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Although all mathematical truths are necessary, mathematicians take certain com-
binations of mathematical truths to be ‘coincidental’, ‘accidental’, or ‘fortuitous’.
The notion of a ‘mathematical coincidence’ has so far failed to receive sufficient
attention from philosophers. I argue that a mathematical coincidence is not merely
an unforeseen or surprising mathematical result, and that being a misleading com-
bination of mathematical facts is neither necessary nor sufficient for qualifying as a
mathematical coincidence. I argue that although the components of a mathematical
coincidence may possess a common explainer, they have no common explanation;
that two mathematical facts have a unified explanation makes their truth
non-coincidental. I suggest that any motivation we may have for thinking that
there are mathematical coincidences should also motivate us to think that there
are mathematical explanations, since the notion of a mathematical coincidence can
be understood only in terms of the notion of a mathematical explanation. I also
argue that the notion of a mathematical coincidence plays an important role in
scientific explanation. When two phenomenological laws of nature are similar,
despite concerning physically distinct processes, it may be that any correct scientific
explanation of their similarity proceeds by revealing their similarity to be no math-
ematical coincidence.

1. The phenomenon to be saved

All mathematical truths are necessary. Accordingly, there might seem

to be no place in mathematics for genuine coincidences.1 However,
mathematicians and non-mathematicians alike sometimes encounter a

pair (or more) of mathematical facts, F and G, about which they
naturally ask, ‘Is it a coincidence that both F and G obtain? Or is it

no coincidence?’ The fact that F and G both obtain, though necessary,

1 Except in the technical sense (employed in ‘coincidence theory’) where, for example, the

coincidence set of two functions f(x) and g(x) is the set of x’s where f(x) 5 g(x), as when two

curves intersect (‘coincide’).
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may nevertheless be coincidental, accidental, fortuitous. (All of these

terms appear in the mathematical literature.) Here are four examples

that may easily prompt us to wonder whether a given combination of

mathematical facts is a coincidence.
My first example concerns the sum of the first n natural numbers:

1 1 2 1 … 1 (n 2 1) 1 n. There are two cases.

When n is even, we can pair the first and last numbers in the

sequence, the second and second-to-last, and so forth. The members

of each pair sum to n 1 1. No number is left unpaired, since n is even.

The number of pairs is n/2 (which is an integer, since n is even).

Hence, the sum is (n 1 1)n/2.
When n is odd, we can pair the numbers as before, except that the

middle number in the sequence is left unpaired. Again, the members

of each pair sum to n 1 1. But now there are (n 2 1)/2 pairs, since the

middle number (n 1 1)/2 is unpaired. The total sum is then the sum

of the paired numbers plus the middle number: (n 1 1)(n 2 1)/

2 1 (n 1 1)/2. This expression simplifies to (n 1 1)n/2 — remarkably,

the same as the formula we just derived for even n.

Faced with this proof, we might well wonder: Is it a coincidence that

the same formula emerges in both cases? Even if you know the answer

to this question, I think you can appreciate how it might seem like a

mathematical accident — an algebraic miracle — that the second argu-

ment arrives at the same formula as the first. The proof I have just

given shows it to be necessary that the same formula applies to even n

and odd n — but does not show it to be no coincidence. Indeed, the

proof (with its two cases) makes it appear coincidental.
Here is another potential mathematical coincidence — from an art-

icle by the mathematician Philip Davis, one of the only two papers

I know concerning the concept of a mathematical coincidence.2 Davis

(1981, p. 312) points out that the thirteenth digit of the decimal

representation of p (5 3.14 159 265 358 979 3 … ) is the same as the

thirteenth digit of the decimal representation of e (5 2.71 828 182 845

904 5 … ); both are 9. Again: is this a coincidence?

The other paper about mathematical coincidence is a lovely unpub-

lished piece by Roy Sorensen. He takes this nice example from a brief

‘Gleaning’ entitled ‘A Calculator Coincidence?’ appearing on page 283

2 After writing this paper, I learned that mathematical coincidences are briefly examined in

Baker forthcoming (which proposes a view similar in some respects to mine), in Corfield 2005,

and in Potter 1993.
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of the December 1986 issue of The Mathematical Gazette. Take an

ordinary calculator keyboard:

We can form a six-digit number by taking the three digits on any row,
column, or main diagonal on the keyboard in forward and then in

reverse order. For instance, the bottom row taken from left to right,
and then right to left, yields 123321. There are sixteen such numbers:

123321, 321123, 456654, 654456, 789987, 987789, 147741, 741147, 258852,
852258, 369963, 963369, 159951, 951159, 357753, and 753357. As you can

easily verify with a calculator, every one of these numbers is divisible
by 37. Is this (as the title of the article asks) a coincidence?

