t) |ωn

⎞

⎠·P
⎛

⎝
∨

i1,...,is≤n

ψ(u′
i1
, u′

i2
, . . . , u′

is
, �t ′) |ωn

⎞

⎠ −

P
(∃x1, . . . , xrθ(x1, . . . , xr , �t) |ωn

) · P
(
∃x1, . . . , xsψ(x1, . . . , xs, �t ′) |ωn

)
<

ε

2
and thus

P
(
∃x1, . . . , xrθ(x1, . . . , xr , �t) ∧ ∃x1, . . . , xsψ(x1, . . . , xs, �t ′) |ωn

)

−P
(∃x1, . . . , xrθ(x1, . . . , xr , �t) |ωn

) · P
(
∃x1, . . . , xsψ(x1, . . . , xs, �t ′) |ωn

)

<
ε

2
+ ε

2
= ε

which gives the required result.

Proposition 28 ϕ and ϕn are inductively equivalent for all n ≥ Nϕ .

Proof Consider two sentences ϕ, ψ ∈ SL. These mention at most the first N :=
Nϕ∧ψ constants. From Lemma 27 we obtain that for all n ≥ N and all ωn ∈ �n,

P=(ϕ ∧ ψ |ωn) = P=(ϕ|ωn) · P=(ψ |ωn).

Putting ψ = ϕ [32, p. 53] we obtain P=(ϕ ∧ ϕ|ωn) = P=(ϕ|ωn) = P=(ϕ|ωn)
2 and

so

P=(ϕ|ωn) ∈ {0, 1}.
Using the definition of conditional probability we find

P=(ϕ ∧ ωn) =
{
0 if and only if P=(ϕ|ωn) = 0

P=(ωn) if and only if P=(ϕ|ωn) > 0.
(2)
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So,

P=(ϕ) = P=

⎛

⎝ϕ ∧
∨

ωn∈�n

ωn

⎞

⎠ = P=

⎛

⎜⎜⎝ϕ ∧
∨

ωn∈�n
P=(ϕ∧ωn)>0

ωn

⎞

⎟⎟⎠ = P=(ϕ ∧ ϕn)

=
∑

ωn∈�n
P=(ϕ∧ωn)>0

P=(ϕ ∧ ωn)

(2)=
∑

ωn∈�n
P=(ϕ∧ωn)>0

P=(ωn) = P=

⎛

⎜⎜⎝
∨

ωn∈�n
P=(ϕ∧ωn)>0

ωn

⎞

⎟⎟⎠

= P=(ϕn). (3)

So,

P=(¬ϕ ∧ ¬ϕn) = P=(¬ϕ) + P=(¬ϕn) − P=(¬ϕ ∨ ¬ϕn)

= P=(¬ϕ) + 1 − P=(ϕn) − 1 + P=(ϕ ∧ ϕn)

= P=(¬ϕ). (4)

Finally, let us note that

P=
(
ϕ ↔ ϕn

) = P=
(
ϕ ∧ ϕn

) + P=
(¬ϕ ∧ ¬ϕn

)

(3) and (4)= P=(ϕ) + P=(¬ϕ) = 1.

Note that the proportion |ϕn|
|�n| of n-states in the n-support of a sentence ϕ eventually

equals the measure of ϕ. This is because |ϕn|
|�n| = P=(ϕn) = P=(ϕ) for n ≥ Nϕ .

By Proposition 13 we have:

Corollary 29 If ϕ has positive measure, then P=(·|ϕ) = P=(·|ϕn) for all n ≥ Nϕ .

Moreover,

Corollary 30 For all k ≥ 1, � ϕNϕ+k ↔ ϕNϕ and P=(·|ϕNϕ+k) = P=(·|ϕNϕ ).

Proof By Corollary 29 for all k ≥ 0, P=(·|ϕNϕ+k) = P=(·|ϕ). This entails
P=(·|ϕNϕ+k) = P=(·|ϕNϕ ) for all k ≥ 1.

Note that ϕNϕ+k is quantifier-free. Let χ, ψ be quantifier-free and satisfiable, then
the probability function P=(·|ψ) is equal to the probability function P=(·|χ) if and
only if ψ and χ are logically equivalent. Clearly, if ψ and χ are logically equivalent,
then these probability functions are equal. Furthermore, if ψ and χ are not logically
equivalent, then without loss of generality take χ to be non-tautologous and assume
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that ψ does not entail χ . Since ψ and χ are quantifier-free sentences P=(ψ |ψ) =
1 > P=(χ |ψ) follows4.

Letting ψ = ϕN and χ = ϕNϕ+k we conclude that � ϕNϕ+k ↔ ϕNϕ .

Note that every (Nϕ + k) - state ωNϕ+k extending a state in ϕNϕ is such that
P=(ωNϕ+k ∧ ϕ) > 0.

Corollary 31 If ωNϕ+k � ϕNϕ , then ωNϕ+k � ϕNϕ+k .

Proof We let N := Nϕ . Notice that by Corollary 30, if ωN ∈ �N appears in ϕN ,
then any extension of ωN to Lm (an m-state ωm ∈ �m such that ωm � ωN with
m = N + k > N) will appear in ϕm. To be more precise, for all ωN ∈ �N with
ωN � ϕN and for all m ≥ N and ωm ∈ �m, if ωm � ωN , then ωm � ϕm. To
see this suppose ωN � ϕN , ω′

m � ωN but ω′
m � ϕm. Then by definition of P= we

have P=(ωN | ϕN), P=(ω′
m | ωN) 
= 0. Then 0 < P=(ω′

m | ϕN) = P=(ω′
m | ϕm) = 0,

where the first equality is given by Corollary 30 and second equality is given by the
assumption that ω′

m � ϕm.

Consider a sentence ψ with zero measure, P=(ψ) = 0. Intuitively, ψ is only
true in few possible worlds.5 One way to approach this intuition is by exploiting
probability axiom P3 according to which the probability of a quantified sentence
is the limit of probabilities of quantifier-free sentences. This suggests that—in the
limit—only few n-states “converge” to ψ . So, if P(ψ) = c > 0, then P has to assign
a joint probability of close to c to few n-states. That is, for n large enough, there
exists set of n-states Sn, with joint probability of almost c, that is arbitrarily small
in comparison to the number of all n-states. The following result, for which we are
obliged to Alena Vencovská, makes this precise.

Lemma 32 (Concentration of probability on few n-states) Let ψ be such that
P=(ψ) = 0 and P(ψ) = c > 0, then for any ε > 0 there exists some M ∈ N such
that for all m ≥ M there exists a set of m-states, Sm, such that

P

⎛

⎝
∨

ωm∈Sm

ωm

⎞

⎠ ≥ (1 − ε) · c and
|Sm|
|�m| < ε.

4The assumption that both sentences are quantifier free is crucial here. For χ := ∃xUx and ψ = ∀x(V x ∨
¬V x) we have P=(ψ |ψ) = 1 = P=(χ |ψ).
5More precisely, consider the set of term structures for L that have a countably infinite domain. Then
this means that the proportion of those term structures that satisfy ψ is negligible. But the term structures
on a countably infinite domain can be determined as the limiting extensions of terms structures on finite
subsets of the domain. This means that for asymptotically large n, there are only few term structures with
a domain of size n that can be extended to a term structure that satisfies ψ . Then dividing the probability
mass between the term structures on the full domain in such a way as to assign a probability of c > 0
to ψ should inevitably distribute a probability mass close to c between few term structures on a finite
subdomain of size n for large n.
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Proof First notice that if the result holds for some m ∈ N and a set of m-states Sm,
then it also holds for the set of m + 1 states Sm+1 defined as the extensions of Sm to
Lm+1. Therefore, it is enough to show that result holds for some m ∈ N.

Let P = {P, P=}. We first show that there exists some m ∈ N and a quantifier-
free sentence χ ∈ SLm such that for all Q ∈ P , Q(ψ ↔ χ) > 1 − ε · c. (We can
think of χ as a finite approximation of ψ .) We proceed by induction on the quantifier
complexity; that is we proceed by induction on n for ψ ∈ �n and ψ ∈ �n.

For the base case, n = 0, ψ is quantifier free, and we can simply pick χ := ψ .
For the induction step let ψ = ∀�xξ(x1, . . . , xr ) ∈ �g with ξ ∈ �g−1 in prenex

normal form. The case of ψ = ∃�xξ(�x) ∈ �g is analogous.
By [32, Lemma 3.8] for all probability functions Q,

Q(ψ) = lim
n→∞ Q

⎛

⎝
n∧

k1,...,kr=1

ξ(tk1 , . . . , tkr )

⎞

⎠ .

Let n ∈ N be large enough such that for all Q ∈ P ,

∣∣∣∣∣∣
Q(ψ) − Q

⎛

⎝
n∧

k1,...,kr=1

ξ(tk1 , . . . , tkr )

⎞

⎠

∣∣∣∣∣∣
<

ε

2
· c.

Now let Q ∈ P . Notice that ψ logically entails
∧n

k1,...,kr=1 ξ(tk1 , . . . , tkr ) and thus

Q

⎛

⎝ψ ↔
n∧

k1,...,kr=1

ξ(tk1 , . . . , tkr )

⎞

⎠ = Q

⎛

⎝
n∧

k1,...,kr=1

ξ(tk1 , . . . , tkr ) → ψ

⎞

⎠

= Q

⎛

⎝¬
n∧

k1,...,kr=1

ξ(tk1 , . . . , tkr )

⎞

⎠ + Q(ψ) − Q

⎛

⎝¬
n∧

k1,...,kr=1

ξ(tk1 , . . . , tkr ) ∧ ψ

⎞

⎠

= 1 − Q

⎛

⎝
n∧

k1,...,kr=1

ξ(tk1 , . . . , tkr )

⎞

⎠ + Q(ψ) − 0

> 1 − ε

2
· c. (5)

By the induction hypothesis, for each k1, . . . kr ∈ {1, . . . , n} there is a quantifier-
free sentence λ�k(a1, . . . , aM(�k)

) ∈ SL
M(�k)

such that for all Q ∈ P ,

Q(λ�k ↔ ξ(tk1 , . . . , tkr )) > 1 − ε

2nr
· c. (6)
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Notice that we have following logical equivalences:

¬
⎛

⎝
n∧

k1,...,kr=1

ξ( �tki
) ↔

n∧

j1,...,jr=1

λ �j

⎞

⎠

≡
⎛

⎝
n∨

k1,...,kr=1

¬ξ( �tki
) ∧

n∧

j1,...,jr=1

λ �j

⎞

⎠ ∨
⎛

⎝
n∧

k1,...,kr=1

ξ( �tki
) ∧

n∨

j1,...,jr=1

¬λ �j

⎞

⎠

≡
⎛

⎝
n∨

k1,...,kr=1

⎛

⎝¬ξ( �tki
) ∧

n∧

j1,...,jr=1

λ �j

⎞

⎠

⎞

⎠ ∨
⎛

⎝
n∨

j1,...,jr=1

⎛

⎝¬λ �j ∧
n∧

k1,...,kr=1

ξ( �tki
)

⎞

⎠

⎞

⎠

and that
⎛

⎝
n∨

k1,...,kr=1

⎛

⎝¬ξ( �tki
) ∧

n∧

j1,...,jr=1

λ �j

⎞

⎠

⎞

⎠ ∨
⎛

⎝
n∨

j1,...,jr=1

⎛

⎝¬λ �j ∧
n∧

k1,...,kr=1

ξ( �tki
)

⎞

⎠

⎞

⎠ �

⎛

⎝
n∨

k1,...,kr=1

¬ξ( �tki
) ∧ λk1,...,kr

⎞

⎠ ∨
⎛

⎝
n∨

j1,...,jr=1

ξ( �tkj
) ∧ ¬λj1,...,jr

⎞

⎠

and
⎛

⎝
n∨

k1,...,kr=1

¬ξ( �tki
) ∧ λk1,...,kr

⎞

⎠ ∨
⎛

⎝
n∨

j1,...,jr=1

ξ( �tkj
) ∧ ¬λj1,...,jr

⎞

⎠

≡
n∨

k1,...,kr=1

¬(λk1,...,kr ↔ ξ( �tki
))

where we write ξ( �tki
) for ξ(tk1 , . . . , tkr ).

