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Abstract Leibniz said that the universe, if God-created, would exist at a unique, conjoint, physical

maximum: Of all possible worlds, it would be richest in phenomena, but its richness would arise

from the simplest physical laws and initial conditions. Using concepts of ‘‘variety’’ and algorithmic

informational complexity, Leibniz’ claim can be reframed as a testable theory. This theory predicts

that the laws and conditions of the actual universe should be simpler, and the universe richer in

phenomena, than the presence of observers would require. Tegmark has shown that inhabitants of an

infinite multiverse would likely observe simple laws and conditions, but also phenomenal richness

just great enough to explain their existence. Empirical observations fit the claim of divine choice

better than the claim of an infinite multiverse. The future of the universe, including its future

information-processing capacity, is predicted to be endless.
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If only we could sufficiently understand the order of the universe, we should find
that it surpasses all the desires of the wisest, and that it is impossible to make it any
better than it is. Gottfried Wilhelm Leibniz1

The a priori probability that a randomly generated universe would be capable of

supporting complex life is, by all accounts, vanishingly small.2 Yet the values of

many physical constants seem tuned to give our actual Universe just that

capability.3 Scientists, philosophers, and theologians have advanced many

possible explanations for this ‘‘fine-tuning coincidence.’’4 While these explanations

vary widely, they fall into two broad categories. We can label those categories

‘‘choice’’ and ‘‘multiverse.’’

In the choice category are theories that say some physical process, selection

principle, or creator deity picked our physical laws and initial conditions out of

the infinite possibilities that might have come to exist. Our special set of laws and

conditions therefore exists for a reason. Perhaps it was the only set chosen, or

perhaps it is one of a limited number of chosen sets. Not all ‘‘choice’’ theories

involve a ‘‘Chooser.’’ While some are plainly theistic, others appeal to the

Darwinian notion that choice can result from mindless, natural causes.5 However,
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all choice theories agree on this: For some reason only one or a (relative) handful

of sets of laws and conditions actually exist. Vastly many other possible sets of

laws and conditions, in fact an infinite range of possibilities, might have existed

a priori, but for some reason do not.

The competing multiverse theories suggest that our ‘‘visible universe’’—

everything that we can see—is only a tiny, atypical region in an infinitely vast

‘‘Multiverse’’ (set of universes). A limitless number of other regions actually exist

elsewhere in the Universe. Wherever these regions may be, and however they

may have arisen, they exhibit an equally limitless range of differing, but actually

existent physical laws and conditions. As a result, according to David Lewis,

‘‘There are so many other worlds . . . that absolutely every way that a world could

possibly be is a way that some world is . . . ’’6 Almost none of these ‘‘worlds’’

support life or anything else of interest, but our rare region does. We find

ourselves in this life-supporting region because (a) it must exist along with all the

others, and (b) we must inhabit a region that supports our existence.7

Scientific opinion has until recently given grudging assent to the multiverse

principle.8 However, a recent paper by Stoeger, Ellis, and Kirchner (‘‘SEK’’)

strongly suggests that some principle of choice must be at work in the Universe.9

SEK argues that:

1. There are strong mathematical and logical reasons to doubt that an actually

realized, physical Universe could be infinite in any meaningful sense.

2. In any event, there is no unique, actually infinite Universe. One possible

Universe, though infinite in extent, might contain many ‘‘Type A’’ regions but

none of ‘‘Type B.’’ Another equally infinite Universe might consist entirely of

‘‘Type B’’ regions. A Universe that is infinite in extent need not contain an

infinite diversity of regions. It need not occupy all of possibility space.

3. Thus, even in an actually infinite Universe, something—some person, process,

or principle—must distribute laws and conditions in its regions one way

rather than another. We cannot dispense with choice.

These arguments suggest that choice-based approaches deserve more scrutiny

than they have received. This paper will examine one such approach, advanced by

Leibniz three centuries ago. This is his claim that a perfect God would only create

the ‘‘best’’ of possible Worlds.10 As will be explained below, Leibniz suggested a

sense of World merit under which it is possible to claim that there could be a best

of possible Worlds. This paper will: (a) suggest that Leibniz’ notion of World merit

is subject to quantification and empirical test; and (b) advance considerations for

believing that our actual World is the best of possible Worlds in this sense.

Leibniz’ richest/simplest claim

Leibniz was probably the first to notice that the structure of the Universe is not

logically required, that everything, including the laws of physics, might have been

fundamentally different.11 Even ‘‘time, space and matter . . . might have received
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entirely other motions and shapes, and in another order.’’12 He wondered why,

out of an infinite number of possibilities, the Creator chose to actualize this

particular setup, the Universe that we know and inhabit. This question led him to

a remarkable conjecture.