Here is a fourth example. Consider these two Diophantine equa-
tions (that is, equations where the variables can take only integer
values):

2x2ðx2 � 1Þ ¼ 3ðy2 � 1Þ

and

xðx � 1Þ=2 ¼ 2
n � 1

As it happens, each equation has exactly the same five positive solu-

tions: x 5 1, 2, 3, 6, and 91 (Guy 1988, p. 704). Coincidence?
There is no reason to keep you in suspense. As far as I know, the last

example and the one involving the thirteenth digits of p and e are
genuine mathematical coincidences (despite being necessary). But it

turns out to be no coincidence that the same n(n 1 1)/2 formula yields
the sum of the first n natural numbers whether n is even or odd. It is
also no coincidence that every number produced by using the calcu-

lator keyboard in the manner I described is divisible by 37. In this
paper, my main task will be to identify the fundamental difference

between mathematical coincidences and non-coincidences.
Their fundamental difference should be reflected in the way in

which we would show that a given pair of mathematical facts is no
coincidence. Here is an argument showing it to be no coincidence that

1

4

2

5

3

6

987
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the same n(n 1 1)/2 formula yields the sum S of the first n natural

numbers whether n is even or odd:

S 5 1 1 2 1 … 1 (n 2 1) 1 n

S 5 n 1 (n 2 1) 1 … 1 2 1 1

If we pair the first terms, the second terms, and so forth in each

sum, then each pair adds to (n 1 1), and there are n pairs. So

2S 5 n(n 1 1), and hence S 5 n(n 1 1)/2.

This proof is only slightly different from the proof I gave earlier that

dealt separately with even n and odd n. Yet the earlier proof failed to

reveal that the formula’s success for both even n and odd n is no

coincidence. What allows the second proof to do better than the

first one did?3

We can pose the same question regarding the calculator keyboard

example. A proof that looks at each one of the sixteen numbers indi-

vidually, showing it to be divisible by 37, merely prompts the question,

‘Is it a coincidence that all of the numbers arrived at in this way are

divisible by 37?’ As Sorensen notes, this question is answered in the

negative by another proof of the same result — given by Eric

Nummela in a piece entitled ‘No Coincidence’ that appeared in The

Mathematical Gazette for June 1987:

This is no coincidence. For let a, a 1 d, a 1 2d be any three integers in

arithmetic progression. Then

a.105 1 (a 1 d).104 1 (a 1 2d).103 1 (a 1 2d).102 1 (a 1 d).10 1 a.1

5 a(10
5 1 10

4 1 10
3 1 10

2 1 10 1 1) 1 d(10
4 1 2.103 1 2.102 1 10)

5 1111111a 1 12210d 5 1221(91a 1 10d).

So not only is the number divisible by 37, but by 1221 (5 3 3 11 3 37)

(Nummela 1987, p. 147)

Again, why does this proof, unlike the earlier one, show it to be no

coincidence that all of the calculator-keyboard numbers are divisible

by 37?
I think that these two arguments, in showing certain combinations

of mathematical facts to be no coincidence, do a great deal to suggest

3 Steiner (1978a, p. 136) deems the second proof ‘more illuminating’ than a proof of the

summation formula that proceeds by mathematical induction. (Steiner does not discuss math-

ematical coincidences or contrast the second proof with separate proofs of the even and odd

cases (as in my first proof).)
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what a mathematical coincidence is. To work up to that suggestion, I

shall first consider some deflationary approaches to mathematical co-

incidence. Having argued against those proposals (in section 2), I will

(in section 3) offer my own account. Roughly speaking, I shall argue

that if F and G are mathematical truths, then it is a coincidence that

both F and G are true if and only if F and G have no common

mathematical explanation. Such an explanation is supplied by the

second proof I gave of the n(n 1 1)/2 formula for the sum of the

first n natural numbers, as well as by Nummela’s proof of the regu-

larity involving the calculator-keyboard numbers. No such explan-

ation is available for a genuine mathematical coincidence. Finally (in

section 4), I will point out that certain scientific explanations in phys-

ics use the same mathematical proof to derive physically unrelated

phenomenological laws from distinct but mathematically similar fun-

damental laws. These scientific explanations explain why those phe-

nomenological laws are so similar; the analogy between those laws

turns out to be no mathematical coincidence. The notion of a math-

ematical coincidence thus has an important role to play even outside

of mathematics.

