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Abstract
The intuitive Variety of Evidence Thesis states that, ceteris paribus, more varied evi-
dence for a hypothesis confirms it more strongly than less varied evidence. Recent
Bayesian analyses have raised serious doubts in its validity. Claveau suggests the exis-
tence of a novel type of counter-example to this thesis: a gradual increase in source
independence can lead to a decrease in hypothesis confirmation. I show that Claveau’s
measure of gradual source independence suffers from two unsuspected types of incon-
sistencies. I hence put forward amore natural measure of gradual source independence
which is not plagued by inconsistencies. Claveau’s counter-examples to the variety of
evidence thesis disappear with the measure I suggest. I hence argue that my measure
is preferable and that this thesis does at least not seem to be troubled by Claveau’s
arguments.

Keywords Variety of Evidence Thesis · Bayesian networks · Confirmation ·
Independence · Reliability

1 Introduction

It is widely agreed among scientists and philosophers of science that evidential variety
among consistent and confirmatory items of evidence is beneficial for hypothesis
confirmation (Borm et al. 2009; Hüffmeier et al. 2016; Meehl 1990). In particular,
the independence of the source providing the evidence has been stressed (Thurmond
2001; Downward and Mearman 2007; Istituto Nazionale di Fisica Nucleare 2011).
Philosophers have cast this agreement in the intuitive Variety of Evidence Thesis
(VET). The VET states that, ceteris paribus, more varied evidence for a hypothesis
confirms it more strongly than less varied evidence, see (Carnap 1962; Keynes 1921;
Horwich 1982; Franklin and Howson 1984; Hempel 1966; Earman 1992) for classical
treatments.
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Synthese

The VET has received much recent attention highlighting its surprising failures,
(Bovens and Hartmann 2002, 2003; Claveau 2013; Claveau and Grenier 2019; Osi-
mani and Landes 2020; Fitelson 1996; Landes 2020a; Casini and Landes 2021)
discover cases within Bayesian models of scientific inference in which a less diverse
body of evidence bestows more confirmation upon a hypothesis of interest than a
more diverse body of evidence. Related to these formal investigations is the general
debate on the confirmatory value of varied evidence, in which the confirmatory value
of evidential variety is widely accepted (Kuorikoski and Marchionni 2016; Heesen
et al. 2019; Schupbach 2015; Woodward 2006).1

One important open problem in these discussions is the question of how to interpret
the intuition that a body of evidence ismore, or less, varied.Anumber of interpretations
have been put forward, explications of evidential variety were offered in terms of
likelihoods of evidence propositions Horwich (1982), rate of increase of conditional
probabilities of evidence propositions Earman (1992), “consequence variety” (Landes
2020b; Claveau and Grenier 2019), variety of (medical) study design Worrall (2007),
variety of the structure (or lack thereof) of data in Big Data (Lukoianova and Rubin
2014; Sagiroglu and Sinanc 2011).

This paper, however, is situated within a greater research project inaugurated in
Bovens and Hartmann (2002). There it is suggested that evidential variety may be
interpreted in terms of the number of independent evidence providing sources2: ceteris
paribus, evidential variety increases with the number of independent evidence provid-
ing sources. For example, measuring the speed of light with two different clocks
produces more varied evidence than performing these two measurements and obtain-
ing the same times with a single clock, ceteris paribus. The ceteris paribus condition
in the VET ensures that the clocks employed are equally good at keeping time. This
greater research project is built on the assumption that, ceteris paribus, evidential
variety increases with an increasing source variety.

Bovens and Hartmann take the VET to entail that, ceteris paribus, two evidence
propositions confirming a hypothesis provided by two independent sources are more
confirmatory than the same two evidence propositions provided by a single source.
They go on to develop a Bayesian network model for scientific inference for testing
hypotheses with multiple sources. Surprisingly, the VET fails in a substantial part of
their model.3 So, obtaining the same two confirmatory measurements from one single
instrument is more confirmatory than obtaining these two measurements from two
independent instruments—in some cases (cf. Sect. 2.1). Osimani and Landes (2020)
replicate this initially surprising result in a modifiedmodel which, they claim, is closer
to realistic scientific inference (cf. Sect. 2.3).

Claveau (2013) refined this binary notion of source independence suggesting that
it is instead a continuous notion, it comes in degrees varying from fully independent

1 Heesen et al. (2019) is a rare exception in that it employs a formal non-Bayesian measure of confirmation,
cf. (Fletcher et al. 2019, § 3.2) for more on the differences between their and the Bayesian approach.
2 While Bovens and Hartmann and later contributors phrase the discussion in terms of instruments pro-
viding the evidence, I use the term source which is intended to be a broader term to include instruments
(measurements) and other sources of evidence such as witnesses (testimony) and algorithms (data).
3 Throughout, the expression ‘VET failure’ refers to the cases in which a diverse body of evidence confirms
less strongly than a less diverse body of evidence within a particular model.
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sources to fully dependent sources, the latter being, in essence, a single source. Instru-
ments may be (in-)dependent to a degree, if they share some common experimental
device and/or they both require auxiliary and/or background theories to interpret mea-
surements; witnesses may be (in-)dependent to a degree, if they witnessed an event
standing next to each other and/or they are family members; the output of algorithms
may be (in-)dependent to a degree, if they run on the same experimental computer
hardware or employ similar random number generators.

Plausibly, the VET entails that, ceteris paribus, confirmation increases with an
increasing degree of source independence. While in Claveau’s model two fully
independent sources always confirm more strongly than a single source, there are sur-
prisingly cases in which a gradual increase in source independence entails a decrease
in confirmation (Claveau 2013, Section 5). Claveau’s work thus suggests that the intro-
duction of intermediate degrees of source independence leads to novel VET failures.

In this paper, I investigate this intriguing suggestion. If it were found to be true, then
the beleaguered VET would face yet another difficulty. After briefly introducing the
pertinent parts of the formal models (Sect. 2), I apply Claveau’s measure of gradual
source independence to the models developed in Bovens and Hartmann (2002); Osi-
mani andLandes (2020)which produces novelVET failures in bothmodels (Sect. 3.2).
More bad news for the VET—one might think.

However, Claveau’s measure of gradual source independence is plagued by two
inconsistencies (Sect. 4). I hence suggest an arguably more natural and definitely sim-
plermeasure of gradual dependencewhich is not plagued by inconsistencies (Sects. 5.1
and 5.2). My measure of gradual source independence does not produce novel VET
failures in the models in Bovens and Hartmann (2002), Claveau (2013), Osimani and
Landes (2020) (Sect. 5.3).

I hence (Sect. 6) that the measure I put forward is to be applied in explications of
the VET. This means that the purported bad news for the VET do not pose a further
challenge to this intuitive thesis. Out of this discussion the VET does not emerge
vindicated but at least it does not seem to be troubled by Claveau’s notion of gradual
source independence.

2 Binary source variety

2.1 Bovens and Hartmann

Our story begins with Bovens and Hartmann interpreting evidential variety in terms
of the number of independent sources of evidence. They develop a Bayesian network
model (see Darwiche 2009; Neapolitan 2003 for technical background on Bayesian
networks) of scientific inference which crucially incorporates the number of sources
of evidence and their assessed reliabilities.

On an abstract level, VET failure is explained by the fact that successful
replications—here construed as consistent confirmatory evidence propositions origi-
nating from the same source—contribute to confirmation, since successful replications
increase the assessed reliability of the source. Naturally, a more reliable source pro-
viding consistent confirmatory evidence leads to stronger hypothesis confirmation. In
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Fig. 1 Topologies of Bayesian networks for fully dependent, fully independent and to a degree independent
sources, respectively, for the two items of evidence case. The RE L-nodes represent the reliability of
the evidence providing sources. The dotted arrow indicates a gradual independence between two sources
introduced in Claveau (2013), cf. Sect. 3

some cases, the confirmation increase from repeatedly testing the same source out-
weighs the confirmation increase from evidence provided bymultiple sources (Bovens
and Hartmann 2003, p. 98).

I now briefly sketch parts of the Bovens and Hartmann model that are relevant for
my discussion. For full details and justifications, the reader is referred to Bovens and
Hartmann (2002, 2003). As mentioned, they use a Bayesian network model which
represents two distinct epistemic states in an inquiry concerning a scientific hypothesis.

The (scientific) hypothesis is modelled by a binary propositional variable HY P
which takes values hyp and hyp with intended interpretations: the hypothesis is true,
respectively false. Evidence is modelled in terms of binary report variables Ei taking
values ei and ei meaning: the hypothesis is true is reported, respectively the hypothesis
is false is reported. Finally, the evidence is not taken at face value and thus modulated
by the reliability of the source. The reliability of a source is modelled by a binary
reliability variable RE Li taking values reli and reli standing for reliable, respectively
unreliable.4 In the first epistemic state, all evidence originates from a single source,
in the second situation every report originates from a different source.

The Bayesian probabilities of the inquiring agent are constrained by the network
topology of the directed acyclic graph in the Bayesian network.5 The hypothesis
variable and the reliability variables are root nodes (they do not have any parents).
Every report depends only on the reliability of the source and the truth of the hypothesis,
i.e., there are no edges connecting the ei with each other.6 Typical network topologies
are depicted in the two leftmost graphs in Fig. 1.

