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Abstract
Epistemic scoring rules are the en vogue tool for justifications of the probability
norm and further norms of rational belief formation. They are different in kind
and application from statistical scoring rules from which they arose. In the first
part of the paper I argue that statistical scoring rules, properly understood, are
in principle better suited to justify the probability norm than their epistemic
brethren. Furthermore, I give a justification of the probability norm applying
statistical scoring rules. In the second part of the paper I give a variety of
justifications of norms for rational belief formation employing statistical scoring
rules. Furthermore, general properties of statistical scoring rules are investi-
gated. Epistemic scoring rules feature as a useful technical tool for constructing
statistical scoring rules.

Keywords Scoring rules, probability norm, strict propriety, entropy, principle
of indifference, rational belief formation.
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Introduction and Notation

1. Introduction

Bayesians agree on one basic norm for rational belief formation
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Probability Norm: Any rational agent’s subjective belief function
ought to satisfy the axioms of probability. (PN)

The question arises as to how to justify this norm. Traditionally, axiomatic jus-
tifications [6, 38], justifications on logical grounds [23] and Dutch Book Argu-
ments [13, 47] were given to this end. Dutch Book Arguments have been widely
regarded as the most persuasive justification, however, they have recently begun
losing some of their once widespread appeal [22].1

Recent work in epistemology takes a non-pragmatic approach using epis-
temic Scoring Rules (SRs) to justify the probability norm [25, 26, 30, 31, 46].
SRs first appeared in [5] as a tool to elicit probabilistic degrees of beliefs from
forecasters. Brier’s work has been highly influential in the statistical commu-
nity which developed the notion of a statistical SR, these have made their way
into the Encyclopedia of Statistics, see [10]. Epistemic SRs differ in form and
application from statistical SRs.

In the first part of the paper, we argue that statistical SRs, properly under-
stood, are better suited than epistemic SRs to justify the PN. The argument
will be along the following lines: the most convincing justifications of the PN
relying on epistemic SRs require the SRs to have a certain property, the SRs
need to be strictly proper (Section 4.1). However, for purposes of justifying the
PN, assuming that an epistemic SR is strictly proper is ill-advised (Section 4.3).
On the contrary, assuming that a statistical SR is strictly proper is not only
defensible but a desideratum (Section 3.2).

In Theorem 6.1 we show how strictly proper epistemic SRs give rise to strictly
proper statistical SRs in a canonical way. We demonstrate in Theorem 7.1 how
so-constructed statistical SRs can be used to justify the PN.

We also briefly consider the consequences of applying a statistical SR which is
not strictly proper (Section 8) and obtain unpalatable results in Proposition 8.1
and Proposition 8.2

In the second part of the paper we give a string of results demonstrating the
usefulness of strictly proper statistical SRs for rational belief formation beyond
justifications of the PN. In more detail, we show how to justify Maximum En-
tropy Principles (Theorem 10.1 and Theorem 10.2) and a probabilistic Principle
of Indifference (Corollary 11.4 and Proposition 11.5).

The logarithmic statistical SR is well-known to be the only local statisti-
cal SR which is strictly proper, when applied to belief functions which satisfy
the PN. Since we here do not presuppose the PN, we investigate notions of
locality applying to statistical SRs for general belief functions (Section 12 and
Section 13). We prove an impossibility result for such SRs in Theorem 12.4.
Furthermore, we investigate how to weaken the assumption in the impossibility
result to obtain strictly proper statistical SRs which are as local as possible in

1We are joining the debate concerning rational belief formation assuming that degrees of
beliefs are best represented by real numbers in [0, 1] ⊂ R. Anyone who rejects this premise
will have to carefully assess whether the account presented here has implications on her line
of thinking. Some of our results also hold true for degrees of belief represented by arbitrary
positive real numbers.
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Proposition 13.1 and Proposition 13.2.
Throughout, we use Brier Scores as a running example to illustrate differ-

ences and similarities between the epistemic and the statistical approach.
In the appendix we see how to frame the project of rational belief formation

employing SRs from a higher, more abstract point of view.

2. Notation

Throughout, we work with a fixed non-empty, finite set Ω, which is interpreted
as the set possible worlds or elementary events. The power set PΩ may thus
be understood as the set of propositions or events. We shall assume throughout
that |Ω| ≥ 2 and also let X̄ := Ω \ {X}.

The set of probability functions P is the set of functions P : PΩ → [0, 1]
such that

∑
ω∈Ω P ({ω}) = 1 and whenever X ⊆ Ω is such that X = Y ∪Z and

Y ∩ Z = ∅, then P (X) = P (Y ) + P (Z). We shall use P (ω) as shorthand for
P ({ω}). The probability function P= ∈ P defined by P=(ω) := 1

|Ω| is called the
equivocator.

Note that for all probability functions P ∈ P we have that P (X)+P (X̄) = 1

and hence 2
∑
X⊆Ω P (X) =

∑
X⊆Ω P (X) + P (X̄) = |PΩ|. Then let σ := |PΩ|

2 .
The set of belief functions is the set of functions bel : PΩ→ [0, 1] and shall

be denoted by B. We shall throughout assume that all belief and probability
functions are total, i.e. defined on every X ⊆ Ω. Trivially, since |Ω| ≥ 2 we have
P ⊂ B, where ⊂ denotes strict inclusion. Of particular interest are the functions
vω ∈ P for ω ∈ Ω. A vω is the at a world ω ∈ Ω vindicated credence function.
The vω are defined as follows:

vω(X) :=

{
0 if X is false at ω

1 if X is true at ω .

By X is true at ω we mean that ω ∈ X; on the contrary, X is false at ω, if and
only if ω /∈ X.

We put 0 · ∞ := 0 and r · ∞ =∞ for r ∈ (0, 1].
By “log” we refer to a logarithm with an arbitrary base b > 1 and by “ln”

to the natural logarithm, i.e., base e.

Part 1

3. The Statistical Approach

3.1. Statistical Scoring Rules, Applications and Interpretations

The statistical notion of a SR relies on the following betting scenario: given that
a certain elementary event ω ∈ Ω obtains an agent incurs a loss which depends
on the agent’s probabilistic beliefs. Formally, these losses are represented by a
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loss function L : Ω× P→ [0,+∞]. L is then referred to as a scoring rule. For a
guide to the voluminous literature to statistical SRs refer to [19].

As is typical for statistical investigations, the existence of an objective prob-
ability function P ∗ is assumed, which is normally taken to be the distribution
of a (or several) random variable(s). The existence of P ∗ allows the aggregation
of losses incurred for different elementary events with respect to P ∗. In order to
build a general framework one defines a function which aggregates losses with
respect to all P ∈ P:

SstatsL : P× P→ [0,+∞], SstatsL (P, bel) :=
∑
ω∈Ω

P (ω) · L(ω, bel) . (1)

Statisticians virtually always only consider degrees of belief which satisfy the
PN. Their notion of loss is thus only defined for probabilistic belief functions.
For bel ∈ P we have that bel is completely determined by {bel(ω) |ω ∈ Ω}. In
this case we can understand L(ω, bel) as only depending on the first argument,
ω, and {bel(ω) |ω ∈ Ω}.

We shall here be interested in justifying the PN. Hence, we will have to
consider loss functions that also depend on degrees of belief in all non-elementary
events X ⊆ Ω. We thus introduce a loss function L : Ω × B → [0,+∞] and
define the expected loss as

SstatsL : P× B→ [0,+∞], SstatsL (P, bel) :=
∑
ω∈Ω

P (ω) · L(ω, bel) . (2)

In general, such a loss function L : Ω × B → [0,+∞] is not determined by the
first argument, ω, and {bel(ω) |ω ∈ Ω}. Rather, L depends on the elementary
event ω and {bel(X) |X ⊆ Ω}. So, although (1) and (2) appear at first glance
to be the same expressions, they do differ in important aspects.

We shall tacitly assume that L(ω, bel) in (1) and (2) may also depend on Ω
throughout.

For ease of reading, we shall use the term statistical SR to refer to SstatsL (·, ·)
as in (2), rather than the long-winded “expectation of a SR L”.

The main areas of application for traditional SRs have been belief elicitation
and the assessment of beliefs. We shall make a few remarks concerning belief
elicitation applying SRs. The relevance of these remarks shall become clear in
Section 4.3.

In the belief elicitation framework P in (1) is interpreted as the agent’s true
subjective probabilistic belief function, referred to as bel∗. In contrast, bel in
(1) is interpreted as the belief function the agent chooses to announce. See [10,
p. 211] for a definition in the encyclopedia of statistics and [17] for an overview.

So long as bel∗ can be assumed to be in P, the term
∑
ω∈Ω bel

∗(ω) ·L(ω, bel)
can be interpreted as the loss the agent expects to incur upon announcing bel.

If bel∗ is not a probability function, then there is no widely accepted inter-
pretation of

∑
ω∈Ω bel

∗(ω) · L(ω, bel). Thus, belief elicitation using a statistical
SR without any further external grounds or assumptions as to why the agent’s
subjective belief function bel∗ satisfies the PN appears to be less than fully

5



satisfactory. For a stark example consider an agent with belief zero in every
elementary event, i.e. bel∗(ω) = 0 for all ω ∈ Ω. For this agent the score
SstatsL (bel∗, bel) is always zero, independently of bel and independently of L.
Thus, any announced belief function bel results in the exact same score. Hence,
the agent has no incentive to truthfully announce bel = bel∗.

So, for the purposes of belief elicitation P may, under the assumption that
bel∗ ∈ P, be interpreted as the agent’s subjective belief function.

Belief elicitation is at heart an empirical problem, which is normally tackled
by employing questionnaires, by conducting interviews and/or by observational
studies (of subjects playing [incentive compatible] games). Verily, SRs have
made their way into the applied sciences [37, 57]. See [18, Section 3] for a recent
philosophical treatment of belief elicitation with statistical SRs.

Let us now consider what happens, if we interpret P as the agent’s beliefs bel∗

for the purpose of justifying of norms of belief formation. Any such justification
would then be of the form:

An agent with private beliefs bel∗ ∈ B avoiding (some form of) ex-
pected loss with respect to bel∗ ought to adopt a certain bel ∈ B [or
some member of a set B ⊆ B].

That is, an agent ought to adopt a belief function bel ∈ B which depends on her
private beliefs bel∗ ∈ B. A highly circular argument indeed.

There is another major problem with interpreting P as bel∗ for the purpose
of justifying norms of belief formation. If bel∗(ω) = 0 for all ω ∈ Ω, then an
agent would be free to adopt any bel ∈ B.

3.2. Strict Propriety for statistical Scoring Rules

We now turn to the key property for justifications of norms of rational belief
formation.

Definition 3.1 (Strict X-propriety). A statistical SR SstatsL is strictly X-proper
with P ⊆ X, if and only if for all P ∈ P the optimisation problem

minimise SstatsL (P, bel)

subject to bel ∈ X

is uniquely solved by bel = P .2

Following [51], a statistical SR SstatsL is called merely X-proper, if and only
if the following two conditions are satisfied: i) for all P ∈ P it holds that P ∈
arg infbel∈B S

stats
L (P, bel). ii) There exists at least one P ∈ P and one bel′ ∈

B \ {P} such that {P, bel′} ⊆ arg infbel∈B S
stats
L (P, bel).

In plain English, strictly X-proper statistical SRs track objective probabili-
ties, whatever these probabilities are.

2Our notion of strict X-propriety differs from that of Γ-strictness of [21]. Γ constraints the
domain of P , whereas X constraints the domain of the belief functions bel.
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Note that the pathological SR SstatsL defined as SstatsL (P, bel) := 0 for all
P ∈ P and all bel ∈ X is merely X-proper. Unsurprisingly, the class of merely
X-proper SRs has received little attention in the literature.

Recall from when we introduced statistical SRs that losses are interpreted
pragmatically as losses in a betting game. For our purposes we will interpret
the function L : Ω × B → [0,∞] as an inaccuracy measure. The intended
interpretation is that L(ω, bel) scores the inaccuracy of bel, in case ω obtains.
By convention, score is an inaccuracy measure, a low score thus means low
inaccuracy.

Now consider a function P ∈ P and a SR SstatsL (P, bel). If SstatsL (P, bel) is
strictly B-proper, then bel = P is the unique belief function for which SstatsL (P, ·)
is minimal. So, bel = P is the unique function which minimises expected inac-
curacy. On the other hand, if SstatsL (P, bel) is not strictly B-proper, then there
exists a P ∈ P and a bel′ ∈ B \ {P} such that bel′ ∈ arg infbel∈B S

stats
L (P, bel).

Arguably, then

The class of strictly B-proper statistical SRs is the class of inaccuracy
measures in the class of statistical SRs.

Plausibly, one might want to demand further desiderata (such as continuity
of L) an inaccuracy measure ought to satisfy. However, it is not clear which
other desideratum stands out in the class of further desiderata. Moreover, our
approach covers the entire class of strictly B-proper SRs. We will henceforth
take it that the class of statistical SRs which measure inaccuracy is the class of
strictly B-proper statistical SRs.

Ideally, one might think, rational agents aim for beliefs which track the truth
rather than tracking objective probabilities. Determining the truth, if such a
thing as the true state of the world exists, has proven to be a rather complicated
endeavour. Many Bayesians have argued that some version of the Calibration
Norm (cf. Section 8) applies to rational agents. If the set of probability functions
calibrated to the agent’s evidence contains a unique probability function P , then
these Calibration Norms entail that adopting bel = P is the unique rational
belief function. Thus, proponents of Calibration Norms advocate the tracking
of objective probabilities in such cases. We shall take it that these arguments
are right and that rational agents aim at tracking objective probabilities.