Then

Q

⎛

⎝
n∧

k1,...,kr=1

ξ(tk1 , . . . , tkr ) ↔
n∧

j1,...,jr=1

λ �j

⎞

⎠

= 1 − Q

⎛

⎝¬
⎛

⎝
n∧

k1,...,kr=1

ξ(tk1 , . . . , tkr ) ↔
n∧

j1,...,jr=1

λ �j

⎞

⎠

⎞

⎠

≥ 1 − Q

⎛

⎝
n∨

k1,...,kr=1

¬(λk1,...,kr ↔ ξ(tk1 , . . . , tkr ))

⎞

⎠

(6)
> 1 − nr ε

2nr
· c

= 1 − ε

2
· c. (7)
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Let � = ∧n
k1,...,kr=1 ξ(tk1 , . . . , tkr ), and � = ∧n

k1,...,kr=1 λ�k . Then by Eqs. 5 and 7
we have

Q(ψ ↔ �) > 1 − ε

2
· c,

and
Q(� ↔ �) > 1 − ε

2
· c.

And we have

Q (ψ ↔ �) = Q(ψ ∧ �) + Q(¬ψ ∧ ¬�)

= Q(ψ ∧ � ∧ �) + Q(ψ ∧ � ∧ ¬�) + Q(¬ψ ∧ ¬� ∧ �) + Q(¬ψ ∧ ¬� ∧ ¬�)

≥ Q(ψ ∧ � ∧ �) − Q(ψ ∧ � ∧ ¬�) − Q(¬ψ ∧ ¬� ∧ �) + Q(¬ψ ∧ ¬� ∧ ¬�).

Noticing that

Q(ψ ∧ � ∧ �) = Q(ψ ∧ �) − Q(ψ ∧ ¬� ∧ �)

and
Q(¬ψ ∧ ¬� ∧ ¬�) = Q(¬ψ ∧ ¬�) − Q(¬ψ ∧ � ∧ ¬�)

we get

Q (ψ ↔ �) ≥ Q(ψ ↔ �) − Q(¬(� ↔ �)) > 1 − ε · c. (8)

Since Eq. 8 holds for all Q ∈ P = {P=, P } and P=(ψ) = 0,

1 − ε · c < P=(ψ ↔ �) = P=(ψ ∧ �) + P=(¬ψ ∧ ¬�)

= P=(¬ψ ∧ ¬�) = 1 − P=(ψ ∨ �) ≤ 1 − P=(�)

and thus P=(�) < ε · c ≤ ε.
Now let m = max{M(�k) | �k ∈ {1, . . . , n}r}, then � ∈ SLm and since � is

quantifier-free, there is a set of m-states Sm, such that

� � ↔
∨

ωm∈Sm

ωm

and we have |Sm|
|�m| = P=(�) < ε. Note that Sm is the set of m-states entailing �6.

6One might think that the following statement can play a similar role to that played by Sm. Let ϕn
0

df=∨{ω ∈ �n : P=(ω∧ϕ) = 0, 
|= ¬(ω∧ϕ)}, i.e., the disjunction of n-states deductively but not inductively
consistent with ϕ. (If there are no such states, take ϕn

0 to be an arbitrary contradiction on Ln.)
Now suppose that ϕ has measure zero and that P(ϕ) = c. Since ϕ has measure zero, ϕn is a contradiction

on Ln. Hence,
c = P(ϕ) = P(ϕ ∧ ϕn) + P(ϕ ∧ ϕn

0 ) = P(ϕ ∧ ϕn
0 ),

so P(ϕn
0 )≥c. P must concentrate probability at least c on ϕn

0 .

Thus the question arises as to whether P=(ϕn
0 ) −→ 0 as n −→ ∞. This would imply that

|ϕn
0 |

|�n| =
P=(ϕn

0 ) −→ 0 as n −→ ∞, in which case ϕn
0 would represent an increasingly negligible number of states.

However, it turns out that while this last condition holds true for some measure-zero ϕ, e.g., ∀xU1x, it
does not hold true for all such sentences (see Section 9). For example, in the case of ∃x∀yU2xy, which
also has zero measure, P=(ϕn

0 ) = 1 for all n.
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Furthermore,

P

⎛

⎝
∨

ωm∈Sm

ωm

⎞

⎠ = P(�) ≥ P(� ∧ ψ) = P(� ∧ ψ) + P(¬� ∧ ¬ψ) − P(¬� ∧ ¬ψ)

= P(ψ ↔ �) − P(¬� ∧ ¬ψ)

> 1 − ε · c − P(¬� ∧ ¬ψ)

≥ 1 − ε · c − P(¬ψ)

= P(ψ) − ε · c = c − ε · c = c · (1 − ε).

The next Lemma shows that any maximal entropy function must assign probability
one to the support ϕNϕ of ϕ (and thus to the n-support ϕn for n ≥ Nϕ). Note that this
lemma does not prove the existence of a maximal entropy function.

Lemma 33 Let ϕ ∈ SL with P=(ϕ) ∈ (0, 1]. If P ∈ E with P(ϕn) < 1 for some
n ≥ Nϕ , then P=(· | ϕn) has greater entropy than P .

Proof Let N := Nϕ . If P=(ϕ) = 1, then P=(·|ϕN) = P= ∈ E. It suffices to
recall that the equivocator has greater entropy than all other probability functions
(Example 10).

Now consider 0 < P=(ϕ) < 1.
Since ϕN and ϕn are logically equivalent for n ≥ N (Corollary 30) and since

probability functions respect logical equivalence, P(ϕN) < 1 follows from the
assumption that P(ϕn) < 1.

So, let P be such that P(ϕ) = 1 and P(ϕN) < 1, then P(ϕ ∧ ¬ϕN) = c > 0 for
some 1 ≥ c > 0. Let ψ := ϕ∧¬ϕN and notice that by definition of ϕN , P=(ψ) = 0.
Let ε > 0 and take M and SM as given by Lemma 32 and let KM be the set of M-
states in �M \ SM such that P=(ϕ ∧ ωM) > 0 for M ≥ N . Corollary 30 shows that
|KM | = |ϕN | |�M |

|�N | , since all M-states ωM ∈ �M extending an N-state in ϕN are such
that P=(ϕ ∧ ωM) > 0. Let bM = P(

∨
SM

ωM) ≥ (1 − ε)c > 0 and notice that since
P(ϕ) = 1 we have P(

∨
KM

ωM) = 1 − bM .
Then by convexity

HM(P ) ≤ −bM log

(
bM

|SM |
)

− (1 − bM) log

(
1 − bM

|KM |
)

= bM log(|SM |) − bM log(bM) + (1 − bM) log(|KM |) − (1 − bM) log(1 − bM).

The M-entropy of P=(·|ϕN) is

HM(P=(·|ϕN)) = −
∑

ωM�ϕN

1

|KM | log
(

1

|KM |
)

= log(|KM |)

= log

(
|ϕN | · |�M |

|�N |
)
. (9)
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We thus note

HM(P ) − HM(P=(·|ϕN))

log(|KM |)
≤ bM log(|SM | − |KM |) − bM log(bM) + (1 − bM) log(1 − bM)

log(|KM |) + (1 − bM) − 1.

Now consider the three summands in turn. Since |SM |
|KM | = |SM |·|�N |

|�M |·|ϕN | becomes
arbitrarily small by Lemma 32 and 1 ≥ bM > 0, the first term is eventually
less than zero. The second term goes to zero, since KM increases without bounds.
Finally, bM ≥ (1 − ε)c > 0. This means that for all large enough M it holds that
HM(P ) − HM(P=(·|ϕN)) < 0 and hence HM(P ) < HM(P=(·|ϕN)). This entails
that P=(·|ϕN) has greater entropy than P . Thus, P /∈ maxentEϕ since P=(·|ϕN) ∈ E

(Corollary 29).
In particular, we note for later use that the sequence fn(P ) := Hn(P=(·|ϕN)) −

Hn(P ) is bounded from below by bM

2 ≥ (1−ε)·c
2 > 0 for all large enough n.

We are now in a position to present the main result of this section:

Theorem 34 (Agreement with Bayesian Conditionalisation) For all ϕ ∈ SL with
P=(ϕ) ∈ (0, 1] and all n ≥ Nϕ ,

maxentEϕ = {P=(·|ϕ)} = {P=(·|ϕn)} = {P=(·|ϕNϕ )}.

Proof We let N := Nϕ . We prove that P=(·|ϕN) has greater entropy than every other
probability function P ∈ E.

By Corollary 29, P=(· | ϕN) = P=(· | ϕn) = P=(· | ϕ) for all n ≥ N . This
establishes the two last equalities in the statement of the theorem.

Consider first the case of P=(ϕ) = 1. In this case, the equivocator P= is in E,
and, since it is the probability function in P with maximal entropy, it is the unique
member of maxentEϕ . Moreover, since P=(ϕ) = 1, P= = P=(·|ϕ).

Now consider 0 < P=(ϕ) < 1.
Let P be a probability function with P(ϕ) = 1. If P(ϕN) < 1 then P=(· | ϕN) has

greater entropy than P by Lemma 33.
If P(ϕN) = 1, on the other hand, but P 
= P=(·|ϕN), then P=(·|ϕN) has greater

entropy than P because ϕN is quantifier-free and so by Theorem 23, maxentEϕN =
{P=(·|ϕN)}.

So, P=(·|ϕN) has greater entropy than every other probability functionP ∈ E.

Example 35 For the premiss sentence ϕ = (∃x∀yUxy ∧ Ut1t1) ∨ (∀x∃y¬Uxy ∧
¬Ut1t1),

maxentEϕ = {P=(·|¬Ut1t1)}.

Proof There is only one constant mentioned in ϕ, t1. So, Nϕ = 1. We here con-
sider the simple case of the language containing only the relation symbol U . The
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general case follows from the fact that entropy maximisation is language invariant
[27, Chapter 6].

There are two 1-states, Ut1t1 and ¬Ut1t1. ϕ ∧ Ut1t1 is logically equivalent to
∃x∀yUxy ∧ Ut1t1 and P=(∃x∀yUxy ∧ Ut1t1) ≤ P=(∃x∀yUxy) = 0. ϕ ∧ ¬Ut1t1
is logically equivalent to ∀x∃y¬Uxy ∧ ¬Ut1t1. For this sentence it holds that
P=(∀x∃y¬Uxy ∧ ¬Ut1t1) = 0.5. ϕ1 is the disjunction of all 1-states ω1 ∈ �1 such
that P=(ϕ∧ω1) > 0. Thus, ϕNϕ = ϕ1 = ¬Ut1t1. That maxentEϕ = {P=(·|¬Ut1t1)}
follows from Theorem 34.

The following observation shows that the maximal entropy function not only has
greatest entropy in the sense defined above, but also in a cumulative sense.

Corollary 36 If ϕ has positive measure, then for all P ∈ Eϕ \ {P=(·|ϕ)},

lim
n→∞

n∑

i=1

(Hi(P=(·|ϕ)) − Hi(P )) = ∞.

Proof The proof shows a slightly stronger property: for all P ∈ Eϕ \ {P=(·|ϕ)} the
sequence fn(P ) := Hn(P=(·|ϕ)) − Hn(P ) is such that there exists some M ≥ Nϕ

such that fn(P ) is strictly positive and never decreasing for all n ≥ M .
Let us first consider the case in which P(ϕN) < 1. The claim of this corollary

follows directly from the final observation in the proof of Lemma 33.
The second and final case is when P(ϕNϕ ) = 1. Since P=(·|ϕ) 
= P there has to

exist some M ≥ Nϕ such that for all m ≥ M the probability functions P and P=(·|ϕ)

disagree on the m-states. This is because, as noted after Definition 3, probability
functions on first-order predicate languages are determined by their values on the
n-states, for each n.

Since both functions assign non-zero probability to, at most, the m-states extend-
ing those in ϕN , and P=(·|ϕ) is maximally equivocal on this set ofM-states, it follows
that HM(P=(·|ϕ)) > HM(P ).

For all m ≥ M we let ωm�M denote the M-state entailed by ωm. We now find

Hm(P ) = −
∑

ωm∈�m

P (ωm) log(P (ωm))

≤ −
∑

ωm∈�m

P (ωm�M)
|�M |
|�m| · log

(
P(ωm�M) · |�M |

|�m|
)

= −
∑

ωM∈�M

P (ωm�M) log

(
P(ωm�M) · |�M |

|�m|
)

= HM(P ) + log

( |�m|
|�M |

)

Hm(P=(·|ϕ))
(9)= log

(
|ϕN | · |�m|

|�N |
)



J. Landes et al.

= log(|ϕN |) + log

( |�m| · |�M |
|�N | · |�M |

)

= HM(P=(·|ϕ)) + log

( |�m|
|�M |

)
.

where ωm�ωM
is the restriction of ωm to LM , i.e ωm�ωM

is the M-state induced by
ωm. It thus easily follows that Hm(P=(·|ϕ))−Hm(P ) ≥ HM(P=(·|ϕ))−HM(P ) for
all m ≥ M . In turn, this implies that

lim
n→∞

n∑

M=1

Hi(P=(·|ϕ)) − Hi(P ) ≥ lim
n→∞(n − M) · (HM(P=(·|ϕ)) − HM(P )).

