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Abstract
Recent work in social epistemology has shown that, in certain situations, less communi-
cation leads to better outcomes for epistemic groups. In this paper, we show that, ceteris 
paribus, a Bayesian agent may believe less strongly that a single agent is biased than that 
an entire group of independent agents is biased. We explain this initially surprising result 
and show that it is in fact a consequence one may conceive on the basis of commonsense 
reasoning.

Keywords  Social epistemology · Formal epistemology · Reliability · Bias · Bayesian 
networks · Conjunction fallacy

1  Introduction

Rational agents sometimes believe a conjunction more strongly than they believe every sin-
gle literal in this conjunction. We show that this peculiar fact applies to Bayesian agents—
in particular circumstances—and explain why.

In order to do so, we tackle the problem of how to assess a group of agents (e.g., scien-
tists) providing testimony vis-à-vis a single agent (e.g., one scientist) providing testimony. 
Unlike previous works (e.g., Zollman 2013; Angere and Olsson 2017; Holman and Bruner 
2015), which compared different communication structures of the same group of agents (N 
vs. N comparison), we here study how a group of agents compares to a single agent (N vs. 
1 comparison).

Testimony consists of reports the agents provide based on their findings. The fallible 
agents considered here are either good inquirers; call them reliable; or not-so-good inquir-
ers; call them biased. Intuitively, we are less likely to believe that a group of N independent 
agents each reporting a finding are all biased than we are to believe that one single agent 
providing these same N reports is biased, ceteris paribus. In other words: upon receiving 
the news, we assign a greater probability that at least one of the N independent agents 
is unbiased than we ascribe to the single agent being unbiased. We here show that this 
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intuitive probability judgement does not universally hold true (Theorems  1 and 2)1 and 
explain why this is the case.

But why is it that we judge it more likely that, ceteris paribus, one single agent is biased 
than that a group of independent agents are all biased? Prior to obtaining evidence, the 
prior probability of a single agent being reliable is equal to some value, � say. The prior 
probability of the agent being unreliable (biased) is then 1 − 𝜌 =∶ 𝜌̄ . The ceteris paribus 
clause then entails that the probability of any one of N agents is biased with probability 
𝜌̄ . The independence judgement then requires that the probability for all N agents being 
biased is 𝜌̄N . Clearly, 𝜌̄ > 𝜌̄N . The difference between 𝜌̄ and 𝜌̄N increases with growing N. 
As evidence accumulates, we have all reasons to believe that the posterior probabilities will 
continue to satisfy this inequality.

The probability functions considered here are those of a Bayesian agent receiving tes-
timony from other agents (scientists). Since Bayesians agents are not prone to conjunction 
fallacies (holding that the probability of a conjunction is greater than the probability of a 
subset of conjuncts, see Tversky and Kahneman 1983) one may think that the lesson drawn 
from studying conjunction fallacies applies here.2 However, we shall see that this lesson 
does not apply here and the intuitive answer is incorrect (Sect. 3.2).

The rest of this paper is organised as follows: next, we provide background and motiva-
tion for the area of research this paper contributes to (Sect. 2.1). Based on this exposition 
we introduce the formal model for our investigation (Sect. 2.2). Within the model we can 
formalise the Bayesian probability judgement we want to investigate (Sect. 3.1). We go on 
to derive (Sect. 3.2) and explain (Sects. 3.3 and 3.4) our main results and offer some con-
clusions regarding our immediate result and some wider implications (Sect. 4).

2 � The Model

2.1 � Background and Motivation

We consider a group of agents providing testimony for or against a hypothesis. We shall 
here not assume that we can fully rely on the reports provided by the agents, but instead we 
shall assess agents’ reliability.

The Scandinavian School of Evidentiary Value conceived of unreliable agents as pro-
viding evidence which teaches us nothing about the hypothesis of interest, see further 
(Bovens and Hartmann 2003, 57) and Edman (1973), Hansson (1983), Schum (1988). In 
Bovens and Hartmann (2003), this notion of unreliability has been formalised in a Bayes-
ian network model for determining the confirmation a body of evidence provided by a 
group of agents bestows on the hypothesis of interest. Their model has found applications 
in the philosophy of science concerning the epistemological Variety of Evidence Thesis 
(Bovens and Hartmann 2002; Claveau 2013; Claveau and Grenier 2019; Stegenga and 
Menon 2017; Landes 2020b, a), which states that varied evidence for a hypothesis con-
firms it more strongly than less varied evidence, ceteris paribus. Furthermore, it has been 
employed in Hahn et al. (2016) for modelling social debates of findings in climate science, 

2  It requires some serious effort to provide a Bayesian model of subjects committing conjunction fallacies 
(von Sydow 2011).

1  More precisely, we show how this posterior probability judgement is inconsistent with particular prior 
probability judgements and Bayesian updating.
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the philosophy of economics Casini and Landes (2020) and (the philosophy of) medicine 
(Abdin et al. 2019; Landes et al. 2018; De Pretis et al. 2019; 2020).