The agent’s probability function P satisfies the ceteris paribus clause which says
that all sources are indistinguishable in terms of their reliabilities and that all reports

4 As explained in (Claveau 2013, Footnote 4) consequence variables of the Bovens and Hartmann model
situated between the hypothesis variable, HY P , and the evidence variables (E1, E2) are suppressed here,
since their inclusion would not add to the current discussion.
5 It does not matter for my purposes whether the probabilities are those of a subjective or objective Bayesian
agent (Landes and Williamson 2013; Landes 2015).
6 This models a situation in which different reports are, for example, generated by identically and indepen-
dently sampling from the same population. The reports are hence independent from each other given the
true state of the hypothesis and the (un-)reliability of the source.
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Table 1 Conditional probabilities in Bovens and Hartmann model of an evidential variable, E . A reliable
source provides perfect information, an unreliable source is a randomiser providing irrelevant evidence for

hypothesis confirmation, the “Bayes factor”, P(e|hyp rel)
P(e|hyp rel)

= a
a is equal to 1

P(e|HY P RE L) True positives False positives

Reliable source P(e|hyp rel) = 1 P(e|hyp rel) = 0

Unreliable source P(e|hyp rel) = a P(e|hyp rel) = a

are indistinguishable in terms of their conditional probabilities. Formally speaking,
we may drop all indices.

The prior probabilities of the root nodes, P(hyp) = h and P(rel) = ρ, are only
constrained to be somewhere in the open unit interval, (0, 1). A reliable source is
perfect in that reports from that source perfectly determine the truth of the hypoth-
esis, P(e|hyp rel) = 1 and P(e|hyp rel) = 0. An unreliable source is taken to be
a randomiser, which is not sensitive to truth of the hypothesis. It thus reports that
the hypothesis with a constant probability, denoted by a ∈ (0, 1), P(e|hyp rel) =
P(e|hyp, rel) = a, see Table 1.

Bovens andHartmann discover cases in which it is the less diverse body of evidence
(depicted on the left in Fig. 1, one source) that confirms the hypothesis more strongly
than the diverse body of evidence (depicted in the middle in Fig. 1, two independent
sources), ceteris paribus. These cases constitute instances of VET failure.

2.2 Claveau

Claveau (2013) adopts theBovens andHartmannmodelwith twomodifications. First,7

he takes issue with Bovens and Hartmann’s notion of an unreliable source which is
a randomiser. A randomiser flips a (possibly biased) coin and then reports depending
only on the outcome of the coin flip and independently of the state of nature. Claveau
thinks that modelling unreliable scientific instruments as systematically biased is more
appropriate, a systematically biased instrument will always report the same state of
nature only depending on the bias of the instrument—whatever the state of nature.

Unlike Bovens and Hartmann, Claveau thus considers a ternary (3-ary) notion of
reliability with modes: (i) fully reliable (perfectly tracking the truth of the hypothe-
sis), (ii) systematically positively biased (always reporting that the hypothesis holds,
independently of the actual truth of the hypothesis) and (iii) systematically negatively
biased (always reporting that the hypothesis is false, independently of the actual truth of
the hypothesis). This gives rise to a model which employs a now ternary propositional
reliability variable (RE L) which may take three different values (in the above order:
(i) rel (ii) bh and (iii)b¬h) with prior probabilities (i) P(rel) = ρ, (ii) P(bh) = ρ̄α

(where α is the probability that a source is systematically positively biased conditional
on not being reliable) and (iii) P(b¬h) = ρ̄ᾱ, see Table 2. One may thus think of an

7 I come back to the second modification in Sect. 3.1.
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Table 2 Conditional probabilities in Claveau’smodel of an evidential variable, E . The systematically biased
sources are unreliable

P(e|HY P RE L) True positives False positives

Reliable source P(e|hyp rel) = 1 P(e|hyp rel) = 0

Systematically positively biased P(e|hyp bh) = 1 P(e|hyp bh) = 1

Systematically negatively biased P(e|hyp b¬h) = 0 P(e|hyp b¬h) = 0

Table 3 Different notions of reliability. An unreliable source in Claveau’s sense can be broken in two ways,
either it always reports that the hypothesis holds or it always reports that the hypothesis fails

Authors Reliable source Unreliable source VET failures

Bovens and Hartmann Perfect Randomiser Yes

Claveau Perfect Broken No

Osimani and Landes Imperfect Biased Yes

unreliable source in Claveau’s sense as a broken instrument, since it always provides
the same report independently of the true state of nature.

Claveau (2013) Sect. 4 reports that there are no VET failures in this model: For
all prior probability assignments, two consistent confirmatory evidence propositions
from two independent sources are more confirmatory than the same two consistent
confirmatory evidence propositions from a single source, ceteris paribus.

2.3 Landes and Osimani

Recall that for Bovens and Hartmann a reliable source always reports the true state of
the world (Claveau agrees with this but not with their understanding of an unreliable
source) while an unreliable source’s reports do not depend on the state of nature.8

Osimani and Landes (2020) think that it is more appropriate for modern-day science
that even reliable sources of evidence for scientific inference get things wrong, from
time to time. For more debate on the notion of reliability (see Landes and Osimani
2020; Bonzio et al. 2020). Hence, even reliable sources make Type I (falsely reporting
that the hypothesis holds) and Type II (falsely reporting that the hypothesis fails)
errors. In their model, both errors are made with (not necessarily equal) non-negative
probability. Unreliable sources are construed as biased which report, by convention,
that the hypothesis of interest holds more often than a reliable source—whatever the
state of nature. That is, a biased source has a greater probability of reporting that the
hypothesis holds than a reliable source.

One motivation to consider such a source is sponsorship bias which tilts reports to
align with sponsors’ interests. Osimani and Landes, as well as Bovens and Hartmann,
thus consider a binary notion of reliability, either a source is reliable or it is not. See
Table 3 for an overview.

8 They have zero confirmatory value; their Bayes factor is equal to one.
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Table 4 Conditional probabilities in Osimani and Landes model of an evidential variable, E . ε−, ε+ are
the Type I/II error probabilities conditional on the source being reliable, γ, 1 − α are these conditional
probabilities for unreliable sources. Osimani and Landes restrict their considerations to α > 1 − ε+ and
γ > ε−, which is motivated by their construal of bias

P(e|HY P RE L) True positives False positives

Reliable source P(e|hyp rel) = 1 − ε+ P(e|hyp rel) = ε−
Unreliable source P(e|hyp rel) = α P(e|hyp rel) = γ

Osimani and Landes thus use a binary propositional variable tomodel the reliability
of a source (like Bovens and Hartmann but unlike Claveau). Their model differs
from that of Bovens and Hartmann (2002) only by the restrictions on the conditional
probabilities of the evidential variables, P(e|HY P RE L), see Table 4.9

As did Bovens and Hartmann, Osimani and Landes report VET failures. There are
cases in which the less diverse body of evidence (depicted on the left in Fig. 1, one
source) that confirms the hypothesis more strongly than the diverse body of evidence
(depicted in the middle in Fig. 1, two independent sources), ceteris paribus. But since
these two models use different conditional probabilities, it is not straight-forward to
compare the areas of VET failure. What is important for current purposes is that these
two models, but not Claveau’s model, exhibit VET failures.

3 Exponential degree of source independence

3.1 Ternary reliability

Claveau’s main conceptual contribution is to refine the notion of source variety in that
the variety of sources now comes in degrees; the degree of variety is captured by the
degree to which sources are independent. Fully dependent sources are, in essence, just
one source, since all fully dependent sources will always provide the same evidence
proposition.10 Fully independent sources on the other hand provide evidence fully
independently from each other; there is hence maximal source variety. Two sources
are dependent to a degree, if there is a probabilistic association between the prior
probabilities of the reliability variables (Claveau 2013, p. 107), see the plot on the
right in Fig. 1 for the topology of the underlying Bayesian network.

The joint prior probabilities of two fully dependent [left below] and fully indepen-
dent [middle below] sources, P(RE L, RE L), are given in (Claveau 2013, Table 3):

9 It is unfortunate dear readers that Claveau and Osimani and Landes both use the Greek letter α in their
models to denote different probabilities. The former uses it as the probability of unreliable source being
positively biasedwhile the latter authors employ it to denote the probability of a true positive of an unreliable
source. Since I only perform calculations within models, this does not cause accidents here. The meaning
of α here is always the one intended by the authors of the current model under investigation.
10 Statisticians would refer to Claveau’s notion of full dependence as “perfect positive correlation”. Their
term is more precise in that it allows the differentiation between perfect positive and negative correlation.
I will use Claveau’s term in order to hopefully minimise confusion.
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ρ 0 0
0 ρ̄α 0
0 0 ρ̄ᾱ

ρ2 ρρ̄α ρρ̄ᾱ

ρρ̄α (ρ̄α)2 ρ̄2αᾱ

ρρ̄ᾱ ρ̄2αᾱ (ρ̄ᾱ)2

ωrr ωrh ωr h̄
ωhr ωhh ωhh̄
ωh̄r ωh̄h ωh̄h̄

.

The nine values on the right formalise the general case of a prior probability assign-
ment, P(RE L, RE L). For example, the probability that the first source is positively
biased and the second source is negatively biased, P(bh

1 , b¬h
2 ), is equal to zero for

two fully dependent sources, it is equal to ρ̄2αᾱ for two fully independent sources
and equal to ωhh̄ in the general case. In general, the probability of entry i, j in every
3x3-matrix equals the prior probability of RE L1 being equal to the i-th and RE L2
being equal to the j-th value of the reliability variable.