Having established that minimising inaccuracy can be cached out as tracking
objective probabilities, we now turn to motivating the idea that minimising
expected inaccuracy is the rational thing to do.

Let us recall that SstatsL is the expectation of the inaccuracy measure L where
expectations are taken with respect to P . A rational agent forming beliefs on
matters relevant to her will use those beliefs for other purposes a great number
of times. Typically, formed beliefs may be used to make various decisions. Thus,
having formed inaccurate beliefs is, in general, harmful to the agent more than
once. In the long run of using once formed beliefs over and over again the sum of
incurred inaccuracies tends with probability one to expected inaccuracies. So, a
rational agent will aim to minimise expected inaccuracy, if she has good reasons
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to assume that the beliefs she now forms are going to be relevant to her later a
great number of times.

So, applying strictly B-proper statistical SRs for the purposes of rational
belief formation is in fact a desideratum, if rational agents are assumed to avoid
expected inaccuracies. As we have argued above, the avoidance of expected
inaccuracies of formed beliefs is very much in line with how rational agents
from beliefs.

The most famous and most widely used statistical SR is:

Definition 3.2 (Statistical Brier Score [5]). The Brier Score SstatsBrier takes the
following form:3

SstatsBrier(P, bel) : =
∑
ω∈Ω

P (ω)·
(

(1− bel(ω))2 +
∑

ν∈Ω\{ω}

bel(ν)2
)

(3)

= 1 +
∑
ω∈Ω

P (ω)·
(
− 2(bel(ω)) +

∑
ν∈Ω

bel(ν)2
)
. (4)

An axiomatic characterization of SstatsBrier has been provided in [52].
SstatsBrier(P, bel) can visualised as the expectation (with respect to P ) of the

Euclidean distance on the elementary events of Ω between P and bel. While
SstatsBrier is well-known to be strictly P-proper it is not strictly B-proper since
it does not depend at all on beliefs in non-elementary events. Thus, SstatsBrier

cannot be the SR of choice for rational belief formation approaches that do not
presuppose the PN.

Strict P-propriety, in contrast to strict B-propriety, has been argued for by a
number of authors in varying contexts. For instance by Selten [52, p. 44] for the
purposes of assessing the predictive success of competing probabilistic theories
and by Gneiting & Raftery [19] as well as Winkler [58, pp. 4] for the purposes
of belief elicitation. Gibbard [18] advocated strict P-propriety for rational belief
formation, pre-supposing that degrees of belief are probabilistic.

4. The Epistemic Approach

4.1. The main Ingredients

To highlight that we are now working within the epistemic framework we refer
to the ω ∈ Ω as possible worlds, Ω is now called the set of possible worlds and
the X ⊆ Ω are referred to as propositions. This change in terminology is of
course purely cosmetic.

The central notion we are here interested in is that of an epistemic SR:

3The original definition in [5] does not contain the formal expectation operator∑
ω∈Ω P (ω)·. Rather, Brier envisioned a series of n forecasts which would all be scored

by
∑

ω∈Ω(beli(ω) − Ei,ω)2 where beli(ω) notates the i-th forecast in ω and Ei,ω denotes in-
dicator function for ω on the i-th occasion. The final score is then computed by dividing this
sum by n. In essence, this amounts to taking expectations.
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Definition 4.1 (Epistemic Scoring Rule). Let L be a function L : PΩ×{0, 1}×
[0, 1] → [0,∞]. For such a function L, an epistemic SR SepiL is a map SepiL :
Ω× B→ [0,∞] such that

SepiL (ω, bel) :=
∑
X⊆Ω

L(X, vω(X), bel(X)) . (5)

The epistemic score SepiL (ω, bel) is interpreted as inaccuracy of the agent’s
belief function bel at a possible world ω ∈ Ω with respect to the function L. For
a proposition X ⊆ Ω and possible world ω ∈ Ω, L(X, vω, bel(X)) is construed
as the inaccuracy of the belief bel(X) relative to X being true or false at ω.

So, for a given world ω and a given belief function bel, SepiL sums the inaccu-
racies over all propositions of all beliefs bel(X) with respect to ω (or, depending
on one’s point of view, with respect to the at ω vindicated credence function
vω).

The terminology in the literature has not yet converged, the function L
has been called an (local) “inaccuracy measure” in [30, 43], whereas Predd
et al. call L a SR and refer to Sepi as a “penalty function”. Groves (private
communications) refers to L as “proposition-specific inaccuracy measure” which
is more to the point but quite a mouthful.

In principle, it would be desirable to measure inaccuracy by some function
f : Ω × B → [0,+∞] (possibly satisfying further conditions) without assuming
that f can be written as a sum over the X ⊆ Ω. For further discussion on
this point see [30, Section 5.2.1]. For the purposes of this paper we shall be
interested in the better understood set-up of Definition 4.1.

The key property for our discussion is:

Definition 4.2 (Strict Propriety). A SR SepiL is called strictly proper, if and
only if the following two conditions are satisfied

• for all p ∈ [0, 1] and all ∅ ⊂ X ⊂ Ω it holds that pL(X, 1, x) + (1 −
p)L(X, 0, x) is uniquely minimized by x = p

• L(Ω, 1, x) + L(∅, 0, y) is uniquely minimised by x = 1 and y = 0.

Some authors do not allow L to depend on X, see for instance [44, 46]. For
such a loss function the condition on Ω and ∅ follows from the first condition.
In general, the second condition is required because P (∅) = 0 and P (Ω) = 1 for
all P ∈ P.

In particular, if SepiL is strictly proper, then for all ω ∈ Ω it holds that

SepiL (ω, bel) is uniquely minimized by bel = vω. So, if ω∗ ∈ Ω is the actual
world, then the strictly least inaccurate function is vω∗ . In this sense, strictly
proper epistemic SRs track the actual world.

One intuition behind strict propriety is the following: If p is the chance that
the real world ω is a member of X, then 1− p is the chance that the real world
is in X̄. So, for a strictly proper epistemic SR expected inaccuracy is uniquely
minimised, iff bel(X) = p and bel(X̄) = 1 − p. That is, whatever the actual
chances are, it is best to hold beliefs matching the chances.
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The above intuition has also been framed in terms of subjective degrees of
belief rather than chances [44, p. 28]: “An epistemic SR is strictly proper, if
and only if a probabilistic agent with credence p in a proposition expects that
credence and only that credence to be least inaccurate with respect to L.”

Strict propriety as a desideratum for epistemic SRs has been argued for in
various contexts [30, Section 3 and 5], see also [15, 18, 20, 36]. We shall not
advance further arguments for strict propriety here; in Section 4.3 we shall argue
against the use of strictly proper epistemic SRs.

A natural condition on epistemic SRs is the following:

Definition 4.3. An epistemic SR SepiL is called continuous, if and only if L is
continuous in bel(X).

Continuity is here taken in the usual sense: For all X ⊆ Ω, for i ∈ {0, 1}
and for any sequence (beln(X))n∈N converging to bel(X) ∈ [0, 1] it holds that
limn→∞ L(X, i, beln(X)) = L(X, i, bel(X)). Furthermore, continuity is here un-
derstood to be extended to [0,+∞].

The most popular epistemic SR is:

Definition 4.4 (Epistemic Brier Score). The epistemic Brier Score is defined
as

SepiBrier(ω, bel) :=
∑
X⊆Ω

(vω(X)− bel(X))2 . (6)

In other words: SepiBrier(ω, bel) is the distance between vω and bel where the

distance is Euclidean distance in R|PΩ|. SepiBrier is strictly proper and continuous.
Compare the epistemic Brier Score (Definition 4.4) to the statistical Brier

Score (Definition 3.2) and note that they differ in various respects. For instance,
SepiBrier(ω, bel) depends on the entire belief function while SstatsBrier(P, bel) only

depends on beliefs in elementary events. Furthermore, SepiBrier(ω, bel) is a tuple
of real numbers (one number for each ω ∈ Ω), whereas SstatsBrier(P, bel) is a single
real number.

Recently, quadratic inaccuracy measures, such as SepiBrier, have been advo-
cated in [30, 31] on the grounds that they are the only class of measures which
keep an agent out of certain epistemic dilemmas.

4.2. The Justifications

In justifications of norms of rational belief formation employing epistemic SRs it
is normally assumed that the agent has no information as to which world is the
actual one. How is one then to aggregate inaccuracies SepiL (ω, bel) in different

worlds? Surely, one could simply add the inaccuracies up,
∑
ω∈Ω S

epi
L (ω, bel).

But why should one not multiply the inaccuracies,
∏
ω∈Ω S

epi
L (ω, bel), or con-

sider the sum of the logarithms of the inaccuracies,
∑
ω∈Ω log(SepiL (ω, bel))?

Apparently, there is no canonical way to aggregate the inaccuracies SepiL (ω, bel)
for the possible worlds ω ∈ Ω.
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The Decision Theoretic Norm (DTN) which springs to mind in this situation
is dominance. The first justification of the PN applying dominance was:

Theorem 4.5 (De Finetti [12]).

• If bel ∈ B \ P, then there exists some P ∈ P such that SepiBrier(ω, bel) >

SepiBrier(ω, P ) for all ω ∈ Ω.

• If bel ∈ P, then there is no B ∈ B \ {bel} such that SepiBrier(ω, bel) ≥
SepiBrier(ω,B) for all ω ∈ Ω.

De Finetti’s result relies on the epistemic Brier Score to measure inaccuracy.
Plausibly, there are other epistemic SRs which measure inaccuracy. Recently,
the following theorem has been proved:

Theorem 4.6 (Predd et al. [46]). If SepiL is a continuous strictly proper epis-
temic SR, then:

• If bel ∈ B \ P, then there exists some P ∈ P such that SepiL (ω, bel) >

SepiL (ω, P ) for all ω ∈ Ω.

• If bel ∈ P, then there is no B ∈ B\{bel} such that SepiL (ω, bel) ≥ SepiL (ω,B)
for all ω ∈ Ω.

Predd et al. credit Lindley [33] for a precursor of Theorem 4.6. Continuity
strikes us as a sensible property an inaccuracy measure should satisfy. As we
said above, we shall return to strict propriety in Section 4.3.

We have seen above that the epistemic Brier Score and the statistical Brier
Score are fundamentally different creatures. It should therefore come as no
surprise that statistical versions of de Finetti’s result (Theorem 4.5) or Predd
et al.’s result will require extra effort. Only the following result is immediate:

Proposition 4.7. Let SstatsL be a strictly B-proper SR. If bel ∈ P, then there is
no B ∈ B \ {bel} such that SstatsL (P, bel) ≥ SstatsL (P,B) for all P ∈ P.

Proof. If bel ∈ P, then SstatsL (bel, ·) is uniquely minimized by bel = bel. So,
for B ∈ P \ {bel} we have SstatsL (bel, B) > SstatsL (bel, bel).

The first, and more interesting, direction of Theorem 4.6 shall remain open
for the moment:

Open Problem 1: Let SstatsL be a strictly B-proper statistical SR.
Under which conditions on SstatsL does bel ∈ B \ P imply that there
exists some P ∈ P such that SstatsL (Q, bel) > SstatsL (Q,P ) for all
Q ∈ P?

The two other main justifications of the PN are due to Joyce, see [25] and
[26]. Both justificaitons apply dominance as DTN in the same way as de Finetti
and Predd et al.
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The former justification does not require that the inaccuracy measure f(ω, bel)
can be written as a sum over the propositions X ⊆ Ω. In order to prove the
theorem Joyce has to assume a number of properties f has to satisfy. The con-
vexity property has been objected to in [34, 18] and Gibbard also objected to
the normality property. In his 2009 paper Joyce concedes that the objections
raised have merit and that it would be best to do without these properties.

The latter justification [26] also does not require that the inaccuracy mea-
sure f(ω, bel) can be written as a sum over the propositions X ⊆ Ω. It is
only assumed that the inaccuracy measure f is continuous, finitely valued and
satisfies truth-directedness and coherent admissibility. f(ω, bel) satisfies truth-
directedness, iff (if ω ∈ Ω and bel, bel′ ∈ B are such that for all X ⊆ Ω it
holds that vω(X) ≤ bel(X) < bel′(X) or vω(X) ≥ bel(X) > bel′(X), then
f(ω, bel) < f(ω, bel′)). f(ω, bel) satisfies coherent admissibility, iff there do not
exist a P ∈ P and a bel ∈ B such that f(ω, P ) ≥ f(ω, bel) for all ω ∈ Ω and
f(ν, P ) > f(ν, bel) for some ν ∈ Ω. [This version of coherent admissibility is
taken from the erratum to the 2009 paper (p. 280) published on Joyce’s website.]

Proponents of logarithmic SRs will object to the finiteness condition. It can
also be argued that declaring all probability functions to be a priori admissible
(coherent admissibility) singles out probabilistic belief functions as different in
kind which is unfortunate for justifications of the PN. We feel that the main
draw-back with the 2009 result is that it only applies for every partition of
propositions and not for all propositions X ⊆ Ω.

Over the last decade, a number of further results in the vein of de Finetti’s
theorem have proved. We shall mention [44], where the author proved that a
Calibration Norm (cf. Section 8) may be justified in a similar way. A further
result in this vein for conditional probabilities may be found in [51].

