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Abstract. This paper addresses the problem of finding a Bayesian net representation of the probability function that agrees with the
distributions of multiple consistent datasets and otherwise has maximum entropy. We give a general algorithm which is significantly
more efficient than the standard brute-force approach. Furthermore, we show that in a wide range of cases such a Bayesian net can
be obtained without solving any optimisation problem.

INTRODUCTION

These days, several datasets involving hundreds of variables and thousands of observations are routinely collected in
many applications. Different datasets tend to measure different variables, even when the datasets are collected with
the same application in mind. For instance, it is common in systems medicine to have datasets measuring proteomics,
transcriptomics, metabolomics, clinical data, and patient-reported outcomes, and for these datasets to have very few
variables in common. How do we integrate all this data?

One approach to data integration is motivated by objective Bayesian epistemology (OBE), which holds that a
rational agent ought to adopt as a representation of her degrees of belief the probability function with maximum
entropy, P†, from all those calibrated to her evidence [1]. In this paper we shall assume that the agent’s body of
evidence consists of a collection of datasets and nothing else. Furthermore, we assume that the datasets are large
and reliable enough that each dataset distribution provides an accurate estimate of the frequency distribution of the
measured variables, and that they are consistent in the sense that these marginal frequency distributions are satisfiable
by some joint probability function defined on the set V of all the variables measured by the datasets. The agent’s
credence function P† will be defined on this larger set V of variables. OBE holds that P† should be calibrated to each
marginal distribution of observed frequencies, i.e., P† should agree with each dataset distribution.

In general, finding the function on a convex set of probability functions which has maximum entropy is a com-
putationally hard optimisation problem [2, Chapter 10]. In this paper we show how, in a wide range of cases, one can
compute P† without optimising at all, via a Bayesian net representation of P†. A Bayesian net representation of the
credence function P† which is motivated by OBE is called an objective Bayesian net (OBN).

The goals of this paper are to show that an OBN can be constructed efficiently in typical cases and that, in a wide
range of cases, an OBN can even be found without solving any optimisation problem at all. In the following section
we show how to efficiently compute an OBN in typical cases. Later, we will present algorithms which run much faster
but are only applicable in particular situations.

A GENERAL ALGORITHM

Notation is aligned with [3]. Variables are denoted by (subscripted) upper case letters A, B,C, the set of all variables
is V , ∅ and has size n ≥ 1. Variables have arbitrary arity. An assignment of values to a set of variables U ⊆ V is
written as u@U and the value of A under u is au. A probability function P maps each assignment v@V to [0, 1] such
that

∑
v@V P(v) = 1. Let #V denote the number of states of V .
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The machine learning community has developed efficient algorithms to learn a Bayesian network from a dataset
[4]. Each variable in the dataset corresponds to a vertex in the net and we will use “variable” and “vertex” inter-
changeably. We shall take such an algorithm as given, and apply it to each dataset—i.e., use it to learn a Bayesian
net Bi which represents the marginal frequency distribution P∗i determined by dataset DS i over its set Vi of variables.
Each such Bayesian net consists in a directed acyclic graph (DAG) on the set Vi of vertices together with the dataset
distribution of each variable conditional on its parents in the DAG. These are related by the Markov Condition, which
holds that for all A ∈ Vi, A is probabilistically independent of its non-descendants conditional on its parents.

While a Bayesian network represents conditional probabilistic independencies in the dataset distribution by a
DAG, it is also standard to use an undirected graph to represent such independencies. This forms the basis of a
Markov net representation of the distribution. This graph can be constructed by ‘marrying’ the parents of any variable
in the DAG by linking them with an edge and dropping the orientations of the remaining arrows in the DAG. We
thus obtain an undirected graph Gi representing the independence structure of each dataset distribution: if Z separates
X from Y in Gi, for sets of vertices X,Y,Z ⊆ Vi, then X and Y are probabilistically independent conditional on Z,
X⊥⊥P∗i Y |Z for the dataset distribution P∗i .

Construct an OBN as follows. First form an undirected graph G by joining the Gi: take the variables in V =
⋃

i Vi
as vertices and connect every pair of vertices that are connected in some Gi. This graph represents the independence
structure of the maximum entropy function: if Z separates X from Y in G then X⊥⊥P†Y |Z [3, Theorem 5.1].

