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ABSTRACT
This expository paper relates the Hole Argument in general relativity (gr) to the 
well-known theorem of Choquet-Bruhat and Geroch (1969) on the existence and 
uniqueness of globally hyperbolic solutions to the Einstein field equations. Like 
the Earman–Norton (1987) version of the Hole Argument (which is originally due 
to Einstein), this theorem exposes the tension between determinism and some 
version of spacetime substantivalism. But it seems less vulnerable to the campaign 
by Weatherall (2018) and followers to close the Hole Argument on the basis of 
“mathematical practice,” since the theorem only talks about isometries and hence 
does not make the pointwise identifications via diffeomorphisms that Weatherall 
objects to. Among other implications of the theorem for the philosophy of gr, 
we reconsider Butterfield’s (1987) influential definition of determinism. This 
should be amended if its goal is to express the idea that gr is deterministic in the 
absence of Cauchy horizons, although its original form does capture the way gr 
is indeterministic in their presence! Furthermore, in gr isometries come out as 
gauge symmetries, as do Poincaré transformations in special relativity.

Finally, I discuss some implications of the theorem for the philosophy of science: 
Accepting the determinism horn still requires a choice between Frege-style 
abstractionism and Hilbert-style structuralism; and, within the latter, between 
structural realism and empiricist structuralism (which I favor).
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1 INTRODUCTION
Initially, the Hole Argument (Lochbetrachtung) was an episode in Einstein’s struggle, 
between 1913–1915, to find the gravitational field equations of general relativity. At a time 
when he was already unable to find generally covariant equations for the gravitational field 
(i.e., the metric) that had the correct Newtonian limit and satisfied energy-momentum 
conservation, the Hole Argument confirmed him in at least temporarily giving up the 
idea of general covariance (which he later recovered without ever mentioning the Hole 
Argument again, at least in print).1 Einstein’s invention of the argument formed part of 
his analysis of the interplay between general relativity (of motion), general covariance (of 
physical equations under coordinate transformations), and determinism (here: of the field 
equations of general relativity).

Thus, Einstein felt he had to choose between determinism and general covariance; 
the recent emphasis on the tension between determinism (siding with relationalism) 
and substantivalism is due to Earman and Norton (1987). But, since for Einstein the 
opposition between substantivalism and relationalism was closely related to the problem 
of absolute versus relative motion, and hence to his putative “principle of general 
relativity” (Earman 1989), he would certainly have been interested in it.

In modernized form (using a global perspective and replacing Einstein’s coordinate 
transformations by diffeomorphisms), his reasoning was essentially as follows:2

•	 Let (M, g) be a spacetime.3 The transformation behavior of the Einstein tensor Ein(g) 
under diffeomorphisms ψ of the underlying manifold M is

	 * *(Ein( )) = Ein( ).ψ g ψ g � (1)

Similarly, for any healthy energy-momentum tensor T(g, F) constructed from the metric g 
and the matter fields F that matter we should have

	 * * *( ( , )) = ( , ).ψ T g F T ψ g ψ F � (2)

Consequently, if g satisfies the Einstein equations Ein( ) = 8 ( , )g πT g F , then *ψ g satisfies 
these equations for the transformed matter fields *ψ F.

•	 Now consider an open connected vacuum region H in spacetime, possibly 
surrounded by matter (i.e., F = 0 in H); H is referred to as a “hole,” hence the name 

1	 See Janssen and Renn (2022) for the final reconstruction of Einstein’s struggle, with 
§4.1 devoted to the Hole Argument. The earliest known reference to the Hole Argument is in 
a memo by Einstein’s friend and colleague Besso dated August 1913, provided this dating is 
correct (Janssen 2007). Einstein subsequently presented his argument four times in print; I 
just cite Einstein (1914) as the paper containing his final version. Implicitly, his later point-
coincidence argument (Einstein 1916) was his own reply to his Hole Argument (Norton 1993; 
Giovanelli 2021). See Stachel (2014), Norton (2019), Pooley (2022), and Gomes and Butterfield 
(2023a), and references therein for reviews of the Hole Argument in both a historical and a 
modern context.

2	 We write the Einstein tensor as Ein(g), where its dependence on the metric g is explicitly 
denoted; in coordinates we have 1

2Ein( ) = = –μν μν μν μνg G R g R.

3	 A spacetime is a smooth four-dimensional connected Lorentzian manifold with time 
orientation (this nomenclature of course hides philosophical issues to be discussed later in 
this paper). More generally, my notations and conventions follow Landsman (2021) and are 
standard, e.g., spacetime indices are Greek whereas spatial ones are Latin, the metric has 
signature –+++, etc.
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of the argument.4 Furthermore, find a diffeomorphism ψ that is nontrivial inside H 
and equals the identity outside H, so that in particular,

	 * * *( , ) = ( , ) = ( , ),T ψ g ψ F T ψ g F T g F � (3)

both outside H (where ψ is the identity) and inside H (where T(g, F) = 0).

•	 It follows from the previous points that if g satisfies the Einstein equations for some 
energy-momentum tensor T, then so does *ψ g. Hence the spacetimes (M, g) and (M, 

*ψ g) satisfy the Einstein equations for the same matter distribution and are identical 
outside H. But they differ inside the hole.

Einstein saw this as proof that the matter distribution fails to determine the metric 
uniquely, and regarded this as such a severe challenge to determinism that, supported by 
the other problems he had at the time, he retracted general covariance.

From a modern point of view, the energy-momentum tensor is a red herring in the 
argument,5 which may just as well be carried out in vacuo, as will be done from now on; 
this also strengthens my subsequent reformulation of the argument, since the theorem on 
which this is based is less well developed in the presence of matter.

Earman and Norton (1987), then, revived the Hole Argument, as follows:6

1.	 Although, in the case considered by Einstein, (M, *ψ g) and (M, g) are 
mathematically speaking different spacetimes (unless *ψ g = g, in which case the 
Hole Argument is void), physicists—usually tacitly—circumvent this alleged lack 
of determinism of gr by simply “identifying” the two, i.e., by claiming that (M, *ψ g) 
and (M, g) represent “the same physical situation.”

2.	 In this practice they are encouraged by the observation that (M, *ψ g) and (M, g) are 
isometric; trivially, the pertinent isometry is ψ, and so the conclusion would be that 
isometric spacetimes represent the same physical situation.

4	 Einstein’s arrangement looks unnatural compared to Hilbert’s (1917) reformulation as 
an initial-value problem in the pde sense (see Proposition 1 below), but Einstein was inspired 
by Mach’s principle, where “fixed stars at infinity” determine the local inertia of matter; 
see Maudlin (1990), Hoefer (1994), and Stachel (2014). An argument that actually favors 
Einstein’s curious setting for the Hole Argument is this: The smaller the hole, i.e., the larger 
the complement of the hole, the greater the challenge to determinism, for if even things almost 
everywhere except in a tiny hole fail to determine things inside that hole, then we should really 
worry (Butterfield 1989). This pull admittedly gets lost in the initial-value formulation of the 
argument below. See Muller (1995) for the explicit construction of a hole diffeomorphism (the 
only one I am aware of).

5	 Continuing footnote 4: Janssen (2007, footnote 98) notes that Einstein formulated his 
requirement that the matter distribution fully determines the metric only in 1917; in 1913 
Einstein still thought of Mach’s principle in the light of the relativity of inertia. Furthermore, 
Einstein (1914) explicitly introduced the final version of the hole argument in terms of a 
conflict between general covariance and the “law of causality” (“Kausalgesetz”), which was 
contemporary parlance for determinism. In sum, it seems safe to say, with Janssen (2007), 
that the ‘worries about determinism and causality that are behind Einstein’s hole argument 
have strong Machian overtones.’ See Norton (1993) for Einstein’s general struggle with general 
covariance, and its aftermath.

6	 This (as well as Weatherall’s critique) relies on a precise understanding of the notion of an 
isometry between spacetimes (M′, g′) and (M, g): This is a diffeomorphism ψ : M′ → M for which 

*=g ψ g , or, equivalently, *=g ψ g, where –1 *
* = ( )ψ ψ . In particular, following, e.g., Hawking and 

Ellis (1973), we always take an isometry to be a diffeomorphism.
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3.	 However—and this is their key point—this spells doom for spacetime substantivalists 
(like Newton), who (allegedly) should be worried that if, in order to save 
determinism, x Î M, carrying the metric *ψ g(x), must be identified with ψ(x) Î M, 
carrying the same metric, then points have lost their “this-ness”: they cannot be 
identified as such, but only as carriers of metric information.

4.	 Thus, one seems forced to choose between determinism and substantivalism.

For the purpose of this paper, it is sufficient (and considerably easier) to replace the concept 
of substantivalism with what Gomes and Butterfield (2023a) call Distinct:7

Though isometric, (M, *ψ g) and (M, g) represent different physical possibilities.

The tension exposed by the modern Hole Argument, then, is the one between Determinism 
(cf. §3) and Distinct (as opposed to general covariance, which is assumed).8

But this discussion would be pointless if the Hole Argument is a non-starter, as claimed 
by Weatherall (2018) and his followers (Bradley and Weatherall 2022; Fletcher 2020; 
Halvorson and Manchak 2022). Let me recall the main point:

This discussion may be summed up as follows: There is a sense in which 
(M, gab) and (M, g̃ab) are the same, and there is a sense in which they are 
different. The sense in which they are the same–that they are isometric, or 
isomorphic, or agree on all invariant structure–is wholly and only captured 
by ψ̃. The (salient) sense in which they are different–that they assign different 
values of the metric to the same point–is given by an entirely different map, 
namely, 1M. But–and this is the central point–one cannot have it both ways. 
Insofar as one wants to claim that these Lorentzian manifolds are physically 
equivalent, or agree on all observable/physical structure, one has to use ψ̃ 
to establish a standard of comparison between points. And relative to this 
standard, the two Lorentzian manifolds agree on the metric at every point–
there is no ambiguity, and no indeterminism. (This is just what it means to 
say that they are isometric.) Meanwhile, insofar as one wants to claim that 
these Lorentzian manifolds assign different values of the metric to each 
point, one must use a different standard of comparison. And relative to this 
standard–that given by 1M–the two Lorentzian manifolds are not equivalent. 
One way or the other, the hole argument seems to be blocked (Weatherall 
2018, 338–339).

Here, –1 *= ( )g ψ g . Furthermore, the notation ψ̃ stands for the promotion

 ( , ) ( , )ψM g M g

7	 Gomes and Butterfield (2023a) argue that Earman and Norton (1987) assumed the 
implication Substantivalism ⟹ Distinct, which later literature questioned via attempts at 
“sophistication.”

8	 Note that there is a kind of indeterminism in gr that is outside the scope of the Hole 
Argument (whatever its worth): In the language detailed in §2 below, this is the possibility that 
strong cosmic censorship (in the current, initial-value problem sense) fails; in other words, that 
the mghd (i.e., maximal Cauchy development) of some well-posed “generic” initial data for the 
Einstein equations is extendible in a suitable regularity class (of the metric). See, e.g., Dafermos 
(2019), Doboszewski (2017, 2020), Smeenk and Wüthrich (2021), Landsman (2021), Chapter 10, 
and references therein. For conceptual history, see also Earman (1995) and Landsman (2022). I 
return to this in §3.
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of the diffeomorphism ψ : M → M of (bare) manifolds to an isometry of Lorentzian 
manifolds, seen as the objects in a category Lor whose arrows are isometries.9 There is 
no such extension  1 : ( , ) ( , )M M g M g  of the identity 1M of 1M, since 1M is not an isometry 
(unless ψ happens to be one);10 in Lor, only  1 : ( , ) ( , )M M g M g  is defined. And this is 
exactly Weatherall’s point: One cannot meaningfully identify x Î M seen as a point in the 
spacetime (M, g) with x Î M seen as a point in a different spacetime (M, g̃), in order to be 
able to say that g̃ab(x) ≠ gab(x), which would launch the Hole Argument. A similar point 
was made by Penrose:

The basic principles of general relativity—as encompassed in the term ‘the 
principle of general covariance’ (and also ‘principle of equivalence’)—tell 
us that there is no natural way to identify the points of one spacetime with 
corresponding spacetime points of another (Penrose 1996, 591).11

A simpler way to make the same mathematical point, in the spirit of Weatherall’s own 
abelian group example but closer to the mathematical structure of gr, would be to take 
pairs (M, f) where M is a manifold (or just a set without further structure) and f : M → R is 
a smooth function (or just a function), perhaps interpreted as some physical scalar field. 
The allowed maps between pairs (M′, f ′) and (M, f), i.e., the analogues of isometries, are 
those diffeomorphisms (or just bijections) ψ : M′ → M for which f ′ = f ⚬ ψ. Taking M′ = M, 
Weatherall would undoubtedly say:

•	 one can send a pair (x, f(x)) Î (M, f) to (ψ(x), f(x)) Î (M, *ψ f ), since f(x) = ( *ψ f )(ψ(x))

•	 but one cannot send (x, f(x)) to (x, f(ψ–1(x)), although the latter is a point in (M, *ψ f ), 
since neither 1M nor ψ can accomplish this.

Since, on this view, one cannot compare (x, f(x)) with (x, f(ψ–1(x)), one cannot relate 
f(ψ–1 (x)) to f(x) at x (which is deemed crucial for the Hole Argument).