Claveau then puts forward a formalmodel of gradual source independence by defin-
ing a one-parameter curve from full dependence to full independence, parametrised
by a real-valued distance parameter, δ ∈ [0, 1], the curve from (Claveau 2013, §C1)
is re-produced in Table 5. For δ = 0 there is full dependence and for δ = 1 full
independence obtains. That is, he puts forward a way to specify intermediate degrees
of source independence along this curve by imposing four requirements:11

R1 exponential law: ωrr = ρ1+δ, ωhh = (ρ̄α)1+δ, ω¬h¬h = (ρ̄ᾱ)1+δ ,
R2 probabilities sum to one:

∑
ω ω = 1,

R3 the ω are symmetric: ωrh = ωhr , ωr h̄ = ωh̄r , ωhh̄ = ωh̄h , and
R4 the marginal probabilities of RE L1 and RE L2 are not a function of the distance

parameter: for i = {1, 2}

P(reli ) = ωrr + ωrh + ωr h̄ = ρ

P(bh
i ) = ωrh + ωhh + ωhh̄ = ρ̄α (1)

P(bh̄
i ) = ωr h̄ + ωhh̄ + ωh̄h̄ = ρ̄ᾱ .

Indeed, these requirements are prima facie not implausible and uniquely determine his
model of degree of source independence in terms of a one parameter curve depending
on the distance parameter δ.12

Claveau goes on to formalise the VET as the requirement that the posterior proba-
bility of the hypothesis increases with increasing source independence:

Ceteris paribus, ∂ P(hyp|e1e2)
∂δ

> 0, for all admissible values ofρ, α and δ. (Claveau
2013, p. 109)

The unexpected result is there is VET failure in Claveau (2013)’s model for gradual
source independence, see (Claveau 2013, p. 109), while there was no VET failure in
the binary source variety approach (Sect. 2.2). That is, there are no VET failures in
Claveau’s base model (binary source variety) but there are such failures in the general
model (gradual source variety). The introduction of grades of source independence
generates novel VET failures.

11 To simplify notation, I suppress the dependence of the ω... on the degree of independence parameters
throughout this manuscript.
12 R4 entails R2, R2 is thus superfluous.
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I now investigate effects of applying a gradual notion of source independence on
the VET in models with a binary reliability variable. Does the introduction of source
independence generate novel VET failures? I will then apply these investigations to the
models developed in Bovens and Hartmann (2002) and Osimani and Landes (2020).

3.2 Binary reliability

Since the reliability variable is binary, the axioms for ternary variables cannot simply
be copied and pasted. In close analogy toClaveau (2013), I suggest that the exponential
degree requirements for binary reliability variables could be

P1 exponential law: ωrr = ρ1+δ and ωr̄ r̄ = ρ̄1+δ ,
P2 probabilities sum to one:

∑
ω ω = ωrr + ωrr̄ + ωr̄r + ωr̄ r̄ = 1, and

P3 symmetry: ωrr̄ = ωr̄r .

P1–P3 axiomatically characterise an exponential degree of source independence for
binary reliability variables in terms of a one-parameter curve parametrised by δ, see
Table 6. I impose P1–P313 and ask what happens to the fate of the VET. The VET is
here taken to entail the incremental change of posterior probability of the hypothesis,
∂ P(hyp|e1e2)/∂δ, is an increasing function in δ.

The general expression for the derivative of the posterior probability with respect to
the exponential degree of independence, δ, is not immediately comprehensible (even
in its most simple form):

Proposition 1 (VET Failure for an exponential Degree of Independence)

sign
( ∂

∂δ
P(hyp|e1e2)

)

= − sign
(
[ε−α − γ (1 − ε+)] · [(1 − ε+)ε−ρ1+δ ln(ρ) − αγ ρ̄1+δ ln(ρ̄)

− ρ̄1+δρ1+δ ln(
ρ

ρ̄
)(γ − ε−)(α − (1 − ε+))]

)
.

All proofs can be found in the appendix, where I restate the claims to be proved for
ease of reference. I here used the conventions of Table 4 to more compactly denote
conditional probabilities.

While the general formula is rather involved, we can make one simple observation:

Proposition 2 In case one is indifferent about the source being reliable, ρ = ρ̄ = 0.5,
the sign of derivative does not depend on δ.

That is, for ρ = 0.5 and for fixed conditional probabilities of the evidence variables
given their parent variables in the topology of the Bayesian network, the parameters
α, γ, ε−, ε+, and fixed prior probability of the hypothesis, P(hyp), the VET either
holds along the entire exponential curve or it fails along the entire exponential curve.

13 Claveau andGrenier impose P1–P3 on binary variables representing testable consequences of the hypoth-
esis which are independent to a degree, I impose P1–P3 on reliability variables.
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Fig. 2 Bovens and Hartmann model: For δ = 0.1, 0.5, 0.9 from left to right: plot of the sign of
ρ1+δ ā(ln(ρ) − ln(ρ̄)) − ln(ρ̄)a in the ρ − a-plane. Yellow indicates VET failure, blue indicates that
the VET holds

I now turn to the models of Bovens and Hartmann and Osimani and Landes as
special cases of Proposition 1. Although things simplify significantly, no clear pattern
will emerge.

3.2.1 Bovens and Hartmann

For the Bovens and Hartmann model, α = γ = a and ε+ = ε− = 0, the expression
from Proposition 1 simplifies significantly:

Proposition 3 (VET Failure for Bovens and Hartmann for an exponential Degree of
Independence)

sign
( ∂

∂δ
P(hyp|e1e2)

)
= sign

(
ρ1+δ ā[ln(ρ) − ln(ρ̄)] − a ln(ρ̄)

)
.

As in Claveau (2013), the expression determining the sign of the derivative cannot
be solved analytically. I contentmyself with pointing out rules of thumbwhich indicate
the sign of the derivative. If ρ > ρ̄, then ln(ρ) − ln(ρ̄) > 0 and the VET holds. If ρ is
small, ρ � 0.5, then ln(ρ)−ln(ρ̄) � 0 and theVET fails for all a that are not too close
to one. If a is close enough to one, the VET holds. The greater δ the more important
is the term − ln(ρ̄)a > 0, the area of VET failure hence decreases with increasing δ.
The situation in the ρ − a-plane for different δ is illustrated in Fig. 2 which somewhat
resembles (Bovens and Hartmann 2003, Figure 4.5) in that both figures display VET
failure near the origin. Since gradual source independence is not part of the Bovens
and Hartmann model (the fate of the VET in their model only depends on ρ and a but
not on δ), (Bovens and Hartmann 2003, Figure 4.5) only displays a single drawing of
VET failures in the ρ − α-plane.
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Fig. 3 Osimani and Landes model: Plot of ln( ρ̄
ρ ) − [ ρ

ρ̄
]1+δ in the ρ − δ-plane which approximates VET

failure (Proposition 4). Yellow indicates VET failure, blue indicates that the VET holds. Consistent with
Proposition 2, there is no change of colour near ρ = 0.5

3.2.2 Landes and Osimani

The rather complex expression in Proposition 1 does not simplify in the Osimani and
Landes model. Since investigating the expression in full detail is not very illuminating,
I report two special situations. First, I considerwhat happens for the previously reported
VET failures and then show that there are novelVET failures for the exponential degree
of source independence.

Firstly, for the only reported constraint alongwhich posterior probabilities are equal
(borderline of VET failure), ε−α = γ (1 − ε+), it follows that

∂

∂δ
P(hyp|e1e2) = 0 .

So, all posterior probabilities of the hypothesis are equal along the exponential curve,
if the conditional probabilities of the evidential variables satisfy ε−α = γ (1 − ε+).

Secondly, there are, however, novel VET failures for the exponential degree of
source independence:

Proposition 4 (VET Failure for Landes and Osimani for an exponential Degree of
Independence)

For α � 1 − ε+ > 0 and γ � ε− > 0, the VET holds for small ρ and fails for
large ρ. The smaller δ, the smaller the area in which the VET holds.

See Fig. 3 for a plot of the sign of ln( ρ̄
ρ
) − [ρ

ρ̄
]1+δ which approximately demarcates

the boundary of VET failure for α � 1 − ε+ > 0 and γ � ε− > 0 (see proof
of Proposition 4). The conditions α � 1 − ε+ > 0 and γ � ε− > 0 represent an
unreliable instrument which is barely distinguishable from a reliable one.
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3.3 Summing up

Bovens and Hartmann reported the borderline of VET failures to be parametrised
by 1 = 2āρ̄, which is no longer such a boundary under the exponential degree of
source independence (Proposition 3). Osimani and Landes’s borderline of VET fail-
ure αε− = γ (1 − ε+) continues to be a borderline of VET failure (Proposition 1).
However, the introduction of gradual source variety produced novel VET failures
in both these models. Some of these novel VET failures obtain for parameter val-
ues (ρ, a, ε+, ε−, α, γ ) close to those previously reported. Overall, no clear pattern
emerges for which the VET holds/fails.

4 Inconsistencies

In the above section, I applied Claveau’s measure of gradual source independence
to the models developed in Bovens and Hartmann (2002) and Osimani and Landes
(2020)which produces novel cases in bothmodels inwhichmore source independence
entails less confirmation. More bad news for the VET—one might think. However, I
now argue that these “VET failures” do not spell further trouble for the VET.