Next transform this into a DAG H that also represents the independence structure of P† in the sense that if Z
D-separates X from Y in H then X⊥⊥P†Y |Z. A standard algorithm for achieving this proceeds as follows [3, §5.7]. (i)
Triangulate G (i.e., ensure that each simple cycle of length greater or equal than 4 possesses a chord) to give GT . (ii)
Order the vertices of GT with vertex set V according to maximum cardinality search: at each step select a vertex which
is adjacent to the largest number of previously numbered vertices. (iii) Let D1, . . . ,Dl be the cliques of GT , ordered
according to the highest labelled vertex. (iv) Let E j := D j ∩ (

⋃ j−1
i=1 Di) and F j := D j \ E j. (v) Add an arrow from each

vertex in E j to each vertex in F j. (vi) Add further arrows to ensure there is an arrow between each pair of vertices
in D j such that the resulting directed graph H is acyclic. Arbitrarily break ties and arbitrarily make unconstrained
choices.

Finally, determine the conditional probabilities in the OBN. These can be found by computing the probability
function, from all those that agree with the dataset distributions P∗i , that has maximum entropy. Let V = {A1, . . . , An}.
Denoting by Anci the ancestors of Ai inH and Anc′i := {Ai}∪Anci, the entropy of a probability function P that satisfies
the probabilistic independencies represented byH is

H(P) = −

n∑
i=1

∑
v@Anc′i

( ∏
A j∈Anc′i

yv
j

)
log yv

i . (1)

Here each yv
i is a parameter which denotes P(av

i |Parv
i ). Pari is the set of parents of Ai inH .

Computational Complexity. The complexity of learning the Bi in [5] is polynomial, as long as the maximal
degree of a vertex is bounded by a polynomial. One can find a minimal triangulation in polynomial time [6]. Maximum
cardinality search can be completed in linear time [6, §3]. Since GT is triangulated, it has at most |V |-many cliques [7]
which can be found in linear time [8]. Orienting all arrows is achievable in polynomial time [9].

In typical cases, GT is a sparse graph, and maximising (1) is computationally much simpler than brute-force
maximising of entropy H(P) = −

∑
v@V P(v) log P(v) expressed by in terms of exponentially many states of V [3,

p. 95]. Roughly speaking, the sparser the graph, the fewer conditional dependencies there are, and the fewer the y-
parameters there are in (1). This leads to a dimension reduction in the optimisation problem. This is reduced further
as follows. If a variable Ai and all its parents are measured in the same dataset, DS j say, then for all v@Anc′i , P∗j(v)
has been measured in DS j. We can hence calculate yv

i from B j. Since P† and P∗j have to agree, such parameters can
thus be computed without solving an optimisation problem.

At times, we shall later add auxiliary edges to G ; this does not invalidate any of the relevant formal properties.
At worst, adding further edges may lead to a more complex optimisation problem. If a constraint graph is not con-
nected, then its maximum entropy function is simply the product of the maximum entropy functions of its connected
components. Hence, we shall restrict our attention to connected graphs.
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TWO DATASETS

In this section we consider the case of two datasets DS 1 and DS 2, where DS 1 uses variables A1
1, . . . , A

1
l1
,C1, . . . ,Ck

and DS 2 uses the variables A2
1, . . . , A

2
l2
,C1, . . . ,Ck. All variables are distinct. Let C := {C1, . . . ,Ck}; we refer to C as

the centre and to A1 := {A1
1, . . . , A

1
l1
}, A2 := {A2

1, . . . , A
2
l1
} as appendices. We will call a graph on V simply-connected if

there is no edge linking different appendices. An edge is simply-connecting if and only if does not link A1 to A2. As
outlined above, learn Bayesian networks B1 and B2 representing P∗1 and P∗2 respectively and construct the graph G on
V . Next turn C into a clique by adding further edges and call the esulting graph G∗. G∗ is simply-connected.

A1 A2C

FIGURE 1: Schematic representation of variables for two datasets with non-trivial intersection of variables.

Proposition 1. There exists a triangulation GT
∗ of G∗ which is simply-connected.