Leibniz envisioned God as possessing all perfections: infinite wisdom and

power as well as perfect goodness.13 Because he believed that God would not act

without a reason, he argued that God would actualize only the best of possible

Worlds. ‘‘[T]his is the cause for the existence of the best: namely, that his wisdom

makes it known to God, his goodness makes him choose it, and his power makes

him produce it.’’14

At least since Voltaire, Leibniz’ critics have seen this claim as a valid argument

to an ‘‘immensely implausible conclusion.’’15 Yet is the conclusion so

implausible? Most critics never address the final term of Leibniz’ argument,

his specific description of the best of possible Worlds. Leibniz phrased that

description in a number of ways: ‘‘[T]he most perfect World’’ is ‘‘the one which

is at the same time the simplest in hypotheses and the richest in phenomena, as

might be a line in geometry whose construction is easy and whose properties

and effects are extremely remarkable and widespread.’’16 ‘‘It follows from the

supreme perfection of God that in producing the Universe He chose the best

possible plan, containing the greatest variety together with the greatest

order . . . the greatest effect produced by the simplest means. . ..’’17 ‘‘[P]erfection

is not to be located in matter alone, that is, in something filling time and

space . . . rather, it is to be located in form or variety.’’18 The Leibnitian Universe

(since the Universe is everything that God creates, there can only be one) would

exhibit the greatest possible variety, richness and abundance of natural

phenomena, but these would result from the simplest possible ‘‘hypotheses’’

(the Universe’s physical laws and initial conditions).

Thus, Leibniz’ metaphysical assumption of God’s perfection led to a specific,

physical description of the Universe.19 We can call that description Leibniz’

richest/simplest claim. This ‘‘two-factor assessment of perfection’’ insists on

both richness as an end and simplicity as a means.20 Each is equally important:

‘‘For the wisest mind so acts as far as is possible, that the means are also ends

of a sort, i.e. are desirable not only on account of what they do, but on account

of what they are.’’21 Leibnitian perfection is, ‘‘a matter of combining,

harmonizing and balancing [these] two distinct factors’’ into a joint

maximum.22

One intriguing point about this claim is its close agreement with descriptions of

the actual Universe proffered by modern scientists. Freeman Dyson says that our

simple laws seem designed to ‘‘make the universe as interesting as possible.’’23

Carl Sagan says our Universe is ‘‘lavish beyond imagining.’’24 Astronomer Mario

Livio suggests a ‘‘cosmological aesthetic principle’’ involving simplicity, symme-

try, and the Copernican principle.25 Murray Gell-Mann marvels at how, ‘‘[i]n an

astonishing variety of contexts, apparently complex structures or behaviors

emerge from systems characterized by very simple rules.’’26 Physicist A. Zee

reports that the Universe exhibits, ‘‘unity and diversity, absolute perfection and

boisterous dynamism, symmetry and lack of symmetry.’’27 Paul Davies says that
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the Universe seems to be governed by ‘‘very special laws that guarantee a trend

toward greater richness, diversity and complexity through spontaneous self-

organization. . . .’’28

Quantifying simplicity and richness

Another salient feature of Leibniz’ richest/simplest claim is its potential to specify

the single, best possible Universe from an infinite range of possibilities. No single-

factor criterion can do this. No possible Universe could contain ‘‘the most’’

phenomena; more could always be added. No possible Universe could be

‘‘happiest’’; it could always be happier. By contrast, a Universe whose design

requirement opposes two competing factors can (potentially) attain a maximum.

In such a World, the need for laws and initial conditions to be simple prevents

mere chaos from piling up, while the requirement that laws and conditions

generate maximal richness prevents the World’s ‘‘hypotheses’’ from being so

simple as to be useless. Leibniz’ claim thereby defeats the riposte that a search for

the ‘‘best possible World’’ is like a search for the highest number. It suggests the

possibility of a unique balance, a uniquely ‘‘best’’ World,29 or at least a uniquely

best set of World-generating physical laws and initial conditions.30 However, can

Leibniz’ claim actually specify a quantitatively unique point of balance, or does it

only make a qualitative suggestion? The answer turns on whether we can state it

mathematically.