There are also philosophical arguments against such “trans-world identifications,” see, e.g., 
Lewis (1986) and, in connection with the Hole Argument, Butterfield (1988, 1989) and 
Gomes and Butterfield (2023b). However, Weatherall explicitly tries to undermine the Hole 
Argument by appealing to mathematical practice:

In contemporary mathematics, the relevant standard of sameness for 
mathematical objects of a given kind is given by the mathematical theory 
of those objects. In most cases, the standard of sameness for mathematical 
objects is some form of isomorphism. (…) mathematical models of a 
physical theory are only defined up to isomorphism, where the standard of 

9	 In view of Theorem 2 below, within such reasoning one should optimally work in the 
category ST of spacetimes (see footnote 3), whose isomorphism are isometries preserving time 
orientation.

10	 The emphasis Halvorson and Manchak (2022) put in this context on their otherwise 
highly valuable Theorem 1 (see footnote 23) seems like flogging a dead horse. This theorem 
implies that a hole diffeomorphism of the kind envisaged by Einstein (1914) and Earman and 
Norton (1987), and explicitly constructed by Muller (1995), cannot be an isometry (which, or 
so it is suggested, would be the only remaining hope for the Hole Argument to work, accepting 
Weatherall’s critique). But if it were, then * =ψ g g all across M and the dilemma of having both 
(M, g) and (M, *ψ g) as models with the same matter distribution or other initial data simply 
would not arise: both (naive) determinism and substantivalism would be safe in gr: The Hole 
Argument would be a dud.

11	 Taken from the penultimate version of Gomes (2021a); omitted, alas, from the final 
version.
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isomorphism is given by the mathematical theory of whatever mathematical 
objects the theory takes as its models. One consequence of this view is that 
isomorphic mathematical models in physics should be taken to have the same 
representational capacities. By this I mean that if a particular mathematical 
model may be used to represent a given physical situation, then any isomorphic 
model may be used to represent that situation equally well. Note that this does 
not commit me to the view that equivalence classes of isomorphic models are 
somehow in one-to-one correspondence with distinct physical situations. But it 
does imply that if two isomorphic models may be used to represent two distinct 
physical situations, then each of those models individually may be used to 
represent both situations (Weatherall 2018, 331–332).

The structuralist approach suggested here implies that the specific nature of individual 
objects (in category theory) or models (in model theory) cannot be used.12

Weatherall’s arguments are controversial: see, e.g., Arledge and Rynasiewicz (2019), 
Roberts (2020), Pooley and Read (2021), Gomes (2021a,b), and Gomes and Butterfield 
(2023a) for criticism and discussion.13 My own two pennies worth would be to say that 
Weatherall uses the notion of “contemporary mathematics” quite selectively: In many 
cases, the specific nature of mathematical objects—as opposed to just their isomorphism 
class—is used. Indeed, the very definition of an isometry rests on the ability to put *ψ g at 
x, where originally there was g(x), and no mathematician would have any qualms saying 
this is the same x. Subsequently, to call ψ an isometry one needs to ask whether or not 

*ψ g(x) equals g(x) at x. More generally, defining the usual action of a diffeomorphism on 
a tensor (field) T(like the metric) puts ( *ψ T)(x) at x where previously there was T(x) at 
x (perhaps it is worth noting that in giving such definitions, mathematicians essentially 
stick to a Newtonian absolute spacetime, in which the points x are identifiable.) With it, 
the Lie derivative becomes questionable; see also Gomes (2021a), §2.4, and Gomes and 
Butterfield (2023a; 2023b). Furthermore, though indeed out of step with contemporary 
mathematics, all of the local coordinate-based definitions of tensors used in the past by 
Einstein (and even, both before and after the introduction of gr, by mathematicians like 
Ricci and Levi-Civita), while awkward as definitions, remain valid theorems in modern 
differential geometry. Do these definitions and theorems now become suspect? Finally, 
even if Weatherall (2018) were right, should mathematical practice really dictate the way 
physicists must interpret the mathematical objects they use? I would say the opposite: 
Physical practice should dictate the way mathematical objects are used, at least in the 
context of mathematical physics.14

2 THE CHOQUET-BRUHAT–GEROCH THEOREM
In any case, the apparently controversial Hole Argument is clarified by placing it in the 
context of an uncontroversial theorem due to Choquet-Bruhat–Geroch (1969) on the 
existence and uniqueness of maximal globally hyperbolic solutions to the Einstein field 

12	 This suggestion was subsequently somewhat weakened in Weatherall (2021) and is also 
challenged by, e.g., Roberts (2020), Gryb and Thébault (2022), and Pooley and Read (2022).

13	 See also Menon and Read (2023) for a valid critique of Halvorson and Manchak (2022).

14	 For example, Alexandre Grothendieck shaped current mathematical practice. But he 
famously refused to have anything to do with physics (because in his view physics led to nuclear 
weapons).
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equations. This is contained in Theorem 2, below.15 Together with Penrose’s work on 
the causal structure of spacetime, it is one of the pillars of mathematical relativity. In 
particular, all pde-related work in gr is based on it, including current approaches to cosmic 
censorship (see footnote 8). In the theorem, Einstein’s somewhat obscure way of stating 
the initial value problem for his field equations (in which, inspired by Mach’s principle, he 
implicitly took initial data outside a hole, essentially at infinity) is replaced by a version first 
discussed by Hilbert (1917), who took initial data on a spacelike slice.16 A Hilbert-style Hole 
Argument may then be based on Proposition 1 below), which comes out a special case of 
Theorem 2. The change from Einstein’s choice of initial data to Hilbert’s has little influence 
on any (relevant) philosophical discussion, which I will therefore base on Theorem 2.

Since the Hole Argument is closely related to the following central issues in the philosophy 
of gr, it is unsurprising that the Choquet-Bruhat–Geroch theorem clarifies those as well 
(in a way that can be separated from the Hole Argument):

1.	 Finding an appropriate notion of determinism for gr;

2.	 Interpreting isometries in gr as gauge symmetries.

Together with a reconsideration of Weatherall’s critique of the Hole Argument, the first 
issue will be taken up in §3, especially in the light of previous proposals by Butterfield 
(1987, 1988, 1989). The second will be discussed in §4.

First, I review the theorem in question. It is the culmination of the initial-value approach 
to gr, which is based on pde-theory, and the following ideology:17

•	 All valid assumptions in gr are assumptions about initial data  (Σ, , )g k .

Such an initial data triple, assumed smooth, is obtained by equipping some 3d Riemannian 
manifold  (Σ, )g  with a second symmetric tensor (2,0) (Σ)k X , i.e., of the same “kind” as the 
3-metric g̃, such that  (Σ, , )g k  satisfies the vacuum constraints

	       2 2– ( ) + ( ) = 0; – ( ) = 0. Tr Tr Trj
j i iR k k k k � (4)

Here R is the Ricci scalar on Σ for the Riemannian metric g̃ and likewise   is the unique 
Levi-Civita (i.e., metric) connection on Σ determined by g̃ (so that  = 0g ).

•	 All valid questions in gr are questions about “the” mghd (M, g, ι) thereof.

15	 The original source is Choquet-Bruhat and Geroch (1969), who merely sketched a proof 
(based on Zorn’s lemma, which they even had to use twice). Even the 800-page textbook by 
Choquet-Bruhat (2009) does not contain a proof of the theorem (which is Theorem XII.12.2); 
the treatment in Hawking and Ellis (1973), §7.6, is slightly more detailed but far from complete, 
too. Ringström (2009) is a book-length exposition of the theorem, but ironically his proof of 
Theorem 16.6, i.e., Theorem 2 above, is wrong; it is corrected in Ringström (2013), §23. A 
constructive proof was given by Sbierski (2016), which is streamlined and summarized in 
Landsman (2021), §7.6.

16	 Hilbert (1917) gave the first analysis of gr from a pde point of view. He addresses the 
indeterminism of Einstein’s equations, and also refers to Einstein (1914), but does not explicitly 
relate his analysis to the Lochbetrachtung. See also Howard and Norton (1993) and Brading 
and Ryckman (2018). For some history of the pde approach to gr see Stachel (1992), Choquet-
Bruhat (2014), and Ringström (2015), summarized in Landsman (2021), §1.9. It is also possible 
to give initial data for the Einstein equations on a null hypersurface (Penrose 1963); see, e.g., 
Klainerman and Nicolò (2003) for a detailed treatment. That would also lead to a version of the 
Hole Argument.

17	 Physicists would see this as the adm approach to gr, as in Misner, Thorne, and Wheeler 
(1973). But the mathematical literature developed almost independently, led by Choquet-Bruhat.
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Among these questions, the one relevant to the Hole Argument concerns the uniqueness of 
(M, g, ι), whence the scare quotes around “the.” Roughly speaking, a mghd (for maximal 
globally hyperbolic development) of  (Σ, , )g k  is a maximal spacetime (M, g) “generated” by 
these initial data via the Einstein equations, in that

ι : Σ ↪ M

injects Σ into M as a “time slice” on which the 4-metric g induces the given 3-metric g̃ 
and extrinsic curvature k. In more detail,18 a Cauchy development or globally hyperbolic 
development of given initial data  (Σ, , )g k  satisfying the constraints (4) is a triple (M, g, ι), 
where (M, g) is a spacetime that solves the vacuum Einstein equations Rμν = 0 and ι is an 
injection making ι( Σ) a spacelike Cauchy (hyper)surface in M such that g induces these 
initial data on @ (Σ) Σι , i.e., *=g ι g  is the metric and k is the extrinsic curvature of Σ, induced 
by the embedding ι and the 4-metric g.19 It follows that (M, g) is globally hyperbolic, since 
it has a Cauchy surface.

This formulation of the (spatial) initial-value problem for the (vacuum) Einstein equations 
was an achievement in itself. In particular, it circumvents the vicious circle one is forced 
into if one tries to find initial data for an already given spacetime (solving the Einstein 
equations); for, it is part of the problem to find the latter from the given initial data, and 
hence one cannot give say dg/dt (t = 0) as initial data.

However, the main achievement concerns the existence and uniqueness of (M, g, ι), which 
depends on a suitable notion of maximality (as in the far simpler case of odes, where in 
order to guarantee uniqueness, the time interval on which the solution is defined should 
be maximal). This notion is also non-trivial, and tied to gr. Namely:

•	 A maximal Cauchy development or maximal globally hyperbolic development, 
acronym mghd, of given smooth initial data  (Σ, , )g k , satisfying the constraints 
(4), is a Cauchy development (M, g, ι) with the property that for any other Cauchy 
development = globally hyperbolic development (M′, g′, ι′) of these same data there 
exists an embedding ψ : M′ → M that preserves time orientation, metric, and Cauchy 
surface as defined by ι, i.e., one has

	 –1*= ; = .g ψ g ι ψ ι   � (5)

A Hole Argument à la Hilbert (1917) then follows from a simple observation:20

Proposition 1. Given some mghd (M, g, ι) of the initial data  (Σ, , )g k , seen as the 
spacetime under review, let U be an open neighborhood of ι( Σ) in M. Take a (time 
orientation preserving) diffeomorphism ψ of M that is the identity on U. Then the 
triple (M′, g′, ι′), where M′ = M, g′ = *ψ g (so that g′ = g within U), and ι′ = ι, with 
time orientation induced by ψ,21 is a mghd of the same initial data  (Σ, , )g k .

18	 See also the references in footnote 23, or Landsman (2021), §7.6. Tildes adorn 3d objects.

19	 Let N be the unique (necessarily timelike) future-directed normal vector field on (Σ)ι   such 
that ( , ) = –1x x xg N N . Then ( , ) = – ( , )Xk X Y g N Y   defines the extrinsic curvature of (Σ)ι  .

20	 This construction also works if –= ( (Σ))U J ι  , cf. Curiel (2018) and Pooley (2022). The 
‘Gauge Theorem’ of Earman and Norton (1987, 520) is similar in spirit but lacks the connection 
to the initial-value problem that is central here. Both results of course follow from general 
covariance.

21	 Defining time orientation by (the equivalence class of) a global timelike vector field T on 
M, so that some causal vector X is future-directed iff g(X, T) < 0, this means that –1

*( ,  ) < 0g T ψ T  .
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This supports a decent version of the Hole Argument. It is superior to Einstein’s and 
Earman and Norton’s formulation in that it has shaken off any implicit reference to Mach’s 
principle and is closer to the usual initial value problem for hyperbolic pdes, with initial 
data on a spacelike hypersurface.22 Note in this respect that the open set U is the analog 
of the complement of Einstein’s hole. The larger U is, the stronger the potential challenge 
to determinism (since the ensuing spacetimes differ in the complement of U, which for 
Einstein is inside the hole and for us is away from the initial data Cauchy surface ι( Σ)), 
but although U can be made arbitrarily thin (as long as it contains ι( Σ)), it may as well be 
arbitrary large (idem dito). Thus, the logical strength of both versions of the Hole Argument 
seems quite similar.

But! With respect to Weatherall’s (2018) critique, Proposition 1, seen as Hilbert’s version 
of the Hole Argument, is not really different from Einstein’s, since it equally well starts 
from a diffeomorphism ψ of M that only becomes an isometry from (M, *ψ g) to (M, g) “with 
hindsight.” Although I disagree with this critique (see §1), I intend to weaken it even 
further via a slight reformulation—and corollary of—the celebrated theorem of Choquet-
Bruhat and Geroch (1969):23

Theorem 2. For each initial data triple  (Σ, , )g k  satisfying the constraints (4) 
there exists a mghd (M, g, ι). Any triple (M′, g′, ι′) that arises from an isometry 
( , ) ( , )ψM g M g    that preserves time orientation and satisfies ψ  ι′ = ι (fixing the 
Cauchy surface) is an mghd of the same initial data.24 Conversely, all mghds of 
these data arise in this way, so (M, g, ι) is unique up to these specific isometries.