4.3. Against the use of strictly proper epistemic Scoring Rules

We now return to strict propriety as explained in [44]: “An epistemic SR is
strictly proper, if and only if a probabilistic agent with credence p in a propo-
sition expects that credence and only that credence to be least inaccurate with
respect to L.”4 In other words, if SepiL is strictly proper and if the agent’s be-
lief function bel∗ is in P, then the agent expects bel∗ and only bel∗ to be least
inaccurate.

From a purely technical standpoint, strictly proper epistemic SRs have a
highly desirable property for axiomatic justifications of the PN: the second im-
plication in Theorem 4.6 holds trivially.

However, advocating strict propriety on the grounds of Pettigrew’s expla-
nation would be arguing for treating probabilistic degrees of belief bel ∈ P
differently from non-probabilistic degrees of belief bel ∈ B \ P. It would thus
single out probabilistic degrees of belief as different in kind from the belief func-
tions bel ∈ B\P and thereby undermine the intuitive appeal of the justification.

4Pettigrew only considers loss functions which do not depend on the proposition X. This
technical detail is not relevant here.
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Joyce [25, p. 589-590] makes a similar point on the justifications of strict pro-
priety in axiomatic justifications of the PN relying on epistemic SRs.

We also want to remark that Pettigrew’s formulation makes reference to an
agent concerned with expected loss with respect to bel∗. In general, it is not
clear why a rational agent aims to avoid expected losses where the expectation
is taken with respect the agent’s degrees of belief bel∗, unless the agent is (fairly)
certain that bel∗ is (a good approximation of) P ∗. Finally, we remark, if one
does not pre-suppose the PN, then there is no sensible way to interpret taking
expectations with respect to bel∗ ∈ B \ P (recall the “stark example” from
Section 3.1).

Thus, for our purposes of rational belief formation we would need a different
motivation for strict propriety from the explanation given by Pettigrew. How-
ever, Pettigrew’s formulation is apparently the only plausible explanation of
strict propriety. Hence, assuming strict propriety for the purposes of rational
belief formation is ill-advised.

Predd et al. [46, p. 4786] motivate strict propriety by “Our scoring rule thus
encourages sincerity since your interest lies in announcing probabilities that
conform to your beliefs.” Interpreting their result in these terms, we lay bare
the following structure: Because an agent’s beliefs bel∗ satisfy the PN (or to be
more precise: bel∗ satisfies bel∗(X) + bel∗(X̄) = 1 for all X ⊆ Ω) and because
the SR is strictly proper an agent who avoids dominated belief functions will
announce a belief function bel ∈ P. That is, Predd et al. avoid the pitfall of
giving a circular argument discussed in Section 3.1 by interpreting Theorem 4.6
as result concerning the assessment of forecasters as opposed to the formation
of rational beliefs.

5. Extended statistical Scoring Rules

In this section we shall introduce a class of statistical SRs which will later allow
us to connect epistemic SRs to the here introduced class of statistical SRs. We
follow [29] and define:

Definition 5.1 (Extended Scoring Rule). A statistical SR SstatsL : P × B →
[0,∞] is called extended, iff it can be written as

SstatsL,ext(P, bel) =
∑
X⊆Ω

P (X) · L(X, bel) , (7)

for some loss function L : PΩ× B→ [0,∞].

The name extended is somewhat unfortunate. Originally, it was intended
to capture the fact that the domain of the SR has been extended from P × P
to P × B and that the sum in (7) is over all X ⊆ Ω and not merely over the
ω ∈ Ω as in (1). From now on, we shall mean by an extended SR an extended
statistical SR.

For our running example the Brier Score we give the following definition:
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Definition 5.2 (Extended Brier Score).

SstatsBrier,ext(P, bel) : =
∑
X⊆Ω

P (X) ·
(

(1− bel(X))2 + bel(X̄)2
)

(8)

=
∑
ω∈Ω

P (ω) ·
(∑
X⊆Ω
ω∈X

(1− bel(X))2 +
∑
Y⊆Ω
ω/∈Y

bel(Y )2
)

(9)

=
∑
ω∈Ω

P (ω) · SepiBrier(vω, bel) . (10)

Proposition 5.3. SstatsBrier,ext is strictly P-proper.

Proof. First note that

2 · SstatsBrier,ext(P, bel) =
∑
X⊆Ω

P (X) ·
(

(1− bel(X))2 + bel(X̄)2
)

+ P (X̄) ·
(

(1− bel(X̄))2 + bel(X)2
)
.

To simplify notation let x := bel(X) and y := bel(X̄) and consider the following
minimization problem for fixed P ∈ P and fixed X ⊆ Ω

minimize P (X) · ((1− x)2 + y2) + (1− P (X)) · ((1− y)2 + x2)

subject to x, y ∈ [0, 1] and x+ y = 1 .

After substituting y = 1 − x the objective function becomes P (X) · (2 · (1 −
x)2) + (1 − P (X)) · (2x2) which is equal to 2((P (X) − x)2 − P (X)2 + P (X)).
Thus, this optimization problem is uniquely solved by x = P (X). Thus, every
summand in SstatsBrier,ext(P, ·) is uniquely minimized by bel(X) = P (X). Hence,

bel = P uniquely minimizes SstatsBrier,ext(P, ·).

In fact, the following stronger statement is true:

Proposition 5.4. SstatsBrier,ext is strictly B-proper.

Proof. Consider the following minimization problem for fixed P ∈ P and fixed
X ⊆ Ω

minimize P (X) · ((1− x)2 + y2) + (1− P (X)) · ((1− y)2 + x2)

subject to x, y ∈ [0, 1] .

Note that the objective function of the minimization problem is equal to x2 −
2xP (X)+P (X)+y2−2y(1−P (X))+(1−P (X)). The unique minimum obtains
for x = P (X) and y = 1− P (X).

Hence, bel = P uniquely minimizes SstatsBrier,ext(P, ·).

Interestingly, we can prove a version of de Finetti’s Theorem (Theorem 4.5)
for statistical SRs:
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Theorem 5.5 (Statistical de Finetti Theorem).

• If bel ∈ B\P, then there exists some Pbel ∈ P such that SstatsBrier,ext(Q, bel) >

SstatsBrier,ext(Q,Pbel) for all Q ∈ P.

• If bel ∈ P, then there is no P ∈ P \ {bel} such that SstatsBrier,ext(Q, bel) ≥
SstatsBrier,ext(Q,P ) for all Q ∈ P.

Proof. 1) Let bel ∈ B\P, then by Theorem 4.5 there is a Pbel ∈ P such that for
all ω ∈ Ω it holds that SepiBrier(vω, bel) > SepiBrier(vω, Pbel). Using (10) and that
Pbel(ω) > 0 for some ω ∈ Ω we have that SstatsBrier,ext(Q, bel) > SstatsBrier,ext(Q,Pbel)
for all Q ∈ P.
2) Follows from the Proposition 4.7 using that SstatsBrier,ext is strictly B-proper
(Proposition 5.4).

Note that de Finetti’s Theorem applies dominance with respect to the pos-
sible worlds ω ∈ Ω while the above theorem applies dominance with respect to
the probability functions Q ∈ P.

6. Connecting epistemic and extended Scoring Rules

In this section we shall see how to canonically embed the class of epistemic SRs
into the class of extended SRs. We shall give two examples to illustrate the
embedding.

Let SepiL be an epistemic SR. Then we can define an associated extended SR

Sstats,epiext as:

Sstats,epiext (P, bel) :=
∑
ω∈Ω

P (ω) · SepiL (ω, bel) (11)

=
∑
ω∈Ω

P (ω) ·
(∑
X⊆Ω
ω∈X

L(X, 1, bel(X)) +
∑
Y⊆Ω
ω/∈Y

L(Y, 0, bel(Y ))
)

(12)

=
∑
X⊆Ω

P (X) · L(X, 1, bel(X) + P (X̄) · L(X, 0, bel(X)) (13)

=
∑
X⊆Ω

P (X) ·
(
L(X, 1, bel(X)) + L(X̄, 0, bel(X̄))

)
. (14)

Recall that we assumed that L may depend on Ω. Thus, if L depends on X and
Ω it may also depend on X̄. The last equation then shows that we indeed defined

an extended SR, since
(
L(X, 1, bel(X)) + L(X̄, 0, bel(X̄))

)
is an extended loss

function of the form Lext(X, bel(X), bel(X̄)). For the following calculations we
shall mainly rely on (13).

Theorem 6.1 (Canonical Embedding). SepiL is strictly proper, if and only if

Sstats,epiext is strictly B-proper.
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Proof. If SepiL is strictly proper, then every summand over ∅ ⊂ X ⊂ Ω in

Sstats,epiext (P, bel) =
∑
∅⊂X⊂Ω

P (X) · (L(X, 1, bel(X)) + P (X̄) · L(X, 0, bel(X))

is uniquely minimised by bel(X) = P (X). Furthermore, L(Ω, 1, bel(Ω)) +
L(∅, 0, bel(∅)) is uniquely minimised by bel(Ω) = 1 and bel(∅) = 0. Thus,
Sstats,epiext (P, ·) is uniquely minimised by bel = P .

Now, suppose that Sstats,epiext is strictly B-proper. Then for all p ∈ [0, 1] and
P ∈ P with P (ω) = p and P (ω′) = 1− p for some ω, ω′ ∈ Ω we have

Sstats,epiext (P, bel) =
∑
X⊆Ω

P (X) · L(X, 1, bel(X)) + P (X̄) · L(X, 0, bel(X))

=
∑
U⊆Ω
ω,ω′∈U

1 · L(U, 1, bel(U)) + 0 · L(U, 0, bel(U))

+
∑
W⊆Ω
ω,ω′ /∈W

0 · L(W, 1, bel(W )) + 1 · L(W, 0, bel(W ))

+
∑
Y⊆Ω

ω∈Y, ω′ /∈Y

p · L(Y, 1, bel(Y )) + (1− p) · L(Y, 0, bel(Y ))

+
∑
Z⊆Ω

ω′∈Z, ω/∈Z

(1− p) · L(Z, 1, bel(Z)) + p · L(Z, 0, bel(Z)) .

Now observe that the belief function bel+ minimising Sstats,epiext (P, ·) minimises
each of the four sums above individually, since every sum only depends on beliefs
which no other sum depends on.

By considering the first two sums for U = Ω and W = ∅ we find that
L(Ω, 1, bel+(Ω)) + L(∅, 1, bel+(∅)) is uniquely minimised by bel+(Ω) = 1 and
bel+(∅) = 0.

Let us now consider the third sum. Note that any given Y ⊆ Ω such that
ω ∈ Y and ω′ /∈ Y only appears in this sum once (and it does not appear
in any other sum). Thus, bel+(Y ) = p = P (Y ) is the unique minimum of
p ·L((Y, 1, ·)+(1−p) ·L(Y, 0, ·). By varying P (ω) = p we obtain that bel+(Y ) =
P (ω) is the unique minimum of p ·L(Y, 1, ·) + (1− p) ·L(Y, 0, ·) for all p ∈ [0, 1]
and all Y ⊆ Ω with ω ∈ Y .

Finally, note that the above arguments do not depend on ω ∈ Ω. We thus
find for all Y ⊆ Ω that bel+(Y ) = p is the unique minimum of p · L(Y, 1, ·) +
(1− p) · L(Y, 0, ·) for all p ∈ [0, 1].

Thus, SepiL is strictly proper.

From a purely technical point of view, Theorem 6.1 can be most helpful.
All one needs to do to check whether an extended SR is strictly B-proper is
to check whether the corresponding epistemic SR is strictly proper. The later
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task can be accomplished simply by checking whether simple sums are uniquely
minimised by bel(X) = p and bel(X̄) = 1−p; checking whether an extended SR
is strictly B-proper requires one to solve a minimisation problem in [0, 1]|PΩ|.
Furthermore, Theorem 6.1 puts us in a position to define strictly B-proper
extended SRs by using (14).

For our running example, Brier Scores, we already considered the canonical
embedding in Definition 5.2. We now give two applications of Theorem 6.1.
The epistemic logarithmic SR is well-known to be strictly proper (see, e.g., [26,
Section 8]).

Proposition 6.2. The following extended SR is strictly B-proper.

Sstats,epilog,ext (P, bel) :=
∑
X⊆Ω

P (X) ·
(
− log(bel(X))− log(1− bel(X̄))

)
=
∑
ω∈Ω

P (ω) ·
(
−
∑
X⊆Ω
ω∈X

log(bel(X))− log(1− bel(X̄))
)
.

Another popular strictly proper epistemic SR is the spherical epistemic SR
(see, e.g., [26, Section 8]). Using Theorem 6.1 we define a spherical extended
strictly B-proper SR.

Proposition 6.3. The following spherical extended SR is strictly B-proper.

Sstats,episph,ext (P, bel) :=
∑
X⊆Ω

P (X)·

(
1 +

−bel(X)√
bel(X)2 + (1− bel(X))2

+
bel(X̄)− 1√

bel(X̄)2 + (1− bel(X̄))2

)
.

Theorem 6.1 allow us to generate strictly B-proper extended SRs from strictly
proper epistemic SRs. Although, we have argued that strictly proper epistemic
SRs are an inadequate tool for rational belief formation without presupposing
the PN they can nonetheless be used as a technically convenient tool to generate
strictly B-proper extended SRs.

Theorem 6.1 raises one, as of yet, open problem:

Open Problem 2: Is it true that for all strictly B-proper SR SstatsL

there exists an epistemic SR SepiL′ such that

SstatsL (P, bel) =
∑
ω∈Ω

P (ω) · SepiL′ (ω, bel) ?