Quantifying simplicity

The standard measure of relative simplicity is ‘‘algorithmic information content’’

(‘‘AIC’’). The AIC of anything is just the length of the shortest set of computer

instructions that, if followed, would completely generate, compute, or describe

that thing.31 AIC can be measured in bits. The AIC of a wagon is the number of

bits needed for a program that will print out a complete description of the wagon.

The description of an automobile would require a longer program, one with a

higher AIC. Calculations of AIC can yield different results depending on the

hardware and software used and other extraneous factors,32 but these factors

typically wash out when relative simplicity is at issue and the same approach is

taken for all measurements.33

Our imperfect knowledge of physics and cosmogony poses a sharper limitation.

To measure the AIC of our actual laws of physics and initial conditions, we first

need to know what they are. Most physicists would say that we do not yet have

the ‘‘final’’ laws of physics; nor can we precisely describe the Universe’s first

fractional second of existence. However, it should be possible to calculate the AIC

of these ‘‘final’’ laws and conditions when (if) we someday discover them, and to

compare that calculated quantity with the AIC of other possible sets of laws and

initial conditions. AIC is therefore, in principle, a reasonable way to measure and

compare the simplicity of our ‘‘hypotheses.’’
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Quantifying richness

Richness is a more complex subject. Indeed, complexity is an important aspect

of richness. Today we say that a system is complex if it includes many parts

that interconnect in intricate ways. A living cell is complex; a salt crystal is not.

One characteristic of a complex system is its structured self-similarity. Small

regions resemble bigger regions; discrete components and processes repeat, but

rarely in the same way. A Universe of maximal complexity would be an

elegant World, a blend of order and diversity. It would exhibit what

Heisenberg called a ‘‘proper conformity of the parts to one another and to

the whole.’’34 A rich World in Leibniz’ sense would be full of detailed, non-

repetitive, self-similar structure.

It would also be large. We can think of Leibnitian richness as ‘‘complexity plus,’’

where the ‘‘plus’’ is size. A Leibnitian Universe would contain a vast number of

complex phenomena, each interrelated in diverse ways to other phenomena, each

a composite of many parts. All of these diverse, nested phenomena would owe

their existence to simple and ‘‘sublime principles which show the wisdom of the

Author in the order and perfection of his work.’’35

Physicists Julian Barbour and Lee Smolin (‘‘B&S’’) have made a start on

describing richness mathematically.36 They call their construct ‘‘variety.’’ Here is

how it works: Start with a single elementary particle. We can call the particles

nearest to it, or with which it interacts most directly, its neighborhood. We can say

that a system has higher variety if we need less information to distinguish each of

its elementary constituents from all the other constituents of the system, by

describing its neighborhood. Alternatively, a system has lower variety if we need

more information to distinguish each constituent from the others by describing its

neighborhood. In a low-variety system, each neighborhood has to be big to be

unique. In a high-variety system, each neighborhood can be unique although it

may be quite small. Variety diminishes if you have to go further afield to find a

unique neighborhood; it increases with the total number of elementary constituents

in the system as a whole. ‘‘The variety is a non-local and non-additive quantity,

which can only be applied to a system as a whole. It measures, in a certain sense,

how unique, one from another, the different parts of the system are.’’37

B&S show two ways to calculate the variety of a graph made of dots. The

simpler way is to identify a subgraph with an arbitrary dot, i, as its starting point,

then add to the subgraph each of i’s immediately neighboring dots. Each added

dot counts as a step. As the subgraph grows, map it against every other dot, j, in

the original graph, where j „ i. When you get a subgraph that does not map onto

the neighborhood of a particular j, call the number of steps in that subgraph the

relative indifference of i and that j. When you get a subgraph that does not map

against the neighborhood of any j, call the number of steps in that subgraph the

absolute indifference (R) of i, denoted as Ri. The variety of the graph as a whole

(treating every dot in succession as an i) then equals:

V ¼
X

i

1=Ri ð1Þ
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To see how this might work, imagine that you need to identify every house in

two different, equally sized cities. You cannot use street addresses or north-south

directions; nor can you describe the houses, for they are all identical. You can,

therefore, only describe a house in relation to its neighbors. To identify each house,

you will need to describe its spatial relationship to every nearby house—how far

apart they are, the angles between them and so on—and keep doing that in a

widening circle until you have described a unique neighborhood, a set of

relationships not replicated anywhere else in the city. Once you identify a unique

neighborhood, you have specified the house at its center. You can then do the

same thing for each other house in each city. Imagine that in one city the houses

stand irregularly on narrow, winding streets. The other city has straight streets,

rectangular intersections, and houses evenly spaced. Using the method described

above, the first city would have higher variety. In the city with narrow, winding

streets, you would have to look at fewer neighboring houses to find a unique

neighborhood. Each group of houses in the high-variety city would tend to

embody more information than an equal number of houses in the more regular

city. When a system gets larger, its variety tends to increase.38 In the example of a

city, each additional house would add another ‘‘1’’ to the sum of the numerators

in equation (1). In a large, high-variety system, tiny neighborhoods (e.g.