The easy first part incorporates Proposition 1 as a special case. The difficult second part, 
which is the real thrust of the theorem, is a nontrivial converse to the first.

3 RETHINKING THE HOLE ARGUMENT
Like the Earman-Norton Hole Argument,25 Theorem 2 exposes the tension between:

1.	 Determinism, in the precise version that the Einstein equations for given initial data 
have a unique solution in the sense that triples (M, g, ι) and (M′, g′, ι′), as in the 
statement of Theorem 2, are seen as different mathematical representatives of the 
same physical situation (i.e., are “physically identified”).

2.	 Distinct, in the sense that triples (M, g, ι) and (M′, g′, ι′) represent different physical 
possibilities (although they are observationally indistinguishable).

22	 With a special gr twist, though: the Einstein equations are not hyperbolic, but the 
six spatial ones are hyperbolic in a suitable gauge, in which the remaining four are elliptic 
constraints.

23	 Though rarely, if  ever, mentioned, the isometry ψ in the converse is unique. This can 
be shown by Proposition 3.62 in O’Neill (1983) or the equivalent argument in footnote 639 of 
Landsman (2021), to the effect that an isometry ψ is determined at least locally (i.e., in a convex 
nbhd of x) by its tangent map xψ  at some fixed x Î M′. Take (Σ)x ι   . Since ψ in Theorem 2 is 
fixed all along (Σ)ι   by the second condition in (5) and since it also fixes the (future-directed) 
normal Nx to (Σ)ι   by the first condition in (5), it is determined locally. Theorem 1 in Halvorson 
and Manchak (2022) then applies, which is a rigidity theorem for isometries going back at least 
to Geroch (1969), Appendix A (as Halvorson and Manchak acknowledge).

24	 At first sight, only the second half of (5) appears in the above theorem. But the first half is 
part of the definition of an isometry.

25	 Recall that Einstein’s Hole Argument was meant to enforce a choice between determinism 
and general covariance. Theorem 2 is based on standard (generally covariant) gr and hence this 
choice has already been made, leaving the dilemma highlighted by Earman and Norton (1987).
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All discussions of this tension (e.g., Butterfield 1989; Curiel 2018; Gomes & Butterfield 
2023a; Pooley 2022), which I will not review, remain relevant if we support the Hole 
Argument by Theorem 2 instead of Proposition 1 or Einstein’s construction. However, after 
this replacement, options 1 and 2 do differ a little from before:

•	 Option 1 is, in the context of Theorem 2, a larger move compared to the original 
Hole Argument, since far more spacetimes are now declared to be “physically 
equivalent”: namely all triples (M′, g′, ι′) in its statement. But in return, the thrust 
of choosing this option is strengthened: Regarding (M, *ψ g) and (M, g) as physically 
equivalent for some specific Hole diffeomorphism ψ, as in Proposition 1, merely 
restores determinism in a special case, whereas (the second part of) Theorem 2 gives 
us complete assurance (barring indeterminism caused by violations of strong cosmic 
censorship, see §1 and below).

•	 Option 2, on the other hand, requires no more commitment than in the original 
Hole Argument: If we do not even identify (M, g) with (M, *ψ g) in Proposition 1, 
where the underlying manifolds are the same, then certainly we will not identify any 
of the more general triples (M′, g′, ι′), where they are different.

Given its much better embedding in the mathematical (physics) literature, it seems 
considerably more difficult for Weatherall and his followers to redirect their critique of 
the (modern) Hole Argument to Theorem 2. Although I can’t speak for them, here are, 
prophylactically, some options they might still invoke, with a reply:

(a)	 The part of Theorem 2 that is actually relevant to the Hole Argument should be 
stated as follows, assuming the existence of a ‘reference’ mghd (M, g, ι):

	 Any diffeomorphism ψ : M′ → M gives rise to another mghd (M′, g′, ι′) of the same 
initial data  (Σ, , )g k , where g′ = *ψ g and ι′ = ψ–1  ι.26

	 Weatherall’s original arguments (from his 2018) then apply almost verbatim 
(and indeed, I would say they are even clearer in this more general context). 
But I was very careful in stating Theorem 2 the way I did: all reference to “pure” 
diffeomorphisms has gone, and all spacetimes that occur in the theorem are 
related by isometries: It is either assumed (in the first half) or concluded (in the 
second half) that ( , ) ( , )ψM g M g    is an isometry. No other maps are mentioned 
and no controversial comparisons need to be made.

	 In so far as an appeal to “mathematical practice” is made, I would answer that 
few if any mathematicians would be sensitive to the difference between the above 
reformulation of the middle part of Theorem 2 and its earlier statement.

(b)	 One might accept Theorem 2 as it stands, but somehow object to Proposition 
1 being a special case of it (for example, because its construction mixes up 
diffeomorphisms and isometries). Although I would again doubt any such 
arguments, especially if they appeal to “mathematical practice,” even if they were 
valid I would point out that Theorem 2 as a whole raises the same dilemma as the 
Hole Argument and indeed may be taken to be the Hole Argument (2.0).

(c)	 One could reject Theorem 2, for example because its proof (admittedly!) does 
use (even local) diffeomorphisms and pointwise comparisons of metrics. But, 
further to the discussion in the Introduction, if Weatherall et al. would object to 

26	 M′ acquires a time orientation from M and ψ, which ψ trivially preserves, cf. footnote 21.
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generally accepted proofs of theorems by top mathematicians, then their appeal to 
“mathematical practice” would once again be self-defeating.27

I now compare the notion of Determinism (which is standard in mathematical relativity) 
used above with an influential definition appearing in the philosophy of physics literature 
due to Butterfield (1987, 1989), which was specifically developed in the context of the Hole 
Argument. In order to clarify the connection of his definition with Theorem 2, I first state 
a somewhat awkward weakening of this theorem:

Corollary 3. If two globally hyperbolic spacetimes (M, g) and (M′, g′) contain 
Cauchy surfaces ÌΣ M and ÌΣ M , respectively, which carry initial data  (Σ, , )g k  
and (Σ , , )g k      induced by the 4-metrics g and g′ on M and M′, respectively, 
where both (M, g) and (M′, g′) are maximal for these initial data, and there is a 
3-diffeomorphism : Σ Σα    such that *=g gα   and *=k α k  , then there exists an 
isometry β : M′ → M that preserves time orientation and restricts to α on Σ.

This corollary is weaker than Theorem 2, for it lacks the existence claim of (M, g). In 
comparison, Butterfield’s Definition Dm2 of determinism is as follows:

A theory with models (M, Oi) is S-deterministic, where S is a kind of region that 
occurs in manifolds of the kind occurring in the models, if:

given any two models (M, Oi) and ( iM O ) containing regions S and S′ of 
kind S, respectively, and any diffeomorphism α from S′ onto S:

If )* ( =i iO Oα  on α(S′) = S, then there is an isomorphism β from M′ 
onto M that sends S′ to S, i.e., * =i iβ O O throughout M′ and β(S′) = S.

(Butterfield 1987, 29; Butterfield 1989, 9)

Here it would clarify the situation to add the requirement that β extends α.28

To start with the good news: Though not intended for that purpose, this definition is quite 
suitable for expressing the idea of determinism inherent in strong cosmic censorship 
(and its possible violation!), cf. footnote 8. Indeed, define models (of gr) to be spacetimes 
(M, g) satisfying the (vacuum) Einstein equations, and take the regions S to be mghds of 

27	 It may be interesting to point out that some of the most beautiful theorems in category 
theory, such as Gelfand duality, have very ugly proofs involving all kinds of constructions that 
the final result sweeps under the carpet; see Landsman (2017), Appendix C, for this specific 
example.

28	 Butterfield (1987, 1989) emphasizes that β need not extend α (his primed objects are our 
unprimed ones). However, his counterexamples are easily avoided by requiring that α is only 
defined on S′. It is clear from Butterfield and Gomes (2023a), end of §2.2.3, that Butterfield 
endorses my discussion. Butterfield contrasts Dm2 with a Laplacian kind of definition of 
determinism Dm1 he attributes to Montague and Earman: “A theory with models (M, Oi) is 
S-deterministic, where S is a kind of region that occurs in manifolds of the kind occurring 
in the models, if: given any two models (M, Oi) and ( iM O ) and any diffeomorphism β from 
M′ onto M, and any region S of M of kind S: if β(S) is of kind S and also * =i iβ O O on S′, then: 

* =i iβ O O throughout M′.” If we correct this similarly to Dm2, Butterfield’s point still stands: 
The Hole Argument (in any version) shows that gr violates Dm1. See also Belot (1995), Melia 
(1999), and Pooley (2022) for a detailed analysis of similar definitions. Pooley’s version of 
Dm2 is a bit more general and also applies to gr: “Theory T is deterministic just in case, for 
any worlds W and W′ that are possible according to T, if  the past of W up to some timeslice 
in W is qualitatively identical to the past of W up to some timeslice in W′, then W and W′ are 
qualitatively identical.” Apart from my complaint that also this definition assumes the existence 
of W and W′ (instead of proving it), a definition like this requires a sub-definition of what is 
meant by ‘qualitative’, which Theorem 2 also takes care of.
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initial data ( , )g k  posed on some partial Cauchy Σ surface in M. Then, gr is S-deterministic 
precisely if strong cosmic censorship holds. Indeed: If not, let (M, g, ι) be a mghd of initial 
data  (Σ, , )g k  as in Theorem 2, with (M, g) the associated spacetime, and let (M′, g′) be a 
proper extension thereof (which, by definition, exists if strong cosmic censorship fails). 
Then Dm2 fails.29

However, the “Laplacian” context in which Dm2 was originally proposed suggests that the 
idea was to take S Ì M to be a time-slice in a spacetime (M, g). In that case, for there to 
be any hope that gr is deterministic even if strong cosmic censorship holds, Butterfield’s 
definition should be amended in the following way:

1.	 The class of models should be restricted to maximal globally hyperbolic solutions to 
the vacuum Einstein equations with initial data as in Theorem 2.

2.	 Either S should be a neighborhood of a Cauchy surface in M (as in the Hole 
Argument), or the models (M, g) should be triples (M, g, ι), in which case one should 
add a condition on the extrinsic curvature to ‘ *( ) =α g g on α(S′) = S’.

Granting strong cosmic censorship, gr is then S-deterministic by Theorem 2.

Of course, definitions like Butterfield’s Dm2 or its close cousins are not sacrosanct. 
An anonymous referee very ingeniously suggested that Determinism and Distinct are 
compatible with each other and with Theorem 2 in the following way:

The initial data induced by the triple  (Σ, , )g k  on (Σ)ι MÌ  are taken to be distinct 
from those induced by the same triple on Σ( )ι MÌ  (as in the theorem).

Consequently, this distinction should then also be made in the situation of Proposition 
1 (which, after all, is the special case of the general situation just addressed), where the 
isometric space-times (M, g) and (M′, g′) both extend the “same” Cauchy surface Σ = Σι ι    
carrying the “same” initial data ( , )g k . Indeed, if the initial data for (M, g) and (M′, g′) 
are different, no determinist would object to the ensuing dynamically evolved space-times 
being different; whereas, according to this new view, they were misled in believing that the 
initial data for the isometric but otherwise different space-times (M, g) and (M′, g′) were 
the same.

This kind of thinking would clearly be at odds with Dm2 and similar (gr-adapted) 
“Laplacian” definitions of determinism. It would also affect the original Hole Argument: 
for, likewise, a way out of both Einstein’s and Earman and Norton’s Hole Argument would 
be to deny that the space-times outside the hole within (M, g) and (M, *ψ g) are identical 
(whereas the Hole Argument is based on their identification). This would move the 
discussion from possible (mis)identifications of points and metrics inside the hole (or far 
outside the Cauchy surface), where the metrics are different, to (mis)identifications outside 
the hole (or inside the Cauchy surface), where the metrics are the same. Claiming that 
such identifications are wrong or undefined would be even more radical than Weatherall’s 
objection to the Hole Argument (which concerns the region where the metrics are different), 
but would equally well undermine it, in the sense that the tension or contradiction between 
Determinism and Distinct does not in fact arise.

29	 The Kerr and Reissner-Nordström spacetimes are indeterministic in precisely this way, 
though strictly speaking, these spacetimes are usually not seen as indicating a violation of 
strong cosmic censorship in gr as a whole since their initial data are not “generic” in some 
suitable sense.
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This idea is certainly worth further discussion; for the moment, my reply is:

–	 No mathematical relativist would ever consider making the said distinction between 
initial data, since all their practices are based on identifying them;

–	 Few philosophers would do so either, given the mismatch with Dm2 and the like.

Finally, Theorem 2 (as well as Theorem 4 below) is reminiscent of the spontaneous 
breakdown of gauge symmetry through the Higgs mechanism.30 Here, in order to settle 
into a minimum of the Higgs potential, the Higgs field φ must “choose” a point φc on a 
circle as its “frozen” vacuum value. The global U(1) symmetry involved in this choice is a 
finite-dimensional shadow of the original infinite-dimensional local U(1) symmetry of the 
theory (see also endnote xxxii, below). Different choices of φc yield phenomenologically 
indistinguishable worlds and hence the analogy is between moving the vacuum value φc 
around on a circle and moving a spacetime (M, g) around in its orbit under its isometry 
group.31 Also, here we are talking about symmetries of the universe as a whole, which is 
what makes them unobservable; the situation changes completely if different domains in 
the universe have different values of φc.

Let us now turn to an important special (!) case of this situation of Theorem 2.