Since the last difference is strictly positive, this limit is +∞. The Corollary follows
trivially by adding the first M − 1 bounded terms to the above limit.

Given a finite set of premisses of the form ϕ
X1
1 , . . . , ϕ

Xk

k we showed in Theorem
15 how amaximal entropy function can be characterised in terms of a limit in entropy.
In case of a single categorical premiss, ϕ, if P=(· | ϕ) is a limit in entropy then it is
the unique maximal entropy function (Corollary 19). In particular, this is the case
when ϕ is equivalent to a quantifier-free sentence (Theorem 23). Theorem 34 shows
that for any inductively consistent premiss ϕ, there exists a unique maximal entropy
function, which can be determined by conditionalising the equivocator on the sup-
port of ϕ, the quantifier-free sentence ϕNϕ expressible in the sublanguage LNϕ . For
example, for ϕ = U1t1∨∃x∀yU2xy every 1-state is consistent with ϕ. However, only
the 1-states entailing U1t1 are in the support of ϕ. These 1-states have the feature
that almost all their extensions contribute to the probability of P=(ϕ) via probability
axiom P3. What is more, Theorem 34 shows that the maximal entropy probability
function equivocates between the Nϕ-states, and also between their extensions. That
is, the unique maximal entropy probability function divides the full probability mea-
sure equally between these Nϕ-states and similarly between their extensions to any
Ln with n ≥ Nϕ .

Given Theorem 34, conditionalising the equivocator function is a simple method
for determining the maximal entropy probabilities in objective Bayesian inductive
logic. Although this approach to inductive logic is Bayesian, conditionalisation is not
taken here as a principle that is constitutive or core to the Bayesian method, but rather
as an inference tool that is appropriate in certain specific circumstances. Indeed, con-
ditionalisation has been criticised as being problematic outside a circumscribed range
of circumstances [14, 43]. The fact that it agrees with the maximal entropy approach
can be taken to justify the use of conditionalisation on learning ϕ, in the circum-
stances in which ϕ has positive measure and is ‘simple’ in the sense that it only
imposes the constraint P(ϕ) = 1 [44, Definition 5.14].

6 Jeffrey Conditionalisation

In this section, we generalise our results for conditionalisation from the case in which
the premiss is a categorical sentence ϕ to the case in which the premiss is a sentence
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of the language with a specific probability attached, ϕc, with c ∈ (0, 1). Thus in this
section, E = Eϕc

df= {P ∈ P : P(ϕ) = c}.

Definition 37 (Jeffrey Conditionalisation of the Equivocator) Where P=(ϕ) ∈ (0, 1)
we can define the Jeffrey conditionalisation of the equivocator function:

Pϕc(·) df= c · P=(·|ϕ) + (1 − c) · P=(·|¬ϕ).

First, we have a straightforward generalisation of Corollary 19:

Proposition 38 If Pϕc is a limit in entropy of Eϕc , then

maxentEϕc = {Pϕc }.

Proof Pϕc is contained in Eϕc because Pϕc(ϕ) = c · 1 + (1 − c) · 0 = c. Hence,
Theorem 16 applies.

We also have an analogue of Corollary 20:

Proposition 39 If Hn contains Pϕc for sufficiently large n, then

maxentEϕc = {Pϕc }.

Proof If Pϕc ∈ Hn for sufficiently large n, then Pϕc is a limit in entropy of Eϕc .
Hence, Proposition 38 applies.

Thus (cf. Theorem 23), if ϕ is logically equivalent to a quantifier-free sentence and
Pϕc is well defined (1 > P=(ϕ) > 0), then maxentEϕc = {Pϕc }. Interestingly, as we
show shortly, this holds true even when ϕ is not logically equivalent to a quantifier-
free sentence. First we make the following observation:

Proposition 40 ¬ϕn = (¬ϕ)n.

Proof Recall from Eq. 2 that for all n ≥ Nϕ it is true that

P=(ϕ ∧ ωn) =
{
0, if and only if P=(ϕ|ωn) = 0

P=(ωn), if and only if P=(ϕ|ωn) > 0

P=(¬ϕ ∧ ωn) =
{
0, if and only if P=(¬ϕ|ωn) = 0

P=(ωn), if and only if P=(¬ϕ|ωn) > 0.

Since 0 < P=(ωn) = P=(ϕ ∧ ωn) + P=(¬ϕ ∧ ωn) it follows that for every fixed
n-state ωn ∈ �n either P=(ϕ ∧ ωn) > 0 or P=(¬ϕ ∧ ωn) > 0 is true but not both.
Since ϕn is the disjunction of such ωn, in particular ϕn is quantifier-free, we have

¬ϕn = (¬ϕ)n

and 〈ϕn, (¬ϕ)n〉 is a partition.
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We are now in a position to provide the main result of this section.

Theorem 41 (Agreement with Jeffrey Conditionalisation) For all c ∈ (0, 1) and all
ϕ ∈ SL such that P=(ϕ) ∈ (0, 1), the maximal entropy function for the premiss ϕc is
obtained by Jeffrey updating the equivocator function:

maxentEϕc = {Pϕc } = {c · P=(·|ϕNϕ ) + (1 − c) · P=(·|¬ϕNϕ )}.

Recall that Theorem 34 covers the boundary cases of c = 0 and c = 1, in which
the maximal entropy function is determined by Bayesian conditionalisation.

Proof The main idea in the proof comes from the intuition that it is always beneficial
in terms of entropy to take the probability mass from those n-states that have few
extensions to m-states that simulate ϕ (in the sense in which the states in the set
Sm, introduced in Lemma 32, simulate ϕ), as m increases to infinity, and divide it
(equally) between the extensions of those n-states for which almost all extensions to
an m-state simulate ϕ as m increases to infinity.

Let N := Nϕ and note that by Theorem 34,

c · P=(·|ϕN) + (1 − c) · P=(·|¬ϕN)

= c · P=(·|ϕ) + (1 − c) · P=(·|¬ϕ)

= Pϕc ∈ Eϕc .

Williams [41, p. 136] shows that this probability function has maximum N-entropy
in E(ϕN )

c . Moreover, Pϕc is equivocal beyond N in the following sense: it assigns

all n-states extending ϕN the same probability and it also assigns assigns all n-
states extending (¬ϕ)N = ¬ϕN (Proposition 40) the same probability. Hence, by
Williamson [44, Theorem 5.13], maxentE(ϕN )

c = {Pϕc }. Thus Pϕc has greater

entropy than any function Q ∈ Eϕc such that Q(ϕN) = c.
Now consider some other Q ∈ Eϕc with Q(ϕN) 
= c. We show that Q 
∈

maxentEϕc by proving that Pϕc has greater entropy than Q. Without loss of general-
ity we assume that α := Q(ϕN) < c, so 1 − α = Q(¬ϕN) > 1 − c. Then there has
to exist some state νN � ¬ϕN (recall that this means that P=(νN ∧ ϕ) = 0) such that
Q(νN ∧ ϕ) > 0.

The n-entropy of Pϕc is given by:

Hn(Pϕc) = Hn(c · P=(·|ϕ) + (1 − c) · P=(·|¬ϕ))

= −
∑

ωn∈�n

ωn�ϕN

c · |�N |
|ϕN | · |�n| · log

(
c · |�N |

|ϕN | · |�n|
)

−
∑

ωn∈�n

ωn�¬ϕN

(1 − c) · |�N |
|¬ϕN | · |�n| · log

(
(1 − c) · |�N |
|¬ϕN | · |�n|

)
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= −c · log
(

c · |�N |
|ϕN | · |�n|

)
− (1 − c) · log

(
(1 − c) · |�N |
|¬ϕN | · |�n|

)

= −c · log
(

c · |�N |
|ϕN |

)
− (1 − c) · log

(
(1 − c) · |�N |

|¬ϕN |
)

+c · log(|�n|) + (1 − c) · log(|�n|)
= −c · log

(
c · |�N |

|ϕN |
)

− (1 − c) · log
(

(1 − c) · |�N |
|¬ϕN |

)

+ log(|�n|).

Note that this expression is of the form log(|�n|) plus some constant.
We now calculate an upper bound on the n-entropy of Q ∈ Eϕc for all large

enough n ≥ N . Since α = Q(ϕN) < c and n-entropy is a sum, which can be split
into a sum over the n-states which imply ϕN and into a sum over the n-states which
do not entail ϕN (those n-states entailing ¬ϕN ), Q is maximally equivocal on �n if
Q equivocates beyond ϕN . That is, all n-states entailing ϕN are assigned the same
probability α

|ϕN | · |�N |
|�n| .

The remaining probability mass of 1 − α has then to be assigned to the n-states
entailing ¬ϕN . Since Q has to assign ϕ probability c, there have to exist sets of
n-states Sn (extending ¬ϕN ), which are jointly assigned a probability of c − α. Fur-
thermore, probability of 1 − c needs to be assigned to ¬ϕ. Firstly, note that for large
enough n, the n-entropy of Q is bounded from above by interpreting these two con-
straints as constraints on different sets of n-states. Furthermore, the n-entropy of Q is
bounded from above by assuming that all states in Sn have equally many n+ 1-states
extending it in Sn+1. Finally, the n-entropy is maximised by equivocating among all
these n-states.

We hence have for large enough n ≥ N :

Hn(Q) ≤ −
∑

ωn∈�n

ωn�ϕN

α · |�N |
|ϕN | · |�n| · log

(
α · |�N |

|ϕN | · |�n|
)

−
∑

ωn∈�n

ωn�¬ϕN

(1 − c) · |�N |
|¬ϕN | · |�n| · log

(
(1 − c) · |�N |
|¬ϕN | · |�n|

)

−
∑

Sn⊂�n

c − α

|Sn| · log
(

c − α

|Sn|
)

= −α · log
(

α · |�N |
|ϕN | · |�n|

)

−(1 − c) · log
(

(1 − c) · |�N |
|¬ϕN | · |�n|

)

−(c − α) · log
(

c − α

|Sn|
)
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= −α · log
(

α · |�N |
|ϕN |

)
− (1 − c) · log

(
(1 − c) · |�N |

|¬ϕN |
)

−(c − α) · log(c − α)

+(1 − [c − α]) log(|�n|) + (c − α) · log(|Sn|)
< −α · log

(
α · |�N |

|ϕN |
)

− (1 − c) · log
(

(1 − c) · |�N |
|¬ϕN |

)

−(c − α) · log(c − α)

+(1 − [c − α]) · log(|�n|) + (c − α) · log
( |�n|

2

)

= −α · log
(

α · |�N |
|ϕN |

)
− (1 − c) · log

(
(1 − c) · |�N |

|¬ϕN |
)

−(c − α) · log(c − α)

+
(
1 − c − α

2

)
· log(|�n|).

The inequality follows from Lemma 32 noting that |Sn|
|�n| is a null-sequence.

By comparing the factors of log(|�n|) (recall that c > α) we find for all large n

that

Hn(Q) < Hn(Pϕc).

Hence, c ·P=(·|ϕ)+(1−c) ·P=(·|¬ϕ) has greater entropy than Q. This completes
the proof.

Corollary 42 (Generalisation to a sentence with an interval attached) For all inter-
vals ∅ 
= X ⊂ [0, 1] and all sentences ϕ ∈ SL such that P=(ϕ) ∈ (0, 1) it holds that
c · P=(·|ϕN) + (1− c) · P=(·|¬ϕN) has greater entropy than every other function in
EϕX where c := argminx∈X |x−P=(ϕ)|. Given the premiss ϕX, the maximal entropy
function is obtained by Jeffrey conditionalisation of the equivocator on ϕc where c is
closest to the measure of ϕ. Hence,

maxentEϕX = {c · P=(·|ϕN) + (1 − c) · P=(·|¬ϕN)}.

Proof If P=(ϕ) ∈ X, then c = argminx∈X |x−P=(ϕ)| = P=(ϕ) = P=(ϕN). Hence,
for all sentences ψ ∈ SL

Pϕc(ψ) = P=(ϕN) · P=(ψ |ϕN) + P=(¬ϕN) · P=(ψ |¬ϕN)

= P=(ψ ∧ ϕN) + P=(ψ ∧ ¬ϕN)

= P=(ψ).