molecules) might be identical, but would be embedded in larger, non-identical

neighborhoods (e.g. rocks). Large, similar neighborhoods (e.g. human twins)

would be non-identical by virtue of the smaller neighborhoods that compose

them (e.g. their individual cells). B&S conclude that variety ‘‘distinguishes

highly structured, but asymmetric, configurations such as one finds in biological

systems from both random configurations and [ordered] configurations such as

crystals . . . ’’39

Objections to variety as a metric for richness

We can use variety to measure the richness of a small, static system. Can we use it

to measure the richness of the Universe? Two objections have been stated:

(a) The Universe is too complex to measure in this way. It has many different

kinds of particles (electrons, photons, etc.), not just identical dots. Moreover,

its elementary constituents are not really particles in Newton’s ‘‘hard, massy’’

sense; they are more like events that are here one moment, then gone the

next. Finally, the sheer number of particles and the diversity of their

arrangements is incredibly vast. Given these complexities, we will never be

able to map each particle’s neighborhood against all the others, and therefore,

cannot possibly calculate a number that describes universal variety.

(b) Variety does not consider the interactivity of a system’s structures. For

example, it does not consider the kinds of complex interactions that exist in

biological systems. It ignores the sorts of emergent phenomena that make our

Universe an interesting place. Because variety considers only the static

arrangements of particles in a system, it might be higher in a well-stocked
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junkyard than in a similar area of forest.40 It therefore is not, even in

principle, a useful measure of the richness of our Universe.

Response to Objection A

Objection A mistakes the role intended for variety. There is no suggestion that we

measure the variety of the Universe with mathematical precision. The suggestion

instead is that the calculability of variety in principle shows that Leibnitian

‘‘richness’’ has some definite, quantifiable meaning, such that the relative ability of

possible sets of physical laws and initial conditions to generate maximal variety

could be a criterion for selecting a particular set of laws and conditions for

actualization. In principle, this criterion could partly explain why our laws and

conditions are what they are.

This in itself is a large step forward. There have been only a few attempts to

quantify richness and diversity, and those few have occurred in biology. For

example, ecologists distinguish among alpha, beta, and gamma measures of

diversity.41 Yet these measures count only the number of species. They do not

account for diversity within a species, or for the diversity of galaxies, planets, or

human invention. These ecological approaches are therefore not of much use in

specifying a maximally rich universe. Variety in the B&S sense is more useful

precisely because of its ‘‘generic’’ quality. It does not depend on how we

categorize things; it tries to get at the overall character of a system by examining

the arrangements of its elementary particles.42

Moreover, while calculating the Universe’s variety seems out of the question,

estimating it does not seem impossible. We might analogize this problem to the

task of determining the contents of a computer disk. Most of us could not

decipher a disk by reading a printout of its 1’s and 0’s. Yet by employing a

series of intermediate languages—assembler, then an operating language, and

finally a higher-level application—we can make its contents emerge on our

screen. In much the same way, further explorations of the concept of variety

may show us how to determine the relative variety of large systems by

observing their higher-order characteristics.43 Life, for example, may both

provide the highest-variety systems in the Universe and act as the most prolific

source of new, high-variety systems. If so, then the biofriendliest Universe

would also be the highest in variety. As we learn about the role of the physical

constants in the origin of life, the question of whether our Universe is the

biofriendliest of all possibilities might someday seem to have an obvious answer.

We could then decide whether our Universe is (or is not) the highest in variety

of all possibilities without examining the configuration of its elementary

particles.

Objection A’s other concerns also seem surmountable. For example, we might

focus on protons in estimating variety, regarding other particles as merely the

means by which the system arranges protons. Alternatively, we could focus on

fields as the Universe’s fundamental elements; quantum physics handles the

location and interrelation of fields with mathematical precision. The use of fields
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might require a different formalism than the one suggested by B&S, but the

prospect seems to pose no conceptual difficulties.44

While calculating the variety of the protons in a postage stamp would be a

challenging task today, the point of focusing on variety is not to find a single,

precise measure of the richness of our Universe. The objectives instead are (i) to

assure ourselves that richness can have more than a merely subjective meaning,

and (ii) to learn about the specific sorts of higher-level characteristics that we

might expect in the maximally rich Universe. We can then compare our Universe

with other possible Worlds with more confidence that we are focusing on

fundamental rather than parochial characteristics.