4 SPECIAL RELATIVITY: STATUS OF THE 
POINCARÉ GROUP
If one chooses the first option of Determinism from the binary menu opening the 
previous section, the isometries in Theorem 2 have to be interpreted accordingly as gauge 
symmetries. The way these symmetries reflect the original diffeomorphism invariance of 
the Einstein equations (which invariance launched the Hole Argument in the first place!) 
is clear from point (a) in the same section. In the special case M′ = M, for some given 
mghd (M, g, ι) and any diffeomorphism ψ : M → M, one obtains a new mghd (M′, g′, ι′) 
= (M, *ψ g, ψ–1  ι), which (by the vote for determinism) is deemed physically equivalent 
to (M, g, ι). There is no reason, however, why, at least in the context of the initial-value 
formulation, the diffeomorphism invariance of gr should not include diffeomorphisms 
ψ : M′ → M for M′ ≠ M (and both mathematical and physical practice confirms this); 
the statement that the “gauge group” of gr is “Diff(M)” seems too narrow (and even ill 
defined: which M is meant?), and Theorem 2 shows the full situation. The seeming lack of 
general covariance of the initial-value problem for gr, notably of its initial data  (Σ, , )g k ,  
is then amply compensated for by the fact that (by Theorem 2) its solution, starting from 
some reference mghd (M, g, ι), has covariance properties exceeding all expectations: The 
mathematical structure of the symmetry “thing” in the initial-value formulation of gr 
seems to be that of a groupoid, where for given initial data  (Σ, , )g k  the base space consists 
of all manifolds diffeomorphic to the manifold M in some reference mghd (M, g, ι) of these 
data and the arrows are diffeomorphisms. The symmetry groupoid of gr therefore depends 
on the initial data and is not universal.

On the other hand, the special case where ψ is an isometry of (M, g) (as opposed to a 
diffeomorphism promoted to an isometry from (M, *ψ g) to (M, g), as in the Hole Argument) 

30	 See Struyve 2011, Landsman (2017), §10.10, or any book on the Standard Model.

31	 This analogy is admittedly weak, since Theorem 2 involves both the embedding maps ι 
and the possibility that isometries move a given spacetime (M, g) to one (M′, g′) with a different 
underlying (but diffeomorphic) manifold M, neither of which have a counterpart in the Higgs 
mechanism.
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is also clarified by Theorem 2 (except for the identity map 1M, such isometries exist only 
for exceptional spacetimes). Indeed, since these are merely a special case of the general 
isometries in Theorem 2, they have to be interpreted in exactly the same way, that is, as 
gauge transformations. This may be surprising, because the isometry group Iso(M, g) of a 
fixed spacetime (M, g) is finite-dimensional and, hence, is not given by freely specifiable 
functions on M, as one expects in gauge theories.32 The explanation is simply that Iso(M, g) 
is a finite-dimensional subgroup of the infinite-dimensional gauge groupoid just defined 
(for given initial data).33

The simplest case where this occurs is in special relativity.34 Minkowski spacetime 
4= ( , )ηM R  is a maximal globally hyperbolic solution to the vacuum Einstein equations,35 

which arises as “the” mghd 4
0( , , )ιηR  of the initial data

3(Σ = , = , = 0),g δ k R

where δ is the Euclidean metric on R3 and

	 1 2 3 1 2 3( , , ) = (0, , , ).ι x x x x x x � (6)

By the general analysis above, the group of time-orientation-preserving Poincaré 
transformations is then contained in the gauge groupoid of these initial data and hence 
Poincaré transformations are, perhaps surprisingly, gauge transformations.

Another, more interesting way of reaching the same conclusion is to regard special 
relativity not as a specific solution to the vacuum Einstein equations, but as a generally 
covariant field theory by itself, formulated like gr but with the field equation

	 = 0,ρσμνR � (7)

instead of Rμν = 0. The initial value problem is then almost the same as in general relativity,36 
except that the initial data  (Σ, , )g k  now satisfy the (vacuum) constraints

	 – + = 0; – 0.ijkl il jk ik jl i jk j ikR k k k k k k =       � (8)

The constraints (8) of generally covariant special relativity are stronger than their 
counterpart (4) in gr, which actually follows from (8) by contracting with ik jlg g   and ikg , 
respectively. The reason is that, in gr, one merely asks for an embedding of the initial data 
in a Ricci-flat Lorentzian manifold (M, g), i.e., Rμν = 0, whereas in special relativity one 

32	 If dim(M) = n, then for any semi-Riemannian metric g the isometry group of (M, g) is at 
most 1

2 ( +1)n n -dimensional. See O’Neill (1983), Lemma 9.28; Kobayashi and Nomizu (1963), 
Theorem VI.3.3, do the Riemannian case. Thus the Poincaré-group in n = 4 has maximal 
dimension 10.

33	 Subgroups of groupoids, seen as (small) categories in which each arrow is invertible (i.e., 
an isomorphism), are contained in the group of arrows from some base object to itself.

34	 The following analysis was inspired by correspondence with Henrique Gomes and Hans 
Halvorson, who proposed to look at special relativity in this context. See also Iftime and Stachel 
(2006).

35	 Maximality of Minkowski spacetime follows from its inextendibility; see, e.g., Corollary 
13.37 in O’Neill (1983) for the smooth case and Sbierski (2018) for inextendibility even in C0.

36	 This upsets the idea that special relativity uses only linear subspaces of spacetime as 
hypersurfaces of simultaneity whereas general relativity uses general curved surfaces, but already 
Schwinger (1948) employed arbitrary initial data surfaces in relativistic quantum field theory.
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seeks an embedding in a flat Lorentzian manifold, as follows from (7), and the so-called 
fundamental theorem of (semi) Riemannian geometry.37

To avoid global topological issues, I assume that Σ is diffeomorphic to R3, in which case the 
role of a (reference) mghd (M, g, ι) in Theorem 2 is simply played by Minkowski spacetime 

4( , ηR ), with ι to be found (see Theorem 4 below).38 One could now state and prove a 
counterpart of Theorem 2 for generally covariant special relativity, but instead I rely on 
a Minkowskian version of the fundamental theorem for hypersurfaces, whose original 
version studied embeddings of two-dimensional surfaces Σ in R3 with Euclidean metric 
(here lies the origin of the Gauss–Codazzi equations, which also play a key role in deriving 
the constraints (4) in gr):39

Theorem 4. For each initial data triple 3( , , )kg R  satisfying the constraints (8) 
there exists an isometric embedding 3 4:ι R R  carrying the Minkowski metric 
η, whose extrinsic curvature is the given tensor k. Any triple 4( , , )ιηR  that arises 
from an isometry ψ of M (i.e., a Poincaré transformation), preserves time-
orientation, and satisfies ψ  ι′ = ι has the same properties (that is, 3 4:ι R R  is 
an isometric embedding and the extrinsic curvature induced on 3 4( )ι Ì R R  by the 
metric η is k).

Conversely, all triples 4( , , )ιηR  with these properties arise in this way from some 
given triple 4( , , )ιηR , which is therefore unique up to Poincaré transformations.

There is a clear conceptual analogy between Theorems 2 and 4, except that unlike the 
former, the latter does not take into account the spacetimes (M, η′) that are isometric 
to Minkowski spacetime M (where M could even be R4). However, the corresponding 
more general version of Theorem 4 would not affect my conclusion about Poincaré 
transformations, it would just assign a similar interpretation to even more transformations. 
And, exactly as in my discussion of special relativity as a special (vacuum) solution of gr, 
this interpretation is that Poincaré transformations in generally covariant special relativity 
play the same role as the isometries in general relativity that appear in Theorem 2. On the 
option of determinism as a way out of the Hole Argument, Poincaré transformations are 
therefore physically inert!

Now, whereas most physicists would be happy to regard isometries in general relativity 
as gauge symmetries, few would regard Poincaré transformations as such. Fortunately, 
Gomes (2021b), partly reflecting on Belot (2018), makes the right point:

37	 In Lorentzian signature this theorem states that (M, g) is locally flat (in that its metric is 
locally Minkowski) if its Riemann tensor vanishes. See, e.g., Landsman (2021), Theorem 4.1.

38	 By the splitting theorem of Geroch (1970) as improved by Bernal and Sánchez (2003), 
global hyperbolicity of (M, g) gives 4=× ΣM  R R , diffeomorphically. Hence we may actually 
take 4=M R , due to (7) necessarily with the Minkowski metric. Finally, M is maximal, cf. 
footnote 35.

39	 See Kobayashi and Nomizu (1969), Theorem VII.7.2 or Landsman (2021), Theorem 
4.18. This theorem is concerned with embeddings of curved surfaces with prescribed second 
fundamental form into Euclidean space and goes back to the nineteenth century. The proof of 
the Minkowskian case is the same, up to some sign changes: In the Euclidean case, the first 
constraint in (8) is + –ijkl il jk ik jlR k k k k    , the sign changes going back to the different signs in the 
Gauss–Codazzi equations in Euclidean and Lorentzian signature, see e.g., eqs. (4.147)–(4.148) 
in §4.7 in Landsman (2021). These sign changes do affect the outcome. For example, Hilbert 
(1901) proved that it is impossible to isometrically embed two-dimensional hyperbolic space 
(H2, gH) in Euclidean R3. But hyperbolic space can be isometrically embedded in R3 with 
Minkowski metric, cf., e.g., Landsman (2021), §4.4. Hence, given (H2, gH), a symmetric tensor 
k such that (gH, k) satisfy the Euclidean constraint does not exist, but such a k can be found 
satisfying the Minkowski constraints.
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But some familiar symmetries of the whole Universe, such as velocity boosts in 
classical or relativistic mechanics (Galilean or Lorentz transformations), have a 
direct empirical significance when applied solely to subsystems. Thus Galileo’s 
famous thought-experiment about the ship—that a process involving some set 
of relevant physical quantities in the cabin below decks proceeds in exactly 
the same way whether or not the ship is moving uniformly relative to the 
shore–shows that sub-system boosts have a direct, albeit relational, empirical 
significance. For though the inertial state of motion of the ship is undetectable 
to experimenters confined to the cabin, yet the entire system, composed of 
ship and sea registers the difference between two such motions, namely in the 
different relative velocities of the ship to the water.

(Gomes 2021b, 2)

In other words, in thinking about Poincaré transformations as bringing physical change, as 
for example in boosts of Galileo’s ship or Einstein’s train, we apply such transformations to 
subsystems of the universe. But Theorem 4 concerns the action of Poincaré transformations 
on spacetime as a whole. See also Wallace (2022). Similarly, since time translations are 
Poincaré transformations, even special relativity seems a “timeless” theory in the sense 
that time translation is a gauge transformation. But once again, this only applies to empty 
spacetime, where it seems correct.

Summarizing: In the substantivalism versus relationalism debate (Earman 1989; Pooley 
2013), I see general relativity and special relativity as qualitatively similar. Whatever 
differences there are seem technical rather than conceptual, just reflecting the underlying 
difference between the field equations Rμν = 0 and Rρσμν = 0.

5 THE HOLE ARGUMENT IN THE PHILOSOPHY 
OF SCIENCE
Despite their denial of the Hole Argument, Weatherall (2018) and Halvorson and Manchak 
(2022) make some of the most pertinent comments towards its resolution:

Mathematical models of a physical theory are only defined up to isomorphism, 
where the standard of isomorphism is given by the mathematical theory of 
whatever mathematical objects the theory takes as its models. One consequence 
of this view is that isomorphic mathematical models in physics should be taken 
to have the same representational capacities. By this I mean that if a particular 
mathematical model may be used to represent a given physical situation, then 
any isomorphic model may be used to represent that situation equally well. 
Note that this does not commit me to the view that equivalence classes of 
isomorphic models are somehow in one-to-one correspondence with distinct 
physical situations. But it does imply that if two isomorphic models may be 
used to represent two distinct physical situations, then each of those models 
individually may be used to represent both situations.

(Weatherall 2018, 331–332)

Why is it, then, that there has been, and will surely continue to be, a feeling 
that there is some remaining open question about whether general relativity is 
fully deterministic? Our conjecture is that the worry here arises from the fact 
that general relativity, just like any other theory of contemporary mathematical 
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physics, allows its user a degree of representational freedom, and consequently 
displays a kind of trivial semantic indeterminism: how things are represented at 
one time does not constrain how things must be represented at later times.

(Halvorson and Manchak 2022, 19)

These comments could just as well have been made about Theorem 2, which by itself 
already makes it worth delving into the idea of “representational freedom.”40

I suggest that the Hole Argument and/or Theorem 2 prompt us to choose not only 
between Determinism and Distinct, but, having chosen the first option, to also refine the 
consequences of this option—seeing isometries as gauge symmetries—through a further 
choice in this garden of forking paths. This second choice is between two positions in the 
philosophy of mathematics that are traditionally seen as opposites, namely a Hilbert-style 
structuralism and a Frege-style abstractionism:41

•	 Structuralism: Spacetimes (with fixed initial data) are mathematical structures, 
which by their very nature can only be studied up to isomorphism. Since isometry 
is the pertinent notion of isomorphism, the identification of isometric spacetimes 
called for by the Hole Argument or Theorem 2 was to be expected.

•	 Abstractionism: The relevant mathematical object is the equivalence class of all 
spacetimes (with fixed initial data) up to isometry. Quoting Wilson (2010):

Appeals to equivalence classes will seem quite natural if one regards 
the novel elements as formed by conceptual abstraction in a traditional 
philosophical mode: one first surveys a range of concrete objects and then 
abstracts their salient commonalities (Wilson 2010, 395).