Since P= ∈ EϕX the result follows.
If P=(ϕ) /∈ X, then for all P ∈ EϕX it holds that x := P(ϕ) 
= P=(ϕ). By the

proof of Theorem 41 we see that x · P=(·|ϕN) + (1 − x) · P=(·|¬ϕN) has greatest
entropy among all functions with x = P(ϕ). Hence,

maxentEϕX ⊆ {x · P=(·|ϕN) + (1 − x) · P=(·|¬ϕN) : x ∈ X}.
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Letting Px := x · P=(·|ϕ) + (1− x) · P=(·|¬ϕ), we now compute the n-entropies for
all these probability functions for n ≥ N to be equal to

HN(Px) = HN(x · P=(·|ϕ) + (1 − x) · P=(·|¬ϕ))

= −
∑

ωN�ϕN

x · 1

|ϕN | log
(

x · 1

|ϕN |
)

−
∑

ωN�¬ϕN

(1 − x) · 1

|¬ϕN | log
(

(1 − x) · 1

|¬ϕN |
)

= −x · log
(

x

|ϕN |
)

− (1 − x) · log
(
1 − x

|¬ϕN |
)

and

Hn(Px) = Hn(x · P=(·|ϕ) + (1 − x) · P=(·|¬ϕ))

= −x · log
(

x

|ϕN | · |�n|
|�N |

)
− (1 − x) · log

(
1 − x

|¬ϕN | · |�n|
|�N |

)

= HN(x · P=(·|ϕ) + (1 − x) · P=(·|¬ϕ))

−x · log
( |�N |

|�n|
)

− (1 − x) · log
( |�N |

|�n|
)

= HN(x · P=(·|ϕ) + (1 − x) · P=(·|¬ϕ)) + log(|�n|) − log(|�N |)
= HN(Px) + log(|�n|) − log(|�N |).

It hence holds for all x, y ∈ [0, 1] and all n > N that

Hn(Px) > Hn(Py), if and only if HN(Px) > HN(Py). (10)

Let us next note that PP=(ϕN ) = P=. Furthermore, every Px is a convex combination
of P=(·|ϕ) and of P=(·|¬ϕ). Along this line from P=(·|ϕ) to P=(·|¬ϕ) N-entropy
is maximised by PP=(ϕN ) = P= since it is the equivocator (on �N ). Since the Px

(on �N ) all are part of a line segment and HN is strictly concave, it follows that N-
entropy is uniquely maximised by the equivocator and strictly decreases the further
one moves in either direction from the equivocator. Hence, Pc has strictly the greatest
N-entropy among all other Px for x ∈ X \ {c}.

Applying the above equivalence (10) we find that Pc (since c ∈ X is the closest to
P=(ϕ)) also has the greatest n-entropy among all Px for x ∈ X for large enough n. Pc

has hence greater entropy than every other probability function P ∈ EϕX \ {Pc}.
One might hypothesise that one can generalise further still, simply by replac-

ing premiss sentences ϕ1, . . . , ϕk by their inductive equivalents ϕn
1 , . . . , ϕn

k , for
sufficiently large n, at least in the case in which ϕ1, . . . , ϕk are inductive non-
contradictions. That is, one might hypothesise that ϕ

X1
1 , . . . , ϕ

Xk

k |≈◦ ψY iff
ϕn
1

X1 , . . . , ϕn
k

Xk |≈◦ ψY for any n≥max{Nϕ1 , . . . , Nϕ1} and ϕ1, . . . , ϕk with positive
measure.

Unfortunately, it is not possible to generalise in such a straightforward way.
This is because premisses that are satisfiable may transform into premisses that are
unsatisfiable.
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Example 43 If we have satisfiable premisses (Ut1 ∨∀xV x).9, (¬Ut1 ∨∀xV x).9 and
substitute the corresponding 1-supports, we obtain (Ut1)

.9, ¬(Ut1)
.9, which are not

jointly satisfiable7.
In order to determine the maximal entropy function for the premisses (Ut1 ∨

∀xV x).9, (¬Ut1 ∨ ∀xV x).9 we first observe that

Q(ω) := P=

(
n∧

i=1

Uεi ti

)
·
{
0, if ω �

∧n
i=1 V ti

1, if ω �
∧n

i=1 V ti

is such that Q(∀xV x) = 1. Next note that the following function satisfies both
premisses:

R := 0.8 · Q + 0.2 · P=,

since R(Ut1 ∨ ∀xV x) = 0.8 · 1 + 0.2 · 0.5 = 0.9 = R(¬Ut1 ∨ ∀xV x).
Furthermore, every probability function P such that P(Ut1 ∨ ∀xV x) = 0.9 =

P(¬Ut1∨∀xV x) is such that 0.8 ≤ P([Ut1∨∀xV x]∧[¬Ut1∨∀xV x]) = P(∀xV x).
Finally, note that R is the maximal entropy function by Theorem 16, since R

satisfies the premisses and is a limit in entropy because it is the n-entropy maximiser
for all n. We leave this last claim as an exercise for the reader.

Similarly, one might have wondered whether in the categorical case, ϕ1, . . . , ϕk |≈◦
ψY iff ϕn

1 , . . . , ϕn
k |≈◦ ψY for any n ≥ max{Nϕ1 , . . . , Nϕk

} and ϕ1, . . . , ϕk with
positive measure. We now see that this characterisation does not hold:

Example 44 If we have satisfiable premisses ϕ1 := (Ut1 ∨ ∀xV x), ϕ2 := (¬Ut1 ∨
∀xV x) and substitute the corresponding 1-supports, we obtain Ut1, ¬Ut1, which are
not jointly satisfiable. The maximal entropy function for the two given premisses is
the function Q from the above example.

Theorem 34 does not apply here since, although each of the premisses has positive
measure, the measure of the conjunction of the premisses is zero:

P=((Ut1 ∨ ∀xV x) ∧ (¬Ut1 ∨ ∀xV x)) = P=((Ut1 ∧ ¬Ut1) ∨ ∀xV x)

= P=(∀xV x) = 0.

7 Preservation of Inductive Tautologies

Having developed the limit in entropy method for determining maximal entropy func-
tions, and having demonstrated concordance with Bayesian conditionalisation and
Jeffrey conditionalisation, we will now discuss some of the general properties of the

7We see three plausible ways to define an inductive logic for inconsistent premisses: i) use the equivocator
to draw inferences, ii) use the disjunction of all maximal consistent subsets of premisses as inductive
premisses or iii) infer ψY for all ψ ∈ SL and all intervals Y . This example is not the place to debate the
pros and cons of these three definitions, and we do not commit to one of them here. Instead, we content
ourselves with pointing out that all three definitions applied to (Ut1)

.9,¬(Ut1)
.9 give different inductive

probabilities than the satisfiable premisses (Ut1 ∨ ∀xV x).9, (¬Ut1 ∨ ∀xV x).9 yield in our approach.
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maximal entropy approach. In this section, we outline some logical features of objec-
tive Bayesian inductive logic, while in Section 8 we will explore the extent to which
inferences are invariant under permutations of the constants, and in Section 9 we
investigate some cases involving categorical premisses with zero measure.

First we show that, in objective Bayesian inductive logic, inductive tautologies
(i.e., probability 1 inferences in the absence of any premisses) are preserved after
learning the probability of any proposition that is inductively consistent:

Theorem 45 (Preservation of Inductive Tautologies, PIT) If |≈◦ θ and 
|≈◦ ¬ϕ, then
ϕc |≈◦ θ for any c ∈ (0, 1].

Proof To simplify notation, we use P † denote the unique probability function with
maximal entropy if there exists such a function.

First, note that applying the assumption P=(θ) = 1 to P=(θ ∧ϕ)+P=(¬θ ∧ϕ) =
P=(ϕ) entails P=(θ ∧ ϕ) = P=(ϕ) for all sentences ϕ ∈ SL.

If c = 1, then by Theorem 34,

P †(θ) = P=(θ |ϕ) = P=(θ ∧ ϕ)

P=(ϕ)
= P=(ϕ)

P=(ϕ)
= 1.

So, ϕ1 |≈◦ θ .
If, on the other hand, c ∈ (0, 1), then by Theorem 41,

P †(θ) = c · P=(θ |ϕ) + (1 − c) · P=(θ |¬ϕ) = c + (1 − c)

= 1.

So, ϕc |≈◦ θ .

PIT implies that inductive contradictions are also preserved after learning the prob-
ability of any proposition that is not an inductive contradiction: if |≈◦ ¬θ and 
|≈◦ ¬ϕ,
then ϕc |≈◦ ¬θ for any c ∈ (0, 1].

PIT is loosely related to the Obstinacy principle of [27, p. 99], which provides
a condition under which inferences from ϕ

X1
1 , ..., ϕXk

k are preserved upon learning

π
W1
1 , ..., π

Wj

j . In the present setting, Obstinacy can be formulated as follows. Con-

sider E := {P : P satisfies ϕ
X1
1 , ..., ϕXk

k } and F := {P : P satisfies π
W1
1 , ..., π

Wj

j }.
Then:

Theorem 46 (Obstinacy) If maxentE ⊆ F, then maxentE ⊆ maxent(E ∩ F).

Proof If P ∈ maxentE then no function in E dominates P in n-entropy for suf-
ficiently large n and P ∈ E ∩ F 
= ∅. In particular, no function in E ∩ F 
= ∅
dominates P in n-entropy for sufficiently large n. Thus, P ∈ maxent(E ∩ F) and
maxentE ⊆ maxent(E ∩ F).

PIT can also be thought of as a variant of the Rational Monotonicity rule of
inference in non-monotonic logic [25, §3.4]:
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Rational Monotonicity If ψ |≈ θ and ψ |
≈ ¬ϕ, then ψ ∧ ϕ |≈ θ .

PIT specialises Rational Monotonicity to the case in which ψ is an inductive
tautology and then generalises it to the case in which ϕ is uncertain.

PIT can also be interpreted as an absolute continuity condition [3, p. 422]: if θ

has zero measure, i.e., P=(θ) = 0, then any P † ∈ maxentEϕc also gives zero prob-
ability to θ , where ϕ has positive measure and c > 0. Note that the concept of
absolute continuity is usually developed in the framework of measure theory. The
equivocator function P= corresponds to Lebesgue measure when probability func-
tions on L are mapped to probability measures on the unit interval [44, §2.6.3]. Thus,
‘zero measure’ in the present sense (Definition 5) corresponds to zero Lebesgue
measure.

8 Invariance Under Permutations

Williamson [43, Proposition 5.10] shows that the maximal entropy approach is invari-
ant under those finite and infinite permutations of the atomic sentences that list
atomic sentences involving only t1, ..., tn before those involving tn+1 for each n. In
this section, we explore invariance under permutations of the constants themselves.

Definition 47 Let f be a reordering of constants, i.e, f is bijective. For ϕ ∈ SL
we write f (ϕ) for the result of reordering the constants in ϕ according to f . We use
f (P ) to denote the probability function obtained from P by permuting the constants
of ϕ ∈ SL according to f : f (P )(ϕ(�t)) := P(ϕ(f (�t))) for all ϕ ∈ SL.

Lemma 48 If P ∈ P and f is a permutation, then f (P ) ∈ P.

Proof It is clear that f (P ) satisfies P1 and P2.
Concerning P3, we need to show the last equality below holds. The first three

equalities follow from the definition of f (P ). We use θ
(
f (ti)/ti , f (�t)/�t) to denote

the sentence one obtains from θ(ti , �t) by simultaneously replacing ti by f (ti) and �t
by f (�t).

sup
m

f (P )

(
m∨

i=1

θ(ti , �t)
)

= sup
m

P

(
f

(
m∨

i=1

θ(ti , �t)
))

= sup
m

P

(
m∨

i=1

f (θ(ti , �t))
)

= sup
m

P

(
m∨

i=1

θ
(
f (ti)/ti , f (�t)/�t)

)

= f (P )(∃xθ(x, �t)).
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As usual, put N := max{i : ti ∈ θ(�t)} and also let Nf := max{j : tj ∈ f (θ(�t))}.
Let us now fix m and consider Mm ≥ max{f (1), . . . , f (m), Nf }, then∨m
i=1 θ

(
f (ti)/ti , f (�t)/�t) � ∨Mm

i=1 θ(ti , f (�t)) and thus

P

(
m∨

i=1

θ
(
f (ti)/ti , f (�t)/�t)

)
≤ P

(
Mm∨

i=1

θ(ti , f (�t))
)
.