Response to Objection B

Objection B is correct to a point. Variety as explained above describes the

arrangement of particles in a static system. However, there are at least two

different approaches to employing the notion of variety in a changing system.

The first, proposed by B&S, would be to regard the maximal variety

configuration as, in some sense, the goal towards which the system tends to

strive. We might then imagine that our laws of physics are the local results of a

non-local potential energy function created by this global tendency toward high

variety.45 A difficulty with this approach is that, while it captures certain

features of the dynamical behavior of the Universe, it does not seem to capture

others.46

An alternative approach (suggested here) would preserve the ontological

independence of our laws of physics, but would suggest that, along with our

initial conditions, they mark the simplest path to maximal variety. This approach

begins by restating equation 1 as follows:

V1 ¼
X

i

1=R in ð2Þ

Here, R in this bold font represents the absolute indifference of i, not over the

Universe at a single moment in time but over the whole history of the Universe

captured at n snapshots of time. The number of snapshots considered in this

formula (represented by n) can be somewhat arbitrary, but must give a reasonable,

overall depiction of the Universe over time, and must include a snapshot from

each important stage of its history. The absolute indifference of i in this equation

would then reflect the smallest number of moves needed to distinguish the

neighborhood of i, not only from all other neighborhoods, but also from i’s own

neighborhood at all later or earlier ‘‘snapshot’’ moments. Owing to this second

requirement, a static system with high variety under equation (1) would display

lower variety under equation (2) than a similar system that changes significantly

over time.

A claim that our Universe has maximal variety over time could then be stated:

V1 > V0 ð3Þ
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Here V1 is the variety over time of our actual Universe and V0 is the variety

over time of any other, possible universe, calculated in the same way and using

the same value for n. Unlike equation (1), expressions (2) and (3) capture the

effects of system interactivity and emergent behaviors because only complex,

dynamic processes could produce the continual changes that would be required

to generate maximal variety over time. A junkyard will either remain a

junkyard or else simply disintegrate. In either event, time will not significantly

enhance its variety as measured in equation (2). In a forest, however, ‘‘endless

forms most beautiful and most wonderful have been, and are being evolved.’’47

These evolving forms include not only new species, but also emergent

differences among individuals and new patterns of cooperation and conflict.

So long as biological processes continue to operate, the passage of time will

increase the forest’s variety over time under equation (2). This suggests that,

over time, a universe containing life will have higher variety than a lifeless

universe.

Simplicity and richness

We can now add Leibniz’ conjoint requirement of maximal simplicity:

V1=A1 > V0=A0 ð4Þ

In this inequality, V1 and V0 are from expression (3), while A1 represents the

AIC of the laws of physics and initial conditions of our actual Universe and A0

reflects the same quantity for any other possible universe. Expression (4) reflects

Leibniz’ insistence that our Universe must be better than any other possibility. ‘‘If

there were not the best among all possible worlds, God would not have produced

any.’’48 It also fits with Leibniz’ insight that the ‘‘most perfect possible world is

that which exhibits the greatest variety of its contents (richness of phenomena)

consonant with the greatest simplicity of its laws.’’49 It balances and opposes

simplicity and richness in an intuitively appealing way.50 Expression (4) shows

that Leibniz’ richest/simplest claim could pick out a single, uniquely ‘‘best’’ setup.

Do we inhabit Leibniz’ universe?

The tautological fact that we must find ourselves in a region that supports our

existence defeats many attempts to frame a persuasive argument from design out

of the fine-tuning coincidence. The weak anthropic principle (‘‘WAP’’) suggests

that, regardless of where or how it originated, the Universe must be at least special

enough to produce us.51 Since intelligent observers can (it seems) only exist under

laws of physics similar to ours, it is, the argument runs, unremarkable that we find

ourselves in a Universe governed by such laws.52

On the other hand, it would be remarkable if our Universe were governed by

physical laws and initial conditions that met Leibniz’ conjoint criterion of maximal
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simplicity and fecundity. Under any view of the Copernican principle, it seems

unlikely that the human race or intelligent observers in general are so special that

their existence requires maximal conditions. Instead, many different, relatively

high-variety universes based on relatively simple ‘‘hypotheses’’ should be capable

of supporting creatures like us.53 This intuition, if true, opens a conceptual gap

between the Leibnitian Universe (governed by the richest/simplest principle) and

the merely sufficient Universe predicted by the WAP. This gap offers a way to test

Leibniz’ claim that does not require either a perfect knowledge of the laws of

physics or a detailed analysis of the arrangements of protons. If ours is the best of

possible Worlds, then our laws of physics should be simpler than they need to be to

produce us and our Universe should be richer (higher in apparent variety over

time) than our presence would require.54

Excess simplicity?