7. A Justification of the Probability Norm with statistical
Scoring Rules

By proving the statistical version of de Finetti’s theorem (Theorem 5.5) we
demonstrated how to transfer a justification of the PN from the epistemic to the

17



statistical approach. We now show how to use the main result from the previous
section (Theorem 6.1) to transfer Predd et. al’s justification (Theorem 4.6) to
the statistical approach.

Theorem 7.1 (Statistical Predd et al. Theorem). Let SepiL be strictly proper
and continuous.

• If bel ∈ B\P, then there exists some Pbel ∈ P such that Sstats,epiext (Q, bel) >
Sstats,epiext (Q,Pbel) for all Q ∈ P.

• If bel ∈ P, then there is no P ∈ P \ {bel} such that Sstats,epiext (Q, bel) ≥
Sstats,epiext (Q,P ) for all Q ∈ P.

Proof. 1) Let bel ∈ B \ P, then by Theorem 4.6 there exists a Pbel ∈ P
such that for all ω ∈ Ω it holds that SepiL (vω, bel) > SepiL (vω, Pbel). For all
Q ∈ P there exists some ω ∈ Ω such that Q(ω) > 0. We thus find that
Sstats,epiext (Q, bel) > Sstats,epiext (Q,Pbel) for all Q ∈ P.
2) By Theorem 6.1 Sstats,epiext is strictly B-proper. By Proposition 4.7 we now find
that for bel ∈ P there does not exists a P ∈ P\{bel} such that Sstats,epiext (bel, bel) ≥
Sstats,epiext (bel, P ).

In the sense in which Theorem 4.6 subsumes Theorem 4.5, Theorem 7.1
subsumes Theorem 5.5.

Theorem 7.1 gives one answer to Open Problem 1 posed on Page 11. If
Sstats is of the form Sstats,epiext for a strictly proper and continuous epistemic SR
SepiL , then the converse of Proposition 4.7 does hold.

Besides the assumptions that rational agents aim only at accurate beliefs and
that inaccuracy may be measured by a SR SstatsL , this justification of the PN
rests on the following: A) The statistical SR SstatsL is induced by an epistemic
SR. B) SstatsL is strictly B-proper. C) Continuity of the loss function. D)
Dominance as DTN.

In order to make this justification compelling A – D need to withstand cri-
tiques. If rational agents aim to have accurate beliefs, then B is the obvious
condition the statistical SR needs to satisfy to encourage the tracking of ob-
jective probabilities (see Section 3.2 and see Propositions 8.1 and 8.2 for what
happens for not strictly B-proper SRs). If the answer to Open Problem 2 is
“yes”, then B implies A. If the answer is “no”, then we either need to give an
argument which singles out the class of statistical SRs which are the image of
the canonical embedding or give a proof of Theorem 7.1 that also applies for
statistical SRs which are not in the image of the embedding. One such argu-
ment may be: the set of appropriate inaccuracy measures is (some subset of)
the set of epistemic SRs. An appropriate measure of expected inaccuracy is thus
a statistical SR in the image of the embedding.

Continuity is a fairly harmless technical condition. Again, as for A, it might
be possible to prove Theorem 7.1 without assuming continuity. As far as we are
aware, no-one has seriously objected to Dominance as DTN in this context.

Overall, we feel that Theorem 7.1 provides a significantly more convincing
justification of the PN than the previous justifications using epistemic SRs.
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Comparisons of Theorem 7.1 with other justifications of the PN, such as Dutch
Book Arguments or axiomatic justifications, are well outside the scope of this
paper.

In Section 4.3 we argued that strict propriety for epistemic SRs without
presupposing the PN is unsatisfactory; for statistical SRs however, strict B-
propriety is desirable as a mean to encourage tracking of objective probabilities
and thus reduce inaccuracy (Section 3.2). Under the assumption that strict
propriety is necessary for convincing justifications of the PN, the upshot of Sec-
tion 3.2 is that statistical SRs are in principle better suited than their epistemic
brethren for such justifications. Proving Theorem 7.1 allows us to conclude the
following: Not only are statistical SRs better-suited in principle, it is actually
possible to give a general justification of the PN in the statistical framework.

8. The Bayesian Credo

Our line of thought so far has been that strict B-propriety of statistical SRs
is a desideratum for rational belief formation. Subsequently, we have focussed
solely on such SRs. We now investigate some consequences of a applying a
statistical SR which is not strictly B-proper. We obtain unpalatable results in
Propositions 8.1 and Proposition 8.2 for all statistical SRs which are not strictly
B-proper.

While the PN is an indispensable ingredient for the Bayesian approach there
is another widely advocated norm:

Calibration Norm: A rational agent’s belief function bel ∈ B
ought to satisfy all constraints imposed by her evidence E . (CN)

The CN; also known as the Principal Principle, Straight Rule and Miller’s Prin-
ciple; may be construed in different ways such as: a) bel ought to be a member
of the set E of probability functions consistent with E ,5 b) bel ought to be a
member of the convex hull of the closure of E. We shall refer to the conjunction
of the PN and the CN as the Bayesian Credo, whatever the particular form of
the CN.

Certain brands of Bayesianism advocate adopting a particular belief function
bel ∈ P consistent with E . If this particular function bel is determined by some
non-subjective mechanism, the resulting credo is an objective Bayesian one. For
example, Williamson [55] advocates adopting a calibrated belief function which
sufficiently equivocates between the basic propositions that one can express. We
shall see how to justify objective Bayesian approaches in Section 10.

Let us now consider a situation where E = {P} and we apply a statistical
SR SstatsL which is strictly B-proper. Then it holds that bel = P is the unique
expected inaccuracy minimiser and also the unique worst-case expected inaccu-
racy minimiser, where the worst case is taken with respect to the P ∈ E. So, for
expected inaccuracy minimisation as well as for worst-case expected inaccuracy

5We shall always assume that E is consistent and that E is not-empty.
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minimisation bel = P is the unique best option. Hence, a strictly B-proper sta-
tistical SR forces a (worst-case) expected inaccuracy avoiding agent to match
her degrees of belief to objective probabilities, if she knows these. In the simple
case of E = {P} such an agent will satisfy the Bayesian Credo.

On the other hand we have:

Proposition 8.1 (Violation of the Bayesian Credo). Let SstatsL be merely B-
proper SR. Then there exist a P ∈ P and a bel′ ∈ B \ {P} such that

bel′ ∈ arg inf
bel∈B

SstatsL (P, bel) . (15)

If Sstats is neither merely strictly B-proper nor strictly B-proper, then there
exists a P ∈ P such that

P /∈ arg inf
bel∈B

SstatsL (P, bel) . (16)

Proof. (15) follows directly from the definition of merely B-proper (Defini-
tion 3.1).

For the second part of the proof note that since SstatsL is neither strictly
B-proper nor merely B-proper, there exist a P ∈ P and a bel ∈ B \ {P} such
that SstatsL (P, bel) < SstatsL (P, P ).

Proposition 8.2 (Violation of the Bayesian Credo for worst cases). Let SstatsL

be merely B-proper SR. Then there exist an E ⊂ P and a bel′ ∈ B \ E such that

bel′ ∈ arg inf
bel∈B

sup
Q∈E

SstatsL (Q, bel) . (17)

If Sstats is neither merely strictly B-proper nor strictly B-proper, then there
exists an E ⊂ P such that

E ∩ arg inf
bel∈B

sup
Q∈E

SstatsL (Q, bel) = ∅ . (18)

Proof. Since Sstats is not strictly proper, there exist a P ∈ P and a bel′ ∈
B \ {P} such that Sstats(P, bel′) ≤ Sstats(P, P ). Now simply put E := {P}.
Hence, arg infbel∈B supQ∈E S

stats
L (Q, bel) = arg infbel∈B S

stats
L (P, bel) 3 bel′.

For the second part of the proof put E := {P} where P is such that there
exists some bel′ ∈ B \ {P} such that SstatsL (P, bel′) < SstatsL (P, P ). Hence,
arg infbel∈B supQ∈E S

stats
L (Q, bel) = arg infbel∈B S

stats
L (P, bel).

It might be worth pointing out that (18) also holds when we allow Q ∈ E to
take values in the closure of E. This trivial fact follows since E and the closure
of E are the same set.

Overall, we see that, if SstatsL is not strictly B-proper, then agents avoiding
high (worst-case) inaccuracy can rationally to fail to match their degrees of belief
to known objective probabilities. If SstatsL is not even merely B-proper, then a
particular non-calibrated function has strictly better (worst-case) inaccuracy
than the calibrated function.
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9. Discussion

In sum: We showed how the epistemic approach to justifying the PN faces
a serious difficulty (Section 4.3) and how the statistical approach avoids this
difficulty (Section 3.2). In Theorem 7.1 we showed that the statistical approach
not only avoids the problem but can also be used to give a more convincing
justification of the PN.

The proponent of the use of epistemic SRs in justifications of the PN may
be drawn to one of the following moves. Firstly, convincing justifications could
be given that do not require the epistemic SRs to be strictly proper. I find this
move very unlikely (but possible) to succeed.

Secondly, one might want to defend strict propriety on other grounds than
Pettigrew’s. However, Pettigrew’s interpretation seems to capture the essence
of strict propriety. Thus, such a defence will in all likelihood be less than
convincing.

The third option to keep the epistemic approach alive is to head down the
Joycean path and consider general measures of inaccuracy f(ω, bel). This can
only make the class of inaccuracy measures larger. Any justification of the PN in
this framework will thus have to cover more functions and thus be technically
more challenging. Such a proof will then also apply to epistemic SRs in our
sense. Hence, if strict propriety is indispensable for proofs applying epistemic
SRs, then it is so in the Joycean framework.

On the other hand, changing horses from the epistemic to the statistical
approach only requires the following two conditions being met. I) One subscribes
to some notion of objective probabilities. II) One goes along with aggregating
inaccuracies in terms of expected inaccuracies with respect to these objective
probabilities.

Whether one could accept I) is well-outside the scope of this paper and
shall remain unaddressed here. We shall however address a worry concerning
II). It might be feared, that the DTNs acting on the ω ∈ Ω in the epistemic
approach cannot be transferred into the statistical framework because taking
expectations aggregates inaccuracies and one thus looses relevant information.
This worry is unfounded, since one can simply consider these DTNs acting on
the set {P ∈ P | ∃ω ∈ Ω : P (ω) = 1}, cf. Section 11.

With the exception of Section 8, the discussion so far has been idealised to a
considerable degree by not taking the agent’s evidence into account. The charge
that the epistemic approach does not properly treat the agent’s evidence has
already been laid in [14]. One advantage distinct to the statistical approach is
that it canonically lends itself to take the agent’s evidence into account, as we
shall see in Section 10.

The statistical approach has, at least in principle, one further advantage
over the epistemic approach. Suppose the ω ∈ Ω are the elementary events of
some trial with chance distribution P ∗. Given a belief function bel and a SR
SstatsL we can, at least in principle, approximate SstatsL (P ∗, bel) by conducting
i.i.d. trial runs. Thus, we do not need to have access to P ∗ to approximate
SstatsL (P ∗, bel). In the epistemic approach one assumes that there in an actual
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world ω∗ among the ω ∈ Ω but one does not know which possible world is the
actual world. In practical terms it is thus not possible, even in principle, to
compute SepiL (vω∗ , bel).
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Part 2
While the first part of this paper was devoted to the PN, we shall now turn to
other norms of rational belief formation and to strictly B-proper statistical SRs
themselves. The logarithmic SR, which stands out as the only strictly P-proper
local SR, has received considerable attention in the literature. Subsequently, we
will take a keen interest in notions of locality applying to statistical SRs.

To ease the reading, we shall later on drop the subscript L from SepiL and
SstatsL .

10. Maximum Entropy Principles

Adopting the calibrated probability function with maximal entropy has been
vocally advocated by E. T. Jaynes, cf. [24]. Today, entropy maximisation is
key to the most popular objective Bayesian approach [55]. In this section we
shall show how this approach is justifiable using the statistical SR Sstatslog –
presupposing the PN. We then note that such justifications also hold when we
do not presuppose the PN, as long as we employ a SR which is strictly B-proper
and which is sufficiently regular.

In the second part of this section we shall briefly consider the consequences
of employing the extended Brier score SstatsBrier,ext, the extended spherical SR

Sstats,episph,ext and the SR Sstatsllog,ext in this way.

10.1. The general Arguments

Consider an agent with evidence E and the thereby induced set of calibrated
functions E ⊆ P. The most prominent objective Bayesian approach then requires
an agent to equivocate sufficiently between the basic propositions that the agent
can express while adopting a belief function in E, cf. [55].6 This norm is then
spelled out in terms of the Maximum Entropy Principle:

Maximum Entropy Principle A rational agent ought to adopt
a probability function bel ∈ E which maximises Shannon Entropy
(MaxEnt)

Hlog(bel) := Sstatslog (bel, bel) :=
∑
ω∈Ω

−bel(ω) log(bel(ω)) . (19)

MaxEnt has given rise to a substantial literature on rational belief formation;
as examples we mention [2, 7, 21, 24, 29, 39, 40]. MaxEnt is well-known to be
justified on the following grounds of worst-case expected loss avoidance:

6For our purposes, it is not relevant to explain what “sufficiently equivocates” amounts
to. We shall only be concerned with maximal equivocation.
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Theorem 10.1 (Justification of MaxEnt). If ∅ 6= E ⊆ P is convex and closed,
then

arg inf
bel∈P

sup
P∈E

Sstatslog (P, bel) = arg sup
P∈E

Hlog(P ) (20)

and there is only one unique such function maximising Shannon Entropy.