Similarly, let Jm ≥ max{f −1(1), . . . , f −1(m), Nf }, then
∨m

i=1 θ(ti , f (�t)) �∨Jm

i=1 f (θ(ti , �t)) and so

P

(
Jm∨

i=1

θ
(
f (ti)/ti , f (�t)/�t)

)
≥ P

(
m∨

i=1

θ(ti , f (�t))
)
.

We next note that (P (
∨m

i=1 θ(ti , f (�t))))m∈N is an increasing non-negative sequence
which converges by P3 to P(∃xθ(x, f (�t))). This entails that supm f (P )(

∨m
i=1

θ(ti , �t)) also converges to P(∃xθ(x, f (�t))).
So,

sup
m

f (P )

(
m∨

i=1

θ(ti , �t)
)

= sup
m

P

(
m∨

i=1

θ(ti , f (�t))
)

= P(∃xθ(x, f (�t)))
= f (P )(∃xθ(x, �t)),

where the last equality is just definition of f (P ). Hence, f (P ) satisfies P3.

The concept of ‘greater entropy’ is well defined in the sense that it is preserved
under any permutation that preserves the probability functions that it permutes:

Proposition 49 (Independence of ordering of constant symbols) For any reordering
of constants f and probability functions P, Q such that f (P ) = P and f (Q) = Q,
P has greater entropy than Q if and only if f (P ) has greater entropy than f (Q).

Proof If f (P ) = P and f (Q) = Q then Hn(P ) = Hn(f (P )) and Hn(Q) =
Hn(f (Q)). So, Hn(P ) > Hn(Q) if and only if Hn(f (P )) > Hn(f (Q)). Hence, P
has greater n-entropy than Q for sufficiently large n if and only if f (P ) has greater
n-entropy than f (Q) for sufficiently large n.

On the other hand, if a permutation f changes the two probability functions of
interest, then the permuted functions can compare differently with respect to which
has greater entropy:

Proposition 50 (Dependence on ordering of constant symbols) There exists an infi-
nite reordering of constants f and probability functions P, Q such that P has greater
entropy than Q but f (Q) has greater entropy than f (P ).
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Proof To simplify matters we consider a language only containing a single relation
symbol,U , which is unary. It is apparent from the proof that the proof strategy applies
to all languages in our sense.

Let f be the following bijection onN. f (2n+1) := 2n−1 for all n ≥ 1, f (1) = 2
and f (2n) = 2n + 2. Intuitively, the even numbers and 1 are postponed to the future
and the odd numbers, with the exception of 1, are brought forward.

It is important in the following that for all n it holds that f is not a bijection on
{1, . . . , n}. For all even n and n = 1 it holds that f (n) > n. For all other odd n it
holds that f −1(n) = n + 2 > n. This fact will be used without further mention.

Next define a probability function P ∈ P by having all atomic sentences be inde-
pendent of one another. This entails that n-entropies can be written as a sum of n

1-entropies,

Hn(P ) = −
n∑

i=1

P(Uti) log(P (Uti)) + P(¬Uti) log(¬P(Uti)).

This follows from, for example, Landes and Williamson [21, Equation 1].
For all n ≥ 1 we now let

P(Ut1) := 1

2
P(Ut2n|ω2n−1) := 1

2
P(Ut2n+1) := 1,

whenever P(ω2n−1) > 0.
We can then compute the n-entropies as follows for all n ≥ 1

H1(P ) = log 2

H2n(P ) = (n + 1) log 2

H2n+1(P ) = H2n(P ) = (n + 1) log 2,

since i) for all even n and n = 1 it holds that P is maximally equivocal on Ln

conditional on Ln−1 and ii) P extends from Ln to Ln+1 deterministically.
Ignoring the constant factor log 2 , the n-entropies of P can then be represented

by the sequence 〈1, 2, 2, 3, 3, . . .〉. Figuratively speaking, the individual levels of n-
entropy increase, Hn+1(P )−Hn(P ), are represented by 〈1, 1, 0, 1, 0, 1, 0, 1, 0, . . .〉.
0 here represents a deterministic behaviour and 1 represents a fully equivocal
behaviour.

We now compute for all n ≥ 1 the n-entropies of f (P ), Hn(f (P )), as follows

H1(f (P )) = 0

H2n(f (P )) = n log 2

H2n+1(f (P )) = H2n(f (P )) = n log 2.

Clearly, for all n ≥ 1 it holds that Hn(P ) > Hn(f (P )).
Figuratively speaking, the individual levels have the following entropies for

f (P ) ignoring the constant factor log 2: 〈0, 1, 0, 1, 0, 1, 0, 1, 0, . . .〉 and n-entropies
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〈0, 1, 1, 2, 2, 3, 3, 4, 4, . . .〉. Clearly, this last sequence is pointwise smaller than the
corresponding sequence for P .

Now define a probability function Q which also makes all constant symbols
independent of each other. Implicitly define Q by

H1(Q) = 0.6 · log 2
H2(Q) = 1.2 · log 2
H3(Q) = 1.8 · log 2

Hn+1(Q) = Hn(Q) + 0.5 · log 2
for all n ≥ 4. That is, we need to find a value Q(Uti) such that

−Q(Uti) logQ(Uti) − (1 − Q(Uti)) log(1 − Q(Uti)) = α log 2,

where α ∈ {0.5, 0.6}.
We note that Q is well defined under the assumption that Q(Uti) ≤ 0.5 since i) 1-

entropy is strictly concave and strictly increasing for Q(Uti) ∈ [0, 0.5], ii) H1(P ) ∈
[0, log 2] for all P ∈ P, iii) H1 is continuous, iv) H1 is a bijective map from [0, 0.5]
onto [0, log 2] and finally v) the intermediate value theorem holds.

Apparently, for i ∈ {1, 2, 3} it holds that Hi(P ) > Hi(Q). That Hi(P ) > Hi(Q)

holds for all greater i, too, follows from the definition of Q.
Figuratively speaking, the individual levels have the following entropies for Q

ignoring the constant factor log 2: 〈0.6, 0.6, 0.6, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, . . .〉 and
n-entropies 〈0.6, 1.2, 1.8, 2.3, 2.8, 3.3, . . .〉. Clearly, this last sequence is pointwise
smaller than the corresponding sequence for P .

We compute the n-entropies for f (Q) as follows for all 1 ≤ n ≤ 4

H1(f (Q)) = 0.6 · log 2
H2(f (Q)) = 1.2 · log 2
H3(f (Q)) = 1.7 · log 2
H4(f (Q)) = 2.3 · log 2.

For all larger n ≥ 5 we observe

Hn(f (Q)) = H4(f (Q)) + (n − 4)

2
· log 2 > 0.

Figuratively speaking, the individual levels have the following entropies for Q

ignoring the constant factor log 2: 〈0.6, 0.6, 0.5, 0.6, 0.5, 0.5, 0.5, 0.5, 0.5, . . .〉 and
n-entropies 〈0.6, 1.2, 1.7, 2.3, 2.8, 3.3, . . .〉. Clearly, this last sequence is pointwise
greater than the corresponding sequence for f (P ).

The proof shows in fact that for any language there exist probability functions
P, Q ∈ P such that P has greater entropy than f (P ) and P has greater entropy than
Q, yet f (Q) has greater entropy than f (P ).
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Interestingly, despite the possibility exposed by Proposition 50, our results show
that in many natural cases, the function that has maximal entropy is invariant under
reordering the constants:8

Theorem 51 (Invariance under Permutations of Constant Symbols) If 1 > P=(ϕ) >

0 and 0 < c ≤ 1, then for {P †} = maxentEϕc and {P †
f } = maxentEf (ϕ)c it holds

that for all ψ ∈ SL that

P †(ψ) = P
†
f (f (ψ)).

Proof Let us first recall that by Lemma 48 we have f (P ) ∈ P. Furthermore, from
the definition of f (P ) we immediately obtain that P ∈ Eϕc , if and only if f (P ) ∈
Ef (ϕ)c .

After observing that � f (ϕm) ↔ f (ϕ)m and that � f (¬ϕm) ↔ f (¬ϕ)m for all
large enough m, we apply Theorem 41 and find

P † = c · P=(·|ϕm) + (1 − c) · P=(·|¬ϕm)

P
†
f = c · P=(·|f (ϕm)) + (1 − c) · P=(·|f (¬ϕm)).

It now suffices to note that the equivocator function is as symmetrical as can be: for
all χ, ρ ∈ QFSL it holds that

P=(χ |ρ) = P=(f (χ)|f (ρ)).

Hence P †(χ) = P
†
f (f (χ)) for all quantifier-free sentences χ ∈ QFSL. Gaifman’s

Theorem [9] then delivers the result that P †(·) = P
†
f (f (·)).

As might be expected, this result generalises easily to a single premiss with an
attached uncertainty interval.

Corollary 52 If 1 > P=(ϕ) > 0 and interval ∅ 
= X ⊂ [0, 1], then for {P †} =
maxentEϕX and {P †

f } = maxentEf (ϕ)X it holds that for all ψ ∈ SL that

P †(ψ) = P
†
f (f (ψ)).

Proof For both premisses a unique maximum entropy function exists which is equal
to a Jeffrey conditionalisation of the equivocator. These Jeffrey (or simply Bayesian)
conditionalisations are with respect to ϕNϕ , respectively, the logically equivalent
f (ϕNϕ ) and (f (ϕ))Nϕ . Furthermore, both Jeffrey conditionalisations are with respect
to the same x ∈ X (Corollary 42).

8Landes et al. [24, Footnote 2] show that Paris’ approach to maximising entropy, which appeals to limits
of entropy maximisers on finite languages, is invariant under finite and infinite permutations of constant
symbols where it is well defined. They demonstrate that Paris’ approach agrees with the maximal entropy
approach in many cases, and conjecture that this agreement extends to all cases in which Paris’ limiting
function is well defined. In all such cases, invariance of this limit function implies that the maximal entropy
approach is invariant under permutations of constants.
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Finally, let us apply the proof of Theorem 51 to note that for all ψ ∈ SL it holds
that

P †(ψ) = P
†
f (f (ψ)).

9 ZeroMeasure Premisses

As Example 17 illustrates, there are cases of zero-measure premisses that are entirely
unproblematic and that can be handled using the limit in entropy techniques intro-
duced in Section 3.9 However, some zero-measure premisses are more problematic,
in that they generate sets E of probability functions in which there is no function
with maximal entropy. We will focus on these pathological cases in this section. We
first provide some examples of such cases and then we discuss how best to proceed
when they arise. We argue that these cases suggest a refinement to the definition of
maximal entropy and that they motivate drawing inferences from any function with
sufficiently great entropy.

To simplify the exposition we assume in this section that the underlying language
L contains only the single relation symbol employed in the respective propositions.
The general case follows from the fact entropy maximisation is language invariant
[27, Chapter 6], because maximal entropy functions equivocate over all sentences
mentioning only relation symbols that are not mentioned by any premiss.

Proposition 53 For ϕ = ∃x∀yUxy and any P ∈ Eϕ there exists a probability
function Q ∈ Eϕ which has greater entropy than P . Hence, maxentEϕ = ∅.

Proof Suppose for contradiction that maxentEϕ 
= ∅ and let P ∈ maxentEϕ . A
contradiction is achieved by first defining a probability function P ′ ∈ Eϕ \ {P }
such that Hn(P

′) ≥ Hn(P ) for all large enough n. It is not necessarily the case
that P ′ has greater entropy than P . However, all probability functions that are a
convex combination of P and P ′ are in Eϕ (Eϕ is convex) and have strictly greater
n-entropy than P for all large enough n (because Hn(·) is strictly concave). Hence,
all the convex combinations are in Eϕ and have greater entropy than P . This yields a
contradiction.

Note that P=(ϕ) = 0 < 1 = P(ϕ). Hence, P 
= P=. Let us now define a
probability function P ′ ∈ E by shifting all witnessing of ∃x∀yUxy by one and then
adding a constant t1 such that Ut1t

∗ is independent from all other literals for all
t∗ 
= t1. Intuitively, the literals ±Utitk are replaced by ±Uti+1tk .

9More generally, if ϕ is a universally quantified claim about a conjunction of literals then it has zero
measure but can be handled straightforwardly [24].
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Formally, let ωn ∈ �n = ∧n
i,k=1 Uεi,k ti tk be an arbitrary n-state. Then define P ′

by

P ′(ωn) : = P

(
n∧

i=2

n∧

k=1

Uεi−1,k ti−1tk

)
· P=

(
n∧

k=1

Uε1,k t1tk

)

= P(
∧n−1

i=1
∧n

k=1 Uεi,k ti tk)

2n
.