Physicist Stephen Wolfram suggests that, ‘‘among all possible rules [of physics],

the overwhelming majority will not be simple; they will instead tend to be almost

infinitely complex.’’55 This is, Wolfram says, because any law of physics must take

the form of some mathematical expression, and there are many more complex

expressions than simple ones. If this logic is sound, and if we inhabit a random

region in the multiverse (except that it lets us exist), then the laws of physics in our

region should be quite complex.

This is not what we experience. In 1981, physicist E. J. Squires wrote a paper

entitled, ‘‘Do we live in the simplest possible interesting world?’’56 Squires

assumed that the world would not be ‘‘interesting’’ without chemistry and stars,

and that stars need nuclear fusion. Then he showed how the electromagnetic force,

the weak and strong nuclear forces, and the properties of quarks, neutrinos,

photons, and electrons might all derive from these two requirements in the

simplest, most parsimonious way. Though Squires did not mention general

relativity, the principle of relativity asserts that the laws of physics must be the

same in all frames of reference. After discovering this principle, Einstein

concluded that, ‘‘experience justifies our belief that nature is the realization of

the simplest mathematical ideas that are reasonable.’’57

Our initial conditions are even simpler. Davies describes the state of the

Universe at the big bang as ‘‘a featureless ferment of quantum energy, a state of

exceptionally high symmetry. Indeed, the initial state of the universe could well

have been the simplest possible.’’58 The entire ‘‘featureless ferment’’ of our

spacetime then expanded with extraordinary rapidity. As it expanded, quantum

processes like those that continue to operate throughout the Universe formed tiny

irregularities, which became the earliest ancestors of every later structure, from

galaxies to philosophy textbooks.

This is a simple beginning, but the real story may be simpler still. Our Universe

may have emerged out of absolutely nothing. Not just empty space, for ‘‘empty’’

space is not empty at all. Physicists call it a ‘‘false vacuum,’’ densely packed with

‘‘dark energy,’’ ‘‘the seat of various energetic processes.’’59 Inflationary big bang
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theory says the Universe emerged from a vastly emptier state, a true vacuum.

Pagels explains:

The nothingness ‘‘before’’ the creation of the universe is the most complete void that
we can imagine—no space, time, or matter existed . . . Yet this unthinkable void
converts itself into a plenum of existence—a necessary consequence of physical
laws . . . It would seem that even the void is subject to law, a logic that exists prior to
time and space.60

No simpler conditions than these—‘‘nothing’’ plus the laws of physics—are

imaginable.

We could, it seems, exist in a universe where the laws of physics varied in

certain inertial systems, or in a World where the weak nuclear force and

electromagnetic force were not the same at the deepest level, or in a World that

did not originate from ‘‘nothing.’’ The fact that we must observe a universe that

we can inhabit does not explain the striking simplicity of our ‘‘hypotheses.’’

Tegmark, however, has suggested a different explanation.61 Taking a bird’s eye

view of mathematics, he shows that it consists of a nested series of mathematical

structures: Adding a metric to the structure called ‘‘topological spaces’’ generates

the structure called ‘‘metric spaces’’; combining tensor spaces with real manifolds

creates the structure called ‘‘manifolds with tensor fields.’’62 In general, complex

structures are just simple structures with added rules or requirements. Tegmark

then makes two assumptions: (i) that physical existence is equivalent to

mathematical existence (the infinite multiverse assumption); and (ii) that

mathematical existence is merely freedom from contradiction. If these assump-

tions are true, and assuming that self-awareness is a function of complexity, then

all categories of mathematical structure that are complex enough to contain ‘‘self-

aware subsystems’’—Tegmark calls them SAS’s—must exist as physical realities

for the SAS’s (a/k/a ‘‘intelligent observers’’) they contain.

Tegmark goes on to note that, if his claims were true, most SAS’s would find

themselves in the mathematically simplest structures that could possibly produce

them. Ironically, this is because simpler mathematical structures allow for more

complexity. They impose fewer restrictions on possible combinations of their

elements; they thereby allow more differing phenomena than structures with

more rules. In Tegmark’s view, an SAS is likely to find itself in a world governed

by the simplest mathematics that can produce it, even though more complex

mathematics might have produced it as well.