4.1 Ternary reliability

Claveau’s degree of source independence has a serious formal flaw which has not yet
been pointed out. Some of the one parameter curves connecting full dependence with
full independence for ternary reliability variables as used in Claveau (2013) leave the
realm of probabilities, some ω are negative. Here are some examples:

ωrh = ωhr = P(rel1, bh
2 ) = ρ + ρ̄α − 1 + ρ1+δ + (ρ̄α)1+δ − (ρ̄ᾱ)1+δ

2
≈ −0.03%

for ρ = 2.5%, α = 90%, δ = 20%

ωr h̄ = ωh̄r = P(rel1, b¬h
2 ) = ρ + ρ̄ᾱ − 1 + ρ1+δ − (ρ̄α)1+δ + (ρ̄ᾱ)1+δ

2
≈ −0.32%

for ρ = 95%, α = 95%, δ = 50%

ωhh̄ = ωh̄h = P(bh
1 , b¬h

2 ) = −ρ + 1 + ρ1+δ − (ρ̄α)1+δ − (ρ̄ᾱ)1+δ

2
≈ −0.15%

for ρ = 12.5%, α = 97.5%, δ = 10% . (2)

Apparently, for all three different off-diagonal ω there exists a curve and an inter-
mediate degree of independence, δ ∈ (0, 1), at which the ω (a Bayesian probability)
becomes negative. The three sample curves in (2) leaving the realm of probabilities
are not the only such curves, see Figs. 4 and 5 for graphical illustrations.

So, until Bayesians are ready to endorse andmake sense of negative “probabilities”,
Claveau’s axioms R1–R4 are inconsistent with the Bayesian paradigm. This means
that exponential degrees of dependence as proposed in Claveau (2013) for ternary reli-
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Fig. 4 Plot of min{infδ∈[0,1] ωrh(ρ, α, δ), infδ∈[0,1] ωr h̄(ρ, α, δ), infδ∈[0,1] ωhh̄(ρ, α, δ)} in the α − ρ-

plane on the grid [0, 01, 0.99]2 with step size 0.01. A negative “heat” at a point (α, ρ) indicates that the
exponential curve connecting dependent sources to independent sources leaves the realm of probabilities.
At full dependence, these three ω are all equal to zero; hence every infimum is at most zero and all values
are at most zero in this plot

ability fail to properly explicate a notion of gradual source independence in Bayesian
epistemology.

Since the introduction of gradual source independence only produced VET failures
in Claveau’s model for exponential degrees and these degrees of source independence
fail to properly explicate source independence in Bayesian terms, there are no known
instances in which the introduction of degrees of source independence produces trou-
bling VET failures for ternary reliability.

A contrarian might object that some of Claveau (2013)’s curves producing VET
failure do not leave the realm of positive probabilities as depicted in the bottom right
plot in Fig. 5 and hence theVET is troubled by gradual source independence. However,
until these curves are found to be part of a canonical family of curves consistentwith the
Bayesian paradigm which cover all plausible parameter configurations for full source
dependence and full source independence, I blame these alleged “VET failures” on
the peculiarity of the curves which stray away too far from a straight line.

This inconsistency also reappears in Claveau and Grenier (2019) which extends
Claveau (2013) by adding a further notion of gradual evidential variety.

4.2 Binary reliability

The exponential degree of source independence for binary reliability does not produce
intermediate degrees of source independencewhich contradict the Bayesian paradigm.
They seem like a sensible explication of gradual source independence. Nevertheless,
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Fig. 5 Top: Plot of P(rel1, bh
2 ) = ωrh depending on δ. Left: ρ = 0.025, α = 0.9 where ωrh dips into the

negative until becoming positive at around δ ≈ 23.75%. Right: ρ = 0.05, α = 0.8 where ωrh is positive
throughout for all δ ∈ [0, 1]. Bottom: Plot of the three different off-diagonal values of P(RE L1, RE L2).
Left: ρ = 0.025, α = 0.9, yellow indicates that the VET holds and ωrh is positive, green indicates
that the VET fails and ωrh is positive while red indicates that the VET fails and ωrh is negative. Right:
ρ = 0.05, α = 0.8, yellow indicates that the VET holds, green that it fails. The straight blue lines represent
the linear degree of source independence (cf. Sect. 5)

these degrees of source independence ought not to be used in an explication of the
VET, as I shall now argue.

The attentive reader will have noted that I only suggested three axioms to charac-
terise binary gradual source independence (Sect. 3.2), when there were four axioms
put forward in Claveau (2013) for ternary variables (Sect. 3.1). Claveau’s fourth axiom
says that while increasing (or decreasing) source independence the prior probability
of the reliability variable RE L1 does not change. In close analogy to the ternary case,
for a binary reliability variable this axiom is:

P4 The marginal probabilities of RE L1 is not a function of the distance parameter δ,
for all δ ∈ [0, 1]

P(rel1) = ωrr + ωrr̄ = ρ

P(rel1) = ωr̄r + ωr̄ r̄ = ρ̄ .

P4 and the symmetry axiom P2 jointly entail that the marginal probabilities of RE L2
is also not a function of the distance parameter δ. All seems good—for the moment.
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It may come as a surprise that this close analogy leads to disaster for binary relia-
bilities:14

Proposition 5 P1, P3 and P4 are jointly inconsistent.

Unlike the inconsistency for ternary reliability variables, this inconsistency arises
entirely from within the axioms P1, P3 and P4,15 there is no clash here with Bayesian
(or other) postulates.

Now recall that the exponential degree of source independence for binary reliability
variables satisfies P1 and P3, and since these three axioms are inconsistent, it follows
that these degrees do not satisfy P4. This means that increasing source independence
leads to a change of the prior belief in a source being reliable. Formally, this follows
from observing that the prior probability of a source being reliable

P(rel) = ρ1+δ + 1 − ρ1+δ − ρ̄1+δ

2
= 1 + ρ1+δ − ρ̄1+δ

2
(3)

does depend on the distance parameter δ. A priori, this dependence is unproblematic.
What does this mean for the thesis of interest? The thesis clearly states that confir-

mation increases with increasing evidential variety, ceteris paribus. We here explicate
evidential variety in terms of gradual source independence. Increasing gradual source
independence should increase confirmation, ceteris paribus. I have shown in Sect. 3.2,
that an increase in gradual source independence decreases confirmation in the models
of Bovens and Hartmann (2002); Osimani and Landes (2020). These troubling results
however were not obtained ceteris paribus. Ceteris paribus means that all other things
must remain equal. While increasing evidential variety (increasing gradual exponen-
tial source independence for binary variables) the prior probability of the reliability
was not held constant, (3) changes with varying δ . Hence, the VET is not troubled
by the results in Sect. 3.2 for a exponential degree of source independence and binary
reliability.

As I argued in Sect. 4.1, the VET is also not troubled by Claveau’s results (Sect. 3.1)
for an exponential degree of source independence and ternary reliability. If my argu-
ments are found to be compelling, and I think they should be, then the exponential
degree of gradual source independence does not produce any troubling VET failures.

At long last, some good news for the besieged VET.

5 Linear degree of source independence

Claveau’s work suggests that the introduction of intermediate degrees of independence
leads to novel VET failures. As I just argued, the suggested exponential degree of grad-

14 In a very recent paper, Claveau and Grenier, § 4 deal with binary variables which are independent to a
degree. To avoid inconsistency, they simply drop Claveau’s fourth requirement, P4. While I do think that
for the purposes of an explication of gradual source independence P4 is indeed holding least sway of these
four axioms - P1 is the heart of the exponential approach, P2 is indispensable and P3 is well-motivated by
ceteris paribus considerations - it seems curious that no discussion of this issue can be found in Claveau
and Grenier (2019).
15 P2 is not required to generate the inconsistency.
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ual source independence is not a viable option for analysing the VET. To follow-up
on Claveau’s conceptual contribution I develop a measure of gradual source indepen-
dence for explicating the VET which permits an axiomatisation to binary and ternary
reliability variables.

Claveau’s notion of distance is exponential and thus rather complicated. It seems
more natural to consider a simpler notion of distance which linearly increases in the
distance parameter.16 It is hence natural towonderwhat happens if a linear requirement
instead of the exponential requirement R1 is imposed.

5.1 Ternary reliability

Applying a linear approach to gradual source independence, it is natural to take the
VET to entail that, ceteris paribus, the posterior probability of the hypothesis increases
with increasing source independence with respect to the degree parameter λ. Formally,

Ceteris paribus, ∂ P(hyp|e1e2)
∂λ

> 0, for all ρ, α, λ, P(hyp) ∈ (0, 1).

Following Claveau, I begin by first considering a ternary reliability notion. In close
analogy to R1, I now consider a linear distance measure:

(R1′) linearity: for all λ ∈ [0, 1]
ωrr = ρ + λ(ρ2 − ρ),

ωhh = ρ̄α + λ((ρ̄α)2 − (ρ̄α)) and

ω¬h¬h = ρ̄ᾱ + λ((ρ̄ᾱ)2 − (ρ̄ᾱ)) .

Enforcing Requirements R1’, R3 and R4 I obtain a unique curve which connects
dependence (λ = 0) and independence (λ = 1) of sources. Note that the linear and the
exponential notion of gradual source independence lead to different degrees of source
independence, the linear curve given in Table 7 is different than the exponential curve
given in Table 5.

Proposition 6 R1’, R3 and R4 are mutually consistent. Furthermore, they jointly entail
R2 and

ωrh = ωhr = λαρρ̄ ωr h̄ = ωh̄r = λᾱρρ̄ ωr̄ h̄ = ωh̄r̄ = λαᾱρ̄2 .

Note that for the linear degree of source independence all values are in the unit interval,
as they should be, because they are all convex combinations of probabilities. They are
hence not plagued by inconsistency as the exponential degree (Sect. 4.1).