Proof: Add further simply-connecting edges to G∗ so that the restrictions of G∗ to A1∪C and A2∪C are triangulated.
Call this new graph GT

∗ . We show that GT
∗ is a triangulation of G∗.

If a simple cycle inGT
∗ of length four or greater is contained in Ai∪C, then it contains a chord, since the restriction

of GT
∗ to Ai ∪C is triangulated.
If a simple cycle in GT

∗ of length four or greater contains at least one vertex in A1 and one in A2, then this cycle
contains at least two variables in the centre C, since G′ is simply-connected. Since the cycle is simple two of these
vertices are not adjacent on the circle. C is a clique, hence there is an edge between these two vertices, i.e., the cycle
possesses a chord. �

If there was a non-simply-connecting edge in GT
∗ , then there would exist variables A ∈ A1, A′ ∈ A2 connected by an

edge. Every Bayesian net B with underlying graph GT
∗ would have to specify P(A|A′) or P(A′|A). No such conditional

probability is given by P∗1 or P∗2. Proposition 1 ensures that all edges of GT are simply-connecting.

Corollary 2. There exists an OBN B with underlying graph GT
∗ such that the conditional probabilities of B can be

obtained directly from B1 and B2.

Proof: Choose any standard enumeration of V = A1 ∪ A2 ∪ C which first enumerates the k vertices in the centre C.
Orient all the arrows between the centre and an appendix such that they originate from the centre and point towards
the appendix.

The set of parents of a vertex in the centre is a (possibly empty) subset of C. Since GT
∗ is simply-connected, the

set of parents of a vertex in Ai is a subset of C ∪ Ai. Hence, the conditional probability of a variable A ∈ Ai given its
parents only depends on probabilities determined by P∗i . The centre screens off one appendix from the other.

The so-obtained Bayesian netB represents P†. Furthermore, all probabilities required to specifyB are conditional
probabilities of a variable conditional on its parents, where the variable and all its parents are used in the same dataset
DS i. These conditional probabilities can be obtained from Bi. �

The above constructed B is one possible OBN. However, there is a more efficient representation of P†. Prune any
arrow from Ci to C j from the DAG in B if the parents of Ci separate Ci from C j in G. In each such case the original
arrow is redundant because, as noted above, separation in G implies conditional independence in P†.

Computational Complexity. Given the Bi, computing GT
∗ is as complex as the finding triangulations which is

achievable in polynomial time. Pruning the arrows in the DAG requires at most k = |C|-many tests of separation in G
and each such test can be run in polynomial time.

CENTRED DATASETS

In this section we show how the results for a collection of two consistent datasets can be generalised to a larger class
of collections of datasets. A collection of h ≥ 2 datasets is centred if and only if there exists a dataset DS m such that
every variable which is measured in more than one dataset is also measured in DS m.
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The variables in DS m are Am
1 , . . . , A

m
lm

and C1, . . . ,Ck. The variables in dataset DS i with i , m are the Ai
1, . . . , A

i
li
,

which are unique to DS i, together with some variables from C1, . . . ,Ck. All variables are distinct. We extend the
notions of the centre C and an appendix Ai in the obvious way. We say that a graph G on V is simply-connected if and
only if for all pairs of linked vertices there exists a dataset which uses both these vertices.

In particular, every collection of two datasets is centred; the centre consists of the variables used in both datasets.

Am C

A1

A2

A3

A4

FIGURE 2: DS m contains the centre; indicated by the dashed line. All other datasets consist of an appendix and a
subset of the centre. Every variable measured in two or more datasets is contained in the centre.

An OBN can be found by following the strategy of the previous section. First, learn Bayesian networks Bi
representing P∗i and obtain the Gi. Next, construct a graph G′ on V by linking two variables if and only if they are
linked in at least one of the Gi. Then, add further edges to turn C into a clique to obtain a graph G∗. Proposition 1 holds
for the case of a centred collection of N datasets, too. There exists a triangulation GT

∗ of G∗ which is simply-connected.

Corollary 3. There exists an OBN B with underlying graph GT
∗ where the conditional probabilities of B can be

obtained from the Bi.