Leibniz made a closely related argument in support of his claim that God

would choose the simplest possible ‘‘hypotheses.’’ He said that simple rules let

God ‘‘find room for as many things as it is possible to place together. If God

had made use of other [more complex] laws, it would be as if one should

construct a building of round stones, which leave more space unoccupied

than . . . they fill.’’63 Picture a fieldstone building of the kind common in Leibniz’

day. The builders used various shapes and sizes of stones; in fact, they used

whatever fit. Any individual stone would be likelier to find itself in a fieldstone

building than in one for which stones are chosen according to a complicated
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rule or pattern. Leibniz claimed that our physical laws and initial conditions

should be maximally simple so that the Universe could contain the greatest

richness of phenomena. Tegmark claims that the ‘‘mathematical structure

describing our world’’ should be ‘‘the most generic one that is consistent with

our observations,’’ i.e. with our ability to observe, precisely because most

phenomena will be contained in the simplest regions capable of hosting them.64

Assuming that both these arguments are valid, the extreme simplicity of our

physical laws cannot distinguish between the Leibnizian and Tegmarkian

explanations. On the other hand, in every contemporary multiverse theory each

constituent ‘‘pocket universe’’ begins from much the same initial conditions.

With no diversity of origins from which to select, Tegmark’s reasoning cannot

explain the extreme simplicity of the big bang.

Excess richness?

Tegmark says that, if the multiverse exists, ‘‘Our observations [should be] the

most generic ones that are consistent with our existence.’’65 If we live in a random,

life-supporting region of the Tegmarkian multiverse, our world should be just rich

enough to include us.66 Leibniz predicts just the opposite: We should find

ourselves in the World containing the greatest possible richness of phenomena, of

which we are not likely to be the supreme example. Thus, were we to discover

richness greatly in excess of that needed for our existence, that discovery would

strongly support Leibniz’ claim.

Is there evidence of excess richness? Might we find more such evidence in the

future? The remainder of this paper addresses these questions.

We might begin by considering the billions of galaxies that we can observe and

the billions of stars they each contain. Hawking says that, ‘‘our solar system is

certainly a prerequisite for our existence, as is an earlier generation of nearby stars

in which heavy elements could have been formed by nuclear synthesis. . . . But

there does not seem any necessity for other galaxies to exist, let alone the million

million or so of them that we see . . .’’67 The vast surfeit of galaxies looks like an

example of excess structure. It seems that we could exist in a universe with a few

hundred galaxies, or perhaps with just one.

The Universe is also larger than it needs to be. The geometry of the Universe—

whether space is flat or curved—does not determine its topology or the rate of its

expansion. Because these are independently determined, the Universe could have

been smaller than the region of space we observe.68 If that had turned out to be the

case, some galaxies we see in one direction from the Earth could be the same ones

we see in the opposite direction. If the Universe were small enough, we might

even see our own Milky Way galaxy as it once existed. This would not be a copy;

it would be the real thing, our galactic home viewed down a vast, curving tunnel

of light. Astronomers have found, however, that nature did not take this ‘‘small

universe’’ path; the Universe appears to be larger than all of observable space.69

The extra richness this extra size requires—extra in the sense that it was not

requisite to our existence—supports Leibniz’ claim.
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More pointedly, we can think about the future. The WAP tells us nothing about

the future. It says only that any universe we inhabit must have been capable of

producing us, of getting us to where we are now. Leibniz’ richest/simplest claim, by

contrast, makes a definite prediction: The greatest possible richness is just the

largest possible ‘‘quantity of reality.’’ Since a longer-lived Universe means more

change, and hence more ‘‘reality,’’ the Universe should continue for as long as

possible. This is a testable prediction, and the early results are in. For a long time

astronomers thought the persistent inward tug of gravity might eventually

overcome the force of the Hubble expansion. As the galaxies fell back into each

other, their mutual gravities could result in a ‘‘big crunch,’’ a moment when

everything would smash into everything else, and that would be the end. We now

know, however, that the Hubble expansion is accelerating.70 Our Universe seems

set to grow forever in both size and duration.71

It has sometimes been suggested that this continuous expansion will end in a

‘‘heat death,’’ a final state of maximum entropy (zero order) when nothing more

can happen.72 However, this is not a necessary outcome. If the Universe expands

at an optimal rate, it can continue experiencing new and interesting phenomena

forever, never losing information.