Crucial to this body of work is the irrelevance of unreliable sources (Claveau 2013 calls 
this the IUS condition). But do we perceive of unreliable sources as providing no relevant 
information towards hypothesis confirmation? Collins et al. (2015; 2018) found that human 
subjects tend to favour the construal of unreliable sources put forward in Olsson (2011) 
over the approach of Bovens and Hartmann (2003), see also Merdes et al. (2021). In this 
approach, unreliable sources are construed as sources which always lie, i.e., the testimony 
of an unreliable agent is the exact opposite of what she thinks.

We are here interested in epistemic contexts in which fallible agents may be unreliable 
due to (possibly sub-conscious) biases.3 We use sponsorship bias as our motivation which 
make agents’ reports to be more likely to be in line with their sponsor’s interest. Such a 
maximally strong bias is exhibited by agents who will always report findings in line with 
their sponsor’s interest. Such agents are completely irrelevant for hypothesis confirmation 
since they provide no relevant information.

Agents which are biased to a non-maximal degree report findings with different prob-
abilities than fully reliable agents; i.e., unbiased agents. We are here interested in biased 
agents that have a greater probability of reporting findings which support the hypothesis 
than unbiased agents and this probability is strictly less than one. That is, at times such 
agents do report findings which are not in their sponsor’s interest. Reports from such agents 
do provide some information concerning the hypothesis. Reports supporting the hypoth-
esis are (much) less confirmatory than reports from unbiased agents, whereas reports from 
biased agents conflicting with the hypothesis and thus with the sponsor’s interest carry 
extra dis-confirmatory oomph.4

2.2 � The Formal Model

We adopt the Bovens and Hartmann model by only changing their formalisation of unreli-
able agents. To the best of our knowledge, neither the Bovens and Hartmann model nor 
any of its derivatives have previously been employed to compare the posterior probabilities 
of unreliable sources. To keep this manuscript self-contained we now briefly describe the 
Bovens and Hartmann model (Sects. 2.2.1 and 2.2.2) and our adaptation (Sect. 2.2.3).

2.2.1 � Variables

We employ a number of binary propositional variables: A variable HYP where the intended 
meaning for Hyp is that “the hypothesis is true” and for Hyp is that “the hypothesis is 
false”. Next, we incorporate into our model that hypotheses may not always be directly 
tested, rather it is some of their observable consequences which are testable (Bovens and 
Hartmann 2003, 89). We employ consequence variables CONn where Conn ( Conn ) stands 
for the proposition that the n-th testable consequence of the hypothesis of interest holds (is 
false). Reported findings are modelled by means of a report variable REP. Reports pertain 
by definition to one consequence of the hypothesis only. Rep indicates that the consequence 

3  Reducing or even erasing biases one holds may be much harder than one thinks, see Kenyon (2014). This 
observation highlights the need to take into account such biases when assessing testimony.
4  The term “oomph” is now a term of art mentioned by Stegenga and Menon (2017).
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is reported to hold while Rep means that the consequence fails to hold is reported. Finally, 
every report is modulated by a single reliability variable REL, where Rel means that the 
reporting agent is assessed to be reliable and Rel = Bias stands for a biased agent. Report 
variables representing different reports originating from the same agent thus share their 
modulating reliability variable. Every agent is thus represented by a single variable formal-
ising the agent’s possible types: reliable or biased.

A Bayesian prior probability function, P, defined over the algebra generated by these 
variables, is selected. The choice of this probability function P is constrained by condi-
tional independencies capturing the relation of variables, which are graphically represented 
in a Bayesian network.

2.2.2 � Topology of Bayesian Networks

The topology of Bovens and Hartmann networks is generated by the following modelling 
choices regarding probabilistic independences and dependences.

These conditional independencies—denoted by ⊥—are

where ni is the reliability variable pertaining to REPi and mi the pertinent consequence 
variable.

The probability of whether a testable consequence is true or false is directly influenced 
by whether the hypothesis of interest is true or false. Similarly, the probabilities of reports 
that a testable consequence is reported depends on whether the relevant testable conse-
quence of the hypothesis is true and on the reliability of the reporting agent. This moti-
vates the edges and their orientations in such Bayesian networks; example topologies can 
be found in Figure 2.

2.2.3 � Prior and Conditional Probabilities

The initial assessment of the hypothesis is expressed as the probability 0 < P(Hyp) < 1 . By 
initial we mean prior to receiving testimony. The initial assessment of an agent’s reliability 
is captured by 0 < P(Rel) =∶ 𝜌 = 1 − P(Bias) < 1.

Consequences of the hypothesis are construed as being probabilistically entailed by the 
hypothesis, that is Con is more likely under Hyp than under its negation, Hyp . Mathemati-
cally speaking:5

HYP⊥RELn for all n

CONi⊥RELn |HYP for all i, n

REPi⊥HYP |RELni ,CONmi
for all i

{CONmi
, RELni REPi}⊥

⋃
k≠mi

⋃
j≠ni

{CONk, RELj, REPk} |HYP

REPi⊥X |RELni ,CONmi
for all i and all X ∉ {RELni ,CONmi

},

5  Those interested in confirming the hypothesis of interest directly without the intermediate consequence 
variables may simply put 0 = P(Con|Hyp) < P(Con|Hyp) = 1 and thus “erase” the consequence variables 
from considerations. None of our results hinge on the inclusion/exclusion of consequence variables.