My account of mathematical coincidence presupposes a distinction

between a mathematical proof that explains why some theorem holds

and a proof that merely proves that it holds. I shall not offer a general

account of this distinction here. My target in this paper is mathem-

atical coincidence, not mathematical explanation.4 However, in

arguing that mathematical coincidence is a genuine, important feature

of mathematical practice and that it should be understood in terms of

mathematical explanation, I am arguing (by a kind of ‘inference to the

best philosophical explanation’) that there is an important distinction

between mathematical proofs that explain and proofs that do not.5

4 Some notable papers on the distinction between proofs that explain why a mathematical

theorem holds and proofs that merely prove that it holds are Steiner 1978a, Kitcher 1984 (esp.

pp. 208–9, 227) and 1989 (esp. pp. 423–6, 437), Resnik and Kushner 1987, Hafner and Mancosu

2005, Tappenden 2005, and Mancosu 2008b. References to other literature on mathematical

explanation can be found therein.

5 Although every mathematical explanation I shall discuss involves a proof, I am not

inclined to presuppose that every mathematical explanation is a proof. Perhaps a mathematical

fact can sometimes be explained just by being recast in terms of a different conceptual frame-

work, for example.

More than one proof might explain a given mathematical fact, and some mathematical facts

may have no explanation at all. (At least, I say nothing here to preclude these possibilities.)
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I am also thereby arguing for a criterion of adequacy for any general

account of mathematical explanation: that it must be capable of being

plugged into my account of mathematical coincidence.

2. Is ‘mathematical coincidence’ an epistemic notion?

Sorensen proposes that the distinction between coincidences and

non-coincidences in mathematics is epistemic, so that from a math-

ematically omniscient viewpoint, there are no mathematical coinci-

dences. I shall now examine several ways in which this idea might be

elaborated, arguing that none of them captures the distinction.
We might try to define a ‘mathematical coincidence’ as an unfore-

seen or surprising mathematical result. Certainly, all four of the ex-

amples given in the previous section are surprising and difficult to

foresee in advance of being proved. Moreover, even given part of each

result (for example, that the sum of the first n numbers, when n is

even, is n(n 1 1)/2; that one of the calculator-keyboard numbers is

divisible by 37; that 2x2(x2 2 1) 5 3(y2 2 1) is solved by exactly x 5 1,

2, 3, 6, and 91; that 9 is the thirteenth digit of e), the rest of that result

is still not expected. However, as we saw, two of these results are

mathematical coincidences, while the other two are not. Therefore,

the ‘unforeseen or surprising fact’ proposal does not manage to cap-

ture the phenomenon of mathematical coincidence (although, I shall

ultimately argue, there remains a grain of truth in it).

A suggestion more like Sorensen’s is that a mathematical coinci-

dence is a mathematical fact that misleads us, provoking expectations

that turn out to be false. Some of the mathematical coincidences that

Sorensen mentions certainly provoke false expectations, such as that

3
2 1 4

2 5 5
2 and 3

3 1 4
3 1 5

3 5 6
3. (Contrary to the expectations thus

provoked, 3
4 1 4

4 1 5
4 1 6

4 5 2258 6¼ 2401 5 7
4.) Likewise, when a

mathematical fact provokes expectations that turn out to be true, we

might then be inclined to say that the fact is no coincidence. For in-

stance, is it a coincidence that 25 has at least as many divisors of the form

4k 1 1 (1, 5, and 25) as of the form 4k 2 1 (none), and that the same goes

for 21 (1, and 21; 3 and 7)? No, it is no coincidence — these two examples

Furthermore, the distinction between proofs that explain and proofs that do not may be

context sensitive in various ways. (See nn. 17 and 19.) Although I shall ultimately emphasize

the way that the components of a non-coincidence in mathematics can be explained by a

common proof, I shall not contend that every proof that constitutes a mathematical explan-

ation renders some theorem non-coincidental or that every explanatory proof derives its ex-

planatory power from the unification it creates. (See n. 10.)
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have not misled us — since what they have led us to expect is true: every

positive integer possesses this property (Guy 1988, p. 706).
One way to understand the ‘misleading fact’ suggestion is that a

mathematical fact is coincidental exactly when it misleads us.