This point is worth explaining.73 We can define order as the absence of disorder.

Since there is more than one kind of order (living cells versus salt crystals), but

only one kind of disorder (mathematical randomness/maximum entropy),

defining order this way captures all kinds of order. Since information is a

measure of order, we can define information as:

I ¼ Dmax �Dactual ð5Þ

According to equation (5), information (order) is present whenever the maximum

possible disorder consistent with given constraints exceeds the actual amount of

disorder. The size of the gap measures the amount of information (order) present.

Imagine a balloon full of compressed gas. The balloon is in the center of a large

spherical room, which otherwise contains a vacuum. The gas in the balloon is in a

state of maximum entropy. Gas molecules moving at different speeds and in

different directions mix together randomly. No order is present until we burst the

balloon. Then each molecule continues moving in the direction and at the speed it was

already traveling, but with nothing to constrain it. Soon the molecules arrange

themselves in a series of concentric spheres with the fastest molecules traveling most

quickly towards the spherical wall of the room and slower ones lined up behind

according to speed. In each concentric, speed-ranked sphere, each molecule lines up

next to others traveling in nearly the same direction. Increasing the allowable

disorder (letting the molecules spread out) has created very discernable order.

Now change this scenario: The spherical wall of the room starts out close to the

balloon, but can expand smoothly away from it. Now the amount of order created

will depend on the speed of the wall’s expansion. If it expands faster than the gas

molecules—keeping out of their way—the gas expansion will create order just as if

the wall were not there. If the wall expands more slowly, the growing amount of

actual disorder caused when molecules bump into it may keep up with the growing

potential for disorder. If that happens, the system will generate no new order.
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The universal expansion, in tandem with the laws of physics, is responsible for

the order we find in the actual World. This order is of two broad types: chemical

and structural.74 We find the structural order in clumpiness, in the fact that matter

is densely packed at certain points (e.g. inside stars) and nearly absent at others

(e.g. interstellar space).75 According to the standard cosmogonical model, this

clumpiness originated through the interplay of quantum uncertainty, the tug of

gravity, and the expansion of spacetime.76 Like all forms of order, the Universe’s

clumpiness embodies information. Even when all stars burn out and all black

holes dissolve, there will still be order (information) in the Universe so long as

matter is not uniformly distributed. A state of maximum entropy (zero

information—the ‘‘heat death’’) would therefore require eliminating this clumpi-

ness. However, if spacetime expands more rapidly than thermodynamic processes

can create disorder, matter will never be uniformly distributed. Therefore,

depending on its expansion rate, the Universe could go on storing and processing

information forever. Because this logically possible outcome would enhance

richness, Leibniz’ cosmology predicts it will occur: The Universe will expand so

rapidly that order is never lost, but not so rapidly as to destroy itself.77

Another point distinguishes Leibnitian cosmology from other theories. If

Leibniz is right, then at its beginning the Universe must have been maximally

simple. It must have contained as little structure as possible, since structure adds

to complexity. On the other hand, to be maximally rich, the Universe in its totality

must be replete with diverse, complex, non-repetitive structure. How can a

Universe be maximally simple, yet also maximally complex? The only way is for it

to change and the general direction of change must be away from simplicity

toward complex structure. Since Leibniz’ theory requires change, it also requires

time. Time is change. We measure space with a ruler; we measure time with

a clock. The difference is this: clocks change; rulers do not. Today, time is only

an unexplained aspect of nature. Leibniz’ theory explains why we experience

time.

His theory is also uniquely consistent with the large-scale geometry of our

Universe. Our actual Universe began at a moment of maximal simplicity and from

that point has expanded continuously, creating structure by expanding. Our past,

our future, and the arrow of time that links them all emerge from this universal

expansion.78 The predicted need of the best possible Universe to originate in

maximal simplicity and yet to contain maximal richness explains why we

experience these phenomena. Leibniz could not have guessed at the big bang and

the subsequent universal expansion, yet his theory implicitly predicts them. His

claim that the Universe is at the conjoint maximum of simplicity and richness, is

the most parsimonious explanation for the negligible complexity of its actual laws

and conditions and the vast richness of its actual phenomena.

Conclusion

Leibniz’ metaphysical conjecture, derived from his notion of God’s perfection,

generates a coherent, testable description of the best possible Universe. That
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description closely resembles the actual Universe. Further analysis and empirical

investigation should explore the possibility that Leibniz’ claim might be correct.79
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