In stark contrast to Claveau’s degree of source independence, there is no failure of
the VET under the linear degree of source independence in Claveau’s model:

16 To be clear, the even simpler try of a constant degree is out of the question as a degree is, by definition,
something that varies.
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Proposition 7 (No VET failures in Claveau’s model for Linear Degree) Ceteris
paribus, for all ρ, α, λ, P(hyp) ∈ (0, 1) it holds that

∂ P(hyp|e1e2)

∂λ
> 0 .

Claveau’s main result is thus sensitive to the way the degree of source independence is
formalised. The introduction of a linear degree of source independence does not intro-
duce any (novel) VET failures. Even stronger, there are no VET failures whatsoever
in Claveau’s model, since there are no VET failures in the base model (Sect. 2.2).

5.2 Binary reliability

Recall that Bovens and Hartmann as well as Osimani and Landes employ binary but
different reliability concepts, either a source is reliable or not and there is only one
kind of unreliability. This leads them to employ a binary reliability variable whereas
Claveau employs a ternary reliability variable. Hence, a slightly different formalisation
capturing that sources are independent to a degree is required.

Technically, I am looking for a way to connect the probability assignment,
P(RE L1, RE L2), from two fully dependent sources (left below) to two fully inde-
pendent sources (middle below) via some intermediate linear degree of source
independence (right below)

ρ 0
0 ρ̄

ρ2 ρρ̄

ρρ̄ ρ̄2
ωrr ωrr̄

ωr̄r ωr̄ r̄

via a one parameter curve. In full analogy to R1’, R2–R4, I consider four requirements:

L1 linearity: ωrr = ρ + λ(ρ2 − ρ) and ωr̄ r̄ = ρ̄ + λ(ρ̄2 − ρ̄)

L2 probabilities sum to one:
∑

ω ω = ωrr + ωrr̄ + ωr̄r + ωr̄ r̄ = 1,
L3 the ω are symmetric: ωrr̄ = ωr̄r , and
L4 the marginal probabilities of RE L1 and RE L2 are not a function of the distance

parameter λ: for all i = {1, 2} and all λ ∈ [0, 1]

P(reli ) = ωrr + ωrr̄ = ρ

P(reli ) = ωrr̄ + ωr̄ r̄ = ρ̄ .

Proposition 8 L1–L4 are mutually consistent and have a unique solution:

ωrr̄ = ωr̄r = λρρ̄ .

The proof is obtained by inspecting Table 8.17

17 L4 entails L2. Furthermore, L1–L3 are already sufficient for pinning down a unique solution, L1–L3
hence jointly entail L4. Again, all ω take values in the unit interval, as they should.
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As it was the case for a ternary reliability variable, I here take the VET to entail that
the posterior probability of the hypothesis given two confirmatory evidence proposi-
tions, P(hyp|e1e2), increases with increasing source independence, ceteris paribus.
For a linear degree of source independence this means that ∂ P(hyp|e1e2)/∂λ is an
increasing function in λ for all prior probability functions consistent with the topology
of the Bayesian network.

Proposition 9 (VET Failure for Linear Degree of Independence)
Ceteris paribus, for all ρ, α, γ, ε−, ε+, P(hyp) ∈ (0, 1) it holds that

sign
( ∂

∂λ
P(hyp|e1e2)

)
= sign

((
αε− − γ (1 − ε+)

)
·

(ρ · [ε−[(1 − ε+) − α] + (1 − ε+)[ε− − γ ]] + ρ̄ · [γ ((1 − ε+) − α) + α(ε− − γ )])
)

.

That is, whether the VET holds or fails along the linear curve connecting full depen-
dence and full independence of sources is fully determined by comparing posterior
probabilities of the endpoints connecting full dependence to full independence, since
the sign of the derivative in Proposition 9 does not depend on λ. If the VET fails for
a particular set of parameters, ε−, ε+, α, γ , between endpoints, then increasing inde-
pendence decreases confirmation along the entire curve. Vice versa, if the VET holds
for a particular set of parameters between endpoints, then increasing independence
increases confirmation along the entire curve. The introduction of intermediate linear
degrees of independence does not lead to novel VET failures for a binary reliability
variable.

I now briefly investigate the models of Bovens and Hartmann (2002); Osimani and
Landes (2020) as special cases of Proposition 9.

5.2.1 Bovens and Hartmann

The Bovens and Hartmann model is specified by two constraints: i) reliable sources
are perfect, i.e., they do not commit any errors, ε+ = ε− = 0 and ii) an unreliable
source is randomiser, i.e., the Bayes factor of an unreliable source is equal to one,
α = γ =: a.

Proposition 10 (VET Failure for Bovens and Hartmann for Linear Degree of Inde-
pendence)

sign
( ∂

∂λ
P(hyp|e1e2)

)
= sign

(
1 − 2āρ̄

)
.

This is precisely the formula obtained in (Bovens and Hartmann 2003, p. 97, 4.11) for
VET failure between fully dependent and fully independent sources.

5.2.2 Landes and Osimani

TheOsimani andLandesmodel is specified by the constraint that unreliable sources are
more likely to report that the hypothesis holds whatever the state of nature: α > 1−ε+
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and γ > ε−. Since all differences between conditional probabilities in the second large
bracket in Proposition 9 are negative, it is now easily observed that:

Proposition 11 (VET Failure for Landes and Osimani for Linear Degree of Indepen-
dence)

sign
( ∂

∂λ
P(hyp|e1e2)

)
= − sign

(
αε− − γ (1 − ε+)

)
.

This is precisely the formula obtained in Osimani and Landes (2020) for VET failure
between fully dependent and fully independent sources.

5.3 Summing up

I just showed in Proposition 9 that under a linear degree of source independence,
VET failures obtain, if and only if they obtain between fully independent and fully
dependent sources for a binary reliability variable. The same holds true for the ternary
reliability variable in Claveau’s model (Proposition 7). That is, the introduction of a
linear degree of source independence does not cause novel VET failures. Compare
this with Claveau’s exponential degree of source independence which does introduce
novel VET failures in all three models.

6 Conclusions

While the VETwas once held to be an “undeniable element of scientificmethodology”
(Horwich 1982, p. 77) and a “truism of scientific methodology” (Earman 1992, p. 77),
recent Bayesian explications of theVEThave shattered the belief in its validity. Bovens
andHartmann (2002); Osimani and Landes (2020) established that in certain situations
evidence for a hypothesis is more confirmatory, if it originates from a single rather
than two sources. Claveau’s work suggests that the introduction of degrees of source
independence produces novel VET failures.

Contra Claveau (2013) I conclude that the VET is not (yet!) troubled by gradual
source independence, because the exponential degree of source independence (Sect. 3)
is not applicable in an analysis of the VET (Sect. 4) and the preferable linear degree
of source independence does not produce any novel VET failures (Sect. 5). Why do I
write “yet”? Because I only investigated one particular degree of source independence,
while I do think that the linear degree is indeed the most natural degree, I have not
investigated other degrees of gradual source independence. Another reason for saying
“yet” is the limitation to two items of evidence in this paper. While I do believe that
considering multiple items of evidence will not change matters significantly, I do not
have a proper proof for this belief. Furthermore, the case of reliabilities of greater
arities is open, since the axioms considered here are too weak to determine a family
of one parameter curves (Proposition 12).
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Finally, note that Claveau’smeasure of gradual source independence does not assign
all joint probabilities, P(RE L1, RE L2), which are intuitively somewhere between
full dependence and full independence, a degree of independence. This evident from
Fig. 5 in which the exponential and the linear curve only cover little of the space
“in between” full dependence and full independence. To the best of my knowledge,
this constitutes a, previously unmentioned, limitation of Claveau’s approach. This
limitation applies to the linear degree of source independence introduced here, too.
Statisticians have long studied degrees of (in-)dependence under the term correlation
and produced a number of non-equivalentmeasures of correlation. Bringing in insights
and concepts from statistics (correlation [coefficients], anticorrelation, Bayes factors
(Morey et al. 2016) andothers) into philosophy as urged in (Mayo2018, p. 74)maywell
shed further light on our concept(s?) of source independence and further illuminate
the VET.

Out of this discussion the VET does not emerge vindicated, this is impossible
given the apparent VET failures reported in Bovens and Hartmann (2002), Osimani
and Landes (2020), Landes (2020b) and Fitelson (1996), but the VET is at least not
(yet) troubled by gradual source independence.
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A Formal analysis

A.1 Probabilities and ceteris paribus conditions

All variables are binary propositional variables, with the exception of the reliability
variable in Claveau’s approach which is ternary. Variable names are capitalised, a
variable name in lower letters indicates that the variables assigned the value true. The
prior probabilities of the root nodes, HY P, RE Li , are: P(hyp) = h, P(reli ) = ρ, in
Claveau’s approach also: P(bh

i ) = ρ̄α and P(b¬h
i ) = ρ̄ᾱ; where the ceteris paribus

condition entails that the prior probabilities of the reliability of the sources are equal.
The conditional probabilities of the evidential variables, Ei , are for all fixed possible
values of the parent variables P(e1|HY P RE L1) = P(e2|HY P RE L2). To simplify
notation, the index i is dropped in the following.

Different authors make different model assumptions for the conditional probabil-
ities of the evidential variables, in chronological order (Bovens and Hartmann 2002;
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Claveau 2013; Osimani and Landes 2020):

P(e|hyp rel) = 1 P(e|hyp rel) = 0 P(e|hyp rel) = P(e|hyp rel) = a

P(e|hyp rel) = 1 P(e|hyp rel) = 0 P(e|bh) = 1 P(e|b¬h) = 0

P(e|hyp rel) = ε+ < P(e|hyp rel) = α P(e|hyp rel) = ε− < P(e|hyp rel) = γ.