Proof: Again, we first enumerate the centre and then the vertices in the appendices and ensure that all directed edges
between the centre and an appendix originate from the centre. The parents of a vertex in the centre are hence all in the
centre and the conditional probability of such a variable given its parents can be obtained from Bm.

Since GT
∗ is simply-connected, the set of parents of a vertex in some appendix Ai is a subset of the variables in

dataset DS i. Hence, the conditional probability of this variable given its parents can be obtained from Bi. �

As in the previous section, we can drop redundant edges from B and obtain a sparser OBN.

TRIANGLES

We shall now study, in some detail, a simple case with only binary variables in which we cannot obtain P† directly
from the Bi. Nevertheless, we shall see that one can still obtain P† without having to solve an optimisation problem.
The computational task can be reduced to finding a particular root of a polynomial of degree three. The analysis we
give of this simple case turns out to be crucial in more complex situations.

Suppose datasets DS 1,DS 2,DS 3 measure sets of variables {A1, A2}, {A1, A3} and {A2, A3}, respectively, that these
variables are all binary, with each Ai taking ai,¬ai as possible values, and that each Bi contains an arrow. Hence, there
are edges between all three variables in the graph G. Clearly, this collection of datasets is not centred.

Every acyclic orientation of the edges of Gmakes one vertex a child of the other two vertices. Two or more edges
pointing towards A3, A3 is said to be a collider, as in Figure 3. Now enumerate the eight assignments v@{A1, A2, A3}

A1 A2

A3

FIGURE 3: Collider at A3

as follows: assignment v1 is a1a2a3, v2 is a1a2¬a3, and so on. Since P† has to match the marginal distributions P∗i ,
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where they are defined, P† has to satisfy the following 12 linear constraints and no further constraints:

P†(v1) + P†(v2) = P∗1(a1a2) =: a P†(v3) + P†(v4) = P∗1(a1¬a2) =: b P†(v5) + P†(v6) = P∗1(¬a1a2) =: c

P†(v7) + P†(v8) = P∗1(¬a1¬a2) =: d P†(v1) + P†(v3) = P∗2(a1a3) =: e P†(v2) + P†(v4) = P∗2(a1¬a3)

P†(v5) + P†(v7) = P∗2(¬a1a3) =: f P†(v6) + P†(v8) = P∗2(¬a1¬a3) P†(v1) + P†(v5) = P∗3(a2a3) =: g

P†(v2) + P†(v6) = P∗3(a2¬a3) P†(v3) + P†(v7) = P∗3(¬a2a3) P†(v4) + P†(v8) = P∗3(¬a2¬a3).

After some linear algebra, we find that this set of equations is equivalent to the following set of systems:

i : P†(v1) − P†(v7) = g − f ii : P†(v2) + P†(v7) = a + f − g

iii : P†(v3) + P†(v7) = e + f − g iv : P†(v4) − P†(v7) = b − e − f + g

v : P†(v5) + P†(v7) = f vi : P†(v6) − P†(v7) = c − f vii : P†(v8) + P†(v7) = d. (2)

Seven constraints apply to eight unknowns. Hence, there is one degree of freedom. In particular, there is more than
one function consistent with all the P∗i , in general.

The probability functions on A1, A2, A3 consistent with all the P∗i lie on a line segment. The entropy of a proba-
bility function on this line segment can now be expressed in terms of one unknown, x := P†(v7). The P†(vi) become
dependent on this unknown x by applications of (2). Since Shannon entropy, defined on the set of probability func-
tions, is a strictly concave function, we can use the first derivative to find the unique maximum entropy function along
this line segment. With ϕ1 := −a − f + g, ϕ2 := −e − f + g and ϕ3 := − f we obtain

d
dx

H(x) =
d
dx

n∑
i=1

−P(vi) log P(vi) = log
( x + ϕ1

x + ϕ1 + a
x + ϕ2

x + ϕ2 + b
x + ϕ3

x + ϕ3 + c
x − d
x

)
. (3)

We thus have to find the unique value x∗ ∈ [0, 1] at which dH
dx |x=x∗ = 0 and which corresponds to a probability function.