In the case at hand, the ‘salient commonalities’ seem to be the property that all 
members of a given equivalence class satisfy the vacuum Einstein equations 
with identical initial data. In the spirit of the abstractionist program, this 
commonality may be expressed by the function f from the class of all triples 
(M, g, ι) to the class of all triples  (Σ, , )g k  that maps (M, g, ι) to the initial data 
it induces on (Σ)ι MÌ , where it is assumed that each (M, g, ι) is a maximal 
globally hyperbolic spacetimes with given Cauchy surface (Σ)ι  .

These two options are put in perspective by the following quote from Martin, which 
Benaceraff chose as the opening quote of his famous 1965 work:

40	 See also Belot (2018), Fletcher (2020), Gomes (2022a,b), Luc (2022), and Pooley (2022).

41	 See, e.g., Hallett (2010), Ebert and Rossberg (2016), Mancosu (2016), Blanchette 
(2018), Hellman and Shapiro (2019), and Reck and Schiemer (2020). Historically, Frege’s 
abstractionism served his higher goal of logicism, but the former stands on its own and can 
be separated from the latter. It may be objected that the heart of the Frege-Hilbert opposition 
does not lie in abstractionism versus structuralism but in differences about the nature of 
mathematical axioms, definitions, elucidations, and existence, and in particular about Frege’s 
insistence that every mathematical concept (such as “point” or “line”) be defined on its own 
through reference, against Hilbert’s revolutionary idea of implicit and “holistic” definition 
of concepts through an entire axiom system in which they occur. But these issues are closely 
related. For example, Hilbert’s contextual and relational way of defining concepts naturally 
implies that whatever makes them concrete is given only up to isomorphism. Abstractionism of 
the kind considered here arguably goes back to Aristotle, since the kind of equivalence relation 
lying at the basis of Frege’s abstraction principle is typically obtained by Aristotle’s procedure 
of abstraction by deletion (Mendell 2019). For example, a mathematician sees a bronze sphere as 
a sphere, deleting its bronzeness. Also in so far as Hilbert famously claimed that mathematical 
objects exist as soon as the axioms through which they are implicitly defined are consistent 
(leaving their precise manner of existence in the dark, like Plato), the Frege-Hilbert opposition 
has its roots in the Aristotle–Plato one (Bostock 2009).



18Landsman 
Philosophy of  Physics 
DOI: 10.31389/pop.12

The attention of the mathematician focuses primarily upon mathematical 
structure, and his intellectual delight arises (in part) from seeing that a given 
theory exhibits such and such a structure, from seeing how one structure is 
“modelled” in another, or in exhibiting some new structure and showing how 
it relates to previously studied ones … But … the mathematician is satisfied 
so long as he has some “entities” or “objects” (or “sets” or “numbers” or 
“functions” or “spaces” or “points”) to work with, and he does not inquire into 
their inner character or ontological status.

The philosophical logician, on the other hand, is more sensitive to matters of 
ontology and will be especially interested in the kind or kinds of entities there 
are actually … He will not be satisfied with being told merely that such and 
such entities exhibit such and such a mathematical structure. He will wish 
to inquire more deeply into what these entities are, how they relate to other 
entities … Also he will wish to ask whether the entity dealt with is sui generis 
or whether it is in some sense reducible to (or constructible in terms of) other, 
perhaps more fundamental entities.

—R.M. Martin, Intension and Decision

Against abstractionism (both in the context of the Hole Argument and in Frege’s original 
application to the definition of Number), one may claim extravagance by noting that an 
equivalence class [x] with respect to any equivalence relation ∼ on some given set X is 
typically huge;42 no theoretical or mathematical physicist ever works with such equivalence 
classes of spacetimes, or even a tiny fraction of it.43

In practice, one picks some representative (M, g, ι), from which one may switch to an 
equivalent triple (M′, g′, ι′) now and then, but one never uses the entire equivalence class. 
And yet it is, strictly speaking, the entire equivalence class that Frege would invoke in order 
to obtain a proper definition or reference of the word “spacetime” (provided the analogy 
with his definition of natural numbers is valid). See also Benaceraff (1965). To resolve this, 
one might try to work with the single object  (Σ, , )g k , i.e., the initial data that give rise to all 
of these isometric spacetimes, but no one does this either; all actual work in gr is done in 
terms of just a few of the triples (M, g, ι), whose choice (within its isometry class) is made 
for convenience.

Within mathematical structuralism, the Hole Argument seems compatible with both 
structural realism (Ladyman 2020) and empiricist structuralism (van Fraassen 2008); in 
the former, the structures in question are so to speak parts of reality whereas in the latter 
they model empirical phenomena. Let me quote van Fraassen:

1.	 Science represents the empirical phenomena as embeddable in certain abstract 
structures (theoretical models).

2.	 Those abstract structures are describable only up to structural isomorphism.

(…) How can we answer the question of how a theory or model relates to the 
phenomena by pointing to a relation between theoretical and data models, both 
of them abstract entities? The answer has to be that the data model represent 
the phenomena; but why does that not just push the problem [namely: what 

42	 Recall that an equivalence class [x] Ì X consists of all y Î X such that y ~ x.

43	 See Gomes (2021a) for an analysis of physical practice, which in the context of gauge 
theories and gr amounts to the choice of cross-sections of the canonical projection from X to 
X/~.
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is the relation between the data and the phenomena it models] one step back? 
The short answer is this: construction of a data model is precisely the selective 
relevant depiction of the phenomena by the user of the theory required for the 
possibility of representation of the phenomenon.

(van Fraassen 2008, 238, 253)

This last comment seems to describe the practice of physicists and mathematicians 
working in gr: Some user of the theory chooses a member (M, g, ι) of its equivalence class, 
whilst some other user (or even the same one) may pick another member.44

In conclusion, empiricist structuralism seems to have strong cards in confronting the Hole 
Argument (in both its original versions or rephrased as Theorem 2): It does not suffer from 
the calculational intractability and ontological extravagance of Frege-style abstractionism; 
and it seems to be warranted by actual scientific practice.
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	Einstein saw this as proof that the matter distribution fails to determine the metric uniquely, and regarded this as such a severe challenge to determinism that, supported by the other problems he had at the time, he retracted general covariance.
	From a modern point of view, the energy-momentum tensor is a red herring in the argument, which may just as well be carried out in vacuo, as will be done from now on; this also strengthens my subsequent reformulation of the argument, since the theorem on which this is based is less well developed in the presence of matter.
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	Although, in the case considered by Einstein, (M, ) and (M, g) are mathematically speaking different spacetimes (unless  = g, in which case the Hole Argument is void), physicists—usually tacitly—circumvent this alleged lack of determinism of gr by simply “identifying” the two, i.e., by claiming that (M, ) and (M, g) represent “the same physical situation.”
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	In this practice they are encouraged by the observation that (M, ) and (M, g) are isometric; trivially, the pertinent isometry is ψ, and so the conclusion would be that isometric spacetimes represent the same physical situation.
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	4 Einstein’s arrangement looks unnatural compared to Hilbert’s () reformulation as an initial-value problem in the pde sense (see Proposition 1 below), but Einstein was inspired by Mach’s principle, where “fixed stars at infinity” determine the local inertia of matter; see Maudlin (), Hoefer (), and Stachel (). An argument that actually favors Einstein’s curious setting for the Hole Argument is this: The smaller the hole, i.e., the larger the complement of the hole, the greater the challenge to determinism,
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	5 Continuing footnote 4: Janssen () notes that Einstein formulated his requirement that the matter distribution fully determines the metric only in 1917; in 1913 Einstein still thought of Mach’s principle in the light of the relativity of inertia. Furthermore, Einstein () explicitly introduced the final version of the hole argument in terms of a conflict between general covariance and the “law of causality” (“Kausalgesetz”), which was contemporary parlance for determinism. In sum, it seems safe to say, with
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	However—and this is their key point—this spells doom for spacetime substantivalists (like Newton), who (allegedly) should be worried that if, in order to save determinism, x Î M, carrying the metric (x), must be identified with ψ(x) Î M, carrying the same metric, then points have lost their “this-ness”: they cannot be identified as such, but only as carriers of metric information.
	*ψg


	4. 
	4. 
	4. 

	Thus, one seems forced to choose between determinism and substantivalism.


	For the purpose of this paper, it is sufficient (and considerably easier) to replace the concept of substantivalism with what Gomes and Butterfield () call Distinct:
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	The tension exposed by the modern Hole Argument, then, is the one between Determinism (cf. §3) and Distinct (as opposed to general covariance, which is assumed).
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	But this discussion would be pointless if the Hole Argument is a non-starter, as claimed by Weatherall () and his followers (; ; ). Let me recall the main point:
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	of the diffeomorphism ψ : M → M of (bare) manifolds to an isometry of Lorentzian manifolds, seen as the objects in a category Lor whose arrows are isometries. There is no such extension  of the identity  of 1, since  is not an isometry (unless ψ happens to be one); in Lor, only  is defined. And this is exactly Weatherall’s point: One cannot meaningfully identify x Î M seen as a point in the spacetime (M, g) with x Î M seen as a point in a different spacetime (M, g˜), in order to be able to say that g˜(x) ≠ 
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	The basic principles of general relativity—as encompassed in the term ‘the principle of general covariance’ (and also ‘principle of equivalence’)—tell us that there is no natural way to identify the points of one spacetime with corresponding spacetime points of another ().
	Penrose 1996, 591
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	A simpler way to make the same mathematical point, in the spirit of Weatherall’s own abelian group example but closer to the mathematical structure of gr, would be to take pairs (M, f) where M is a manifold (or just a set without further structure) and f : M → R is a smooth function (or just a function), perhaps interpreted as some physical scalar field. The allowed maps between pairs (M′, f′) and (M, f), i.e., the analogues of isometries, are those diffeomorphisms (or just bijections) ψ : M′ → M for which 
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	but one cannot send (x, f(x)) to (x, f(ψ(x)), although the latter is a point in (M, ), since neither 1 nor ψ can accomplish this.
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	Since, on this view, one cannot compare (x, f(x)) with (x, f(ψ(x)), one cannot relate f(ψ (x)) to f(x) at x (which is deemed crucial for the Hole Argument).
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	There are also philosophical arguments against such “trans-world identifications,” see, e.g., Lewis () and, in connection with the Hole Argument, Butterfield (, ) and Gomes and Butterfield (). However, Weatherall explicitly tries to undermine the Hole Argument by appealing to mathematical practice:
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	isomorphism is given by the mathematical theory of whatever mathematical 
	isomorphism is given by the mathematical theory of whatever mathematical 
	objects the theory takes as its models. One consequence of this view is that 
	isomorphic mathematical models in physics should be taken to have the same 
	representational capacities. By this I mean that if a particular mathematical 
	model may be used to represent a given physical situation, then any isomorphic 
	model may be used to represent that situation equally well. Note that this does 
	not commit me to the view that equivalence classes of isomorphic models are 
	somehow in one-to-one correspondence with distinct physical situations. But it 
	does imply that if two isomorphic models may be used to represent two distinct 
	physical situations, then each of those models individually may be used to 
	represent both situations 
	(
	Weatherall 2018
	Weatherall 2018
	, 331–332

	)
	.

	The structuralist approach suggested here implies that the specific nature of individual objects (in category theory) or models (in model theory) cannot be used.
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	12
	12



	Weatherall’s arguments are controversial: see, e.g., Arledge and Rynasiewicz (), Roberts (), Pooley and Read (), Gomes (,), and Gomes and Butterfield () for criticism and discussion. My own two pennies worth would be to say that Weatherall uses the notion of “contemporary mathematics” quite selectively: In many cases, the specific nature of mathematical objects—as opposed to just their isomorphism class—is used. Indeed, the very definition of an isometry rests on the ability to put  at x, where originally t
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	2 THE CHOQUET-BRUHAT–GEROCH THEOREM
	In any case, the apparently controversial Hole Argument is clarified by placing it in the context of an uncontroversial theorem due to Choquet-Bruhat–Geroch () on the existence and uniqueness of maximal globally hyperbolic solutions to the Einstein field 
	1969

	12 This suggestion was subsequently somewhat weakened in Weatherall () and is also challenged by, e.g., Roberts (), Gryb and Thébault (), and Pooley and Read (2022).
	12 This suggestion was subsequently somewhat weakened in Weatherall () and is also challenged by, e.g., Roberts (), Gryb and Thébault (), and Pooley and Read (2022).
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	13 See also Menon and Read () for a valid critique of Halvorson and Manchak ().
	13 See also Menon and Read () for a valid critique of Halvorson and Manchak ().
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	2022


	14 For example, Alexandre Grothendieck shaped current mathematical practice. But he famously refused to have anything to do with physics (because in his view physics led to nuclear weapons).
	14 For example, Alexandre Grothendieck shaped current mathematical practice. But he famously refused to have anything to do with physics (because in his view physics led to nuclear weapons).

	equations. This is contained in Theorem 2, below.
	equations. This is contained in Theorem 2, below.
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	 Together with Penrose’s work on 
	the causal structure of spacetime, it is one of the pillars of mathematical relativity. In 
	particular, all 
	pde
	-related work in 
	gr
	 is based on it, including current approaches to cosmic 
	censorship (see footnote 8). In the theorem, Einstein’s somewhat obscure way of stating 
	the initial value problem for his field equations (in which, inspired by Mach’s principle, he 
	implicitly took initial data outside a hole, essentially at infinity) is replaced by a version first 
	discussed by Hilbert 
	(
	1917
	1917

	)
	, who took initial data on a spacelike slice.
	16
	16
	16


	 A Hilbert-style Hole 
	Argument may then be based on Proposition 1 below), which comes out a special case of 
	Theorem 2. The change from Einstein’s choice of initial data to Hilbert’s has little influence 
	on any (relevant) philosophical discussion, which I will therefore base on Theorem 2.