On the Assessed Strength of Agents’ Bias﻿	

1 3

So far, we have been following Bovens and Hartmann (2003) from which we shall now 
deviate. The difference in models is explained by the different construals of unreliable 
(biased) agents (see Sect. 2.1) which give rise to a different formalisation.

We here consider fallible reliable agents, i.e., agents who sometimes fail to report the 
truth. 0 < 𝜖+ < 1 is a reliable agent’s probability of reporting a false negative (reporting 
that the consequence is false while it is in fact true) and 0 < 𝜖− < 1 is a reliable agent’s 
probability of reporting a false positive (reporting that the consequence is true while it is in 
fact false):6,7

Intuitively, the more often an agent’s testimony matches the true state of the world (truth 
value of CON) the greater an agent’s competence. So, the smaller �+, �− the better the evi-
dence an agent’s testimony provides.

Agents biased in the above discussed sense are more likely to report findings support-
ing the hypothesis than reliable agents. That is, the probability that an agent assessed to be 
biased provides a report that a consequence has been observed is greater than the probabil-
ity that an agent assessed to be reliable provides such a report.

In case the pertinent consequence is true, this means that

In case the pertinent consequence is false, this means that

We are here interested only in fallible agents and thus agents assessed to be biased commit 
errors of both types. Hence, neither � nor � can be equal to one. A possible configuration of 
parameters is shown in Figure 1, an overview is given in Table 1.8

There are two types of agents in our model, reliable ones characterised by �+, �− and 
biased agents represented by �, � and one is unsure about each agent’s type (P(Rel)). It 
poses no conceptual difficulty to model a situation in which agents may have multiple 

0 < P(Con|Hyp) < P(Con|Hyp) < 1 for all consequence variables CON.

P(False Negative, reliable agent) = P(Rep|Con,Rel) = �+

P(False Positive, reliable agent) = P(Rep|Con,Rel) = �−.

1 − 𝜖+ = P (Rep|Con,Rel)
���������������

True Positive, reliable agent

< P (Rep|Con,Bias)
�����������������

True Positive, unreliable agent

=∶ 𝛼.

𝜖− = P (Rep|Con,Rel)
���������������

False Positive, reliable agent

< P (Rep|Con,Bias)
�����������������

False Positive, unreliable agent

=∶ 𝛾 .

Fig. 1   Example parameter con-
figuration for providing a positive 
report γ 1− +− α0 1

6  See Osimani and Landes (2020) for more motivation and background on our way of modelling unreliable 
agents.
7  To streamline the exposition we suppress indices indicating the particular agent.
8  0 < 𝛾 < 𝜖− < 𝛼 < 1 − 𝜖+ < 1 represents a biased agent more likely to report findings dis-confirming the 
consequence. � = P(Rep|Con,Rel) = P(Rep|Con,Rel) = � defines unreliable agents in the (Bovens and 
Hartmann 2003) sense.
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types of bias and one is unsure about the type of bias a particular agent possesses. Techni-
cally, this is achieved by using variables REL of greater arity, adopting a prior over these 
greater arity variables and formalising different types and/or strengths of bias (Olsson 
2005, Sect. 4.3).

Reports (even those from the same agent) are here taken to be independent from each 
other given the true state of the world and given the type(s) of the agent(s) the reports are 
obtained from. More precisely, the probability of a report stating that a consequence of the 
hypothesis holds (or fails) only depends on the reporting agent and the truth value of the 
consequence. This models a situation in which different reports are, for example, generated 
by independent random tosses of the same coin or by identically sampling from the same 
population. A report variable hence has only two parents (a reliability variable and a conse-
quence variable) and no children.

All these assumptions are substantial assumptions and none of them will always hold 
in every situation. We do not want to make the case that our assumptions are appropriate 
in a wide range of situations. All we rely on is that there are some situations in which our 
assumptions are reasonable.

3 � Analysis

3.1 � Formalising the Probability Judgement

We can now return to asking the question raised in the introduction: “Ceteris paribus, do 
we always believe more strongly that a single agent is biased than we believe that an entire 
group of independent agents is biased?” As we argued in Section 1, the intuitive answer is 
affirmative. Before we can proceed to thoroughly answer this question we need to do two 
things.

First, we need to specify the evidence reports, the network structure of the reports and 
how the reports pertain to (the testable consequences of) the hypothesis of interest. In 
short, we have to specify the topology of Bayesian networks for our application. Bovens 
and Hartmann consider three scenarios, each scenario consists of two distinct set-ups (i.e., 

Table 1   Overview of employed variables, their intended interpretation and (conditional) probabilities. To 
increase readability, we use ¬ to denote negation in this table

Variable Intended interpretation (Conditional) probabilities

HYP Hypothesis of interest 0 < P(Hyp) < 1

CON Testable consequence 0 < P(Con|¬Hyp)
< P(Con|Hyp) < 1

REL Reliability of instrument 0 < P(Rel) = 𝜌 < 1

REP Report See below
Rel Reliable instrument 0 < P(Rep|Con,Rel) = 1 − 𝜖+ < 1

0 < P(Rep|¬Con,Rel) = 𝜖− < 1

Rel Unreliable instrument 1 > P(Rep|Con,¬Rel) = 𝛼 > 1 − 𝜖+

1 > P(Rep|¬Con,¬Rel) = 𝛾 > 𝜖−



On the Assessed Strength of Agents’ Bias﻿	

1 3

network topologies). We here only discuss Scenario 1 and Scenario 3.9 In the first set-
up, one single agent provides all reports; in the second set-up, N agents each provide one 
report. See Figure 2—taken from Osimani and Landes (2020) for a graphical illustration—
in which the first set-up is always pictured on the left and the second set-up on the right; 
dashed lines demarcate the three different scenarios. In the situations depicted on the left, 

HYP

CON

REP1 . . . REPN

REL1 . . . RELN

HYP

CON

REP1 REPN
. . .