Proof. First observe that the following holds:

inf
Q∈P

sup
P∈E

∑
ω∈Ω

−P (ω) log(Q(ω)) = sup
P∈E

inf
Q∈P

∑
ω∈Ω

−P (ω) log(Q(ω)) (21)

= sup
P∈E

∑
ω∈Ω

−P (ω) log(P (ω)) (22)

= sup
P∈E

Hlog(P ) . (23)

(21) is a typical game-theoretic Mini-Max Theorem in the von Neumann mold,
(22) follows directly from strict P-propriety of Sstatslog , which follows from Theo-
rem 12.2. Hlog(P ) is a strictly concave function, thus the entropy maximiser is
unique, which we shall denote by P †. Then, for Q ∈ P \ {P †} we find

sup
P∈E

∑
ω∈Ω

−P (ω) log(Q(ω)) ≥
∑
ω∈Ω

−P †(ω) log(Q(ω)) (24)

>
∑
ω∈Ω

−P †(ω) log(P †(ω)) , (25)

where the strict inequality follows from strict P-propriety.
Thus, every Q ∈ P \ {P †} has strictly greater worst-case expected loss than

Hlog(P †). However, from (23) we know that there has to be a function P ∈ P
which has worst-case expected loss equal to Hlog(P †). Hence, P † minimises
worst-case expected loss and this worst-case expected loss equals Hlog(P †).

The attentive reader will have noted that the above derivation can be gen-
eralised to arbitrary SRs Sstats as follows

inf
bel∈X

sup
P∈E

Sstats(P, bel) = sup
P∈E

inf
bel∈X

Sstats(P, bel) (26)

= sup
P∈E

Sstats(P, P ) (27)

as long as Sstats is sufficiently regular (to ensure that (26) holds) and X-strictly
proper (so (27) holds). If E is convex, closed and non-empty and if Sstats(P, P )
is strictly concave, then arg supP∈E

∑
ω∈Ω S

stats(P, P ) is unique and in E and

shall be denoted by P ‡.
For Q ∈ P \ {P ‡}, we find the following result, using B-strict propriety to

obtain the strict inequality (29)

sup
P∈E

Sstats(P,Q) ≥ Sstats(P ‡, Q) (28)
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> Sstats(P ‡, P ‡) . (29)

Thus, the worst-case loss minimiser has to be P ‡ and the worst-case expected
loss for P ‡ equals Sstats(P ‡, P ‡). Following [21], we call H(P ) := Sstats(P, P )
generalised entropy. We have thus proved the following theorem:

Theorem 10.2 (Justification of Generalised Entropy Maximisation). If ∅ 6=
E ⊆ P is convex and closed, Sstats strictly B-proper such that (26) holds, and if
H(P ) is strictly concave, then

arg inf
bel∈B

sup
P∈E

Sstats(P, bel) = {P ‡} = arg sup
P∈E

H(P ) . (30)

This then justifies the following principle:

Generalised Entropy Maximisation Principle A rational agent
ought to adopt the unique probability function in E which maximises
generalised entropy H(P ).

Note that for convex, closed and non-empty E, the Maximum Entropy Principle
and the Generalised Entropy Maximisation Principle both satisfy the Bayesian
Credo, because they both advocate adopting a calibrated probability function
in E.

10.2. Generalised Entropies

Theorem 10.2 gives general conditions under which generalised entropy maximi-
sation is justified with respect to the choice of a particular statistical SR. From
a structural point of view, it would be pleasing if the generalised entropy max-
imisers for different SRs were the same function. However, this is not the case
as we shall now see. In this section, we shall not give the rather uninformative
calculations but rather state the result of the calculations.

The following SRs satisfy the conditions in Theorem 10.2: the extended Brier

score SstatsBrier,ext, the extended spherical SR Sstats,episph,ext and Sstatsllog,ext := − |PΩ|
2 +∑

Y⊆Ω bel(Y ) −
∑
X⊆Ω P (X) · ln(bel(X)). All three SRs are strictly B-proper

(see Proposition 5.4, Proposition 6.3 and Proposition 13.1).
Straightforward calculations show that Brier entropy HBrier(P ) and the

spherical entropy HSph(P ) are strictly concave on P. The entropy of the log-
arithmic SR is HΠ(P ) :=

∑
X⊆Ω−P (X) log(P (X)) which we shall prove in

Section 13.1. This entropy has already appeared in the literature and has been
named proposition entropy [29]. Clearly, HΠ is strictly convex.

Note HΠ is different from Shannon Entropy. In HΠ the sum is over all events
X ⊆ Ω and not over all elementary events ω ∈ Ω. Not only are Partition entropy
and Shannon entropy different functions; in general, their respective maximum
obtains for different probability functions in E, cf. [29, Figure 1, p. 3536].

That all three entropies are sufficiently regular, satisfying the minimax con-
dition (26), follows for instance from König’s result [28, p. 56]. The current state
of the art of such minimax theorems is reviewed in [48] where König’s theorem
is also discussed.
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These three entropies have different maximisers on rather simple sets E, as
can be seen from Figure 1 and Figure 2.

Figure 1. Brier Entropy HBrier (green), Proposition Entropy HΠ (blue) and Spherical En-
tropy HSph (red) for Ω = {ω1, ω2, ω3}. Let E be the line segment between P1 = (1, 0, 0) and

P2 = (0, 5
6
, 1

6
) (black line segment).

Figure 2. Brier Entropy HBrier (green), Proposition Entropy HΠ (blue) and Spher-
ical Entropy HSph (red) plotted along the line segment between P1 = (1, 0, 0) and
P2 = (0, 5/6, 1/6) parametrised as P1 + t · (−0.6, 0.5, 0.1) for t ∈ [0, 10/6]. The Brier En-

tropy maximiser is P †
Brier = (0.4194, 0.4839, 0.0968) [t = 0.968], the Proposition Entropy

Maximiser is P †
Π = (0.4054, 0.4955, 0.0991) [t = 0.991] and the Spherical Entropy maximiser

is P †
Sph = (0.4277, 0.4770, 0.0954) [t = 0.954]. The absolute value of the Spherical Entropy

has been adjusted to fit all curves neatly into the picture.

11. Justifying the Principle of Indifference

We shall now show how to use extended SRs to justify a probabilistic version of
the Principle of Indifference (PoI). Probabilistic here means that our justifica-
tion singles out the equivocator in the set of probability functions as the unique
rational function, in case the agent does not possess any evidence. For a justi-
fication of the PoI not pre-supposing the PN see [45], this justification however
relies on strictly proper epistemic SRs.

Clearly, it would be desirable to generalise our result to belief functions
ranging in B or to follow Pettigrew but give up on the requirement of strict
propriety.

Let us now consider an agent without evidence faced with the problem of
assigning beliefs to sets of worlds X1, . . . , Xk ⊂ Ω for k ≥ 2 such that |X1| =
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|X2| = . . . = |Xk| and such that all Xi contain some fixed possible world ω ∈ Ω.
Suppose the agent is required to assign beliefs such that 0 ≤ bel(X1) + ... +
bel(Xk) ≤ α (and of course 0 ≤ bel(Xi) ≤ 1), where α is some fixed value
α ∈ (0, k] ⊂ R. If ω is the actual world, then an entropic epistemic SR makes
the agent strictly best off for bel(X1) = . . . = bel(Xk) = α

k .
On the other hand, if Y1, Y2, . . . , Yk are non-empty sets of worlds of the same

size which do not contain the actual world ω ∈ Ω, then an entropic epistemic
SR would make an agent who assigns at least α strictly best off for bel(Y1) =
. . . = bel(Yk) = α

k .
This idea of an entropic SR is made precise in the following definition:

Definition 11.1 (Entropic SR). We call an epistemic SR symmetric, if and
only if the loss function L(X, vω(X), bel(X)) only depends on vω(X) and bel(X).
We shall write L(vω(X), bel(X)). Such a SR is called an entropy, if and only
if for all k ≥ 1, all α ∈ (0, k], all 〈x1, . . . , xk〉 ∈ [0, 1]k \ 〈αk ,

α
k , . . . ,

α
k 〉 with∑k

i=1 xi ≤ α and all 〈y1, . . . , yk〉 ∈ [0, 1]k \ 〈αk ,
α
k , . . . ,

α
k 〉 with

∑k
i=1 yi ≥ α it

holds that

k∑
i=1

L(1, xi) >

k∑
i=1

L(1,
α

k
) = k · L(1,

α

k
) and

k∑
i=1

L(0, yi) >

k∑
i=1

L(0,
α

k
) = k · L(0,

α

k
) .

The above technical definition will be required in the proof of Lemma 11.3.
We shall now see that for loss functions which are twice continuously differen-
tiable there is a simple condition which allows us to simply read-off whether
SepiL is an entropy or not.7

Proposition 11.2. Let Sepi be a symmetric, continuous, finitely-valued epis-
temic SR such that L(1, ·) is strictly decreasing and L(0, ·) is strictly increasing.
If the first and second derivatives of L(1, x) and L(0, x) exist and are continuous
on (0, 1), then the following are equivalent

• Sepi is an entropy.

• d2

dx2L(1, x) > 0 for 0 < x < 1 and d2

dx2L(0, x) > 0 for 0 < x < 1.

Proof. The proof is a simple exercise in calculus. We shall briefly sketch it,
by noting that the following statements are logically equivalent:

• Sepi is an entropy.

• For all x ∈ (0, 1) and all ε ∈ (0, 1) such x+ε ≤ 1 and x−ε ≥ 0 it holds that
L(1, x+ ε) +L(1, x− ε) > 2L(1, x) and L(0, x+ ε) +L(0, x− ε) > 2L(0, x).

7In this entire section, we need not require that L is symmetric and we would still be able
to prove our main results. Since this section is already quite heavy on notation and since
adding this further complication does not prove to be illuminating, we shall here assume that
L does not depend on X.
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• d2

dx2L(1, x) > 0 for 0 < x < 1 and d2

dx2L(0, x) > 0 for 0 < x < 1.

• L(1, x) and L(0, x) are strictly convex on [0, 1].

In particular, we see that the epistemic Brier Score SepiBrier(ω, bel) is an en-
tropy.

Lemma 11.3. If Sepi is strictly proper and an entropy, then

arg inf
bel∈P

sup
P∈P

Sstats,epiext (P, bel) = {P=} . (31)

Proof. By definition we have

Sstats,epiext (P, bel)

= L(1, bel(Ω)) + L(∅, bel(∅)) +
∑
∅⊂X⊂Ω

P (X) · (L(1, bel(X)) + L(0, bel(X̄)))

= L(1, bel(Ω)) + L(∅, bel(∅))

+
∑
∅⊂X⊂Ω

P (X) · L(1, bel(X)) + (1− P (X)) · L(0, bel(X)) .

Since we assume that bel ∈ P we have bel(Ω) = 1 and bel(∅) = 0. Thus, only
the terms with ∅ ⊂ X ⊂ Ω depend on the belief function bel ∈ P. Subsequently,
we shall thus ignore the losses for X = ∅ and X = Ω.

Now, for a fixed bel ∈ P, maximising∑
∅⊂X⊂Ω

P (X) ·
(
L(1, bel(X)) + L(0, bel(X̄))

)
=
∑
ω∈Ω

P (ω) ·
(∑
X⊂Ω
ω∈X

L(1, bel(X)) +
∑
∅⊂Y⊂Ω
ω/∈Y

L(0, bel(Y ))
)

(32)

is a linear optimisation problem in the variables P (ω) with 0 ≤ P (ω) ≤ 1 under
the constraint

∑
ω∈Ω P (ω) = 1. Since the optimisation problem is linear, the

optimum obtains at one of the vertices of the feasible region (possibly, there are
multiple optima, but at least one optimum obtains at a vertex). In order to
compute the worst case expected loss for a fixed bel ∈ B it suffices to consider
the probability functions which are the vertices of P.

For fixed ω ∈ Ω, we put Pω ∈ P to be the unique function P ∈ P such that
Pω(ω) = 1. In the first part of this paper we denoted such a function by νω. To
highlight that this function now represents objective probabilities we write Pω
instead. The set of the vertices of P equals {Pω|ω ∈ Ω}.

Hence, the maximisation problem for a fixed bel ∈ P reduces to finding a/the
ω ∈ Ω which maximises the right hand side below∑

∅⊂X⊂Ω

P (X) ·
(
L(1, bel(X)) + L(0, bel(X̄))

)
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=
∑
X⊂Ω
ω∈X

L(1, bel(X)) + L(0, bel(X̄)) . (33)

Now consider a bel ∈ P \ {P=}. Let λ ∈ Ω be such that λ ∈ arg minω∈Ω bel(ω).
Using (33) we find (ignoring losses for X = ∅ and X = Ω)

sup
P∈E

Sstats,epiext (P, bel) ≥ Sstats,epiext (Pλ, bel) (34)

=
∑
X⊂Ω
λ∈X

L(1, bel(X)) + L(0, bel(X̄)) (35)

=

|Ω|−1∑
n=1

∑
∅⊂X⊂Ω
λ∈X
|X|=n

L(1, bel(X)) +
∑
∅⊂Y⊂Ω
λ/∈Y

|Y |=|Ω|−n

L(0, bel(Y )) . (36)

Since bel ∈ P \ {P=} we have bel(λ) < 1
|Ω| . We shall next show that for all

1 ≤ n ≤ |Ω| − 1 that ∑
∅⊂X⊂Ω
λ∈X
|X|=n

bel(X) <
∑
∅⊂X⊂Ω
λ∈X
|X|=n

P=(X) .