All conditional probabilities not explicitly set to zero, are always assumed to be non-
extreme lying the open interval (0, 1). The fully general case for binary reliability is
obtained by dropping the assumptions 1 − ε+ < α and ε− < γ for the Osimani and
Landes model.

A.2 Degrees of independence

The degrees of independence for prior probabilities of P(RE L, RE L) are given by
the following tables:

Table 5 Degree of source independence suggested by Claveau for ternary reliability variables; axiomatised
by R1–R4

ρ1+δ ρ + ρ̄α −
1+ρ1+δ+(ρ̄α)1+δ−(ρ̄ᾱ)1+δ

2

ρ + ρ̄ᾱ − 1+ρ1+δ−(ρ̄α)1+δ+(ρ̄ᾱ)1+δ

2

ρ + ρ̄α −
1+ρ1+δ+(ρ̄α)1+δ−(ρ̄ᾱ)1+δ

2

(ρ̄α)1+δ −ρ + 1+ρ1+δ−(ρ̄α)1+δ−(ρ̄ᾱ)1+δ

2

ρ + ρ̄ᾱ −
1+ρ1+δ−(ρ̄α)1+δ+(ρ̄ᾱ)1+δ

2

−ρ +
1+ρ1+δ−(ρ̄α)1+δ−(ρ̄ᾱ)1+δ

2

(ρ̄ᾱ)1+δ

Table 6 Exponential degree of source independence for binary reliability variables; axiomatised by P1–P3

ρ1+δ (1 − ρ1+δ − ρ̄1+δ)/2

(1 − ρ1+δ − ρ̄1+δ)/2 ρ̄1+δ

Table 7 Alternative linear degree of source independence for ternary reliability variables; axiomatised by
R1’, R3 and R4. See Proposition 6 for a proof

ρ + λ(ρ2 − ρ) λαρρ̄ λᾱρρ̄

λαρρ̄ ρ̄α + λ((ρ̄α)2 − (ρ̄α)) λρ̄2αᾱ

λᾱρρ̄ λρ̄2αᾱ ρ̄ᾱ + λ((ρ̄ᾱ)2 − (ρ̄ᾱ))
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A.3 Proofs

Proposition 1 (VET Failure for an exponential Degree of Independence)

sign
( ∂

∂δ
P(hyp|e1e2)

)

= − sign
(
[ε−α − γ (1 − ε+)] · [(1 − ε+)ε−ρ1+δ ln(ρ) − αγ ρ̄1+δ ln(ρ̄)

− ρ̄1+δρ1+δ ln(
ρ

ρ̄
)(γ − ε−)(α − (1 − ε+))]

)

= − sign
(
[ρ1+δ ln(ρ)[(1 − ε+)ε− − ρ̄1+δ(γ − ε−)(α − (1 − ε+))]

− ρ̄1+δ ln(ρ̄)[αγ − ρ1+δ(γ − ε−)(α − (1 − ε+))]] · [ε−α − γ (1 − ε+)]
)

.

Proof This proof is a tedious exercise in keeping concentrated. To double-check my
calculations (here and in the proofs below) I subtracted the first line from the last line
within a symbolic programming environment, luckily my computer told me that the
difference was always zero.

sign
( ∂

∂δ
P(hyp|e1e2)

)

= − sign
( ∂

∂δ

(∑
RE L1 RE L2

P(e1|rel1hyp)P(e2|rel2hyp)P(RE L1RE L2)
∑

RE L1 RE L2
P(e1|rel1hyp)P(e2|rel2hyp)P(RE L1RE L2)

))

= − sign
( ∂

∂δ

( ε2−ρ1+δ + 2ε−γ (1 − ρ1+δ − ρ̄1+δ)/2 + γ 2ρ̄1+δ

(1 − ε+)2ρ1+δ + 2(1 − ε+)α(1 − ρ1+δ − ρ̄1+δ)/2 + α2ρ̄1+δ

))

�calculating derivative

= − sign
(
[ln(ρ)ε2−ρ1+δ + ε−γ (− ln(ρ)ρ1+δ − ln(ρ̄)ρ̄1+δ) + ln(ρ̄)γ 2ρ̄1+δ]

· [(1 − ε+)2ρ1+δ + 2(1 − ε+)α(1 − ρ1+δ − ρ̄1+δ)/2 + α2ρ̄1+δ]
− [ε2−ρ1+δ + ε−γ (1 − ρ1+δ − ρ̄1+δ) + γ 2ρ̄1+δ]

· [ln(ρ)(1 − ε+)2ρ1+δ + (1 − ε+)α(− ln(ρ)ρ1+δ − ln(ρ̄)ρ̄1+δ) + ln(ρ̄)α2ρ̄1+δ]
)

�expanding brackets

Table 8 Linear degree of source independence for binary reliability variables; axiomatised by L1–L3

ρ + λ(ρ2 − ρ) λρρ̄

λρρ̄ ρ̄ + λ(ρ̄2 − ρ̄)
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= − sign
(
[ln(ρ)ε2−ρ1+δ] · [(1 − ε+)α(1 − ρ1+δ − ρ̄1+δ) + α2ρ̄1+δ]

+ [ε−γ (− ln(ρ)ρ1+δ − ln(ρ̄)ρ̄1+δ)] · [(1 − ε+)2ρ1+δ + α2ρ̄1+δ]
+ [ln(ρ̄)γ 2ρ̄1+δ] · [(1 − ε+)2ρ1+δ + (1 − ε+)α(1 − ρ1+δ − ρ̄1+δ)]
− [ε2−ρ1+δ] · [(1 − ε+)α(− ln(ρ)ρ1+δ − ln(ρ̄)ρ̄1+δ) + ln(ρ̄)α2ρ̄1+δ]
− [ε−γ (1 − ρ1+δ − ρ̄1+δ)] · [ln(ρ)(1 − ε+)2ρ1+δ + ln(ρ̄)α2ρ̄1+δ]
− [γ 2ρ̄1+δ] · [ln(ρ)(1 − ε+)2ρ1+δ + (1 − ε+)α(− ln(ρ)ρ1+δ − ln(ρ̄)ρ̄1+δ)]

)

�move terms in line 4 to 1, 5 to 2 and 6 to 3

= − sign
(
[ε2−ρ1+δ] · [(1 − ε+)α(ln(ρ) − ρ̄1+δ ln(

ρ

ρ̄
)) + α2ρ̄1+δ ln(

ρ

ρ̄
)]

+ [γ 2ρ̄1+δ] · [(1 − ε+)2ρ1+δ ln(
ρ̄

ρ
) + (1 − ε+)α(ln(ρ̄) − ρ1+δ ln(

ρ̄

ρ
))]

− [ε−γ (ln(ρ) − ρ̄1+δ ln(
ρ

ρ̄
))] · [(1 − ε+)2ρ1+δ]

− [ε−γ (ln(ρ̄) − ρ1+δ ln(
ρ̄

ρ
))] · [α2ρ̄1+δ]

)
�collecting terms with ε2−α2and(1−ε+)2γ 2

= − sign
(
[ε2−ρ1+δ] · [(1 − ε+)α(ln(ρ) − ρ̄1+δ ln(

ρ

ρ̄
))]

+ [γ 2ρ̄1+δ] · [(1 − ε+)α(ln(ρ̄) − ρ1+δ ln(
ρ̄

ρ
))]

− [ε−γ ln(ρ)] · [(1 − ε+)2ρ1+δ] − [ε−γ ln(ρ̄)] · [α2ρ̄1+δ]
+ ρ1+δ ρ̄1+δ ln(

ρ

ρ̄
)[ε2−α2 − γ 2(1 − ε+)2 + ε−γ (1 − ε+)2 − ε−γα2]

)

�combining lines 1 and 2, 3 and 4,

= − sign
(
(1 − ε+)α[ε2−ρ1+δ[ln(ρ) − ρ̄1+δ ln(

ρ

ρ̄
)] + γ 2ρ̄1+δ[ln(ρ̄) − ρ1+δ ln(

ρ̄

ρ
)]]

− [ε−γ ][ln(ρ)(1 − ε+)2ρ1+δ + ln(ρ̄)α2ρ̄1+δ]
+ ρ1+δ ρ̄1+δ ln(

ρ

ρ̄
)[ε−α2(ε− − γ ) + γ (1 − ε+)2(ε− − γ )]

)

�shuffling terms in every line

= − sign
(
(1 − ε+)α[[ε2−ρ1+δ ln(ρ) + γ 2ρ̄1+δ ln(ρ̄)] + ρ̄1+δρ1+δ ln(

ρ

ρ̄
)[−ε2− + γ 2]]

− [ε−γ ][ln(ρ)(1 − ε+)2ρ1+δ + ln(ρ̄)α2ρ̄1+δ]
+ ρ1+δ ρ̄1+δ ln(

ρ

ρ̄
)[ε−α2 + γ (1 − ε+)2](ε− − γ )

)

�collect terms in lines 1 and 2 w.r.t. ln(ρ),ln(ρ̄)

= − sign
(
(1 − ε+)ε−ρ1+δ ln(ρ)[ε−α − γ (1 − ε+)]

+ αγ ln(ρ̄)ρ̄1+δ[γ (1 − ε+) − αε−]
+ (1 − ε+)αρ̄1+δρ1+δ ln(

ρ

ρ̄
)(γ − ε−)(ε− + γ )

+ ρ1+δ ρ̄1+δ ln(
ρ

ρ̄
)[ε−α2 + γ (1 − ε+)2](ε− − γ )

)