Firstly, we note that P ′(∀yUt1y) = limn→∞ P ′(
∧n

k=1 Ut1tk) = limn→∞ 2−n = 0.
So, according to P ′ the constant t1 is not a witness of the existential premiss sentence
ϕ.

We next show that P 
= P ′. Firstly, note that since limn→∞ P(
∨n

i=1 ∀yUtiy) =
P(∃x∀yUxy) = 1, min{i ∈ N : P(∀yUtiy) > 0} is a finite number. Armed with
this observation, we note next that

min{i ∈ N : P ′(∀yUtiy) > 0} = min

{
i ∈ N : lim

n→∞ P ′
(

n∧

k=1

Utitk

)
> 0

}

= min

{
i ∈ N : lim

n→∞ P

(
n∧

k=1

Uti+1tk

)
> 0

}

= 1 + min

{
i ∈ N : lim

n→∞ P

(
n∧

k=1

Utitk

)
> 0

}

= 1 + min{i ∈ N : P(∀yUtiy) > 0}.

So, P 
= P ′.
We also observe that for all i ∈ N, P ′(∀yUtiy) = P(∀yUti+1y) and furthermore

P ′(
∨

i∈I ∀yUtiy) = P(
∨

i∈I ∀yUti+1y) for all finite index sets I . So,

P ′(∃x∀yUxy) = lim
n→∞ P ′

(
n∨

i=1

∀yUtiy

)

≥ lim
n→∞ P ′

(
n∨

i=2

∀yUtiy

)

= lim
n→∞ P

(
n−1∨

i=1

∀yUtiy

)

= lim
n→∞ P

(
n∨

i=1

∀yUtiy

)

= 1.

This means that P ′(∃x∀yUxy) = 1 and thus, as advertised, P ′ ∈ Eϕ .
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We now calculate n-entropies of P and P ′ and find for n ≥ 1 that:

Hn(P ) = −
∑

εr,s∈{0,1}
2≤r≤n
1≤s≤n

∑

εu∈{0,1}
1≤u≤n

P

(
n∧

k=1

Uεk t1tk ∧
n∧

i=2

n∧

k=1

Uεi,k ti tk

)

· log
(

P

(
n∧

k=1

Uεk t1tk ∧
n∧

i=2

n∧

k=1

Uεi,k ti tk

))

Hn(P
′) = −

∑

εr,s∈{0,1}
1≤r,s≤n

P ′
⎛

⎝
n∧

i,k=1

Uεi,k ti tk

⎞

⎠ · log
⎛

⎝P ′
⎛

⎝
n∧

i,k=1

Uεi,k ti tk

⎞

⎠

⎞

⎠

= −
∑

εr,s∈{0,1}
2≤r≤n
1≤s≤n

∑

εu∈{0,1}
1≤u≤n

P ′
(

n∧

k=1

Uεk t1tk ∧
n∧

i=2

n∧

k=1

Uεi,k ti tk

)

· log
(

P ′
(

n∧

k=1

Uεk t1tk ∧
n∧

i=2

n∧

k=1

Uεi,k ti tk

))

= −
∑

εr,s∈{0,1}
2≤r≤n
1≤s≤n

∑

εu∈{0,1}
1≤u≤n

P (
∧n−1

i=1
∧n

k=1 Uεi,k ti tk)

2n

· log
(

P(
∧n−1

i=1
∧n

k=1 Uεi,k ti tk)

2n

)
.

Holding the first summation fixed, we note that, since n-entropy is maximised
by maximally equivocating, Hn(P ) ≤ Hn(P

′). For example, if P is flat on∧n
k=1 Uεn,k tntk , P(

∧n
k=1 Uεn,k tntk) = 2−n for all εn,k with 1 ≤ k ≤ n, and all

these conjunctions are independent of
∧n−1

i=1
∧n

k=1 Uεn,k ti tk for all ε, then Hn(P ) =
Hn(P

′).
Now define Q := P+P ′

2 . Since Eϕ is convex and P, P ′ ∈ Eϕ , we observe that
Q ∈ Eϕ .

Since n-entropy is a strictly concave function we conclude that Hn(Q) > Hn(P )

whenever P and P ′ disagree on Ln. Since P 
= P ′ there has to exist some finite
M and quantifier-free sentence ψ ∈ QFSLM such that P(ψ) 
= P ′(ψ) (Gaifman’s
Theorem). Since Lm ⊂ Lm+1 for all m we have that P disagrees with P ′ on Lm for
all m ≥ M . We have hence found a Q ∈ E such that Hn(Q) > Hn(P ) for all large
enough n. Hence, P /∈ maxentEϕ . Contradiction.

We generalise this result to higher quantifier complexity in Appendix 3. These
results are summarised in the following theorem.
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Theorem 54 (Zero Measure Premisses) For all n ≥ 1 and

ϕ = ∃v2n∀v2n−1 . . . ∃v2∀v1Uv1v2 . . . v2n ∈ �2n or
ϕ = ∀v2n+1 . . . ∃v2∀v1Uv1v2 . . . v2n+1 ∈ �2n+1,

it holds that for all P ∈ Eϕ there exists a probability function Q ∈ Eϕ which has
greater entropy. Hence, maxentEϕ = ∅.

Having introduced some pathological cases in which there is no maximal entropy
function, we now turn to the question as to what to do in such cases.

For simplicity of exposition, we focus on the case in which we have a single
premiss, ϕ = ∃x∀yUxy, considered in Proposition 53. We call a proposition of
the form ∀yUtiy a witness proposition. A probability function P that satisfies ϕ

distributes probability 1 to the witness propositions, limk→∞ P(
∨k

i=1 ∀yUtiy) =
P(∃x∀yUx) = 1. We call a constant ti a witness if P gives positive probability
to the corresponding witness proposition ∀yUtiy. Now, the equivocator function,
which is the probability function with maximal entropy, gives ϕ measure zero,
P=(∃x∀yUx) = 0, and thus it has no witnesses. Given P that satisfies ϕ, one can
construct a function Q that has greater entropy than P by making Q ‘closer to’ the
equivocator in one or both of two ways:

1. Delaying the witnesses. If there are infinitely many witnesses, then one can cre-
ate Q by increasing the index of each witness in an appropriate way in order
to make Q more like the equivocator than P for each fixed n. For example, if
ti1 , ti2 , . . . are the witnesses for P , one can constructQwith witnesses ti2 , ti3 , . . .,
ensuring that Q(∀yUti1y) = 0 and Q(∀yUtij y) = P(∀yUtij−1y) for each
j > 1.

2. Flattening the distribution over witness propositions. Entropy can be increased
by increasing the number of witnesses, if there are finitely many, and distribut-
ing probability more equally to the witnesses, decreasing the rate at which the
probability of

∨k
i=1 ∀yUtiy converges to 1.

The approach taken in the proof of Proposition 53 involved a mixture of these
strategies: delaying witnesses to give P ′, and then flattening the distribution by taking
a convex combination of P and P ′, to yield Q.

One might argue that although the first of these two strategies increases n-entropy
for sufficiently large n, it does not on its own lead to a function that is more equivo-
cal in an intuitive sense. Hence, this seems to be a case in which the formal concept
of maximal entropy fails to adequately explicate the concept of being maximally
equivocal. (In contrast, the second strategy is unproblematic: flattening the distribu-
tion over witness propositions does seem to be a genuine way of generating a more
equivocal probability function.)

The explication of maximal entropy can however be refined to avoid this problem:
we can deem P to have greater entropy than Q just when, for every reordering f of
the constants that do not appear in the premisses, f (P ) dominates f (Q) in n-entropy
for sufficiently large n. Note that this refinement relativises the greater-entropy
relation to the premisses.
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This refinement eradicates the first of the two strategies: delaying witnesses no
longer increases entropy, because there are reorderings with respect to which the
witnesses are not delayed. The refinement leaves intact the second kind of strategy.

If we accept this refinement, the question then becomes: what policy should be
adopted when there is no maximal entropy function because of increases in entropy
of the second kind?

Williamson [43, pp. 29–30] suggests a pragmatic policy: to take inferences to be
determined by probability functions with sufficiently great entropy. Here, the cut-
off between functions that have sufficiently great entropy and those that do not may
depend on features of the problem or on the users of the logic, and may not be precise.
Choosing a probability function with sufficiently great entropy amounts to a choice
of P such that P(

∨k
i=1 ∀yUtiy) converges to 1 sufficiently slowly as k −→ ∞.

Further desiderata may be imposed. For example, one might suggest equivocat-
ing between the constants by treating them equally. The thought here is that each
constant should be a witness, because there needs to be at least one witness and the
premiss gives no grounds for discriminating between constants that are witnesses
and those that are not. This line of reasoning motivates giving each witness propo-
sition the same probability s > 0 and making witness propositions probabilistically
independent.10 In which case, P(

∨k
i=1 ∀yUtiy) = 1− (1− s)k , which converges to

1 as k −→ ∞, as required. Now, decreasing s (and distributing the corresponding
probability equally amongst n-states) will lead to a probability function with greater
entropy—this is an application of the second of the two strategies outlined above.
The pragmatic policy then amounts to drawing inferences from probability functions
that correspond to values of s > 0 that are sufficiently small. One approach here is
to take s to be sufficiently small just when taking s any smaller would not make a
significant difference with respect to practical purposes.

In sum, we see that although these pathological examples require refinements
to the overall approach, there is scope to devise policies that allow one to extend
objective Bayesian inductive logic even to these difficult measure-zero cases.

10 Conclusion

Objective Bayesian inductive logic defines inductive entailment from a set of (pos-
sibly probabilistic) premisses in terms of maximal entropy probability functions that
satisfy the given premisses. To be more precise, a set of premisses inductively entails
a conclusion if every probability function with maximal entropy that satisfies the pre-
misses also satisfies the conclusion. This is a very natural approach to inductive logic
that has been studied extensively in the literature in the context of reasoning with
propositional languages. An immediate task that arises with this approach is then to

10Such a distribution fits well with the maximal entropy approach, since it encapsulates symmetry and
independence properties that have been used to motivate entropy maximisation [28, 31].
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find these maximal entropy probability functions in order to perform inference. This
is a straightforward, although possibly computationally expensive, problem when
working with propositional languages. For more expressive languages, however, it is
not clear how one should proceed to determine these maximal entropy probability
functions. In this paper, we have studied this problem for premisses and conclusion
that are given in terms of constraints on the probabilities of sentences of a first order
language.

To do so we first introduced the notion of a limit in entropy and discussed its use
for determining maximal entropy probability functions. We distinguished what we
call the measure-zero sentences from those that have positive measure. Measure-zero
sentences are sentences that are assigned probability zero by the equivocator func-
tion P=. Intuitively, measure-zero sentences are those that have very few models.
To be more precise, these are sentences for which the proportion of term struc-
tures with a countably infinite domain that satisfy them is negligible. We showed
that for categorical premisses with positive measure, the maximal entropy approach
agrees with Bayesian conditionalisation. This then generalises to Jeffrey condition-
alisation when dealing with a non-categorical premiss that is given in terms of a
constraint on the probability of some sentence. With these results in place we then
showed that inductive tautologies are preserved on learning a premiss that involves
an inductively consistent proposition. Moreover, although there is a sense in which
comparative entropy may depend on the ordering of constants in the language, the
probability functions with maximal entropy remain invariant under such permuta-
tions in the cases in which the maximal entropy approach agrees with Bayesian or
Jeffrey conditionalisation.

These results not only clarify which probabilities the maximal entropy probabil-
ity functions assign for inductive inference but also give a constructive method for
calculating the maximal entropy probabilities. On the one hand, this shows that the
maximal entropy approach agrees with standard conceptions of baseline rational-
ity, which appeal to conditionalisation. On the other, it witnesses the stability and
generality of Bayesian conditionalisation as a process of probabilistic learning.

Finally, we turned our attention to inference from zero-measure premisses and
identified a certain class of zero-measure sentences for which there is no maximal
entropy probability function. This leaves the question of inductive inference from
these pathological zero-measure premisses open. The issue is then to understand
which inferences from zero measure premisses are rational and how to systemati-
cally characterize such inferences in terms of a unified inference process, and we
developed a strategy for doing this.

Another interesting open question concerns what more can be said about induc-
tive inference from multiple non-categorical premisses. Moreover, our results on
objective Bayesian inductive logic have concerned languages containing only rela-
tion symbols. It is natural to extend these considerations to languages also containing
a symbol for equality and function symbols, which have already been studied in Pure
Inductive Logic [13, 17, 23, 32, 33]. Finally, our hope here is that these results can
also suggest new avenues for investigating the open cases of the entropy limit conjec-
ture that concerns the equivalence of the two main approaches to inductive inference
introduced in Section 1.
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Appendix 1: Proofs of Proposition 15 and Theorem 16

First let us recount some basic information-theoretic facts.
The n-divergence of two probability functions P andQ is defined as the Kullback-

Leibler divergence of P from Q on Ln:

dn(P, Q)
df=

∑

ω∈�n

P (ω) log
P(ω)

Q(ω)
.