REL

HYP

CON1 . . . CONN

REP1 . . . REPN

REL

HYP

CON

REP

REL

HYP

CON1 . . . CONN

REP1 . . . REPN

REL

HYP

CON1 . . . CONN

REP1 . . . REPN

REL1 . . . RELN

2:1pu-teS1:1pu-teS

2:2pu-teS1:2pu-teS

2:3pu-teS1:3pu-teS

Fig. 2   The three scenarios described in Bovens and Hartmann (2003). Set-up 2:2 is the same as Set-up 3:1

9  In Scenario 2, a single agent provides all reports in both set-ups. Rather than presenting a problem for 
social epistemology it teaches us that more “confirmatory evidence” does not always lead to more confir-
mation (see Carnap 1962, 382), which is outside our current scope of interest.
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a single agent provides all the reports. Since in this situation the reports are obtained from 
a single agent, we use one single variable to model the (un-)reliability of this source. In 
the situations depicted on the right, every report is obtained from a different agent. Conse-
quently, we use a different reliability variable for every agent to capture the (un-)reliability 
of all the different agents.

Second, we obviously need to make sure that conditional probabilities in both compared 
set-ups are, ceteris paribus, the same. So, we impose the condition that the probabilities 
defined in Section 2.2.3 are the same for all agents. Furthermore, we assume that for all 
n the n-th report in both set-ups shows the same result. Finally, we require that all conse-
quence variables are assigned the same conditional probabilities. Mathematically, this just 
means that we are now not abusing notation any more when dropping a great number of 
indices.

The probability function for the first set-up is denoted by P1 , the function for the second 
set-up by P2 . The bodies of evidence are respectively denoted by E1 and E2 . Finally, we can 
formalise our probability judgement: “Ceteris paribus, we believe more strongly that a sin-
gle agent is biased than we believe that an entire group of independent agents is biased” by

3.2 � Results

We now state our main result:

Theorem 1  In Scenario 1 and Scenario 3 for all 0 < P(Hyp),P(Con|Hyp) < 1 , if the fol-
lowing three conditions all hold

then it holds that

Proof  All proofs can be found in the Appendix.

The answer to our question is thus no. For all probability assignments satisfying 
(2), we believe more strongly that the entire group of agents is biased than we believe 
that the single agent is biased, if all reports state that the pertinent consequence of the 

(1)P1(Bias|E1) > P2

(
N⋀
n=1

Biasn|E2
)
.

(2)

P(False Negative, reliable agent)

P(False Negative, biased agent)
=

P(Rep�ConRel)
P(Rep�ConBias)

=
�+

1 − �
≥ 4(2N−1 − 1)

P(TrueNegative, reliable agent)

P(TrueNegative, biased agent)
=

P(Rep�ConRel)
P(Rep�ConBias)

=
1 − �−

1 − �
≥ 4(2N−1 − 1)

P(Rel) = � ≤
1

1 +
N−1
√
2
,

P2

(
N⋀
n=1

Biasn|
N⋀
n=1

Repn

)
> P1

(
Bias|

N⋀
n=1

Repn

)
.
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hypothesis has not been observed. For example, for 2 ≤ N ≤ 5 all probability assignments 
with �− ≤ 10%, �+ ≥ 10%, � ≥ 99.9%, � ≥ 99.1%, � ≤ 33% satisfy (2).

Note that this result is untroubled by conjunction fallacies since 
we compare two different probability functions. Instead, holding that 

�
�
(
⋀�

�=�
����

�
�⋀N

n=1
Repn) > �

�
(����

�
�⋀N

n=1
Repn) would be committing a conjunction 

fallacy.
Since there is a canonical morphism induced by switching the truth-values of binary 

propositional variables, one may wonder whether there is a similar such phenomenon for 
reliability instead of bias. Indeed, there is

Theorem 2  In Scenario 1 and Scenario 3, if

then for all 0 < P(Hyp),P(Con|Hyp) < 1 it holds that

Having derived these results in our model we are next interpreting them in the setting we 
described. The obtained results also apply to other settings our model adequately represents. 
We discuss different types of biases which our model may adequately represent in Section 4.

3.3 � A More Intuitive Picture

Having obtained the formal results we now know for which cases the probability of a con-
junction behaves in an unexpected way. Based on this knowledge we paint a more intuitive 
picture of our results.