Substituting d = 1−a−b− c we find after a lengthy but uneventful calculation that the entropy is maximal if and only
if the following polynomial P(x) has a real root of odd degree and re-substituting P†(v7) for x results in a probability
function which solves (2):

P(x) = x3 + βx2 + γx + δ where β := ab + ac + bc + ϕ1 + ϕ2 + ϕ3 − ϕ1a − ϕ2b − ϕ3c
γ := −abc + ϕ1bc + ϕ2ac + ϕ3ab + (1 − a − b)ϕ1ϕ2 + (1 − a − c)ϕ1ϕ3 + (1 − b − c)ϕ2ϕ3 δ := (1 − a − b − c)ϕ1ϕ2ϕ3.

We are looking for the unique maximum of H(x) and can hence ignore double roots of P(x). The discriminant ∆ of
the polynomial P(x) and the auxiliary values p, q are defined as usual

p :=
3γ − β2

3
q :=

2β3 − 9βγ + 27δ
27

∆ :=
27δ2 + 4β3δ − 18βγδ + 4γ3 − β2γ2

108
∆ =(q/2)2 + (p/3)3.

If ∆ > 0, then we find x∗ by only considering the real third roots in

x∗ = 3

√
−

q
2

+
√

∆ + 3

√
−

q
2
−
√

∆ −
β

3
.

If ∆ = 0, then the roots of P(x) are

x∗ = −
β

3
if ∆ = p = q = 0 x∗ =

β3 − 4βγ + 9δ
3γ − β2 if ∆ = 0 and p2 + q2 > 0

If ∆ < 0, then x∗ is one of the following three values

−

√
−

4p
3
· cos

(π
3

+
1
3

arccos
(
−

q
2
·

√
−

27
p3

))
−
β

3
;

√
−

4p
3
· cos

(1
3

arccos
(
−

q
2
·

√
−

27
p3

))
−
β

3
;

−

√
−

4p
3
· cos

(
−
π

3
+

1
3

arccos
(
−

q
2
·

√
−

27
p3

))
−
β

3
.

P† can now quickly be computed. Simply check which of the six possible values for x∗ is a root of P(x) and gives
rise to a probability function which solves (2). In particular, we find P† without solving an optimisation problem.
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Computational Complexity. β, γ, δ can be computed by performing simple arithmetic on rational numbers, the Bi
do not use non-rational conditional probabilities. In general, computing the six possible values of x∗ requires the use
of non-rational real numbers. In practise, only a small number of digits is required to decide which possible value is
the root x∗. The overall computational complexity is then low in terms of the desired precision.

COLLIDERS

We now study a more general case with N datasets. First, construct a graph G representing the independence structure
of P†, as we did for the general algorithm. Our aim is to apply the algorithm for maximising entropy over a triangle.
We hence restrict our attention to triangulated and connected G. We make one further restriction: whenever there is
an edge between two variables A, B in G, then there exists a dataset DS i which measures A and B. This condition
guarantees that for all such A, B P∗i (A|B) is defined. By consistency, if there are two or more such datasets then
these marginalised distributions have to agree. For the remainder of this section fix such a connected, undirected and
triangulated graph G.

We now characterise a rich class of such graphs for which an OBN can be found by independently maximising
entropy over multiple triangles. As we saw above, every such problem can be solved by checking which of six values
is a root of a polynomial of degree three and gives rise to a probability function solving (2).

An orientation of the edges of G is consistent with the standard enumeration if we can apply the edge-orientation
algorithm from [3, §5.7] to yield this orientation.G is called cc if and only if there exists an acyclic orientation which is
consistent with standard enumeration such that every collider and the set of its parents form a triangle and no collider
is a parent. This DAG is called G→.

Theorem 4. G is cc if and only if every triangle in G contains a vertex of degree two.

Proof: G is cc. Assume for contradiction that there exists a triangle in which no vertex has degree two. Since all
three vertices are a member of this triangle their degree has to be at least two. So, let us assume that there exists some
triangle in which all vertices have a degree of 3 or greater.

Since the orientation is acyclic, there has to exist a vertex A in this triangle to which two edges of this triangle
point. Since the degree of A is at least three there has to be another edge incident on A. This third edge cannot point
to A, because A has exactly two parents. Since A is a childless collider, this third edge cannot originate from A.
Contradiction.