(Sorensen says that from a mathematically omniscient viewpoint,

there are no mathematical coincidences, presumably because someone

who is mathematically omniscient is not misled.) But this suggestion

entails that once we know that 3
4 1 4

4 1 5
4 1 6

4

6¼ 7
4, it is no longer

coincidental that 3
2 1 4

2 5 5
2 and 3

3 1 4
3 1 5

3 5 6
3 since we are no

longer misled into thinking that 3
4 1 4

4 1 5
4 1 6

4 5 7
4. Yet in math-

ematical practice, certain facts are still deemed to be mathematical

coincidences even after we have stopped being misled by them.

Accordingly, a more promising way to understand the ‘misleading

fact’ suggestion is that a mathematical fact is coincidental in so far as it

has the power to mislead those who do not already know that the

expectations it tends to provoke (in those who do not already know

better) turn out to be false. However, a mathematical fact may still be

no coincidence even though it has tremendous capacity to mislead

anyone who lacks any better information. For instance, consider this

sequence of definite integrals (each running from 0 to 1):
R

(1/x) sin 4x cos x dx
R

(1/x) sin 4x cos x cos(x/2) dx
R

(1/x) sin 4x cos x cos(x/2) cos(x/3) dx
R

(1/x) sin 4x cos x cos(x/2) cos(x/3) cos(x/4) dx

..

.

Suppose we check each of these through
R

(1/x) sin 4x cos x cos(x/2) cos(x/3) … cos(x/30) dx

and find that remarkably, each equals p/2. This result strongly suggests

that
R

(1/x) sin 4x cos x cos(x/2) cos(x/3) … cos(x/31) dx 5p/2.

This turns out not to be the case; the sequence is misleading. Yet it is

no coincidence that each of the first thirty integrals equals p/2. We can

prove the following theorem (see Lord 2007, p. 283):

Let a
1
, … , an, b be positive real numbers. Then

R
(1/x) sin bx cos a

1
x

cos a
2
x … cos anx dx 5p/2 if a

1
1 … 1 an< b.
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Therefore, since 1 1 ½ 1 1/3 1 … 1 1/30< 4, it is no coincidence

that each of the first 30 members of the sequence equals p/2.

(1 1 ½ 1 1/3 1 … 1 1/31> 4.)

Thus, a combination of mathematical facts that has great power to

mislead those who do not already know better need not be a math-

ematical coincidence. Conversely, a mathematical coincidence may

not be misleading at all. That the thirteenth digits of p and e are the

same does not mislead anyone into thinking that all of the subsequent

digits of p and e are the same or that anything else remarkable is going

on. (That the thirteenth digits of p and e are the same leads Davis

(1981, p. 313) to propose and might lead us to think that on average,

every tenth digit of p and e is the same. But even if this turns out to be

true — and so we are not misled — the fact that the thirteenth digits of

p and e are the same is still a coincidence.) That the formula for the

sum of the first n natural numbers is the same, whether n is even or

odd, does not immediately suggest any broader result, and so could

not have misled us — but for all we initially knew, that the same for-

mula works for both evens and odds might have been coincidental.

Likewise, consider the start of the sequence of numbers n such that

n4 contains exactly four copies of each digit in n:

5702631489, 7264103985, 7602314895, 7824061395, 8105793624,

8174035962, 8304269175, 8904623175, 8923670541, 9451360827,

9785261403, 9804753612, 9846032571, …

For instance, 5702631489 is in the sequence since its fourth power

1057550783692741389295697108242363408641

contains four 5s, four 7s, four 0s and so on. All of the terms in the

sequence that are ten-digit numbers are pandigital: each contains all of

the digits 0 through 9 exactly once. Sloane (2007, sequence A114260)

terms this ‘probably accidental, but quite curious’, and I am inclined

to agree. But whether or not this fact turns out to be coincidental, it

does not readily lead us to formulate any broader hypotheses. For

instance, this fact would not lead us to think that every number in

this sequence is pandigital, since numbers longer than ten digits

cannot possibly be. (A number n longer than ten digits can belong

to the sequence; if such an n contains exactly two 7s, for instance, then

n4 contains exactly eight 7s. See Sloan 2007, sequence A114258.)
Furthermore, suppose we saw only the first five numbers n such that

n4 contains exactly four copies of each digit in n. That these are all
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pandigital might naturally lead us to expect that any other ten-digit

number such that n4 contains exactly four copies of each digit in n is
likewise pandigital. In forming this expectation, we would not have

been misled, since as we have seen, it turns out to be true that all of
these ten-digit numbers are pandigital. However, this fact might

nevertheless be just a coincidence.
To identify a mathematical coincidence as a misleading fact is to

suggest that if a particular mathematical truth leads exclusively to
truths when it is generalized in various natural ways, then it must

have been no coincidence. But presumably there can be ‘giant’, ‘un-
restricted’ mathematical coincidences no less than ‘little’, ‘restricted’

ones. That a particular mathematical truth leads to truths when it is
broadened in a natural way may sometimes be some evidence that the

particular mathematical truth is no coincidence. But it fails to prove
that this is so. (Later I will explain why the fact that a particular

mathematical truth leads to truths upon being generalized sometimes
counts as evidence that the initial truth is no coincidence.)