Consider a situation in which a person you believe to be unreliable tells you something 
you did not expect to hear. For example, the chief scientist of a pharmaceutical company 
publicly states that a drug they currently sell and recently researched is less effective than 
previously believed. Based on this information you believe more strongly that the agent is 
in fact reliable. Next suppose that there are a number (N, say) of chief scientists and each 
scientist tells you about the drug they have been exclusively selling and recently research-
ing that their drugs are less effective than previously believed. What do you now think 
about the group of scientists? Your belief in their individual reliabilities has increased. 
This means that your belief in their individual unreliabilities has decreased. Supposing that 
there is no connection between the different companies, scientists and drugs your belief in 
all of them being unreliable decreases proportionally to the number of reports.

Now suppose instead that there is a single chief scientist working for a pharmaceutical 
company who tells you that a number of drugs (N) sold by her company which have all 

(3)

P(True Positive, reliable agent)

P(True Positive, biased agent)
=

P(Rep�ConRel)
P(Rep�ConBias) =

1 − 𝜖+

𝛼
≤

1

4(2N−1 − 1)

P(False Positive, reliable agent)

P(ccFalse Positive, biased agent)
=

P(Rep�ConRel)
P(Rep�ConBias)

=
𝜖−

𝛾
≤

1

4(2N−1 − 1)

P(Bias) = 𝜌̄ ≤
1

1 +
N−1
√
2
,

P2

(
N⋀
n=1

Reln|
N⋀
n=1

Repn

)
> P1

(
Rel|

N⋀
n=1

Repn

)
.
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recently been researched are less effective than previously thought. Let us make the picture 
more concrete by assuming that there is no connection between the different drugs (dif-
ferent research labs studying them, targeted at different diseases). To ease the comparison 
between this and the above set-up, we assume that the content of report i is the same in this 
and the above set-up. Furthermore, we suppose that all reports are all equally (un-)likely.

What do you now believe about the reliability of the single scientist? Clearly, your 
belief in her reliability is increasing. The increase in belief in her reliability is the stronger 
the more you initially believed the agent to be unreliable. Furthermore, the less likely you 
initially believed to hear such testimony from a biased agent, the stronger the reversal of 
the standing of the scientists in your eyes. Note that the reports from a single person have 
a cumulative effect on the assessed reliability. The situation resembles the accumulation of 
compound interest, the increase in the assessed reliability (interest) sky-rockets.

But since an increase in the assessed reliability means a decrease in the assessed unreli-
ability, the latter plunges very quickly indeed. It is then conceivable that, ceteris paribus, in 
certain cases it is the case that you believe less strongly that the single agent is biased than 
you believe that all scientists in the group are biased.

We next discuss the parameter values for which this unexpected behaviour of the prob-
ability of a conjunction obtains.

3.4 � Explanation of Results

Since these two results are natural duals of each other, we shall only discuss Theorem 1. Why 
is it that one believes more strongly that the entire group is biased than that the single agent 
is biased? We can explain this by looking at the parameter values for which this happens.10

We develop a deeper understanding of the first two conditions in (2) by re-writing them 
as

This means that biased agents are strongly biased, 𝛼 ≫ 1 − 𝜖+ and 𝛾 ≫ 𝜖−.
Holding the truth value of the CON variable fixed, we see that quotients on the left and 

on the right describe ratios of the likelihood of the reported findings. The literature on 
Bayesian statistics refers to these ratios as Bayes factors; which are—in this literature—
considered to be the measure of the strength of evidence. Translated to our setting, this 
means that the received reports are strong evidence against the hypothesis that agents are 
biased, for large N. For N = 2 , the Bayes factors are only required to be greater or equal 
than four; a Bayes factor equal to three is conventionally interpreted as relatively weak evi-
dence for a hypothesis.

The third condition, P(Rel) ∶= 𝜌 ≤
1

1+
N−1
√
2
< 0.5 , says that, a priori, agents are assessed 

to more likely be biased than reliable. See Figures 3, 4 and 5 for illustrations of the param-
eter spaces in which this inequality and (4) hold.

(4)
�+

1 − �
=

P(Rep|ConRel)
P(Rep|Co nRel)

≥ 2N+1 − 4 ≤
P(Rep|ConRel)
P(Rep|ConRel)

=
1 − �−

1 − �
.

10  One might wonder why the condition that P(Con|Hyp) > P(Con|Hyp) is not used in the proof. It seems 
like this condition is hence not required. Note however that we made implicit use of this condition when we 
decided upon our formalisation of a biased agent. Hence, in situations in which P(Con|Hyp) < P(Con|Hyp) 
holds, our theorems continue to hold. In such situations, reporting that a consequence was observed dis-
confirms the hypothesis of interest.
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Fig. 3   The orange curve is a plot of � =
1

1+
N−1
√
2
 in the N − �-plane. With increasing N the curve converges 

to � = 0.5 . 𝜌 <
1

1+
N−1
√
2
 holds in the blue area, the size of the blue area increases with increasing N. To 

increase readability N is displayed as a continuous variable although it is discrete in the current setting. Our 
counter-intuitive results obtain in the blue area, if �+, �, �−, � take suitable values, too. (Color figure online)
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Fig. 4   The orange curve is a plot of � = 1 −
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4(2N−1−1)
 in the �+ − �-plane. � is strictly greater than this 

value in the blue area where our assumption of 𝛼 > 1 − 𝜖+ (dotted area) also holds. The number of agents 
N is equal to 2 in the left and and equal to 5 in the right plot. With increasing N the size of the blue area 
decreases quickly. Our counter-intuitive results obtain in the blue area, if �−, � , � take suitable values, too. 
(Color figure online)
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Fig. 5   The orange curve is a plot of � =
�−