Every triangle contains a vertex of degree two. In every triangle pick a vertex which has degree two. Remove all
these vertices from G and obtain G′.

For all A, B ∈ G′ there exists a path from A to B in G, since G is connected. If this path goes via some C ∈ G\G′,
then it also goes through two other vertices D, E ∈ G which, together with C, form a triangle. Neither D nor E can
be part of another triangle and have degree two. Hence, D, E ∈ G′. C,D, E form a triangle in G, so there is an edge
between D and E. So, there exists a path in G between A and B which does not contain C ∈ G \ G′. Eventually, we
find a path between A and B in G′. G′ is connected.

The next step is to show that G′ is a tree. Suppose for contradiction G′ is not a tree. Then G′ contains a simple
cycle c of at least three vertices. We consider three cases.

If c consists of three vertices, then c is a triangle. c is also a triangle in G. However, we removed a vertex from
every triangle in G to obtain G′. Contradiction.

If c consists of four vertices, then c is a cycle in G of length four. Furthermore, since G is triangulated, we have
removed at least one edge linking members of c. Had we removed two edges, then the complete graph on four vertices,
K4, would be in G. This contradicts that every triangle in G contains a vertex of degree two. Had we removed one
edge, then the diamond graphD would be in G. The diamond graphD is a graph on four vertices with five edges. But
then we would have removed the two vertices in D with degree two in G. The resulting subgraph in G′ is then two
vertices connected by an edge and not a circle of length four. Contradiction.

If c consists of five or more vertices, then c is a cycle in G of length five or greater. Since G is triangulated, three
vertices of c from a triangle in G in which every vertex has degree three or greater. Contradiction.

Now choose an orientation on G. First, pick a root vertex in G′. Next, orientate all edges of G′ such that there
exists a unique directed path from the root to all other vertices of G′. Finally, orientate the remaining edges of G such
that they collide at the vertices in G \ G′. This orientation is acyclic and consistent with a standard enumeration. �

An example of a cc graph G→ (left in Figure 4) and examples non-cc graphs are on the right in Figure 4. The following
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A D

C

B E

1 2

34

FIGURE 4: Left: Example of a complex graph G→ which is cc, root vertex colored green, colliders are black, and all
other vertices white. Middle: K4 which is not cc. Right: Simplest graph which is not cc and not complete.

corollary follows an immediate consequence. The inclusion relation is taken with respect to the edge relation while
keeping the set of vertices fixed.

Corollary 5. If G is cc, then so is every subgraph G′ ⊂ G. If G is non-cc, then so is every supergraph G′ ⊃ G.

Proposition 6. IfG is cc, then there exists a unique directed path inG→ from the root to all other non-collider vertices.

Proof: Since G→ is connected, every vertex not contained in the clique D1 has a parent. Furthermore, all arrows
between a vertex A ∈ D1 and a vertex B < D1 point to B. Since G→ is acyclic, there exists a unique vertex A1 in G→

which is in D1 which does not have a parent. Every non-collider vertex Ai , A1 has at least one parent. Since Ai is not
a collider it has to have a unique parent A′i . Tracing back the ancestors of Ai we eventually arrive at A1. It follows that
A1 is the unique root ofH .

If there were multiple directed paths from A1 to some other non-collider vertex A′, then there would have to be a
collider on this path, possibly A′. A′ is not a collider by assumption. If some other vertex on these paths is a collider,
then it has to have a child. Contradiction. �

Proposition 7. If G is cc and if there exists a directed path from Ai1 to Ail in G→, then for all v@{Ai1 , . . . , Ail }

P†(av
i1 . . . a

v
il ) = P∗(av

i1 )
l∏

j=2

P∗(av
i j
|av

i j−1
). (4)

Proof: There is no collider on the direct path Ai1 , . . . , Ail , with the possible exception of the endpoint, since all other
vertices on the path have children. So, all vertices on this directed path, with the possible exception of the endpoint
and the root, have exactly one parent. All conditional probabilities of the form P(av

i j
|av

i j−1
) are given by some P∗i . Since

P† has to agree with the P∗i and all vertices on the path have a single parent we obtain for all v@{Ai1 , . . . , Ain }, using
the chain rule and (1), P†(av

i1
. . . av

in
) = P∗(av

i1
)
∏n

j=2 P∗(av
i j
|av

i j−1
). �

Theorem 8. If G is cc, then the problem of computing an OBN reduces to the problem of computing the entropy
maximisers of the triangles in G independently.