�collect terms in lines 3 and 4

= − sign
(
(1 − ε+)ε−ρ1+δ ln(ρ)[ε−α − γ (1 − ε+)]
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+ αγ ln(ρ̄)ρ̄1+δ[γ (1 − ε+) − αε−]
+ ρ̄1+δρ1+δ ln(

ρ

ρ̄
)(γ − ε−)[(ε− + γ )(1 − ε+)α − [ε−α2 + γ (1 − ε+)2]]

)

�shuffle terms in line 3

= − sign
(
(1 − ε+)ε−ρ1+δ ln(ρ)[ε−α − γ (1 − ε+)]

+ αγ ln(ρ̄)ρ̄1+δ[γ (1 − ε+) − αε−]
+ ρ̄1+δρ1+δ ln(

ρ

ρ̄
)(γ − ε−)[γ (1 − ε+)[α − (1 − ε+)] − αε−[α − (1 − ε+)]]

)
�simplify line 3

= − sign
(
(1 − ε+)ε−ρ1+δ ln(ρ)[ε−α − γ (1 − ε+)] + αγ ln(ρ̄)ρ̄1+δ

· [γ (1 − ε+) − αε−] + ρ̄1+δρ1+δ ln(
ρ

ρ̄
)(γ − ε−)(α − (1 − ε+))[γ (1 − ε+) − αε−]

)
�factor out

= − sign
(
[ε−α − γ (1 − ε+)] · [(1 − ε+)ε−ρ1+δ ln(ρ) − αγ ρ̄1+δ ln(ρ̄)

− ρ̄1+δρ1+δ ln(
ρ

ρ̄
)(γ − ε−)(α − (1 − ε+))]

)
.

��
Proposition 2 In case one is indifferent about the source being reliable, ρ = ρ̄ = 0.5,
the sign of derivative does not depend on δ.
Proof

sign
( ∂

∂δ
P(hyp|e1e2)

)
= − sign

(
[ε−α − γ (1 − ε+)] · [(1 − ε+)ε−ρ1+δ ln(ρ) − αγ ρ̄1+δ ln(ρ̄)

− ρ̄1+δρ1+δ ln(
ρ

ρ̄
)(γ − ε−)(α − (1 − ε+))]

)

= − sign
(
[ε−α − γ (1 − ε+)] · [(1 − ε+)ε− − αγ ]

)
.

��
Proposition 3 (VET Failure for Bovens and Hartmann for an exponential Degree of
Independence)

sign
( ∂

∂δ
P(hyp|e1e2)

)
= sign

(
ρ1+δ ā[ln(ρ) − ln(ρ̄)] − a ln(ρ̄)

)
.

Proof

sign
( ∂

∂δ
P(hyp|e1e2)

)
= − sign

(
[ρ1+δ ln(ρ)[(1 − ε+)ε− − ρ̄1+δ(γ − ε−)(α − (1 − ε+))]

− ρ̄1+δ ln(ρ̄)[αγ − ρ1+δ(γ − ε−)(α − (1 − ε+))]] · [ε−α − γ (1 − ε+)]
)

= sign
(
[ρ1+δ ln(ρ)[−ρ̄1+δa(a − 1)] − ρ̄1+δ ln(ρ̄)[a2 − ρ1+δa(a − 1)]] · a

)

= sign
(
ρ1+δ ln(ρ)ρ̄1+δ ā − ρ̄1+δ ln(ρ̄)[a + ρ1+δ ā]

)

= sign
(
ρ1+δ ln(ρ)ā − ln(ρ̄)[a + ρ1+δ ā]

)

= sign
(
ρ1+δ ā(ln(ρ) − ln(ρ̄)) − ln(ρ̄)a

)
.

��
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Proposition 4 (VET Failure for Landes and Osimani for an exponential Degree of
Independence) For α � 1 − ε+ > 0 and γ � ε− > 0, the VET holds for small ρ and
fails for large ρ. The smaller δ, the smaller the area in which the VET holds.

Proof

sign
( ∂

∂δ
P(hyp|e1e2)

)
= − sign

(
[ε−α − γ (1 − ε+)] · [(1 − ε+)ε−ρ1+δ ln(ρ) − αγ ρ̄1+δ ln(ρ̄)

− ρ̄1+δρ1+δ ln(
ρ

ρ̄
)(γ − ε−)(α − (1 − ε+))]

)

= − sign
(
(1 − ε+)ε−ρ1+δ ln(ρ) − αγ ρ̄1+δ ln(ρ̄)

− ρ̄1+δρ1+δ ln(
ρ

ρ̄
)(γ − ε−)(α − (1 − ε+))

)

= − sign
(
ρ1+δ ln(ρ)[(1 − ε+)ε− − ρ̄1+δ(γ − ε−)(α − (1 − ε+))]

− ρ̄1+δ ln(ρ̄)[αγ − (γ − ε−)(α − (1 − ε+))]
)

≈ − sign
(
ρ1+δ ln(ρ)[(1 − ε+)ε−] − ρ̄1+δ ln(ρ̄)[αγ ]

)

≈ − sign
(
ρ1+δ ln(ρ) − ρ̄1+δ ln(ρ̄)

)

= − sign
(
[ρ
ρ̄

]1+δ − ln(
ρ̄

ρ
)
)

= sign
(
ln(

ρ̄

ρ
) − [ρ

ρ̄
]1+δ

)
.

��
Proposition 5 P1, P3 and P4 are jointly inconsistent.

Proof P1, P3 and P4 jointly entail the following constraints for all ρ, δ ∈ [0, 1]

ρ − ρ1+δ P1&P4= ωrr̄
P3= ωr̄r

P1&P4= ρ̄ − ρ̄1+δ .

This however forces that ρ − ρ1+δ = (1− ρ) − (1− ρ)1+δ must hold. The left hand
side monotonically increases in ρ while the right hand side monotonically decreases
in ρ. Hence, the equation cannot be satisfied for all ρ, δ ∈ [0, 1]. ��
Proposition 6 R1’, R3 and R4 are mutually consistent. Furthermore, they jointly entail
R2 and

ωrh = ωhr = λαρρ̄ ωr h̄ = ωh̄r = λᾱρρ̄ ωr̄ h̄ = ωh̄r̄ = λρ̄2αᾱ .

Proof We need to solve three linear Eq. 1 for the variables ωrh, ωr h̄, ωh̄h̄ . It is easy to
check that the claimed expressions satisfy R1’, R3 and R4. The equation also admit
only the claimed expressions, as I shall now show.

ρ + λ(ρ2 − ρ) + ωrh + ωr h̄ = ρ

ωrh + ρ̄α + λ((ρ̄α)2 − (ρ̄α)) + ωr̄ h̄ = ρ̄α
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ωr h̄ + ωr̄ h̄ + ρ̄ᾱ + λ((ρ̄ᾱ)2 − (ρ̄ᾱ)) = ρ̄ᾱ .

Inserting the first equality into the second gives

−ωr h̄ − λ(ρ2 − ρ) + λ((ρ̄α)2 − (ρ̄α)) + ωr̄ h̄ = 0 .

Adding the third equality to this gives the following set of logically equivalent equa-
tions

−λ(ρ2 − ρ) + λ((ρ̄α)2 − (ρ̄α)) + 2ωr̄ h̄ + λ((ρ̄ᾱ)2 − (ρ̄ᾱ) = 0 �λρ̄α+λρ̄ᾱ=λρ̄

λ · (ρ(ρ − 1) − (ρ̄α)2 − (ρ̄ᾱ)2 + ρ̄) = 2ωr̄ h̄

λ · (−ρρ̄ − ρ̄2[α2 − ᾱ2] + ρ̄) = 2ωr̄ h̄ �−ρρ̄+ρ̄=ρ̄2

λρ̄2 · (1 − [α2 − (1 − α)2]) = 2ωr̄ h̄

λρ̄2 · (−2α2 + 2α) = 2ωr̄ h̄

λρ̄2α · (−α + 1) = ωr̄ h̄

λρ̄2αᾱ = ωr̄ h̄ .

Inserting this into the third equality gives

ωr h̄ + λρ̄2αᾱ + λ((ρ̄ᾱ)2 − (ρ̄ᾱ)) = 0

−λρ̄ᾱ · [ρ̄α + ρ̄ᾱ − 1] = ωr h̄ �ρ̄α+ρ̄ᾱ−1=−ρ

λρρ̄ᾱ = ωr h̄ .

Inserting this into the first equation we find ωrh = λαρρ̄.
R2 follows from the simple observation that all values sum to one, as they ought

to. ��

Proposition 7 (No VET failures in Claveau’s model for Linear Degree) Ceteris
paribus, for all ρ, α, λ, P(hyp) ∈ (0, 1) it holds that

∂ P(hyp|e1e2)

∂λ
> 0 .

Proof Following (Claveau 2013, p. 116):

∂ P(hyp|e1e2)

∂λ
> 0, if and only if

∂
ωhh

ωrr +2ωrh+ωhh

∂λ
< 0 .