4(2N−1−1)
+ 1 −

1

4(2N−1−1)
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is equal to 2 in the left and and equal to 5 in the right plot. With increasing N the size of the blue area 
decreases quickly. Our counter-intuitive results obtain in the blue area, if �+, �, � take suitable values, too. 
(Color figure online)
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So, upon receiving multiple reports dis-confirming the hypothesis from a single agent, 
the assessed reliability of this agent sky-rockets. In turn, the assessed bias of this agent 
falls through the floor. The stronger the assessed bias, the closer �, � are to one (the closer 
1 − �, 1 − � are to zero), the larger the “Bayes factors” in (4), the less likely one thinks that 
one agent consistently reports contrary to her bias. Hence, the stronger this effect.

Furthermore, the smaller the prior probability of agents being reliable, i.e., the smaller 
� (the greater 𝜌̄ ), the more relevant the above considerations become. Hence, the stronger 
the effect.

Instead, if these findings are reported by a group of agents where every agent only 
makes one single report, then the assessed bias of every single agent decreases only some-
what. The assessed bias of the entire group hence also falls—but only moderately so.

For large enough Bayes factors, the drop in the assessed bias of the single agent out-
paces the decrease of the assessed bias of the entire group of agents.

3.5 � Further Observations

We also want to point out that the condition of binary report variables is unnecessarily 
restrictive. All results immediately generalise to report variables of finite arity, as long as 
the values of the received report variables satisfy the conditions in (4).

Observe that Theorems 1 and 2 apply to all �, � , �+, �− ∈ (0, 1) which satisfy (3). In par-
ticular, there is no constraint which couples � and � , nor is there a constraint which couples 
�+ and �− . Hence, these theorems hold also for all �, � , �+, �− ∈ (0, 1) which satisfy (3), if 
� = � , 1 − �+ = �− or ( � = � and 1 − �+ = �− ) hold. In case � = � a biased agent is an unre-
liable agent in the Bovens and Hartmann-sense, in case 1 − �+ = �− an agent assessed to be 
reliable in our setting is an unreliable agent in the Bovens and Hartmann-sense.

Furthermore, Theorems 1 and 2 also apply to incompetent agents with 1 − 𝜖+ < 𝜖− and/
or 𝛼 < 𝛾 . Faced with reports from such incompetent agents, one better believe the opposite 
of the reported findings. One hence perceives such agents as liars in the sense of Olsson 
(2011).

Finally, we observe that Theorems 1 and 2 do not distinguish between Scenario 1 and 
Scenario 3: that is, the constraints on the probability assessments are the same for Sce-
nario 1 and Scenario 3. This observation should calm all remaining worries that somehow 
the consequences of the hypothesis of interest do the heavy lifting here; they do not. This 
contrasts the results in Bovens and Hartmann (2003) and Osimani and Landes (2020) for 
hypothesis confirmation, which distinguish between Scenario 1 and Scenario 3.

Finally, we remark that we obtain the counter-intuitive result for all group sizes, N ≥ 2.

4 � Conclusions

Recent work in social epistemology on the topology of group communications has brought 
the unexpected finding that sometimes epistemic groups fare better when agents (can) only 
communicate with few of their peers, see Zollman (2013) for an overview and Angere 
and Olsson (2017) for a recent point in case. Although, these results may depend on the 
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epistemic group being comprised of honest truth-seeking agents as argued by Holman and 
Bruner (2015) and on particular parameters Rosenstock et al. (2017), this part of the mes-
sage is loud and clear: Sometimes less is more in social epistemology. This paper replicates 
this message for N versus 1 comparisons.

We draw two further immediate conclusions: intuitions in multi-agent settings must 
be appreciated with due care and formal modelling can help us discover interesting belief 
dynamics between epistemic notions (such as reliability, bias, group size, strength of evi-
dence) that we are very unlikely to have discovered by any other means.

Let us for the moment switch point of view and take the perspective of the group of 
agents providing testimony. From here, it appears less than ideal that the entire group is 
perceived more strongly to be biased than a single agent. Group members may feel that the 
posterior probability assignment P1(Bias�E1) < P2(

⋀N

n=1
Biasn�E2) constitutes an epistemic 

injustice (Fricker 2007) caused by overly negative prior assessments ( 𝛼, 𝛾 , 𝜌̄ large).11 One 
wonders, given that all the agents have done is to report contrary to the perceived bias, 
is there nothing the group can do to overcome this unfortunate state of affairs? The short 
answer is: no. There is nothing to be done. Once the prior probabilities are set, Bayesian 
updating kicks in and finishes the job.

This means that the only road to salvage the standing of the group of agents is a more 
favourable assessment prior to reporting. This can be achieved by either a more favourable 
assessment of the strength of bias (smaller �, � ) or by a more favourable assessment of 
being reliable (greater � ). This then demonstrates the importance of appearances and the 
value of a good public relations section as well as the importance of the choice of the prior 
probability function in Bayesian epistemology.