This will put us in a position to use the assumption that Sepi is an entropy.
Since bel is a probability function we have for {λ} ⊆ X ⊂ Ω that bel(X) =
bel(λ) + bel(X \ {λ}). Hence,∑
∅⊂X⊂Ω
λ∈X
|X|=n

bel(X) =

(
|Ω| − 1

n− 1

)
· bel(λ) +

∑
∅⊆X⊂Ω\{λ}
|X|=n−1

bel(X) (37)

=

(
|Ω| − 1

n− 1

)
· bel(λ) +

∑
ρ∈Ω\{λ}

(bel(ρ) ·
∑

∅⊆X⊆Ω\{λ,ρ}
|X|=n−2

1) (38)

=

(
|Ω| − 1

n− 1

)
· bel(λ) +

∑
ρ∈Ω\{λ}

(
|Ω| − 2

n− 2

)
· bel(ρ) (39)

=

(
|Ω| − 1

n− 1

)
· bel(λ) +

(
|Ω| − 2

n− 2

)
· (1− bel(λ)) (40)

=

(
|Ω| − 1

n− 1

)
· bel(λ) +

(|Ω| − 2)!

(n− 2)!(|Ω| − n)!
· (|Ω| − 1)(n− 1)

(|Ω| − 1)(n− 1)
· (1− bel(λ))

=

(
|Ω| − 1

n− 1

)
· bel(λ) +

(
|Ω| − 1

n− 1

)
· n− 1

|Ω| − 1
· (1− bel(λ)) (41)

=

(
|Ω| − 1

n− 1

)
·
(
bel(λ) +

n− 1

|Ω| − 1
· (1− bel(λ))

)
(42)
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=

(
|Ω| − 1

n− 1

)
·
( n− 1

|Ω| − 1
+
bel(λ) · (|Ω| − 1)− (n− 1) · bel(λ))

|Ω| − 1

)
(43)

=

(
|Ω| − 1

n− 1

)
·
( n− 1

|Ω| − 1
+
bel(λ) · (|Ω| − n)

|Ω| − 1

)
(44)

<

(
|Ω| − 1

n− 1

)
·
( n− 1

|Ω| − 1
+

|Ω| − n
|Ω| · (|Ω| − 1)

)
(45)

=

(
|Ω| − 1

n− 1

)
·
( (n− 1) · |Ω|+ |Ω| − n

|Ω| · (|Ω| − 1)

)
(46)

=

(
|Ω| − 1

n− 1

)
·
( n · |Ω| − n
|Ω| · (|Ω| − 1)

)
(47)

=

(
|Ω| − 1

n− 1

)
· n
|Ω|

(48)

= |{∅ ⊂ X ⊂ Ω | |X| = n&λ ∈ X}| · n
|Ω|

(49)

=
∑
∅⊂X⊂Ω
λ∈X
|X|=n

P=(X) . (50)

Since Sepi is an entropy we now infer that for all 1 ≤ n ≤ |Ω| − 1∑
∅⊂X⊂Ω
λ∈X
|X|=n

L(1, bel(X)) >
∑
∅⊂X⊂Ω
λ∈X
|X|=n

L(1, P=(X)) . (51)

Luckily, there is a shorter route to treat the L(0, bel(X)) terms in (36) which
enables us to avoid doing the lengthy calculation above again for L(0, bel(X)).
Since bel ∈ P we have for all P ∈ P and all 1 ≤ n ≤ |Ω| − 1 that∑

∅⊂Y⊂Ω
λ/∈Y

|Y |=|Ω|−n

bel(Y ) +
∑
∅⊂X⊂Ω
λ∈X
|X|=n

bel(X) =
∑
∅⊂X⊂Ω
|X|=n

bel(X) + bel(X̄)

=
∑
∅⊂X⊂Ω
|X|=n

P (X) + P (X̄)

=
∑
∅⊂Y⊂Ω
λ/∈Y

|Y |=|Ω|−n

P (Y ) +
∑
∅⊂X⊂Ω
λ∈X
|X|=n

P (X) .

Thus, for P = P= we find∑
∅⊂Y⊂Ω
λ/∈Y

|Y |=|Ω|−n

bel(Y ) =
∑
∅⊂Y⊂Ω
λ/∈Y

|Y |=|Ω|−n

P=(Y ) +
∑
∅⊂X⊂Ω
λ∈X
|X|=n

P=(X)−
∑
∅⊂X⊂Ω
λ∈X
|X|=n

bel(X) (52)
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(51)
>

∑
∅⊂Y⊂Ω
λ/∈Y

|Y |=|Ω|−n

P=(Y ) . (53)

Using that Sepi is an entropy we now obtain for all 1 ≤ n ≤ |Ω| − 1 that∑
∅⊂Y⊂Ω
λ/∈Y

|Y |=|Ω|−n

L(0, bel(Y )) >
∑
∅⊂Y⊂Ω
λ/∈Y

|Y |=|Ω|−n

L(0, P=(Y )) . (54)

Now note that since Sepi is symmetric it holds that Sstats,epiext (Pρ, P=) = Sstats,epiext (Pω, P=)

for all ρ, ω ∈ Ω. Thus, by linearity of the maximisation problem Sstats,epiext (Pλ, P=) =
supP∈E S

stats,epi
ext (P, P=).

Hence, for bel ∈ P \ {P=}

sup
P∈E

Sstats,epiext (P, bel)
(34)

≥
|Ω|−1∑
n=1

∑
∅⊂X⊂Ω
λ∈X
|X|=n

L(1, bel(X)) +
∑
∅⊂Y⊂Ω
λ/∈Y

|Y |=|Ω|−n

L(0, bel(Y ))

(50)&(54)
>

|Ω|−1∑
n=1

∑
∅⊂X⊂Ω
λ∈X
|X|=n

L(1, P=(X)) +
∑
∅⊂Y⊂Ω
λ/∈Y

|Y |=|Ω|−n

L(0, P=(Y )) (55)

= Sstats,epiext (Pλ, P=) (56)

= sup
P∈E

Sstats,epiext (P, P=) . (57)

An analysis of the above proof unearths that we only considered the Pω to
compute worst-case expected losses. We thus find

Corollary 11.4. [Probabilistic Principle of Indifference] If Sepi is strictly
proper and an entropy and if X ⊆ P is such that {Pω | ω ∈ Ω} ⊆ X, then

arg inf
bel∈P

sup
P∈X

Sstats,epiext (P, bel) = {P=} . (58)

To satisfy our curiosity, we now compute the actual worst-case expected loss
incurred upon adopting bel = P=. For all Pω we find

Sstats,epiext (Pω, P=) =
∑
X⊆Ω
ω∈X

L(1, P=(X)) + L(0, P=(X̄))

= L(1, 1) + L(0, 0) +
∑
X⊂Ω
ω∈X

L(1,
|X|
|Ω|

) + L(0,
|Ω| − |X|
|Ω|

)
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= L(1, 1) + L(0, 0) +

|Ω|−1∑
n=1

∑
X⊂Ω
ω∈X
|X|=n

L(1,
n

|Ω|
) + L(0,

|Ω| − n
|Ω|

)

= L(1, 1) + L(0, 0)

+

|Ω|−1∑
n=1

(
|Ω| − 1

n− 1

)
·
(
L(1,

n

|Ω|
) + L(0,

|Ω| − n
|Ω|

)
)
.

In particular, this is independent of ω. Thus,

sup
P∈E

Sstats,epiext (P, P=)

= L(1, 1) + L(0, 0) +

|Ω|−1∑
n=1

(
|Ω| − 1

n− 1

)
·
(
L(1,

n

|Ω|
) + L(0,

|Ω| − n
|Ω|

)
)
.

It is well-known that that MaxEnt implies the probabilistic Principle of Indiffer-
ence. Interestingly, the extended SR induced by the epistemic logarithmic SR
also allows for a justification of the probabilistic Principle of Indifference along
the same lines.

Proposition 11.5. [Logarithmic Probabilistic Principle of Indifference] For all
X ⊆ P such that {P ∈ P | P (ω) = 1 for some ω ∈ Ω} ⊆ X it holds that

arg inf
bel∈P

sup
P∈X

Sstats,epilog,ext (P, bel) = {P=} . (59)

Proof. We need to show that Sstats,epilog,ext is an entropy. This follows directly
since − log(x) and − log(1− x) are strictly convex on [0, 1].

12. Local Scoring Rules

An important property of statistical SRs for belief functions in P is locality. For
our purposes however, local strictly P-proper statistical SRs are of little use,
since they only take beliefs in elementary events into account. Beliefs in non-
elementary events are not scored. After briefly reviewing the pertinent notions
in the first part of this section, we shall study in the second part of this section
how to extend the notion of locality to extended SRs. We shall see that the
most natural way of extending the notion of locality is incompatible with strict
B-propriety.

12.1. Locality and strict P-propriety

Definition 12.1. A statistical SR SstatsL : P × P → [0,+∞] is called local, if
and only if L(ω, bel) only depends on the belief in ω and not on other beliefs.
Abusing the notation in the usual way we shall write L(bel(ω)).

The class of such SRs which are strictly P-proper is rather simple:
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Theorem 12.2 (Savage 1971). Up to an affine-linear transformation, the only
local and strictly P-proper statistical SR is

Sstatslog (P, bel) :=
∑
ω∈Ω

−P (ω) log(bel(ω)) . (60)

Earlier versions of this theorem using stronger assumptions have appeared in
[1, 35, 53]. Note that Savage does not require the SR to be continuous. See [3]
for a version of this result for continuous probability densities.

Locality of statistical SRs has been argued for in a variety of settings. For
example in [58, pp. 16] and [4, p. 72-73] for belief elicitation. The argument
given is along the following lines; if an elementary event ω ∈ Ω is guaranteed to
obtain, then the loss incurred ought to only depend on the announced belief in
ω.

We also want to mention that this logarithmic SR is the only strictly P-proper
statistical SR which is consistent with the use of likelihoods or log likelihoods
to evaluate assessors, cf. [56, p. 1075].

Williamson defends in [55] Sstatslog as the only SR with a loss function L :
Ω× P −→ [0,∞] which satisfies the following four axioms:

L1 If bel(ω) = 1, then L(ω, bel) = 1.

L2 If bel(ω) > bel′(ω), then L(ω, bel) < L(ω, bel′).

L3 L(ω, bel) is local, i.e. L(ω, bel) is a function of the form L(bel(ω)).

L4 Losses are additive over independent sublanguages: For ω1 ∈ Ω1, ω2 ∈
Ω2 with bel(ω1 ∧ ω2) = bel(ω1) · bel(ω2) it holds that L(ω1 ∧ ω2, bel) =
L(ω1, bel) + L(ω2, bel).

See [29, p. 3538] for further motivation of these axioms.
The notion of locality in infinite continuous sample spaces has been extended

to allow the loss function to also depend on the derivatives of bel(X), see [41].
The same authors transfer their extended notion of locality to finite discrete
sample spaces in the companion paper [11].

The statistical logarithmic SR Sstatslog has found applications in a variety of
areas, for example in information theory [8, 49], Neyman-Pearson Theory in
statistics [16] and the health sciences [27].

Recently, the epistemic logarithmic SR has been argued for by van Enk on
the grounds that it yields a better measure of confirmation than the epistemic
Brier Score [54, p. 108]. Another advantage of the logarithmic epistemic SR
over the epistemic Brier Score came to light in [32], under a certain rule of
conditionalisation (L & P conditionalisation to be exact) the epistemic Brier
Score makes you believe in ghosts while the epistemic logarithmic SR does not.

Let us now consider a general local loss function L : [0, 1]→ [0,+∞] and the
corresponding local SR SstatsL : P× B→ [0,+∞]

SstatsL (P, bel) =
∑
ω∈Ω

P (ω) · L(bel(ω)) . (61)
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Note that only beliefs in elementary events appear in the above expression.
Thus, beliefs in non-elementary events will not affect the score SstatsL (P, bel).
Thus, a DTN applying local statistical SR SstatsL (P, bel) can only yield con-
straints on the agent’s beliefs in elementary events; beliefs in non-elementary
events are completely unconstrained. So, local SRs are ill-suited for justifica-
tions of norms of rational belief formation without presupposing the PN. We
thus now investigate how to extend the notion of locality, which proved to be
technically fruitful when the PN was presupposed, when the PN is not presup-
posed.

12.2. Locality, strict B-propriety and extended Scoring Rules

One obvious way to generalise locality is:

Definition 12.3. An extended SR is called ex-local, iff there exists a loss func-
tion Lloc : PΩ× [0, 1]→ [0,∞] such that

SstatsLloc,ext
(P, bel) =

∑
X⊆Ω

P (X) · Lloc(X, bel(X)) (62)

=
∑
ω∈Ω

P (ω) ·
(∑
X⊆Ω
ω∈X

Lloc(X, bel(X))
)
. (63)

Ex-locality here means that L(X, bel) is of the form Lloc(X, bel(X)), i.e. the
loss attributable to event X in isolation of all other events, if X obtains, only
depends on X and on bel(X).

This notion of an ex-local extended SR generalises local statistical SRs in
Savage’s sense in two respects. Firstly, the sum is now over all events X ⊆ Ω
and not only over the elementary events ω ∈ Ω. Secondly, the loss function Lloc
may now depend on the event X whereas Savage’s loss function only depended
on the belief in an elementary event ω and not the elementary event itself.