After taking the derivative, the denominator on the right hand side is always positive.
I hence ignore it for the remainder of this proof. Denoting by ′ the partial derivative
with respect to λ, one finds
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sign
(∂

ωhh
ωrr +2ωrh+ωhh

∂λ

)

= sign
(
ω′

hh[ωrr + 2ωrh + ωhh] − ωhh[ωrr + 2ωrh + ωhh]′
)

= sign
(
ω′

hh[ωrr + 2ωrh] − ωhh[ωrr + 2ωrh]′
)

= sign
(
[(ρ̄α)2 − ρ̄α] · [ρ + λ(ρ2 − ρ) + 2λαρρ̄]

− [ρ̄α + λ((ρ̄α)2 − ρ̄α)] · [ρ2 − ρ + 2αρ̄ρ]
)

= sign
(
[(ρ̄α)2 − ρ̄α] · [ρ + λ(ρ2 − ρ)]

− [ρ̄α + λ((ρ̄α)2 − ρ̄α)] · [ρ2 − ρ] − 2α2ρ̄2ρ
)

= sign
(
[(ρ̄α)2 − ρ̄α]ρ − [ρ̄α] · [ρ2 − ρ] − 2α2ρ̄2ρ

)

= sign
(
−[ρ̄α]ρ2 − α2ρ̄2ρ

)

= sign
(
−ρρ̄α(ρ + αρ̄)

)
.

This sign is negative. ��

Proposition 9 (VET Failure for Linear Degree of Independence)

sign
( ∂

∂λ
P(hyp|e1e2)

)
= sign

((
αε− − γ (1 − ε+)

)
·

(ρ · [ε−[(1 − ε+) − α] + (1 − ε+)[ε− − γ ]] + ρ̄ · [γ ((1 − ε+) − α) + α(ε− − γ )])
)
.

Proof

P(hyp|e1e2) = P(hype1e2)

P(e1e2)

=
∑

RE L1RE L2
P(hype1e2RE L1RE L2)

∑
HY P

∑
RE L1,RE L2

P(HY Pe1e2RE L1RE L2)

= 1

1 +
∑

RE L1,RE L2
P(hype1e2RE L1RE L2)

∑
RE L1RE L2

P(hype1e2RE L1RE L2)

= 1

1 + h
h̄

∑
RE L1RE L2

P(e1|rel1hyp)P(e2|rel2hyp)P(RE L1RE L2)
∑

RE L1RE L2
P(e1|rel1hyp)P(e2|rel2hyp)P(RE L1RE L2)

.

Using that ρ +λ(ρ2 −ρ) = ρ2 + λ̄ρρ̄ and that ρ̄ +λ(ρ̄2 − ρ̄) = ρ̄2 + λ̄ρρ̄, I embark
on a long calculation.
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sign
( ∂

∂λ
P(hyp|e1e2)

)

= − sign
( ∂

∂λ

(∑
RE L1RE L2

P(e1|rel1hyp)P(e2|rel2hyp)P(RE L1RE L2)
∑

RE L1RE L2
P(e1|rel1hyp)P(e2|rel2hyp)P(RE L1RE L2)

))

= − sign
( ∂

∂λ

( ε2−(ρ2 + λ̄ρρ̄) + 2ε−γ λρρ̄ + γ 2(ρ̄2 + λ̄ρρ̄)

(1 − ε+)2(ρ2 + λ̄ρρ̄) + 2(1 − ε+)αλρρ̄ + α2(ρ̄2 + λ̄ρρ̄)

))

= − sign
(
[−ε2−ρρ̄ + 2ε−γρρ̄ − γ 2ρρ̄]

· [(1 − ε+)2(ρ2 + λ̄ρρ̄) + 2(1 − ε+)αλρρ̄ + α2(ρ̄2 + λ̄ρρ̄)]
− [ε2−(ρ2 + λ̄ρρ̄) + 2ε−γ λρρ̄ + γ 2(ρ̄2 + λ̄ρρ̄)]

· [−(1 − ε+)2ρρ̄ + 2(1 − ε+)αρρ̄ − α2ρρ̄]
)

�ρρ̄>0

= − sign
(
[−ε2− + 2ε−γ − γ 2]

· [(1 − ε+)2(ρ2 + λ̄ρρ̄) + 2(1 − ε+)αλρρ̄ + α2(ρ̄2 + λ̄ρρ̄)]
− [ε2−(ρ2 + λ̄ρρ̄) + 2ε−γ λρρ̄ + γ 2(ρ̄2 + λ̄ρρ̄)]

· [−(1 − ε+)2 + 2(1 − ε+)α − α2]
)

�cancelling of terms

= − sign
(
[−ε2−] · [2(1 − ε+)αλρρ̄ + α2(ρ̄2 + λ̄ρρ̄)]

+ [2ε−γ ] · [(1 − ε+)2(ρ2 + λ̄ρρ̄) + α2(ρ̄2 + λ̄ρρ̄)]
+ [−γ 2] · [(1 − ε+)2(ρ2 + λ̄ρρ̄) + 2(1 − ε+)αλρρ̄]
− [2ε−γ λρρ̄ + γ 2(ρ̄2 + λ̄ρρ̄)] · [−(1 − ε+)2]
− [ε2−(ρ2 + λ̄ρρ̄) + γ 2(ρ̄2 + λ̄ρρ̄)] · [2(1 − ε+)α]
− [ε2−(ρ2 + λ̄ρρ̄) + 2ε−γ λρρ̄] · [−α2]

)

�move terms in line 5 to 1, cancelling terms in line 1-6 and 3-4

= − sign
(
[−ε2−] · [2(1 − ε+)α(λρρ̄ + λ̄ρρ̄ + ρ2) + α2(ρ̄2 − ρ2)]

+ [2ε−γ ] · [(1 − ε+)2(ρ2 + λ̄ρρ̄) + α2(ρ̄2 + λ̄ρρ̄)]
+ [−γ 2] · [(1 − ε+)2(ρ2 − ρ̄2) + 2(1 − ε+)αλρρ̄]
− [2ε−γ λρρ̄] · [−(1 − ε+)2]
− [γ 2(ρ̄2 + λ̄ρρ̄)] · [2(1 − ε+)α]
− [2ε−γ λρρ̄] · [−α2]

)
�move terms in line 4 to 2 and 6 to 2, cancelling terms in line 3-5

= − sign
(
[−ε2−] · [2(1 − ε+)α(λρρ̄ + λ̄ρρ̄ + ρ2) + α2(ρ̄2 − ρ2)]

+ [2ε−γ ] · [(1 − ε+)2(ρ2 + (λ + λ̄)ρρ̄) + α2(ρ̄2 + λ̄ρρ̄ + λρρ̄)]
+ [−γ 2] · [(1 − ε+)2(ρ2 − ρ̄2)]
− [γ 2(ρ̄2 + (λ + λ̄)ρρ̄)] · [2(1 − ε+)α]

)
�simplify, using x+x̄=1

= − sign
(
[−ε2−] · [2(1 − ε+)αρ + α2(1 − 2ρ)] + [2ε−γ ] · [(1 − ε+)2ρ + α2ρ̄]

+ [−γ 2] · [(1 − ε+)2(2ρ − 1)] − [γ 2ρ̄] · [2(1 − ε+)α]
)
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= − sign
(
2ρ(1 − ε+)ε−(γ (1 − ε+) − αε−) − 2ρ̄αγ (γ (1 − ε+) − αε−)

+ (2ρ − 1)(α2ε2− − γ 2(1 − ε+)2)
)

= − sign
(
2ρ(1 − ε+)ε−(γ (1 − ε+) − αε−) − 2ρ̄αγ (γ (1 − ε+) − αε−)

+ (2ρ − 1)(αε− − γ (1 − ε+))(αε− + γ (1 − ε+))
)

= sign
(
[αε− − γ (1 − ε+)] · [2ρ(1 − ε+)ε− − 2ρ̄αγ − (2ρ − 1)(αε− + γ (1 − ε+)]

)

= sign
(
[αε− − γ (1 − ε+)] · [2ρ(1 − ε+)ε− − 2ρ̄αγ − (ρ − ρ̄)(αε− + γ (1 − ε+)]

)

= sign
((

αε− − γ (1 − ε+)
)

·
(
ρ · [2(1 − ε+)ε− − αε− − γ (1 − ε+)]

− ρ̄ · [2αγ − αε− − γ (1 − ε+)]
))

= sign
((

αε− − γ (1 − ε+)
)

·
(
ρ · [ε−[(1 − ε+) − α] + (1 − ε+)[ε− − γ ]]

− ρ̄ · [α(γ − ε−) + γ (α − (1 − ε+))]
))

= sign
((

αε− − γ (1 − ε+)
)
·

(ρ · [ε−[(1 − ε+) − α] + (1 − ε+)[ε− − γ ]] + ρ̄ · [γ ((1 − ε+) − α) + α(ε− − γ )])
)

.

��
Proposition 10 (VET Failure for Bovens and Hartmann for Linear Degree of Inde-
pendence)

sign
( ∂

∂λ
P(hyp|e1e2)

)
= sign

(
1 − 2āρ̄

)
.

Proof Since ε+ = ε− = 0 and α = γ = a, I obtain

sign
( ∂

∂λ
P(hyp|e1e2)

)
= sign

(
(−a) · [−ρa − ρ̄(a2 + a(a − 1))]

)

= − sign
(
−ρ − ρ̄(a + (a − 1))]

)

= − sign
(
−(1 − ρ̄) − ρ̄(1 − ā − ā)]

)

= sign
(
1 − 2āρ̄

)
.

��
Proposition 12 For reliability variables of arity 4 and greater, neither the linear nor
the exponential axioms are strong enough to uniquely determine a one-parameter
curve along which independence increases.

Proof Denote the arity of the reliability variable by ar ≥ 4 and 
i for the prior
probability of RE L being equal to the i-th value. There are (ar − 1)ar/2-many
unknownω jk and ar -many equalities of the form

∑
k ω jk = ρ j . Since (ar −1)ar/2 >

ar + 1 > ar , there are strictly more unknowns, than there are constraints. ��
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Note that this proposition does not make a claim about the satisfiability of axioms.
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