We also want to point out that the employed Bayesian network models are rather ver-
satile having found applications in judgement aggregation, varied evidence reasoning and 
social epistemology. Future applications await exploration. Further future work may also 
address inequality (1) with different notions of (un-)reliability in mind, variables of greater 
arity, and/or bodies of evidence containing conflicting reports. Another interesting avenue 
are more complicated topologies of the Bayesian network with fewer independencies (more 
edges), see Claveau and Grenier (2019) and Landes (2020a).

We also remark that while sponsorship bias provided the motivation for our model of 
a biased agent (in terms of 1 − 𝜖+ < 𝛼 and 𝜖− < 𝛾 ), our analysis applies to all other biases 
(or other cognitive states) which make false positives more likely and false negatives less 
likely. Furthermore, in case false negatives are less likely and false positives are more 
likely ( 1 − 𝜖+ > 𝛼 and 𝜖− > 𝛾 ), our analysis continues to apply after employing the canoni-
cal morphism permuting � and 1 − �+ as well as � and �− . Since the list of biases is rather 
large (Bero and Grundy 2016; Hahn and Harris 2014) the analysis presented here may 
prove relevant for a variety of strands of research.

Finally, our analysis was motivated by considering agents which were either biased or 
reliable; agents hence had one of two possible types. The formal analysis presented here is, 
of course, blind to the motivation of the model. Our analysis is hence relevant to all other 
scenarios in which there is uncertainty about agents’ types. Other instances of dichotomous 
types are right-wing versus left-wing, hawks versus doves (foreign policy), predator versus 
scavenger, authoritarianist versus anarchist and theist versus atheist.

11  Many thanks to an anonymous reviewer for pointing out this connection to the literature on epistemic 
injustice. Spelling out this connection in detail would, in our view, take us too far away from the points we 
want to make here.
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Appendix

We first prove a technical lemma. We need to introduce a little more notation. For vari-
ables, e.g., REP, we use Rep1 to denote Rep and Rep0 to denote Rep . For all n we use 
rn ∈ {0, 1} to denote the value of the n-th evidence report. Recall that rn does not depend 
on the set-up, due to our above conventions. Note that we do not require that the rn are 
equal.

Lemma 1  In the first scenario we have

In the third scenario we have

sign

(
P2

(
N⋀
n=1

Biasn|E2
)

− P1(Bias|E1)
)

= sign

(∑
HYP

P(HYP)
∑
CON

P(CON|HYP) ⋅
(
𝜌̄N−1𝜌

N∏
n=1

P(Reprn |CON Rel)

−
∑

i1,… , iN ∈ {0, 1}N

i1 + i2 +⋯ + iN ≥ 1

N∏
n=1

P(Relin )P(Reprn |CON Relin )

))
.

sign

(
P2

( N⋀
n=1

Biasn|E2
)
−P1(Bias|E1)

)

= sign

(∑
HYP

P(HYP)

N∑
c=1

∑
CONc

N∏
j=1

P(CONj|HYP) ⋅
[
𝜌̄N−1𝜌P(Reprj |CONj Rel) −

∑
i1,… , iN ∈ {0, 1}

i1 +⋯ + iN ≥ 1

P(Reprj |CONj Rel
ij

j
)P(Rel

ij

j
)

])
.

http://creativecommons.org/licenses/by/4.0/
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Proof  For Scenario 1 we find

The sign of this expression is equal to the sign of

Since the first term is equal to 𝜌̄N−1 , the sign of this expression is equal to

P2

�
N�
n=1

Biasn�E2
�

− P1(Bias�E1) =
P2

�⋀N

n=1
Biasn E2

�

P2(E2)
−

P1(Bias E1)

P1(E1)

=

∑
HYP

∑
CON P2

�⋀N

n=1
Biasn E2 HYPCON

�

∑
HYP

∑
CON

∑N

n=1

∑
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P2(E2 HYPCON REL1 …RELN)

−

∑
HYP

∑
CON P1(Bias E1 HYPCON)∑

HYP

∑
CON

∑
REL P1(E1 HYPCON REL)

=
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∑
HYP

∑
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HYP

∑
CON
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n=1

∑
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n=1
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P(HYP)P(CON�HYP)∏N

n=1
P(Reprn �CON RELn)P(RELn)

−
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∑
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∑
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HYP

∑
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⋅

P(HYP)P(CON�HYP)∏N
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P(REL)P(HYP)P(CON�HYP)∏N

n=1
P(Reprn �CON REL)

.

P(Bias)N ⋅
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⋅
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For Scenario 3 we have

Since we are only interested in the sign of this equation we consider

∑
HYP

∑
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This is equal to the sign of

	�  ◻

Theorem 1  In Scenario 1 and Scenario 3 for all 0 < P(Hyp),P(Con|Hyp) < 1 , if
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then it holds that

Proof  First, observe that �(1 + N−1
√
2) ≤ 1 is equivalent to � N−1

√
2 ≤ (1 − �) what is in turn 

equivalent to 2𝜌N−1 ≤ 𝜌̄N−1 . We shall use to obtain the first strict inequality below (this 
implies 𝜌 < 𝜌̄).