Rather than taking a mathematical coincidence to be a fact suggest-
ing further mathematical claims that turn out to be false, we might

instead take a mathematical coincidence to be a fact that is misleading
in a broader (and vaguer) sense: it does not repay further study, it is

not fruitful, it leads to no further interesting mathematics. (This seems
to me closest to Sorensen’s own view.) The calculator-keyboard fact is

then no coincidence because it leads to Nummela’s general result re-
garding numbers having digits extracted from arithmetic sequences,

and the summation formulas for even n and odd n are no coincidence
because they lead us to another, interesting proof of the same formula

for all n.
I think that these further results are indeed involved in making the

calculator-keyboard fact no coincidence and the summation formulas

for even n and odd n no coincidence. But it is not the case that they
are non-coincidences because they suggest further interesting mathem-

atics. Rather, they suggest further interesting mathematics because
they are non-coincidences. It is fruitful to think further about a

non-coincidence because we may thereby uncover the facts that
make it no coincidence.

The fact that a given mathematical coincidence (such as the coin-
cidence regarding p and e) leads us to no further interesting mathem-

atics must be sharply distinguished from the fact that its components
stand in no interesting mathematical relations to one another. I will

suggest that the reason why a genuine mathematical coincidence leads
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nowhere is that there is nowhere interesting for it to lead: its compo-

nents lack a certain sort of mathematical relation to one another.

To sum up: epistemic and psychological considerations seem insuf-

ficient to reveal what make certain combinations of facts qualify as
mathematical coincidences. Even from a mathematically omniscient

perspective, there are some mathematical coincidences. Indeed, math-

ematical omniscience would require knowledge that a given pair of

facts forms a mathematical coincidence — that they bear to each other

none of the mathematical relations that would make them non-

coincidental.

3. The components of a mathematical coincidence have no
common explanation

Having discovered that every calculator-keyboard number turns out to

be divisible by 37, we are inclined to expect there to be some reason

why this regularity holds. Likewise, having learned that the two

Diophantine equations I mentioned earlier have exactly the same posi-

tive solutions, we tend to expect this fact to have some explanation. An

attractive suggestion is that the former fact turns out to have an ex-

planation whereas the latter has none — making the latter, but not the
former, a mathematical coincidence. In provoking the search for an

explanation, the former fact leads to further interesting mathematics

but the latter does not. The reason that a coincidence is not mathem-

atically fruitful is because there is no explanation of it to be found.6

Of course, this approach replaces the question ‘What is a mathem-

atical coincidence?’ with another difficult question, ‘What is a math-

ematical explanation?’ But even before reaching that question, this
approach encounters an obstacle: mathematical coincidences may

have explanations. For instance, the fact that the Diophantine equa-

tions 2x2(x2 2 1) 5 3(y2 2 1) and x(x 2 1)/2 5 2
n 2 1 have exactly the

same five positive solutions is explained by whatever explains why

the positive solutions to the first equation are exactly x 5 1, 2, 3, 6,

and 91, together with the reason why these values are the positive

solutions to the second equation. For that matter, to explain why

(n 1 1)n/2 gives the sum of the first n natural numbers, whether n is

even or odd, it might seem sufficient to give the proof for even n (that

proceeds by pairing all n numbers) followed by the proof for odd n

(that pairs all numbers except for the middle one). Yet this

6 Strangely, Davis apparently holds just the opposite view: ‘The existence of the coincidence

implies the existence of an explanation’ (Davis 1981, p. 320).
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‘explanation’ fails to make the result no coincidence. Instead, it

prompts us to wonder whether the result is coincidental.
That coincidences have explanations (of a sort) is borne out by

non-mathematical examples. For instance, if it is a coincidence that

the CIA agent was in the capital just when His Excellency dropped

dead, then the explanation of this coincidental fact consists of the

causal history of the CIA agent’s presence in the capital at that

time along with the causal history of His Excellency’s death (Lewis

1986b, p. 220).7

Of course, this pair of events is coincidental because the two events

have no common cause — at least, none that is important and of a

relevant kind (where importance and relevance depend on the context

in which we are discussing the events). For example, the Big Bang is a

common cause of the CIA agent’s presence and His Excellency’s death.