Proof: Let Co denote the set of colliders in G→. Using (1), we can now write the entropy H(P) of a probability
function P which is consistent with G→ as follows

−
∑

v@A1

yv
1 log(yv

1) −
∑

2≤i≤N
Ai<Co

∑
v@Anc′i

yv
i log(yv

i )
∏

1≤ j≤i−1
A j∈Anci

yv
j −

∑
3≤i≤N
Ai∈Co

∑
v@Anc′i

uv
i log(uv

i ) ·
∏

1≤ j≤i−1
A j∈Anci

yv
j. (5)

The terms
∏

1≤ j≤i−1
A j∈Anci

yv
j are given by (4). The only undetermined values in (5) are those uv

i , for which there does not

exist a dataset which contains the collider Ai and both parents of Ai. Attention is now restricted to such colliders.
Note that since no collider has a child, it follows that no two collider vertices are linked by an edge in G. Every

pair of colliders is thus separated by the parents of either one of the colliders inG→, and hence (c.f., our explanations to
the general algorithm) the colliders are conditionally independent given the parents of one of the colliders. Maximising

020007-7

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions IP:  141.84.147.156 On: Mon, 19 Sep 2016 20:20:17



(5) amounts to independently maximising
∑

v@Anc′i
uv

i log(uv
i ) ·

∏
1≤ j≤i−1
A j∈Anci

yv
j for all i ≥ 3 with uv

i subject to the constraints

applying to Ai.
For all colliders Ac there is an edge between the parents Aa, Ab, since G is cc. W.l.o.g, this edge points from Aa

to Ab. Note that Ab cannot have any further parents, since it would otherwise be a collider which has a child, Ac.
Since Aa is not a collider, there exists a unique path from A1 to Aa (Proposition 6). The graph structure is depicted

on the left-hand side of Figure 5. The graph on the right hand side in Figure 5 allows a representation of the same
probability functions as former graph. The latter graph is more convenient for our purposes. We hence obtain

−
∑

v@{A′1}

zv
1 log(zv

1) −
∑

v@{A′1,A
′
2}

zv
1zv

2 log zv
2 −

∑
v@{A′1,A

′
2,A
′
3}

zv
1zv

2zv
3 log zv

3 −
∑

1≤l≤K

∑
v@{A′1,A

′
4,...,A

′
3+l}

zv
1zv

3+l log(zv
3+l)

l−1∏
m=1

zv
3+m. (6)

The only unknowns in this equation are the zv
3. So, we are left with the problem of maximising entropy of a triangle.

�

Computational Complexity. Computing an orientation consistent with the standard enumeration is achievable in
polynomial time [9]. There are at most |V | − 2-many triangles in a cc graph G. An OBN is determined by computing
the maximum entropy over all triangles separately. Computing the maximum entropy of a single triangle is fast in the
desired precision.

A1 A j2 A j3 AK Aa

Ab

Ac

. . . A′4 A′1
A′2

A′3
. . .

FIGURE 5: Graph with original enumeration and re-enumeration.

CONCLUSIONS AND FUTURE RESEARCH

We have explored the question of how to determine an OBN from consistent datasets. For centred collections of
datasets (in particular for any pair of datasets) we showed how to obtain an OBN given Bayesian nets representing
the P∗i without solving an optimisation problem. In these cases, all one needs to do to obtain an OBN is to perform
triangulations and calculate some conditional probabilities from the Bi.

For binary variables, we first showed how to find an OBN for a triangle. Again, our approach does not require
solving an optimisation problem. All one needs is to do is some algebra to calculate six values and check which of
them is a root of polynomial of degree three and corresponds to a probability function solving (2). This approach
turned out to be all that is required to find an OBN in case G is cc.

Three main avenues for further research are: i) to identify further cases in which an OBN can be computed effi-
ciently, ii) to extend the methodology to include inconsistent datasets and iii) to implement algorithms on a computer
to demonstrate their feasibility and correctness in practice.
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