To complete the proof for Scenario 1 it suffices to note that
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The proof for Scenario 3 is analogous: rather than summing over the truth values of CON 
one sums over all possible combinations of truth values of CON1,… ,CONN . 

Theorem 2  In Scenario 1 and Scenario 3, if

then for all 0 < P(Hyp),P(Con|Hyp) < 1 it holds that

Proof  The proof is obtained from the above by a suitable dualisation: switch Rel and 
Bias—this includes � and 𝜌̄ , as well as considering reports which confirm the consequences 
rather than dis-confirm them.

For Scenario 1 we find

The sign of this expression is equal to the sign of
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Since the first term is equal to �N−1 , the sign of this expression is equal to

For Scenario 3 we have
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P(HYP)P(CON�HYP)∏N

n=1
P(Reprn �CON RELn)P(RELn)

P(REL)P(HYP)P(CON�HYP)∏N

n=1
P(ReprnCON REL)

.

∑
HYP

∑
CON

P(HYP)P(CON|HYP)⋅
(
𝜌N−1

∑
REL

P(REL)

N∏
n=1

P(Reprn |CON REL)

−

N∑
n=1

∑
RELn

N∏
n=1

P(RELn)P(Rep
rn |CON RELn)

)

=
∑
HYP

∑
CON

P(HYP)P(CON|HYP) ⋅
(
𝜌N−1𝜌̄

N∏
n=1

P(Reprn |CON Bias)

−
∑

i1,… , iN ∈ {0, 1}N

i1 ⋅ i2 ⋅ ⋯ ⋅ iN = 0

N∏
n=1

P(Relin )P(Reprn |CON Relin )

)
.
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Since we are only interested in the sign of this equation we consider

P2

�
N�
n=1

Reln�E2
�

− P1(Rel�E1) =
P2

�⋀N

n=1
Reln E2

�

P2(E2)
−

P1(Rel E1)

P1(E1)

=

∑
HYP

∑N

c=1

∑
CONc∑

HYP

∑N

c=1

∑
CONc

∑N

n=1

∑
RELn

P2

�⋀N

n=1
Reln E2 HYPCON1 … CONN

�

P2(E2 HYPCON1 … CONN REL1 …RELN)

−

∑
HYP

∑N

c=1

∑
CONc

P1(Rel E1 HYPCON1 … CONN)

∑
HYP

∑N

c=1

∑
CONc

∑
REL P1(E1 HYPCON1 … CONN REL)

=
P(Rel)N

∑
HYP

∑N

c=1

∑
CONc∑

HYP

∑N

c=1

∑N

n=1

∑
CONc

∑
RELn

P(HYP)
∏N

j=1
P(CONj�HYP)P(Reprj �CONj Rel)

P(HYP)
∏N

j=1
P(CONj�HYP)P(Reprj �CONj RELn)P(RELj)

−
P(Rel) ⋅

∑
HYP

∑N

c=1

∑
CONc∑

HYP

∑N

c=1

∑
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∑
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⋅

P(HYP)
∏N
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∏N

j=1
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This is equal to the sign of

To complete the proof for Scenario 1 it suffices to note that

P(Rel)N
∑

HYP

∑N

c=1

∑
CONc

P(Rel) ⋅
∑

HYP

∑N

c=1

∑
CONc

P(HYP)
∏N

j=1
P(CONj�HYP)P(Reprj �CONj Rel)

P(HYP)
∏N

j=1
P(CONj�HYP)P(Reprj �CONj Rel)

−

∑
HYP

∑N

c=1

∑N

n=1

∑
CONc

∑
RELn∑

HYP

∑N

c=1

∑
CONc

∑
REL

P(HYP)
∏N

j=1
P(CONj�HYP)P(Reprj �CONj RELn)P(RELj)

P(REL)P(HYP)
∏N

j=1
P(CONj�HYP)P(Reprj �CONj RELj)

= �N−1 −

∑
HYP
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∑N

n=1

∑
CONc

∑
RELn∑

HYP

∑N

c=1

∑
CONc

∑
REL

P(HYP)
∏N

j=1
P(CONj�HYP)P(Reprj �CONj RELn)P(RELj)

P(REL)P(HYP)
∏N

j=1
P(CONj�HYP)P(Reprj �CONj RELj)

.
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�
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N�
c=1

N�
CONc

P(HYP)

N�
j=1

P(CONj�HYP)P(Reprj �CONj Bias)

−
�
HYP

N�
c=1

�
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�
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i1 +⋯ + iN ≥ 1

P(HYP)

⋅

N�
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P(CONj�HYP)P(Reprj �CONj Rel
ij

j
)P(Rel

ij

j
)

=
�
HYP

P(HYP)

N�
c=1

�
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N�
j=1

P(CONj�HYP)⋅

⎡
⎢⎢⎢⎢⎢⎣

𝜌N−1𝜌̄P(Reprj �CONj Rel) −
�

i1,… , iN ∈ {0, 1}

i1 ⋅ ⋯ ⋅ iN = 0

P(Reprj �CONj Rel
ij

j
)P(Rel

ij

j
)

⎤⎥⎥⎥⎥⎥⎦

.
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The proof for Scenario 3 is again analogous and skipped in the interest of time. 
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