	Since the Hole Argument is closely related to the following central issues in the philosophy of gr, it is unsurprising that the Choquet-Bruhat–Geroch theorem clarifies those as well (in a way that can be separated from the Hole Argument):
	 Finding an appropriate notion of determinism for gr;
	1.

	 Interpreting isometries in gr as gauge symmetries.
	2.

	Together with a reconsideration of Weatherall’s critique of the Hole Argument, the first issue will be taken up in §3, especially in the light of previous proposals by Butterfield (, , ). The second will be discussed in §4.
	1987
	1988
	1989

	First, I review the theorem in question. It is the culmination of the initial-value approach to gr, which is based on pde-theory, and the following ideology:
	17
	17
	17



	• 
	• 
	• 
	• 

	All valid assumptions in gr are assumptions about initial data .
	(Σ,,)gk



	Such an initial data triple, assumed smooth, is obtained by equipping some 3d Riemannian manifold  with a second symmetric tensor , i.e., of the same “kind” as the 3-metric g˜, such that  satisfies the vacuum constraints
	(Σ,)g
	(2,0)(Σ)kX
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	  (4)
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	Here  is the Ricci scalar on  for the Riemannian metric g˜ and likewise  is the unique Levi-Civita (i.e., metric) connection on  determined by g˜ (so that ).
	R
	Σ
	
	Σ
	=0g

	• 
	• 
	• 
	• 

	All valid questions in gr are questions about “the” mghd (M, g, ι) thereof.


	15 The original source is Choquet-Bruhat and Geroch (), who merely sketched a proof (based on Zorn’s lemma, which they even had to use twice). Even the 800-page textbook by Choquet-Bruhat () does not contain a proof of the theorem (which is Theorem XII.12.2); the treatment in Hawking and Ellis (), §7.6, is slightly more detailed but far from complete, too. Ringström () is a book-length exposition of the theorem, but ironically his proof of Theorem 16.6, i.e., Theorem 2 above, is wrong; it is corrected in Ri
	15 The original source is Choquet-Bruhat and Geroch (), who merely sketched a proof (based on Zorn’s lemma, which they even had to use twice). Even the 800-page textbook by Choquet-Bruhat () does not contain a proof of the theorem (which is Theorem XII.12.2); the treatment in Hawking and Ellis (), §7.6, is slightly more detailed but far from complete, too. Ringström () is a book-length exposition of the theorem, but ironically his proof of Theorem 16.6, i.e., Theorem 2 above, is wrong; it is corrected in Ri
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	16 Hilbert () gave the first analysis of gr from a pde point of view. He addresses the indeterminism of Einstein’s equations, and also refers to Einstein (), but does not explicitly relate his analysis to the Lochbetrachtung. See also Howard and Norton () and Brading and Ryckman (). For some history of the pde approach to gr see Stachel (), Choquet-Bruhat (), and Ringström (), summarized in Landsman (), §1.9. It is also possible to give initial data for the Einstein equations on a null hypersurface (); see,
	16 Hilbert () gave the first analysis of gr from a pde point of view. He addresses the indeterminism of Einstein’s equations, and also refers to Einstein (), but does not explicitly relate his analysis to the Lochbetrachtung. See also Howard and Norton () and Brading and Ryckman (). For some history of the pde approach to gr see Stachel (), Choquet-Bruhat (), and Ringström (), summarized in Landsman (), §1.9. It is also possible to give initial data for the Einstein equations on a null hypersurface (); see,
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	17 Physicists would see this as the adm approach to gr, as in Misner, Thorne, and Wheeler (). But the mathematical literature developed almost independently, led by Choquet-Bruhat.
	17 Physicists would see this as the adm approach to gr, as in Misner, Thorne, and Wheeler (). But the mathematical literature developed almost independently, led by Choquet-Bruhat.
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	Among these questions, the one relevant to the Hole Argument concerns the uniqueness of (M, g, ι), whence the scare quotes around “the.” Roughly speaking, a mghd (for maximal globally hyperbolic development) of  is a maximal spacetime (M, g) “generated” by these initial data via the Einstein equations, in that
	(Σ,,)gk

	ι : Σ ↪ M
	ι : Σ ↪ M

	injects  into M as a “time slice” on which the 4-metric g induces the given 3-metric g˜ and extrinsic curvature . In more detail, a Cauchy development or globally hyperbolic development of given initial data  satisfying the constraints (4) is a triple (M, g, ι), where (M, g) is a spacetime that solves the vacuum Einstein equations R = 0 and ι is an injection making ι() a spacelike Cauchy (hyper)surface in M such that g induces these initial data on , i.e.,  is the metric and  is the extrinsic curvature of ,
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	This formulation of the (spatial) initial-value problem for the (vacuum) Einstein equations was an achievement in itself. In particular, it circumvents the vicious circle one is forced into if one tries to find initial data for an already given spacetime (solving the Einstein equations); for, it is part of the problem to find the latter from the given initial data, and hence one cannot give say dg/dt (t = 0) as initial data.
	However, the main achievement concerns the existence and uniqueness of (M, g, ι), which depends on a suitable notion of maximality (as in the far simpler case of odes, where in order to guarantee uniqueness, the time interval on which the solution is defined should be maximal). This notion is also non-trivial, and tied to gr. Namely:
	• 
	• 
	• 
	• 

	A maximal Cauchy development or maximal globally hyperbolic development, acronym mghd, of given smooth initial data , satisfying the constraints (4), is a Cauchy development (M, g, ι) with the property that for any other Cauchy development = globally hyperbolic development (M′, g′, ι′) of these same data there exists an embedding ψ : M′ → M that preserves time orientation, metric, and Cauchy surface as defined by ι, i.e., one has
	(Σ,,)gk



	  (5)
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	A Hole Argument à la Hilbert () then follows from a simple observation:
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	Proposition 1. Given some mghd (M, g, ι) of the initial data , seen as the spacetime under review, let U be an open neighborhood of ι() in M. Take a (time orientation preserving) diffeomorphism ψ of M that is the identity on U. Then the triple (M′, g′, ι′), where M′ = M, g′ =  (so that g′ = g within U), and ι′ = ι, with time orientation induced by ψ, is a mghd of the same initial data .
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	18 See also the references in footnote 23, or Landsman (), §7.6. Tildes adorn 3d objects.
	18 See also the references in footnote 23, or Landsman (), §7.6. Tildes adorn 3d objects.
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	19 Let N be the unique (necessarily timelike) future-directed normal vector field on  such that . Then  defines the extrinsic curvature of .
	19 Let N be the unique (necessarily timelike) future-directed normal vector field on  such that . Then  defines the extrinsic curvature of .
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	20 This construction also works if , cf. Curiel () and Pooley (). The ‘Gauge Theorem’ of Earman and Norton () is similar in spirit but lacks the connection to the initial-value problem that is central here. Both results of course follow from general covariance.
	20 This construction also works if , cf. Curiel () and Pooley (). The ‘Gauge Theorem’ of Earman and Norton () is similar in spirit but lacks the connection to the initial-value problem that is central here. Both results of course follow from general covariance.
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	21 Defining time orientation by (the equivalence class of) a global timelike vector field T on M, so that some causal vector X is future-directed iff g(X, T) < 0, this means that .
	21 Defining time orientation by (the equivalence class of) a global timelike vector field T on M, so that some causal vector X is future-directed iff g(X, T) < 0, this means that .
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	This supports a decent version of the Hole Argument. It is superior to Einstein’s and Earman and Norton’s formulation in that it has shaken off any implicit reference to Mach’s principle and is closer to the usual initial value problem for hyperbolic pdes, with initial data on a spacelike hypersurface. Note in this respect that the open set U is the analog of the complement of Einstein’s hole. The larger U is, the stronger the potential challenge to determinism (since the ensuing spacetimes differ in the co
	22
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	Σ
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	But! With respect to Weatherall’s () critique, Proposition 1, seen as Hilbert’s version of the Hole Argument, is not really different from Einstein’s, since it equally well starts from a diffeomorphism ψ of M that only becomes an isometry from (M, ) to (M, g) “with hindsight.” Although I disagree with this critique (see §1), I intend to weaken it even further via a slight reformulation—and corollary of—the celebrated theorem of Choquet-Bruhat and Geroch ():
	2018
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	Theorem 2. For each initial data triple  satisfying the constraints (4) there exists a mghd (M, g, ι). Any triple (M′, g′, ι′) that arises from an isometry  that preserves time orientation and satisfies ψ  ι′ = ι (fixing the Cauchy surface) is an mghd of the same initial data. Conversely, all mghds of these data arise in this way, so (M, g, ι) is unique up to these specific isometries.
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	The easy first part incorporates Proposition 1 as a special case. The difficult second part, which is the real thrust of the theorem, is a nontrivial converse to the first.
	3 RETHINKING THE HOLE ARGUMENT
	Like the Earman-Norton Hole Argument, Theorem 2 exposes the tension between:
	25
	25
	25



	 Determinism, in the precise version that the Einstein equations for given initial data have a unique solution in the sense that triples (M, g, ι) and (M′, g′, ι′), as in the statement of Theorem 2, are seen as different mathematical representatives of the same physical situation (i.e., are “physically identified”).
	1.

	 Distinct, in the sense that triples (M, g, ι) and (M′, g′, ι′) represent different physical possibilities (although they are observationally indistinguishable).
	2.

	22 With a special gr twist, though: the Einstein equations are not hyperbolic, but the six spatial ones are hyperbolic in a suitable gauge, in which the remaining four are elliptic constraints.
	22 With a special gr twist, though: the Einstein equations are not hyperbolic, but the six spatial ones are hyperbolic in a suitable gauge, in which the remaining four are elliptic constraints.

	23 Though rarely, if ever, mentioned, the isometry ψ in the converse is unique. This can be shown by Proposition 3.62 in O’Neill () or the equivalent argument in footnote 639 of Landsman (), to the effect that an isometry ψ is determined at least locally (i.e., in a convex nbhd of x) by its tangent map  at some fixed x Î M′. Take . Since ψ in Theorem 2 is fixed all along  by the second condition in (5) and since it also fixes the (future-directed) normal N to  by the first condition in (5), it is determined
	23 Though rarely, if ever, mentioned, the isometry ψ in the converse is unique. This can be shown by Proposition 3.62 in O’Neill () or the equivalent argument in footnote 639 of Landsman (), to the effect that an isometry ψ is determined at least locally (i.e., in a convex nbhd of x) by its tangent map  at some fixed x Î M′. Take . Since ψ in Theorem 2 is fixed all along  by the second condition in (5) and since it also fixes the (future-directed) normal N to  by the first condition in (5), it is determined
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	24 At first sight, only the second half of (5) appears in the above theorem. But the first half is part of the definition of an isometry.
	24 At first sight, only the second half of (5) appears in the above theorem. But the first half is part of the definition of an isometry.

	25 Recall that Einstein’s Hole Argument was meant to enforce a choice between determinism and general covariance. Theorem 2 is based on standard (generally covariant) gr and hence this choice has already been made, leaving the dilemma highlighted by Earman and Norton ().
	25 Recall that Einstein’s Hole Argument was meant to enforce a choice between determinism and general covariance. Theorem 2 is based on standard (generally covariant) gr and hence this choice has already been made, leaving the dilemma highlighted by Earman and Norton ().
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	All discussions of this tension (e.g., ; ; ; ), which I will not review, remain relevant if we support the Hole Argument by Theorem 2 instead of Proposition 1 or Einstein’s construction. However, after this replacement, options 1 and 2 do differ a little from before:
	Butterfield 1989
	Curiel 2018
	Gomes & Butterfield 
	2023a
	Pooley 2022

	• 
	• 
	• 
	• 

	Option 1 is, in the context of Theorem 2, a larger move compared to the original Hole Argument, since far more spacetimes are now declared to be “physically equivalent”: namely all triples (M′, g′, ι′) in its statement. But in return, the thrust of choosing this option is strengthened: Regarding (M, ) and (M, g) as physically equivalent for some specific Hole diffeomorphism ψ, as in Proposition 1, merely restores determinism in a special case, whereas (the second part of) Theorem 2 gives us complete assuran
	*ψg


	• 
	• 
	• 

	Option 2, on the other hand, requires no more commitment than in the original Hole Argument: If we do not even identify (M, g) with (M, ) in Proposition 1, where the underlying manifolds are the same, then certainly we will not identify any of the more general triples (M′, g′, ι′), where they are different.
	*ψg



	Given its much better embedding in the mathematical (physics) literature, it seems considerably more difficult for Weatherall and his followers to redirect their critique of the (modern) Hole Argument to Theorem 2. Although I can’t speak for them, here are, prophylactically, some options they might still invoke, with a reply:
	 The part of Theorem 2 that is actually relevant to the Hole Argument should be stated as follows, assuming the existence of a ‘reference’ mghd (M, g, ι):
	(a)

	Any diffeomorphism ψ : M′ → M gives rise to another mghd (M′, g′, ι′) of the same initial data , where g′ =  and ι′ = ψ  ι.
	 
	(Σ,,)gk
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	Weatherall’s original arguments (from his 2018) then apply almost verbatim (and indeed, I would say they are even clearer in this more general context). But I was very careful in stating Theorem 2 the way I did: all reference to “pure” diffeomorphisms has gone, and all spacetimes that occur in the theorem are related by isometries: It is either assumed (in the first half) or concluded (in the second half) that  is an isometry. No other maps are mentioned and no controversial comparisons need to be made.
	 