A Pythagorean theorem holds for the n-divergence dn [7, Theorem 11.6.1]:

dn(P, Q) ≥ dn(P, Rn) + dn(Rn, Q),

for any convex F ⊆ P, if P ∈ F and Q 
∈ F, where Rn ∈ arg infS∈F dn(S, Q).
Consequently, for any P ∈ E and Qn ∈ Hn [24, corollary 32]:

Hn(Qn) − Hn(P ) ≥ dn(P, Qn).

Pinsker’s inequality connects theL1 distance to n-divergence (see, e.g., [7, Lemma
11.6.1]):

dn(P, Q) ≥ 1

2
‖P − Q‖2n .

Proposition 15 If P is a limit in entropy of E then there are Qn ∈ Hn such that
‖Qn − P ‖n −→ 0 as n −→ ∞.

Proof Putting our last two information-theoretic facts together we have that

Hn(Qn) − Hn(P ) ≥ dn(P, Qn)

≥ 1

2
‖P − Qn‖2n ,

for Qn ∈ Hn and P ∈ E.
Now, if P is a limit in entropy of E then there are Qn ∈ Hn such that

|Hn(Qn) − Hn(P )| −→ 0 as n −→ ∞. Hence ‖P − Qn‖2n also converge to zero, as
required.

Theorem 16 If E contains a limit in entropy P then

maxentE = {P }.

Proof First we shall show that P ∈ maxentE; later we shall see that there is no other
member of maxentE.

First, then, assume for contradiction that P 
∈ maxentE. Then there is someQ ∈ E

such that Q has greater entropy than P . That is, for sufficiently large n, Hn(Qn) ≥
Hn(Q) > Hn(P ), where the Qn ∈ Hn converge in entropy (and, by Proposition 15,
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in L1) to P . N.b., Q 
= P . Hence, for sufficiently large n,

Hn(Qn) − Hn(P ) > Hn(Qn) − Hn(Q)

≥ dn(Q, Qn)

≥ 1

2
‖Q − Qn‖2n .

Since the Qn converge in entropy to P , they converge in L1 to Q. By the uniqueness
of L1 limit points, Q = P : a contradiction. Hence P ∈ maxentE, as required.

Next we shall see that P is the unique member of maxentE. Suppose for contradic-
tion that there is some P † ∈ maxentE such that P † 
= P . Then P cannot eventually
dominate P † in n-entropy—i.e., there is some infinite set J ⊆ N such that for n ∈ J ,

Hn(P
†) ≥ Hn(P ).

Let R
df= λP † + (1 − λ)P for some λ ∈ (0, 1). Now by the log-sum inequality

[7, Theorem 2.7.1], for all n ∈ J large enough that P †(ωn) 
= P(ωn) for some
ωn ∈ �n,

Hn(R) > λHn(P
†) + (1 − λ)Hn(P )

≥ λHn(P ) + (1 − λ)Hn(P )

= Hn(P ).

Hence,

Hn(Qn) − Hn(P ) > Hn(Qn) − Hn(R)

≥ dn(R, Qn),

for large enough n ∈ J .
Now by Pinsker’s inequality and the definition of R,

dn(R, Qn) ≥ 1

2
‖R − Qn‖2n

= 1

2

∥∥∥P − Qn + λ(P † − P)

∥∥∥
2

n

= 1

2

⎛

⎝
∑

ωn∈�n

∣∣∣P(ωn) − Qn(ωn) + λ(P †(ωn) − P(ωn))

∣∣∣

⎞

⎠
2

.

Let fn(ϕ)
df= P(ϕ) − Qn(ϕ) + λ(P †(ϕ) − P(ϕ)) and ρn

df= ∨
fn(ωn)>0 ωn. Then,

∑

ωn∈�n

|fn(ωn)| =
∑

ωn:fn(ωn)>0

fn(ωn) −
∑

ωn:fn(ωn)≤0
fn(ωn)

=
∑

ωn:fn(ωn)>0

fn(ωn) −
∑

ωn:fn(ωn)
>0

fn(ωn)

= fn(ρn) − fn(¬ρn)

= 2fn(ρn)

after substituting P(¬ρn) = 1 − P(ρn) etc.
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Let us consider the behaviour of

fn(ρn) = P(ρn) − Qn(ρn) + λ(P †(ρn) − P(ρn))

as n −→ ∞. Now, P(ρn)−Qn(ρn) −→ 0 as n −→ ∞, because Qn converges in L1
to P . However, λ(P †(ρn)−P(ρn)) 
−→ 0 as n −→ ∞, as we shall now see. P † 
= P

by assumption, so they must differ on some quantifier-free sentence ψ , a sentence of
Lm, say. Suppose without loss of generality that P †(ψ) > P (ψ) (otherwise take ¬ψ

instead) and let δ = P †(ψ) − P(ψ) > 0. Now for n≥m,

fn(ρn) =
∑

ωn:fn(ωn)>0

fn(ωn) ≥
∑

ωn|=ψ

fn(ωn) = fn(ψ).

SinceQn converges inL1 to P we can consider n > m large enough that [7, Equation
11.137]:

‖Qn − P ‖n = 2 max
ϕ∈SLn

(Qn(ϕ) − P(ϕ)) < λδ.

In particular, since ψ is quantifier-free, Qn(ψ) − P(ψ) ≤ maxϕ∈SLn
(Qn(ϕ) −

P(ϕ)) < λδ/2. For any such n,

fn(ρn) ≥ fn(ψ)

= P(ψ) − Qn(ψ) + λ(P †(ψ) − P(ψ))

> −λδ

2
+ λδ

= λδ

2
.

Putting the above parts together, we have that for sufficiently large n ∈ J ,

Hn(Qn) − Hn(P ) > dn(R, Qn) ≥ (2fn(ρn))
2

2
>

λ2δ2

2
> 0.

However, that these Hn(Qn)−Hn(P ) are bounded away from zero contradicts the
assumption that the Qn converge in entropy to P . Hence, P is the unique member of
maxentE, as required.

Appendix 2. Alternative Proof of Corollary 20

This appendix provides a more direct proof of Corollary 20, which identifies an
important scenario in which the equivocator function conditioned on a categorical
constraint is the maximal entropy function.

Corollary 20 If Hn contains P=(·|ϕ) for sufficiently large n then

maxentEϕ = {P=(·|ϕ)}.

Proof There are two cases: either P=(ϕ) = 1 or P=(ϕ) < 1.
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If P=(ϕ) = 1 then P= ∈ Eϕ and P=(·|ϕ) = P=(·). P= is the unique member
of maxentEϕ because the equivocator function has greater entropy than any other
probability function, so maxentEϕ = {P=(·|ϕ)}, as required.

If P=(ϕ) < 1 then we can proceed as follows.
Since P=(ϕ) > 0, P=(·|ϕ) is well defined. P=(ϕ|ϕ) = 1 so P=(·|ϕ) ∈ E. Thus

Eϕ 
= ∅.
Suppose for contradiction that maxentEϕ 
= {P=(·|ϕ)}. Then in Eϕ there must be

some P † 
= P=(·|ϕ) that is not eventually dominated in entropy by P=(·|ϕ). That is,
there is some infinite J ⊆ N such that Hn(P

†)≥Hn(P=(·|ϕ)) for all n ∈ J . (To see
this consider that there are three cases: (i) if maxentEϕ = ∅ then every member of Eϕ

is eventually dominated by some other in entropy, so P=(·|ϕ) is dominated by some
P † and P † is not dominated by P=(·|ϕ); (ii) if P=(·|ϕ) 
∈ maxentEϕ = {P †, . . .}
then P † is not dominated by P=(·|ϕ); (iii) if maxentEϕ = {P=(·|ϕ), P †, . . .} then
P † is not dominated by P=(·|ϕ).)

Define a probability function Q
df= λP † + (1− λ)P=(·|ϕ) for some λ ∈ (0, 1). By

the log-sum inequality [7, Theorem 2.7.1], for all n ∈ J large enough that P †(ω) 
=
P=(ω|ϕ) for some ω ∈ �n,

Hn(Q) > λHn(P
†) + (1 − λ)Hn(P=(·|ϕ))

≥ λHn(P=(·|ϕ)) + (1 − λ)Hn(P=(·|ϕ))

= Hn(P=(·|ϕ)).

However, that Hn(Q) > Hn(P=(·|ϕ)) for sufficiently large n ∈ J contradicts the
assumption that Hn contains P=(·|ϕ) for sufficiently large n. Hence maxentEϕ =
{P=(·|ϕ)}, as required.

Appendix 3. ZeroMeasure Premisses of Higher Quantifier Complexity

Proposition 55 (�2m) For ϕ = ∃x2m∀x2m−1 . . .∀x1Ux2mx2m−1 . . . x1 ∈ �2m it
holds that for all P ∈ Eϕ there exists a probability function Q ∈ Eϕ which has
greater entropy. Hence, maxentEϕ = ∅.

Proof For ease of notation we will write Uti�t for Utitk2m−1 . . . tk1 and
∧n

t=1 Uti�t for∧n
k2m−1=1 . . .

∧n
k1=1 Utitk2m−1 . . . tk1 .

Suppose for contradiction that maxentE 
= ∅ and let P ∈ maxentE. Note that
P=(ϕ) = 0 < 1 = P(ϕ). Hence, P 
= P=.

Let us now define a probability function P ′ ∈ E by shifting all witnessing of
∃x2m∀x2m−1∃x2m−2....∀x1U �x by one and then adding a constant t1 such that Ut1�t is
independent from all other literals for all �t . Intuitively, the literals ±Uti�t are replaced
by ±Uti+1�t .
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Formally, let ωn ∈ �n = ∧n
i,t=1 Uεi,�t ti�t be an arbitrary n-state. Then define P ′ by

P ′(ωn) : = P

(
n∧

i=2

n∧

t=1

Uεi−1,�t ti−1�t
)

· P=

(
n∧

t=1

Uε1,�t t1�t
)

= P(
∧n−1

i=1
∧n

t=1 Uεi,�t ti�t)
2n2m−1 .

Firstly, we note that

P ′(∀x2m−1∃x2m−2 . . . ∀x1 Ut1�x) = lim
n→∞ P ′

⎛

⎝
n∧

j=1

∃x2m−2 . . . ∀x1Ut1tj �x
⎞

⎠

= lim
n→∞ P=

⎛

⎝
n∧

j=1

∃x2m−2....∀x1Ut1tj �x
⎞

⎠ = 0. (11)

So, according to P ′ the constant t1 is not a witness of the existential premiss sentence
ϕ.

We next show that P 
= P ′. Firstly, note that

lim
n→∞ P

(
n∨

i=1

∀y∃x2m−2....∀x1Ut1y �x
)

= P(∃z∀y∃x2m−2....∀x1Uzy �x)) = 1

and thus there is a smallest i ∈ N for which P(∀x2m−1∃x2m−2....∀x1Uti �x) > 0. With
this and Eq. 11, we have

min{i ∈ N : P ′(∀x2m−1∃x2m−2....∀x1Utix2m−1�x) > 0}

= min

{
i ∈ N : lim

n→∞ P ′
(

n∧

k=1

∃x2m−2....∀x1Utitk �x
)

> 0

}

= min

{
i ∈ N : lim

n→∞ P

(
n∧

k=1

∃x2m−2....∀x1Uti−1tk �x
)

> 0

}

= 1 + min

{
i ∈ N : lim

n→∞ P

(
n∧

k=1

∃x2m−2....∀x1Utitk �x
)

> 0

}

= 1 + min{i ∈ N : P(∀x2m−1∃x2m−2....∀x1Utix2m−1�x) > 0}.
So, P 
= P ′.

We also observe that for all i ≥ 2,

P ′(∀x2m−1∃x2m−2....∀x1Uti �x) = P(∀x2m−1∃x2m−2....∀x1Uti−1�x)

and furthermore,

P ′
(

∨

i∈I

∀x2m−1∃x2m−2....∀x1Uti �x
)

= P

(
∨

i∈I

∀x2m−1∃x2m−2....∀x1Uti−1�x
)
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for all finite index sets I . So,

P ′(∃y∀x2m−1∃x2m−2....∀x1Uy �x) = lim
n→∞ P ′

(
n∨

i=1

∀x2m−1∃x2m−2....∀x1Uti �x
)

≥ lim
n→∞ P ′

(
n∨

i=2

∀x2m−1∃x2m−2....∀x1Uti �x
)

= lim
n→∞ P

(
n−1∨

i=1

∀x2m−1∃x2m−2....∀x1Uti �x
)

= lim
n→∞ P

(
n∨

i=1

∀x2m−1∃x2m−2....∀x1Uti �x
)

= 1.