If SstatsL,ext is ex-local, then the loss attributable to bel(X) only enters once
into (62). More precisely, the only summand depending on bel(X) is P (X) ·
Lloc(X, bel(X)). Since P is a probability function, P (∅) = 0 holds. Hence, by
our convention that 0·∞ = 0 we obtain P (∅)·Lloc(∅, bel(∅)) = 0·Lloc(∅, bel(∅)) =
0 for all P ∈ P. So, SstatsLloc,ext

(P, bel) does not depend on bel(∅). Thus, no ex-local
SR is strictly B-proper.

One might initially think that the incompatibility of ex-locality and strict
B-propriety is somehow due to P (∅) = 0 for all P ∈ P. However, we shall now
prove that this is not the case.

Let B− := {bel : PΩ \ {∅} → [0, 1]} and define strict B−-propriety of a SR S
in the obvious way, i.e., for all P ∈ P it holds that arg infbel∈B− S(P, bel) = {P}.

Theorem 12.4. There does not exists an ex-local extended strictly B−-proper
SR SstatsLloc,ext

.
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Proof. It is sufficient to show for all P ∈ P that

arg min
bel∈B−

SstatsLloc,ext
(P, bel) = arg min

bel∈B−

∑
X⊆Ω

P (X) · Lloc(X, bel(X)) (64)

does not depend on P. Since strict B−-propriety would require that the above
minimum uniquely obtains for bel = P .

For a fixed loss function Lloc and a fixed event ∅ ⊂ X ⊆ Ω it holds that
arg minbel(X)∈[0,1] Lloc(X, bel(X)) only depends on bel(X) ∈ [0, 1] and not on P
nor on bel(Y ) for Y 6= X. Furthermore, bel(X) may be freely chosen in [0, 1],
since bel does not have to satisfy any further constraints, such as the axioms of
probability. Hence, for all ∅ ⊂ X ⊆ Ω the infimum of Lloc(X, bel(X)) obtains
independently of P .

Thus, SstatsL,ext(P, bel) is minimised, if and only if every summand in (64) is
minimised. For each summand this minimum obtains independently of P .

Corollary 12.5. Sext,log(P, bel) :=
∑
X⊆Ω−P (X) · log(bel(X)) is not strictly

B−-proper.

Proof. If bel(X) = 1 for all ∅ ⊂ X ⊆ Ω, then Sext,log(P, bel) = 0. Since
Sext,log is a map with range [0,∞], it follows that bel(X) = 1 for all ∅ ⊂ X ⊆ Ω
minimises Sext,log(P, ·) for all P ∈ P. Clearly, Sext,log cannot be strictly B−-
proper.

Recall from Theorem 12.2 that the logarithmic SR Sstatslog is the only local
P-strictly proper statistical SR. Evidently, strict propriety crucially depends on
the set of scored belief functions.

The SR considered in Proposition 6.2: Sstats,epilog,ext (P, bel) :=
∑
X⊆Ω P (X) ·(

− log(bel(X)) − log(1 − bel(X̄))
)

is not ex-local. The loss term depends on

bel(X) and bel(X̄). Thus, Proposition 6.2 does not contradict Theorem 12.4.
Note that SstatsLloc,ext

(Pω, bel) =
∑
X⊆Ω,ω∈X Lloc(X, bel(X)). That is, only be-

liefs in events containing ω are scored while beliefs in events which do not contain
ω are entirely ignored. Clearly, any genuine measure of inaccuracy will have to
take into account how P (X) and bel(X) relate for all X ⊆ Ω. Thus, ex-local
SRs cannot serve as measures of inaccuracy. Hence, the impossibility theorem
only rules out the existence of SRs in which are unsuitable for justifications of
norms of rational belief formation.

13. Locality and strictly B-proper extended Scoring Rules

We saw in Theorem 12.4 that there are no ex-local strictly B-proper extended
SRs. The question arises how much of the locality condition we need to give up
in order obtain strictly B-proper extended SRs which are local, in some sense.
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13.1. Penalties

As it turns out, there exists a logarithmic extended SR which is strictly B-
proper. However, the SR is not purely logarithmic since it contains a penalty
term. In essence, this penalty term (

∑
Y⊆Ω bel(Y )) prevents bel ∈ B defined

as bel(X) = 1 for all X ⊆ Ω from being the score minimiser, since it inflicts a
heavy penalty.

Proposition 13.1. The following extended SR is strictly B-proper

Sstatsllog,ext(P, bel) :=
∑
X⊆Ω

P (X) ·

(
−1 +

∑
Y⊆Ω bel(Y )∑
Y⊆Ω P (Y )

− ln(bel(X))

)
(65)

= −|PΩ|
2

+
∑
Y⊆Ω

bel(Y )−
∑
X⊆Ω

P (X) · ln(bel(X)) . (66)

Proof. A direct, but rather long and technical, proof has been exiled and
banned to the Appendix, cf. Section 15.

Recall that for P ∈ P we have
∑
Y⊆Ω P (Y ) = σ. Hence, for bel ∈ P we have

Sstatsllog,ext(P, bel) = −
∑
X⊆Ω

P (X) · ln(bel(X)) (67)

= Sext,log(P, bel) . (68)

So, for bel ∈ P we recapture the SR considered in Corollary 12.5. Note that
Sstatsllog,ext(P, P ) = −

∑
X⊆Ω P (X) · ln(P (X)).

Sstatsllog,ext is not ex-local, since L(X, bel) depends on bel(X) and also on∑
Y⊆Ω bel(Y ). However, the loss term only depends on the belief in event X

and the sum of beliefs taken over all Y ⊆ Ω. The non-local term is constant for
all X ⊆ Ω. Calling such an extended SR semi-local we pose an interesting open
problem:

Open Problem 3: Is Sstatsllog,ext the only extended semi-local strictly
B-proper SR (unique up to multiplication and addition of a con-
stant)?

While Proposition 13.1 raises the above question it apparently allows us to
answer the Open Problem 2 left open in Section 6 in the negative. Sstatsllog,ext is
strictly B-proper but it does not appear to be an expectation of an epistemic SR
à la (11). Furthermore, the factor in (65) multiplied by P (X) depends not only
on bel(X) and bel(X̄) but on all bel(Y ) for ∅ ⊆ Y ⊆ Ω, whereas in (14) the factor
only depends on bel(X) and bel(X̄). Alternatively, the summand

∑
Y⊆Ω bel(Y )

in (66) depends on the entire function bel, i.e. it is not independent of bel(Y )
for X 6= Y 6= X̄. However, this only appears to solve the problem left open, but
it does not as we shall now see.
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Let L(X, 0, bel(X)) := bel(X) and L(X, 1, bel(X)) := bel(X)−1− ln(bel(X))
for the thereby induced epistemic SR Sepillog we find∑

ω∈Ω

P (ω) · Sepillog(ω, bel)

=
∑
ω∈Ω

P (ω) ·
(∑
X⊆Ω
ω∈X

L(X, 1, bel(X)) +
∑
Y⊆Ω
ω/∈Y

L(Y, 0, bel(Y ))
)

=
∑
ω∈Ω

P (ω) ·
(∑
X⊆Ω
ω∈X

bel(X)− 1− ln(bel(X)) +
∑
Y⊆Ω
ω/∈Y

bel(Y )
)

=
∑
ω∈Ω

P (ω) ·
(∑
Z⊆Ω

bel(Z) +
∑
X⊆Ω
ω∈X

−1− ln(bel(X))
)

=
∑
Z⊆Ω

bel(Z) +
∑
ω∈Ω

P (ω) ·
(∑
X⊆Ω
ω∈X

−1− ln(bel(X))
)

=
∑
Z⊆Ω

bel(Z) +
∑
X⊆Ω

P (X) ·

(
−1− ln(bel(X))

)

=
∑
X⊆Ω

P (X) ·
∑
Z⊆Ω

bel(Z)

σ
+
∑
X⊆Ω

P (X) ·

(
−1− ln(bel(X))

)

=
∑
X⊆Ω

P (X) ·

(∑
Z⊆Ω bel(Z)

σ
− 1− ln(bel(X))

)
= Sstatsllog,ext(P, bel) .

It follows immediately from Theorem 6.1 that Sepillog is strictly proper. To ease

the mind of a sceptical reader we shall now prove strict B-propriety of Sstatsllog,ext

directly.

Proof. Let

f(bel(X)) : = p · L(X, 1, bel(X)) + (1− p) · L(X, 0, bel(X)) (69)

= p · bel(X)− p− p · ln(bel(X)) + (1− p) · bel(X) (70)

= −p− p · ln(bel(X)) + bel(X) . (71)

By equating the derivative of f(bel(X)) with zero we find for p > 0

d f(bel(X))

dbel(X)
= − p

bel(X)
+ 1 = 0 . (72)

Trivially, this equation is uniquely solved by bel(X) = p > 0. Considering
the second derivative of f(bel(X)) shows that bel(X) = p > 0 is the unique
minimum.

For p = 0 we have f(bel(X)) = (1 − p) · L(X, 0, bel(X)) = bel(X) which is
uniquely minimised by bel(X) = p = 0.
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So, Sstatsllog,ext is in fact induced by a strictly proper epistemic SR and Sstatsllog,ext

is strictly B-proper. We have thus not solved Open Problem 2.
Finally, let us remark that we now have a direct proof that Sepillog is strictly

proper. Thus, we can use Theorem 6.1 to infer that Sstatsllog,ext is strictly B-
proper. Thus, Proposition 13.1 follows from Theorem 6.1 and the fact that
Sepillog is strictly proper. The technical proof of Proposition 13.1 in the appendix
is thus not essential for our purposes. This then nicely illustrates the technical
helpfulness of Theorem 6.1 to which we alluded to in Section 6.

13.2. Normalizing Beliefs

In Proposition 13.1 we saw how one can use a penalty term to ensure that only
bel ∈ P can minimise a logarithmic SR Sstatsllog,ext(P, bel). For bel ∈ P it holds
that

∑
F∈π bel(F ) = 1 for all partitions π of Ω. In [29] the authors showed that

the penalty term can be dropped, if belief functions are normalised, that is the
belief functions considered are in some set Bnorm ⊃ P.

We shall now quickly summarise the relevant points in [29]: Denote by π a
set of non-empty mutually exclusive, jointly exhaustive subsets of Ω, which is
henceforth called a partition. Denote by Π the union of {Ω, ∅}, {Ω} and the set
of these partitions. Then define

Bnorm := {B : PΩ→ [0, 1] |
∑
F∈π

B(F ) = 1 for some π ∈ Π

and
∑
F∈π

B(F ) ≤ 1 for all π ∈ Π} .

For a given a weighting function g : Π → R≥0 such that for all ∅ ⊆ X ⊆ Ω it
holds that

∑
π∈Π
X∈π

g(π) > 0, a SR is defined on P× Bnorm by:

Sstatsnormlog,ext,g(P,B) := −
∑
π∈Π

g(π)
∑
X∈π

P (X) · log(B(X)) (73)

=
∑
X⊆Ω

P (X) ·
(∑
π∈Π
X∈π

g(π)
)
· log(B(X)) . (74)

Proposition 13.2. [29, Corollary 3, p. 3542] Sstatsnormlog,ext,g(P,B) is strictly
Bnorm-proper for all such g.

Note that since P ⊂ Bnorm, strict Bnorm-propriety is well defined in the
sense of Definition 3.1.

The above proposition does not contradict Theorem 12.4, since we here
consider normalised belief functions in Bnorm while Theorem 12.4 concerns belief
functions in B.

The SRs Sstatsllog,ext and Sstatsnormlog,ext,g rely on the same idea: The main culprit
in the impossibility Theorem 12.4 is that in (64) there is no interaction between
the beliefs in different events. Normalising beliefs re-introduces such an interac-
tion. The main structural difference between the two SRs is how normalisation
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is achieved. The former SR (Sstatsllog,ext) introduces a penalty (i.e. normalisation)

term into the SR, for the latter SR (Sstatsnormlog,ext,g) one pre-supposes normalised
belief functions.

14. Conclusion

In the first part of this paper we saw how to use statistical SRs to justify the
PN. In this second part we demonstrated the usefulness of statistical SRs for
further norms of rational belief formation. In particular, we saw how an agent’s
evidence E can be naturally taken into account by applying worst-case expected
loss avoidance as DTN. This seems to us like a clear advantage of the statistical
approach over the epistemic approach.

Logarithmic SRs occupy a prominent place in the literature as protagonists
in Savage’s theorem and objective Bayesianism. We hence set out to investi-
gate how to construct statistical logarithmic SRs which are strictly B-proper.
We found three such logarithmic SRs (Proposition 6.2, Proposition 13.1 and
Proposition 13.2).

Ideas from the epistemic and the statistical approach have been influential
in the development of this paper. Looking into the future, pulling strands from
both approaches together appears to have the potential to be beneficial for
both approaches. Generally speaking, extending Richard Pettigrew’s Epistemic
Utility Theory Programme to statistical SRs appears to be a research avenue
holding great promise. We thus hope for many more exciting entries to be added
to Table 1.

Decision Theoretic Norm Applications of Epistemic Scoring Rules Applications of Statistical Scoring Rules

Dominance w.r.t. ω ∈ Ω [12], [46], [25], [26],[43], [44] [50] [51]
Dominance w.r.t. P ∈ P Proposition 4.7, Theorem 5.5, Theorem 7.1
Expected Loss w.r.t. bel∗ Belief Elicitation

Worst-Case Loss w.r.t. ω ∈ Ω [45]
Worst-Case Expected Loss w.r.t. P ∈ E Theorem 10.1, Theorem 10.2

Corollary 11.4, Proposition 11.5, [21] [29]

Table 1. Applications of SRs to rational belief formation

Unfortunately, we did not answer all the questions we raised. Hopefully,
future work will solve the problems left open in this paper.
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[7] Csiszàr, Imre, ‘Axiomatic Characterizations of Information Measures’,
Entropy, 10 (2008), 3, 261–273.