	(,)(,)ψMgMg

	In so far as an appeal to “mathematical practice” is made, I would answer that few if any mathematicians would be sensitive to the difference between the above reformulation of the middle part of Theorem 2 and its earlier statement.
	 

	One might accept Theorem 2 as it stands, but somehow object to Proposition 1 being a special case of it (for example, because its construction mixes up diffeomorphisms and isometries). Although I would again doubt any such arguments, especially if they appeal to “mathematical practice,” even if they were valid I would point out that Theorem 2 as a whole raises the same dilemma as the Hole Argument and indeed may be taken to be the Hole Argument (2.0).
	(b) 

	One could reject Theorem 2, for example because its proof (admittedly!) does use (even local) diffeomorphisms and pointwise comparisons of metrics. But, further to the discussion in the Introduction, if Weatherall et al. would object to 
	(c) 

	26 M′ acquires a time orientation from M and ψ, which ψ trivially preserves, cf. footnote 21.
	26 M′ acquires a time orientation from M and ψ, which ψ trivially preserves, cf. footnote 21.

	generally accepted proofs of theorems by top mathematicians, then their appeal to 
	generally accepted proofs of theorems by top mathematicians, then their appeal to 
	“mathematical practice” would once again be self-defeating.
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	I now compare the notion of Determinism (which is standard in mathematical relativity) used above with an influential definition appearing in the philosophy of physics literature due to Butterfield (, ), which was specifically developed in the context of the Hole Argument. In order to clarify the connection of his definition with Theorem 2, I first state a somewhat awkward weakening of this theorem:
	1987
	1989

	Corollary 3. If two globally hyperbolic spacetimes (M, g) and (M′, g′) contain Cauchy surfaces  and , respectively, which carry initial data  and  induced by the 4-metrics g and g′ on M and M′, respectively, where both (M, g) and (M′, g′) are maximal for these initial data, and there is a 3-diffeomorphism  such that  and , then there exists an isometry β : M′ → M that preserves time orientation and restricts to α on .
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	Σ

	This corollary is weaker than Theorem 2, for it lacks the existence claim of (M, g). In comparison, Butterfield’s Definition Dm2 of determinism is as follows:
	A theory with models (M, O) is S-deterministic, where S is a kind of region that occurs in manifolds of the kind occurring in the models, if:
	i

	given any two models (M, O) and () containing regions S and S′ of kind S, respectively, and any diffeomorphism α from S′ onto S:
	i
	iMO

	If  on α(S′) = S, then there is an isomorphism β from M′ onto M that sends S′ to S, i.e.,  throughout M′ and β(S′) = S.
	)*(=iiOOα
	*=iiβOO

	(; )
	Butterfield 1987, 29
	Butterfield 1989, 9

	Here it would clarify the situation to add the requirement that β extends α.
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	To start with the good news: Though not intended for that purpose, this definition is quite suitable for expressing the idea of determinism inherent in strong cosmic censorship (and its possible violation!), cf. footnote 8. Indeed, define models (of gr) to be spacetimes (M, g) satisfying the (vacuum) Einstein equations, and take the regions S to be mghds of 
	27 It may be interesting to point out that some of the most beautiful theorems in category theory, such as Gelfand duality, have very ugly proofs involving all kinds of constructions that the final result sweeps under the carpet; see Landsman (), Appendix C, for this specific example.
	27 It may be interesting to point out that some of the most beautiful theorems in category theory, such as Gelfand duality, have very ugly proofs involving all kinds of constructions that the final result sweeps under the carpet; see Landsman (), Appendix C, for this specific example.
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	28 Butterfield (, ) emphasizes that β need not extend α (his primed objects are our unprimed ones). However, his counterexamples are easily avoided by requiring that α is only defined on S′. It is clear from Butterfield and Gomes (), end of §2.2.3, that Butterfield endorses my discussion. Butterfield contrasts Dm2 with a Laplacian kind of definition of determinism Dm1 he attributes to Montague and Earman: “A theory with models (M, O) is S-deterministic, where S is a kind of region that occurs in manifolds o
	28 Butterfield (, ) emphasizes that β need not extend α (his primed objects are our unprimed ones). However, his counterexamples are easily avoided by requiring that α is only defined on S′. It is clear from Butterfield and Gomes (), end of §2.2.3, that Butterfield endorses my discussion. Butterfield contrasts Dm2 with a Laplacian kind of definition of determinism Dm1 he attributes to Montague and Earman: “A theory with models (M, O) is S-deterministic, where S is a kind of region that occurs in manifolds o
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	initial data 
	initial data 
	(,)gk
	 
	posed on some partial Cauchy
	 
	Σ
	 
	surface in
	 M
	. Then, 
	gr
	 is
	 
	S
	-deterministic 
	precisely if strong cosmic censorship holds. Indeed: If not, let (
	M
	, 
	g
	, 
	ι
	)
	 
	be a
	 
	mghd
	 
	of initial 
	data 
	(Σ,,)gk
	 as in Theorem 2, with (
	M
	, 
	g
	)
	 
	the associated spacetime, and let (
	M
	′
	, 
	g
	′
	) be a 
	proper extension thereof (which, by definition, exists if strong cosmic censorship fails). 
	Then 
	Dm2
	 fails.
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	However, the “Laplacian” context in which Dm2 was originally proposed suggests that the idea was to take S Ì M to be a time-slice in a spacetime (M, g). In that case, for there to be any hope that gr is deterministic even if strong cosmic censorship holds, Butterfield’s definition should be amended in the following way:
	The class of models should be restricted to maximal globally hyperbolic solutions to the vacuum Einstein equations with initial data as in Theorem 2.
	1. 

	Either S should be a neighborhood of a Cauchy surface in M (as in the Hole Argument), or the models (M, g) should be triples (M, g, ι), in which case one should add a condition on the extrinsic curvature to ‘ on α(S′) = S’.
	2. 
	*()=αgg

	Granting strong cosmic censorship, gr is then S-deterministic by Theorem 2.
	Of course, definitions like Butterfield’s Dm2 or its close cousins are not sacrosanct. An anonymous referee very ingeniously suggested that Determinism and Distinct are compatible with each other and with Theorem 2 in the following way:
	The initial data induced by the triple  on  are taken to be distinct from those induced by the same triple on  (as in the theorem).
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	Consequently, this distinction should then also be made in the situation of Proposition 1 (which, after all, is the special case of the general situation just addressed), where the isometric space-times (M, g) and (M′, g′) both extend the “same” Cauchy surface  carrying the “same” initial data . Indeed, if the initial data for (M, g) and (M′, g′) are different, no determinist would object to the ensuing dynamically evolved space-times being different; whereas, according to this new view, they were misled in
	Σ=Σιι
	(,)gk

	This kind of thinking would clearly be at odds with Dm2 and similar (gr-adapted) “Laplacian” definitions of determinism. It would also affect the original Hole Argument: for, likewise, a way out of both Einstein’s and Earman and Norton’s Hole Argument would be to deny that the space-times outside the hole within (M, g) and (M, ) are identical (whereas the Hole Argument is based on their identification). This would move the discussion from possible (mis)identifications of points and metrics inside the hole (
	*ψg

	29 The Kerr and Reissner-Nordström spacetimes are indeterministic in precisely this way, though strictly speaking, these spacetimes are usually not seen as indicating a violation of strong cosmic censorship in gr as a whole since their initial data are not “generic” in some suitable sense.
	29 The Kerr and Reissner-Nordström spacetimes are indeterministic in precisely this way, though strictly speaking, these spacetimes are usually not seen as indicating a violation of strong cosmic censorship in gr as a whole since their initial data are not “generic” in some suitable sense.

	This idea is certainly worth further discussion; for the moment, my reply is:
	No mathematical relativist would ever consider making the said distinction between initial data, since all their practices are based on identifying them;
	– 

	Few philosophers would do so either, given the mismatch with Dm2 and the like.
	– 

	Finally, Theorem 2 (as well as Theorem 4 below) is reminiscent of the spontaneous breakdown of gauge symmetry through the Higgs mechanism. Here, in order to settle into a minimum of the Higgs potential, the Higgs field φ must “choose” a point φ on a circle as its “frozen” vacuum value. The global U(1) symmetry involved in this choice is a finite-dimensional shadow of the original infinite-dimensional local U(1) symmetry of the theory (see also endnote xxxii, below). Different choices of φ yield phenomenolog
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	Let us now turn to an important special (!) case of this situation of Theorem 2.
	4 SPECIAL RELATIVITY: STATUS OF THE POINCARÉ GROUP
	If one chooses the first option of Determinism from the binary menu opening the previous section, the isometries in Theorem 2 have to be interpreted accordingly as gauge symmetries. The way these symmetries reflect the original diffeomorphism invariance of the Einstein equations (which invariance launched the Hole Argument in the first place!) is clear from point (a) in the same section. In the special case M′ = M, for some given mghd (M, g, ι) and any diffeomorphism ψ : M → M, one obtains a new mghd (M′, g
	*ψg
	–1
	(Σ,,)gk
	 
	(Σ,,)gk

	On the other hand, the special case where ψ is an isometry of (M, g) (as opposed to a diffeomorphism promoted to an isometry from (M, ) to (M, g), as in the Hole Argument) 
	*ψg

	30 See , Landsman (), §10.10, or any book on the Standard Model.
	30 See , Landsman (), §10.10, or any book on the Standard Model.
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	31 This analogy is admittedly weak, since Theorem 2 involves both the embedding maps ι and the possibility that isometries move a given spacetime (M, g) to one (M′, g′) with a different underlying (but diffeomorphic) manifold M, neither of which have a counterpart in the Higgs mechanism.
	31 This analogy is admittedly weak, since Theorem 2 involves both the embedding maps ι and the possibility that isometries move a given spacetime (M, g) to one (M′, g′) with a different underlying (but diffeomorphic) manifold M, neither of which have a counterpart in the Higgs mechanism.

	is also clarified by Theorem 2 (except for the identity map 1
	is also clarified by Theorem 2 (except for the identity map 1
	M
	, such isometries exist only 
	for exceptional spacetimes). Indeed, since these are merely a special case of the general 
	isometries in Theorem 2, they have to be interpreted in exactly the same way, that is, as 
	gauge transformations. This may be surprising, because the isometry group Iso(
	M
	, 
	g
	)
	 
	of a 
	fixed spacetime (
	M
	, 
	g
	)
	 
	is finite-dimensional and, hence, is not given by freely specifiable 
	functions on 
	M
	,
	 
	as one expects in gauge theories.
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	 The explanation is simply that
	 
	Iso(
	M
	, 
	g
	)
	 
	is a finite-dimensional subgroup of the infinite-dimensional gauge groupoid just defined 
	(for given initial data).
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	The simplest case where this occurs is in special relativity. Minkowski spacetime  is a maximal globally hyperbolic solution to the vacuum Einstein equations, which arises as “the” mghd  of the initial data
	34
	34
	34


	4=(,)ηMR
	35
	35
	35


	40(,,)ιηR

	3(Σ=,=,=0),gδkR
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	where δ is the Euclidean metric on R and
	3

	  (6)
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	By the general analysis above, the group of time-orientation-preserving Poincaré transformations is then contained in the gauge groupoid of these initial data and hence Poincaré transformations are, perhaps surprisingly, gauge transformations.
	Another, more interesting way of reaching the same conclusion is to regard special relativity not as a specific solution to the vacuum Einstein equations, but as a generally covariant field theory by itself, formulated like gr but with the field equation
	  (7)
	=0,ρσμνR

	instead of R = 0. The initial value problem is then almost the same as in general relativity, except that the initial data  now satisfy the (vacuum) constraints
	μν
	36
	36
	36


	(Σ,,)gk

	  (8)
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	The constraints (8) of generally covariant special relativity are stronger than their counterpart (4) in gr, which actually follows from (8) by contracting with  and , respectively. The reason is that, in gr, one merely asks for an embedding of the initial data in a Ricci-flat Lorentzian manifold (M, g), i.e., R = 0, whereas in special relativity one 
	ikjlgg
	ikg
	μν

	32 If dim(M) = n, then for any semi-Riemannian metric g the isometry group of (M, g) is at most -dimensional. See O’Neill (), Lemma 9.28; Kobayashi and Nomizu (), Theorem VI.3.3, do the Riemannian case. Thus the Poincaré-group in n = 4 has maximal dimension 10.
	32 If dim(M) = n, then for any semi-Riemannian metric g the isometry group of (M, g) is at most -dimensional. See O’Neill (), Lemma 9.28; Kobayashi and Nomizu (), Theorem VI.3.3, do the Riemannian case. Thus the Poincaré-group in n = 4 has maximal dimension 10.
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	33 Subgroups of groupoids, seen as (small) categories in which each arrow is invertible (i.e., an isomorphism), are contained in the group of arrows from some base object to itself.
	33 Subgroups of groupoids, seen as (small) categories in which each arrow is invertible (i.e., an isomorphism), are contained in the group of arrows from some base object to itself.