This means that P ′(∃x∀yUxy) = 1 and thus, as advertised, P ′ ∈ E.
We now calculate n-entropies of P and P ′ and find for n ≥ 1 that:

Hn(P ) = −
∑

εi,�t∈{0, 1}
2≤i≤n

∑

ε1,�t∈{0, 1}
P

(
n∧

t=1

Uε1,�t t1�t ∧
n∧

i=2

n∧

t=1

Uεi,�t ti�t
)

· log
(

P

(
n∧

t=1

Uε1,�t t1�t ∧
n∧

i=2

n∧

t=1

Uεi,�t ti�t
))

Hn(P
′) = −

∑

εi,�t∈{0, 1}
1≤i≤n

P ′
⎛

⎝
n∧

i,t=1

Uεi,�t ti�t
⎞

⎠ · log
⎛

⎝P ′
⎛

⎝
n∧

i,t=1

Uεi,�t ti�t
⎞

⎠

⎞

⎠

= −
∑

εi,�t∈{0, 1}
2≤i≤n

∑

ε1,�t∈{0, 1}
P ′

(
n∧

t=1

Uε1,�t t1�t ∧
n∧

i=2

n∧

t=1

Uεi,�t ti�t
)

· log
(

P ′
(

n∧

t=1

Uε1,�t t1�t ∧
n∧

i=2

n∧

t=1

Uεi,�t ti�t
))

= −
∑

εi,�t∈{0, 1}
2≤i≤n

∑

ε1,�t∈{0, 1}

P(
∧n−1

i=1
∧n

t=1 Uεi,�t ti�t)
2n2m−1

· log
(

P(
∧n−1

i=1
∧n

t=1 Uεi,�t ti�t)
2n2m−1

)
.

Holding the first summation fixed, we note that, since n-entropy is maximised by
maximally equivocating, Hn(P ) ≤ Hn(P

′). Now define Q := P+P ′
2 . Since E is

convex and P, P ′ ∈ E, we observe that Q ∈ E.
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Since n-entropy is a strictly concave function we conclude that Hn(Q) > Hn(P )

whenever P and P ′ disagree on Ln. Since P 
= P ′ there has to exist some finite
M and quantifier-free sentence ψ ∈ QFSLM such that P(ψ) 
= P ′(ψ) (Gaifman’s
Theorem). Since Lm ⊂ Lm+1 for all m we have that P disagrees with P ′ on Lm for
all m ≥ M . We have hence found a Q ∈ E such that Hn(Q) > Hn(P ) for all large
enough n. Hence, P /∈ maxentE. Contradiction.

Proposition 56 (�3) For ϕ = ∀x∃y∀zSxyz ∈ �3 it holds that for all P ∈ Eϕ there
exists a probability function Q ∈ Eϕ which has greater entropy. Hence,maxentEϕ =
∅.

Proof Let us first note that

Eϕ = {P ∈ P : P(ϕ) = 1}
= {P ∈ P : P(∃y∀zSt1yz) = 1, P (∃y∀zSt2yz) = 1, . . . , }. (12)

Assume for contradiction that P ∈ maxentEϕ . Since P=(ϕ) = 0, P cannot be the
equivocator. However, since P ∈ Eϕ , it must also hold that for all ti (i ∈ N) there has
to exist some minimal tk∗

i
(k∗

i ≥ 1) such that P(∀zSti tk∗
i
z) > 0.

We now define a probability function Q ∈ Eϕ which has greater entropy than P ,
which contradicts that P ∈ maxentEϕ . First, we postpone for all i the witnessing
(see Proposition 53) to k∗

i + 1. This is again achieved by first defining a probability
function P ′ ∈ Eϕ \ {P } such that Hn(P

′) ≥ Hn(P ) for all large enough n:

P ′
(

n∧

k=1

n∧

l=1

Sεk,l ti tktl

)
:= P(

∧n−1
k=1

∧n
l=1 Sεk,l ti tktl)

2n
.

As we saw in Proposition 53, P ′(∃y∀zStiyz) = 1 for all i ∈ N. Further-
more, for all i ∈ N there exists an ni ∈ N and εk,l ∈ {0, 1}ni×ni such that
P ′(

∧ni

k=1

∧ni

l=1 Sεk,l ti tktl) 
= P(
∧ni

k=1

∧ni

l=1 Sεk,l ti tktl).
Given the way we wrote Eϕ (see Eq. 12), we see that every extension of P ′ to

a probability function—which so far has not been defined on the entire language—
will be in Eϕ since membership in Eϕ solely depends on sub-states where the first
constant is fixed to some ti .

We now define P ′ on an arbitrary n-state ωn of the language, and hence on the
entire language by

P ′(ωn) :=
n∏

i=1

P ′
(

n∧

k=1

n∧

l=1

Sεi,k,l ti tktl

)
.

Because of the additivity of the entropy function [8, P. 63], we also find for all n ∈ N

that

Hn(P
′) = −

n∑

i=1

∑

εi,r,s∈{0, 1}
1≤r≤n
1≤s≤n

P ′
(

n∧

k=1

n∧

l=1

Sεi,k,l t1tktl

)
· log

(
P ′

(
n∧

k=1

n∧

l=1

Sεi,k,l t1tktl

))
.
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Since the entropy function is maximised for independent variables we also find:

Hn(P ) ≥ −
n∑

i=1

∑

εi,r,s∈{0, 1}
1≤r≤n
1≤s≤n

P ′
(

n∧

k=1

n∧

l=1

Sεi,k,l ti tktl

)
· log

(
P ′

(
n∧

k=1

n∧

l=1

Sεi,k,l ti tktl

))
.

Now recall that we saw in Proposition 53 that the following inequality holds for all
large enough fixed i ∈ N:

iHn(P
′) := −

∑

εr,s∈{0, 1}
1≤r≤n
1≤s≤n

P ′
(

n∧

k=1

n∧

l=1

Sεk,l ti tktl

)
· log

(
P ′

(
n∧

k=1

n∧

l=1

Sεk,l ti tktl

))

= −
∑

εr,s∈{0, 1}
1≤r≤n
1≤s≤n

P ′
(

n∧

k=1

n∧

l=1

Uεk,l tktl

)
· log

(
P ′

(
n∧

k=1

n∧

l=1

Uεk,l tktl

))

≥ −
∑

εr,s∈{0, 1}
1≤r≤n
1≤s≤n

P

(
n∧

k=1

n∧

l=1

Uεk,l tktl

)
· log

(
P

(
n∧

k=1

n∧

l=1

Uεk,l tktl

))

= −
∑

εr,s∈{0, 1}
1≤r≤n
1≤s≤n

P

(
n∧

k=1

n∧

l=1

Sεk,l ti tktl

)
· log

(
P

(
n∧

k=1

n∧

l=1

Sεk,l ti tktl

))
:= iHn(P ).

So, we have for all large enough n ∈ N that

Hn(P
′) =

n∑

i=1

iHn(P
′) ≥

n∑

i=1

iHn(P ) ≥ Hn(P ).

We again put Q := P+P ′
2 and note that since P 
= P ′, Q 
= P . Since P ′ ∈ Eϕ we

easily find by applying the convexity of Eϕ that Q ∈ Eϕ . Furthermore, Hn(Q) >

Hn(P ) for all large enough n ∈ N since Q is a convex combination of P and P ′ and
Hn(P

′) ≥ Hn(P ) for all n ∈ N.

Proposition 57 (�2m+3) For ϕ = ∀v1∃w1 . . .∀vm∃wm∀x∃y∀zRv1w1 . . . vmwmxyz

∈ �2m+1 and for all P ∈ Eϕ there exists a probability function Q ∈ Eϕ which has
greater entropy than P . Hence, maxentEϕ = ∅.

Proof The proof proceeds by induction on the quantifier complexity m.
The base case m = 0 is Proposition 56.
The induction step for m ≥ 1 assumes the result for m− 1 ≥ 0. The proof follows

the blueprint laid out in the base case.
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Let us first note that

Eϕ = {P ∈ P : P(ϕ) = 1}
= {P ∈ P : P(∃w1 . . . ∀vm∃wm∀x∃y∀zRt1w1 . . . vmwmxyz) = 1,

P (∃w1 . . . ∀vm∃wm∀x∃y∀zRt2w1 . . . vmwmxyz) = 1,

. . . , }. (13)

Assume for contradiction that P ∈ maxentEϕ . Since P=(ϕ) = 0, P can-
not be the equivocator. However, since P ∈ Eϕ , it must also hold that for
all ti (i ∈ N) there has to exist some minimal tk∗

i
(k∗

i ≥ 1) such that
P(∀v2∃w2 . . .∀vm∃wm∀x∃y∀zRti tk∗

i
v2w2 . . . vmwmxyz) > 0. We now postpone

this witnessing as usual.
We begin by assigning probabilities to substates fixing ti

P ′
⎛

⎝
n∧

b1=1

n∧

a2=1

. . .

n∧

am+1=1

n∧

bm+1=1

n∧

am+2=1

R
εb1,a2,...,am+2 ti tb1 ta2 . . . tam+2

⎞

⎠ :=

P(
∧n−1

b1=1
∧n

a2=1 . . .
∧n

am+1=1
∧n

bm+1=1
∧n

am+2=1 R
εb1,a2,...,am+2 ti tb1 ta2 . . . tam+2)

2n
.

Again, P ′(∃w1 . . .∀vm∃wm∀x∃y∀zRtiw1 . . . vmwmxyz) = 1 for all i ∈ N. Fur-

thermore, for all i ∈ N there exist an ni ∈ N and �ε ∈ {0, 1}n2m+2
i such

that

P ′
⎛

⎝
ni∧

b1=1

ni∧

a2=1

. . .

ni∧

am+1=1

ni∧

bm+1=1

ni∧

am+2=1

R
εb1,a2,...,am+2 ti tb1 ta2 . . . tam+2

⎞

⎠

:
= P ′
⎛

⎝
ni∧

b1=1

ni∧

a2=1

. . .

ni∧

am+1=1

ni∧

bm+1=1

ni∧

am+2=1

R
εb1,a2,...,am+2 ti tb1 ta2 . . . tam+2

⎞

⎠ .

In particular, P ′ 
= P .
We now define P ′ on an arbitrary n-state ωn of the language, and hence on the

entire language, by fixing �εi ∈ {0, 1}n2m+2
for 1 ≤ i ≤ n and letting

P ′(ωn) :=
n∏

i=1

P ′

⎛

⎜⎝
∧

�εi∈{0,1}n2m+2

R�εi ti�t
⎞

⎟⎠ .

Because of the additivity of the entropy function [8, p. 63], we also find for all n ∈ N

that

Hn(P
′) = −

n∑

i=1

∑

�εi∈{0,1}n2m+2

P ′

⎛

⎜⎝
∧

�εi∈{0,1}n2m+2

R�εi ti�t
⎞

⎟⎠ · log
⎛

⎜⎝P ′

⎛

⎜⎝
∧

�εi∈{0,1}n2m+2

R�εi ti�t
⎞

⎟⎠

⎞

⎟⎠

: =
n∑

i=1

iHn,2m+2(P
′).
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We now use the proof of Proposition 55 to obtain that for all i and all large enough
n (depending on i),

iHn,2m+2(P
′) ≥ iHn,2m+2(P ).

iHn,2m(P ) is the n-entropy of a probability function P on a lan-
guage containing one (2m + 2)-ary relation symbol U , ϕ =
∃w1∀v2∃w2 . . . ∃wm+1∀vm+2Uw1v2w2 . . . wm+1vm+2 ∈ �2m+2 and P ∈ Eϕ .

Since n-entropy is maximised by probability functions with as many probabilistic
independences as possible, we again have:

Hn(P ) ≥
n∑

i=1

iHn,2m+2(P ),

which overall gives the inequality:

Hn(P
′) =

n∑

i=1

iHn,2m+2(P
′) ≥

n∑

i=1

iHn,2m+2(P ) ≥ Hn(P ).

Taking Q to be any convex combination of P and P ′, we see that Hn(Q) > Hn(P )

for all large enough n. This entails that Q has greater entropy than P .
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