[8] Daley, Daryl J., and David Vere-Jones, ‘Scoring Probability Fore-
casts for Point Processes: The Entropy Score and Information Gain’, Jour-
nal of Applied Probability, 41 (2004), 297–312.

[9] Dash, Rajdeep K., Nicholas R. Jennings, and David C. Parkes,
‘Computational-Mechanism Design: A Call to Arms’, IEEE Intelligent Sys-
tems, 18 (2003), 40–47.

[10] Dawid, A. Philip, ‘Probability forecasting’, in Samuel Kotz, and Nor-
man Lloyd Johnson, (eds.), Encyclopedia of Statistical Sciences, vol. 7,
Wiley, 1986, pp. 210–218.

[11] Dawid, A. Philip, Steffen Lauritzen, and Matthew Parry, ‘Proper
local scoring rules on discrete sample spaces’, Annals of Statistics, 40
(2012), 1, 593–608.

[12] de Finetti, Bruno, Theory of Probability, Wiley, 1974.

[13] de Finetti, Bruno, ‘Foresight: Its logical laws, its subjective sources’,
in Henry Ely Kyburg, and Howard Edward Smokler, (eds.), Studies in
Subjective Probability, 2 edn., Krieger, 1980, pp. 53–118.

[14] Easwaran, Kenny, and Branden Fitelson, ‘An “Evidentialist” Worry
About Joyce’s Argument for Probabilism’, Dialectica, 66 (2012), 3, 425–
433.

[15] Fallis, Don, ‘Attitudes toward Epistemic Risk and the Value of Experi-
ments’, Studia Logica, 86 (2007), 2, 215–246.

[16] Feuerverger, Andrey, and Sheikh Rahman, ‘Some aspects of proba-
bility forecasting’, Communications in Statistics - Theory and Methods, 21
(1992), 6, 1615–1632.

40



[17] Garthwaite, Paul H, Joseph B Kadane, and Anthony O’Hagan,
‘Statistical Methods for Eliciting Probability Distributions’, Journal of the
American Statistical Association, 100 (2005), 470, 680–701.

[18] Gibbard, Allan, ‘Rational Credence and the Value of Truth’, in
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Appendix

15. Proof of Proposition 13.1

Proposition 13.1. The following scoring rule is strictly B-proper

Sstatsllog,ext(P, bel) :=
∑
X⊆Ω

P (X) ·

(
−1 +

∑
Y⊆Ω bel(Y )∑
Y⊆Ω P (Y )

− ln(bel(X))

)

= −|PΩ|
2

+
∑
Y⊆Ω

bel(Y )−
∑
X⊆Ω

P (X) · ln(bel(X)) .

Proof. First note that for every P ∈ P that P (X)+P (X̄) = 1, thus
∑
X⊆Ω P (X) =

|PΩ|
2 . This then explains why the two expression given for the SR are equal.

Suppose that there exists an X ⊆ Ω such that bel(X) = 0 and P (X) > 0,
then Sstatsllog,ext(P, bel) = +∞. Since, Sstatsllog,ext(P, P ) < +∞ it follows that such a

belief function bel cannot minimise Sstatsllog,ext(P, ·).
On the other hand suppose that there exists an X ⊆ Ω such that bel(X) > 0

and P (X) = 0. Then define a belief function bel′ ∈ B by letting bel′(X) := 0
and bel′(Y ) := bel(Y ) for all other Y ⊆ Ω. Then,

Sstatsllog,ext(P, bel)− Sstatsllog,ext(P, bel
′)

=
∑
Z⊆Ω

bel(Z)−
∑
Z⊆Ω

bel′(Z)−
∑
Z⊆Ω

P (Z) ·
(

ln(bel(Z))− ln(bel′(Z)
)

≥ bel(X)

> 0 .

Thus, bel′ has a better score than bel. Overall, it follows that any function
bel minimizing Sstatsllog,ext(P, bel) has to satisfy that bel(X) > 0, if and only if
P (X) > 0.

For λ ∈ R>0 let Bλ := {bel ∈ B |
∑
X⊆Ω bel(X) = λ}. Now consider a fixed

P ∈ P and let PΩ+ := {X ⊆ Ω | P (X) > 0}. We will first show that bel(X) :=
λ 2
|PΩ|P (X) is the unique belief function in arg infbel∈Bλ S

stats
llog,ext(P, bel).

We need to consider the following minimisation problem for fixed but arbi-
trary P ∈ P

minimise Sstatsllog,ext(P, bel)

subject to bel ∈ Bλ
bel(X) > 0, if and only if X ∈ PΩ+ .

Due to the fact that we fixed λ, this is a strictly convex minimisation problem.
Thus, it has a unique solution in the closure of the convex set Bλ. By the above,
bel(X) = 0 for X ∈ PΩ+ cannot minimise score. Thus, the derivatives ∂

∂bel(X)

for X ∈ PΩ+ of Sstatsllog,ext(P, bel) are well-defined where the minimum obtains.
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We may thus apply the Lagrange Multiplier Method (LMM) to solve the
minimisation problem. Define the Lagrange function of the problem as

Lag(bel) := Sstatsllog,ext(P, bel) + µ(
∑
X⊆Ω

bel(X)− λ)

=
∑
X⊆Ω

bel(X)− |PΩ|
2
−
∑
X⊆Ω

P (X) · ln(bel(X)) + µ(
∑
X⊆Ω

bel(X)− λ)

where µ is the Lagrange multiplier. As it will turn out, we do not need further
Lagrange multipliers for the constraints 0 < bel(X) ≤ 1 for all X ∈ PΩ.

Taking derivatives with respect to the independent variables bel(X) for X ∈
PΩ+ and equating with zero we obtain the following set of equations

∂

∂bel(X)
Lag = 1− P (X)

bel(X)
+ µ = 0 for all X ∈ PΩ+ . (75)

Only if P (X)
bel(X) does not depend on X can this set of equations be solved by

choosing a single value for µ.
Recall that we have convinced ourselves that the optimization problem has

a unique solution. Furthermore, the LMM will find all minima of the convex
minimisation problem on the convex set Bλ. Thus, there has to be at least on
µ ∈ R which solves (75).

Hence, bel has to be a multiple of P. Given that
∑
X⊆Ω P (X) = PΩ

2 and∑
X⊆Ω bel(X) = λ the claim for Bλ follows.

Let us now consider varying the parameter λ. If λ = 0, then Sstats(P, bel)
equals infinity. So, not assigning any positive belief to any proposition does not
lead to a finite score.

For λ > 0 define S(λ) = Sstatsllog,ext(P, λP ). Taking the derivative with respect
to λ and equating with zero we obtain

d

dλ
S(λ) =

d

dλ

(
λ
|PΩ|

2
− |PΩ|

2
−
∑
X⊆Ω

P (X) · ln(λ · P (X))
)

(76)

=
d

dλ

(
λ
|PΩ|

2
− |PΩ|

2
−
∑
X⊆Ω

P (X) · (ln(λ) + ln(P (X)))
)

(77)

=
|PΩ|

2
−
∑
X⊆Ω

P (X)
1

λ
(78)

=
|PΩ|

2
− |PΩ|

2

1

λ
(79)

=
|PΩ|

2
· (1− 1

λ
) (80)

= 0 . (81)

Thus, for λ = 1 the unique minimum of S(λ) obtains. Hence bel = P is the
unique minimum of Sstatsllog,ext(P, bel) with bel ranging in B.
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If the SR did not employ the natural logarithm but rather use some arbi-
trary base b for the logarithm, then the above proof holds with the single ex-
ception that in (78) we obtain 1

λ log b rather than 1
λ . So, the belief function with

the lowest score for a given fixed P is P
log b . It follows that Sstatsllog,ext,b(P, bel) =∑

Y⊆Ω
bel(Y )
log b −

|PΩ|
2 −

∑
X⊆Ω P (X) · logb(bel(X)) is strictly B-proper.

16. Rational Belief Formation as Mechanism Design

Let us now take a step back and consider the project of justifying norms of
rational belief formation via SRs from a higher, more abstract point of view.
We will see that, from a purely technical point of view, this project can be
framed in more general terms. We shall begin by giving two examples.8

1) Say, you, a dear reader of these lines, are a proponent of the PN and you
are looking for a justification of it in terms of epistemic SRs. What you are
looking for is an epistemic SR S and a DTN D, where D employs S as a dis-
utility function. You want S and D to be such that an agent acting according
to D will adopt some bel ∈ P and such that adopting any bel ∈ P is acting in
accordance with D while adopting some bel ∈ B \P would not be in accordance
with D. Theorem 4.5 shows that S = SepiBrier and dominance as DTN are what
you have been looking for.

2) Let us now assume that you are convinced that adopting the calibrated
bel† ∈ E which maximises Shannon Entropy is (for the application you have in
mind) the most appropriate belief function. You are wondering for which dis-
utility function Sstats and which DTN D a rational agent acting in accordance
with D will adopt bel†. Assuming the PN, your choice of Sstatslog (see (19)) and
worst-case loss avoidance as DTN will do (cf. Theorem 10.1).

Both these examples have the following common structure. You are looking
for a triple: a norm of rational belief formation N , a SR S and a DTN D
such that an agent acting in accordance with D and minimising dis-utility with
respect to S will adopt some bel which is consistent with N and such that every
bel consistent with N minimises dis-utility with respect to S in accordance with
D.

This structure has already been laid bare by the approach termed Epistemic
Utility Theory (EUT), cf. [42]. In EUT, an epistemic SR is interpreted as a mea-
sure of dis-utility. Norms governing the actions of agents, such as dominance,
are then framed in epistemic utility terms. For instance, an agent avoiding epis-
temic dis-utility dominated belief functions with respect to an epistemic SR SepiL

will adopt a/the belief function which is not dominated with respect to SepiL .
Taking another step back a deeper structure can be unearthed.
The reasoner aiming to prove theorems (such as Theorem 4.5 and Theo-

rem 10.1) is looking for a DTN D and a SR S such that every rational agent
acting in accordance with D will conform to a norm N . A rational agent faced

8The remarks in this section also apply to frameworks in which degrees of belief are mea-
sured by other means, by intervals or fuzzy numbers, say.
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with the problem of minimising score in accordance with D is thus facing a
minimisation problem (with respect to S) in the variables bel(X) for all X ⊆ Ω.
From a purely formal point of view, the agent is playing a single-player game.
The rules of the game are: assign every X ⊆ Ω a unique value bel(X) ∈ [0, 1].
The agent’s aim in the game is to minimise score measured by S in accordance
with D.

Speaking in these terms, the reasoner’s quest for proofs of theorems can be
understood as the search for a single player game. In such a game the player has
to assign every X ⊆ Ω some value in [0, 1]. Depending on the assignment, i.e.
bel, and a (dis-)utility function S the agent will be awarded some (dis-)utility.
Assuming that the player acts in accordance with a DTN D, the only rational
assignments bel : PΩ → [0, 1] are those assignments which are consistent with
some norm N and every assignment consistent with N is in accordance with D.
Briefly put, the reasoner is designing a game.

The study of (agents playing) games is a very well-trodden path in the liter-
ature. A rather recent development is the study of the design of games. In this
approach one focuses on the design of games such that rational players playing
such a game will act in a way which the game designer considers desirable.
Consider the prisoner’s dilemma as a famous example, but this time consider it
from the perspective of the minister of justice aiming to incentivise the prisoners
to tell the truth. Whether the minister of justice has been successful in incen-
tivising prisoners to tell the truth is still a matter of lively philosophical debate.
In the prisoner’s dilemma the rules of the game, the dis-utility function and
the minister’s desired outcome are evident. On the other hand, it is unclear to
which notion of rationality the imprisoned agents (ought to) subscribe to. From
the minister’s point of view, the design of the game has only been moderately
successful because (apparently) not all rational agents tell the truth.

The design of such games, or in technical terms: the design of such mech-
anisms, has become a sub-field of game theory and is known under the name
Mechanism Design (MD). In general, MD concerns the design of games such
that the rules of the game incentivise rational players to act in ways the de-
signer of the game considers desirable; see [9] for an introduction to MD. Thus,
EUT can be seen to be a sub-field of MD. Game-theoretic machinery may thus,
in the future, enrich EUT.

47


	Introduction and Notation
	Introduction
	Notation

	Part 1
	The Statistical Approach
	Statistical Scoring Rules, Applications and Interpretations
	Strict Propriety for statistical Scoring Rules

	The Epistemic Approach
	The main Ingredients
	The Justifications
	Against the use of strictly proper epistemic Scoring Rules

	Extended statistical Scoring Rules
	Connecting epistemic and extended Scoring Rules
	A Justification of the Probability Norm with statistical Scoring Rules
	The Bayesian Credo
	Discussion

	Part 2
	Maximum Entropy Principles
	The general Arguments
	Generalised Entropies

	Justifying the Principle of Indifference
	Local Scoring Rules
	Locality and strict P-propriety
	Locality, strict B-propriety and extended Scoring Rules

	Locality and strictly B-proper extended Scoring Rules
	Penalties
	Normalizing Beliefs

	Conclusion

	References
	Appendix
	Proof of Proposition 13.1
	Rational Belief Formation as Mechanism Design