	34 The following analysis was inspired by correspondence with Henrique Gomes and Hans Halvorson, who proposed to look at special relativity in this context. See also Iftime and Stachel ().
	34 The following analysis was inspired by correspondence with Henrique Gomes and Hans Halvorson, who proposed to look at special relativity in this context. See also Iftime and Stachel ().
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	35 Maximality of Minkowski spacetime follows from its inextendibility; see, e.g., Corollary 13.37 in O’Neill () for the smooth case and Sbierski () for inextendibility even in C.
	35 Maximality of Minkowski spacetime follows from its inextendibility; see, e.g., Corollary 13.37 in O’Neill () for the smooth case and Sbierski () for inextendibility even in C.
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	36 This upsets the idea that special relativity uses only linear subspaces of spacetime as hypersurfaces of simultaneity whereas general relativity uses general curved surfaces, but already Schwinger () employed arbitrary initial data surfaces in relativistic quantum field theory.
	36 This upsets the idea that special relativity uses only linear subspaces of spacetime as hypersurfaces of simultaneity whereas general relativity uses general curved surfaces, but already Schwinger () employed arbitrary initial data surfaces in relativistic quantum field theory.
	1948


	seeks an embedding in a 
	seeks an embedding in a 
	flat
	 Lorentzian manifold, as follows from (7), and the so-called 
	fundamental theorem of (semi) Riemannian geometry.
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	To avoid global topological issues, I assume that  is diffeomorphic to R, in which case the role of a (reference) mghd (M, g, ι) in Theorem 2 is simply played by Minkowski spacetime , with ι to be found (see Theorem 4 below). One could now state and prove a counterpart of Theorem 2 for generally covariant special relativity, but instead I rely on a Minkowskian version of the fundamental theorem for hypersurfaces, whose original version studied embeddings of two-dimensional surfaces Σ in R with Euclidean met
	Σ
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	Theorem 4. For each initial data triple  satisfying the constraints (8) there exists an isometric embedding  carrying the Minkowski metric η, whose extrinsic curvature is the given tensor . Any triple  that arises from an isometry ψ of M (i.e., a Poincaré transformation), preserves time-orientation, and satisfies ψ  ι′ = ι has the same properties (that is,  is an isometric embedding and the extrinsic curvature induced on  by the metric η is ).
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	Conversely, all triples  with these properties arise in this way from some given triple , which is therefore unique up to Poincaré transformations.
	4(,,)ιηR
	4(,,)ιηR

	There is a clear conceptual analogy between Theorems 2 and 4, except that unlike the former, the latter does not take into account the spacetimes (M, η′) that are isometric to Minkowski spacetime M (where M could even be R). However, the corresponding more general version of Theorem 4 would not affect my conclusion about Poincaré transformations, it would just assign a similar interpretation to even more transformations. And, exactly as in my discussion of special relativity as a special (vacuum) solution o
	4

	Now, whereas most physicists would be happy to regard isometries in general relativity as gauge symmetries, few would regard Poincaré transformations as such. Fortunately, Gomes (), partly reflecting on Belot (), makes the right point:
	2021b
	2018

	37 In Lorentzian signature this theorem states that (M, g) is locally flat (in that its metric is locally Minkowski) if its Riemann tensor vanishes. See, e.g., Landsman (), Theorem 4.1.
	37 In Lorentzian signature this theorem states that (M, g) is locally flat (in that its metric is locally Minkowski) if its Riemann tensor vanishes. See, e.g., Landsman (), Theorem 4.1.
	2021


	38 By the splitting theorem of Geroch () as improved by Bernal and Sánchez (), global hyperbolicity of (M, g) gives , diffeomorphically. Hence we may actually take , due to (7) necessarily with the Minkowski metric. Finally, M is maximal, cf. footnote 35.
	38 By the splitting theorem of Geroch () as improved by Bernal and Sánchez (), global hyperbolicity of (M, g) gives , diffeomorphically. Hence we may actually take , due to (7) necessarily with the Minkowski metric. Finally, M is maximal, cf. footnote 35.
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	39 See Kobayashi and Nomizu (), Theorem VII.7.2 or Landsman (), Theorem 4.18. This theorem is concerned with embeddings of curved surfaces with prescribed second fundamental form into Euclidean space and goes back to the nineteenth century. The proof of the Minkowskian case is the same, up to some sign changes: In the Euclidean case, the first constraint in (8) is , the sign changes going back to the different signs in the Gauss–Codazzi equations in Euclidean and Lorentzian signature, see e.g., eqs. (4.147)
	39 See Kobayashi and Nomizu (), Theorem VII.7.2 or Landsman (), Theorem 4.18. This theorem is concerned with embeddings of curved surfaces with prescribed second fundamental form into Euclidean space and goes back to the nineteenth century. The proof of the Minkowskian case is the same, up to some sign changes: In the Euclidean case, the first constraint in (8) is , the sign changes going back to the different signs in the Gauss–Codazzi equations in Euclidean and Lorentzian signature, see e.g., eqs. (4.147)
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	But some familiar symmetries of the whole Universe, such as velocity boosts in classical or relativistic mechanics (Galilean or Lorentz transformations), have a direct empirical significance when applied solely to subsystems. Thus Galileo’s famous thought-experiment about the ship—that a process involving some set of relevant physical quantities in the cabin below decks proceeds in exactly the same way whether or not the ship is moving uniformly relative to the shore–shows that sub-system boosts have a dire
	()
	Gomes 2021b, 2

	In other words, in thinking about Poincaré transformations as bringing physical change, as for example in boosts of Galileo’s ship or Einstein’s train, we apply such transformations to subsystems of the universe. But Theorem 4 concerns the action of Poincaré transformations on spacetime as a whole. See also Wallace (). Similarly, since time translations are Poincaré transformations, even special relativity seems a “timeless” theory in the sense that time translation is a gauge transformation. But once again
	2022

	Summarizing: In the substantivalism versus relationalism debate (; ), I see general relativity and special relativity as qualitatively similar. Whatever differences there are seem technical rather than conceptual, just reflecting the underlying difference between the field equations R = 0 and R = 0.
	Earman 1989
	Pooley 
	2013
	μν
	ρσμν

	5 THE HOLE ARGUMENT IN THE PHILOSOPHY OF SCIENCE
	Despite their denial of the Hole Argument, Weatherall () and Halvorson and Manchak () make some of the most pertinent comments towards its resolution:
	2018
	2022

	Mathematical models of a physical theory are only defined up to isomorphism, where the standard of isomorphism is given by the mathematical theory of whatever mathematical objects the theory takes as its models. One consequence of this view is that isomorphic mathematical models in physics should be taken to have the same representational capacities. By this I mean that if a particular mathematical model may be used to represent a given physical situation, then any isomorphic model may be used to represent 
	()
	Weatherall 2018, 331–332

	Why is it, then, that there has been, and will surely continue to be, a feeling that there is some remaining open question about whether general relativity is fully deterministic? Our conjecture is that the worry here arises from the fact that general relativity, just like any other theory of contemporary mathematical physics, allows its user a degree of representational freedom, and consequently displays a kind of trivial semantic indeterminism: how things are represented at one time does not constrain how
	()
	Halvorson and Manchak 2022, 19

	These comments could just as well have been made about Theorem 2, which by itself already makes it worth delving into the idea of “representational freedom.”
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	I suggest that the Hole Argument and/or Theorem 2 prompt us to choose not only between Determinism and Distinct, but, having chosen the first option, to also refine the consequences of this option—seeing isometries as gauge symmetries—through a further choice in this garden of forking paths. This second choice is between two positions in the philosophy of mathematics that are traditionally seen as opposites, namely a Hilbert-style structuralism and a Frege-style abstractionism:
	41
	41
	41



	• 
	• 
	• 
	• 

	Structuralism: Spacetimes (with fixed initial data) are mathematical structures, which by their very nature can only be studied up to isomorphism. Since isometry is the pertinent notion of isomorphism, the identification of isometric spacetimes called for by the Hole Argument or Theorem 2 was to be expected.

	• 
	• 
	• 

	Abstractionism: The relevant mathematical object is the equivalence class of all spacetimes (with fixed initial data) up to isometry. Quoting Wilson ():
	2010



	Appeals to equivalence classes will seem quite natural if one regards the novel elements as formed by conceptual abstraction in a traditional philosophical mode: one first surveys a range of concrete objects and then abstracts their salient commonalities ().
	Wilson 2010, 395

	In the case at hand, the ‘salient commonalities’ seem to be the property that all members of a given equivalence class satisfy the vacuum Einstein equations with identical initial data. In the spirit of the abstractionist program, this commonality may be expressed by the function f from the class of all triples (M, g, ι) to the class of all triples  that maps (M, g, ι) to the initial data it induces on , where it is assumed that each (M, g, ι) is a maximal globally hyperbolic spacetimes with given Cauchy su
	(Σ,,)gk
	(Σ)ιMÌ
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	These two options are put in perspective by the following quote from Martin, which  work:
	Benaceraff chose as the opening quote of his famous 1965

	40 See also Belot (), Fletcher (), Gomes (,), Luc (), and Pooley ().
	40 See also Belot (), Fletcher (), Gomes (,), Luc (), and Pooley ().
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	41 See, e.g., Hallett (), Ebert and Rossberg (), Mancosu (), Blanchette (), Hellman and Shapiro (), and Reck and Schiemer (). Historically, Frege’s abstractionism served his higher goal of logicism, but the former stands on its own and can be separated from the latter. It may be objected that the heart of the Frege-Hilbert opposition does not lie in abstractionism versus structuralism but in differences about the nature of mathematical axioms, definitions, elucidations, and existence, and in particular abou
	41 See, e.g., Hallett (), Ebert and Rossberg (), Mancosu (), Blanchette (), Hellman and Shapiro (), and Reck and Schiemer (). Historically, Frege’s abstractionism served his higher goal of logicism, but the former stands on its own and can be separated from the latter. It may be objected that the heart of the Frege-Hilbert opposition does not lie in abstractionism versus structuralism but in differences about the nature of mathematical axioms, definitions, elucidations, and existence, and in particular abou
	2010
	2016
	2016
	2018
	2019
	2020
	Mendell 2019
	Bostock 2009


	The attention of the mathematician focuses primarily upon mathematical structure, and his intellectual delight arises (in part) from seeing that a given theory exhibits such and such a structure, from seeing how one structure is “modelled” in another, or in exhibiting some new structure and showing how it relates to previously studied ones … But … the mathematician is satisfied so long as he has some “entities” or “objects” (or “sets” or “numbers” or “functions” or “spaces” or “points”) to work with, and he
	The philosophical logician, on the other hand, is more sensitive to matters of ontology and will be especially interested in the kind or kinds of entities there are actually … He will not be satisfied with being told merely that such and such entities exhibit such and such a mathematical structure. He will wish to inquire more deeply into what these entities are, how they relate to other entities … Also he will wish to ask whether the entity dealt with is sui generis or whether it is in some sense reducible
	—R.M. Martin, Intension and Decision
	Against abstractionism (both in the context of the Hole Argument and in Frege’s original application to the definition of Number), one may claim extravagance by noting that an equivalence class [x] with respect to any equivalence relation ∼ on some given set X is typically huge; no theoretical or mathematical physicist ever works with such equivalence classes of spacetimes, or even a tiny fraction of it.
	42
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	In practice, one picks some representative (M, g, ι), from which one may switch to an equivalent triple (M′, g′, ι′) now and then, but one never uses the entire equivalence class. And yet it is, strictly speaking, the entire equivalence class that Frege would invoke in order to obtain a proper definition or reference of the word “spacetime” (provided the analogy with his definition of natural numbers is valid). See also Benaceraff (). To resolve this, one might try to work with the single object , i.e., the
	1965
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	Within mathematical structuralism, the Hole Argument seems compatible with both structural realism () and empiricist structuralism (); in the former, the structures in question are so to speak parts of reality whereas in the latter they model empirical phenomena. Let me quote van Fraassen:
	Ladyman 2020
	van Fraassen 2008

	Science represents the empirical phenomena as embeddable in certain abstract structures (theoretical models).
	1. 

	Those abstract structures are describable only up to structural isomorphism.
	2. 

	(…) How can we answer the question of how a theory or model relates to the phenomena by pointing to a relation between theoretical and data models, both of them abstract entities? The answer has to be that the data model represent the phenomena; but why does that not just push the problem [namely: what 
	42 Recall that an equivalence class [x] Ì X consists of all y Î X such that y ~ x.
	42 Recall that an equivalence class [x] Ì X consists of all y Î X such that y ~ x.

	43 See Gomes () for an analysis of physical practice, which in the context of gauge theories and gr amounts to the choice of cross-sections of the canonical projection from X to X/~.
	43 See Gomes () for an analysis of physical practice, which in the context of gauge theories and gr amounts to the choice of cross-sections of the canonical projection from X to X/~.
	2021a


	is the relation between the data and the phenomena it models
	is the relation between the data and the phenomena it models
	] one step back? 
	The short answer is this: construction of a data model is precisely the selective 
	relevant depiction of the phenomena 
	by the user of the theory
	 required for the 
	possibility of representation of the phenomenon.

	()
	van Fraassen 2008, 238, 253

	This last comment seems to describe the practice of physicists and mathematicians working in gr: Some user of the theory chooses a member (M, g, ι) of its equivalence class, whilst some other user (or even the same one) may pick another member.
	44
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	In conclusion, empiricist structuralism seems to have strong cards in confronting the Hole Argument (in both its original versions or rephrased as Theorem 2): It does not suffer from the calculational intractability and ontological extravagance of Frege-style abstractionism; and it seems to be warranted by actual scientific practice.
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	Finally, I discuss some implications of the theorem for the philosophy of science: Accepting the determinism horn still requires a choice between Frege-style abstractionism and Hilbert-style structuralism; and, within the latter, between structural realism and empiricist structuralism (which I favor).



	Link
	Link
	Link
	Link
	Link
	Link
	Link
	Link
	Link
	Link