Typically, however, the Big Bang is too remote to qualify as a relevant

kind of common cause, and so it remains coincidental that the CIA

agent was in the capital just when His Excellency dropped dead.

We might try to extend this thought to mathematical coincidences:

two (or more) mathematical facts constitute a coincidence when they

have no (sufficiently important) common explainer (of a relevant

kind).8 This proposal has the virtue of focusing on the relation

7 It ultimately does not matter to my argument whether we join Hume (1980, p. 56) and say

that Lewis’s coincidence has an explanation, though there is no single unified explanation of its

two components, or whether we join Owens (1992) and say that Lewis’s coincidence has no

explanation (since there is no single unified explanation of its two components), though each

component has an explanation. (Perhaps the right thing to say depends upon the conversa-

tional context.) Nothing here turns on whether we credit the conjunction of the two separate

explanations of the two components as explaining the coincidence. What is important is that

an explanation that identified a common cause of this fact’s two components would have

supplied a kind of understanding that cannot be supplied by separate treatment of the two

components. This point is unaffected by whether separate treatment counts as an explanation

of the coincidence. The same point applies to mathematical coincidences. Shortly, I will pro-

pose that a mathematical coincidence lacks a certain kind of mathematical explanation (one

that, roughly speaking, treats all of its components together). But nothing important differ-

entiates this view from the proposal that a mathematical coincidence lacks any mathematical

explanation (because a genuine explanation would have to treat the components together).

Whether the mere conjunction of separate explanations of the two components counts as

explaining the components’ conjunction may depend on whether or not it is coincidental

that both components are true. It might be suggested that since it is no coincidence that

(n 1 1)n/2 gives the sum of the first n natural numbers for both odd n and even n, separate

proofs of the summation formula for odd n and for even n fail to correctly explain why it

holds for all n, since such a pair of separate proofs would incorrectly depict this fact as

coincidental. See Sect. 4.

8 Owens (1992) proposes that a coincidence is any event whose constituents are causally

independent (i.e. one does not produce the other and their causal histories have nothing in
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between the component facts, a feature that was not emphasized by

the earlier proposals (having to do with a single, undecomposed fact’s

being surprising or leading to no further interesting mathematics, for

instance). Clearly, that the sum of the first n natural numbers is

n(n 1 1)/2 could be decomposed into many different combinations

of facts — for example: (i) that n(n 1 1)/2 gives the sum on

Mondays and also on other days of the week, (ii) that n(n 1 1)/2

applies when n< 100 and also when n� 100, and (iii) that n(n 1 1)/

2 applies when n is odd and also when n is even. We are never inclined

to wonder whether the first pair of facts is a coincidence, nor the

second pair, but after seeing the separate proofs (that I gave earlier),

one for even n and the other for odd n, we might well have found

ourselves wondering whether the third pair is a coincidence.

Presumably, then, a given mathematical fact is coincidental (or not)

only relative to a particular way of decomposing it. Even if it is coin-

cidental that F and G are both true, and F & G is logically equivalent to

H & J, it can be no coincidence that H and J are both true. (It is

coincidental that the thirteenth digits of p and e are both 9, but it is

no coincidence that they are both 9 not only on Mondays, but also on

every other day of the week.) Something about the relation between

the components determines whether or not it is coincidental that both

are true.9

However, a coincidence’s components may possess a common ex-

plainer. After all, many mathematical facts about numbers are pre-

sumably explained by the axioms of set theory and logic (along with

the definitions of various mathematical concepts in terms of set theory

and logic). Accordingly, two such mathematical facts have many

common). Owens does not discuss mathematical coincidences; his concern is events and

their causal relations. I shall more directly compare mathematical and physical coincidences

in Sect. 4.

9 I presented my four initial examples as undecomposed facts (e.g. that the same summa-

tion formula applies to both even n and odd n, that p and e have the same thirteenth digit).

However, especially in the context in which I presented them (e.g. after offering separate

derivations for even n and odd n), there is a salient way to decompose each of these examples,

and we implicitly used that decomposition in considering whether or not these truths are

coincidental. Until some decomposition of a given mathematical fact is made salient (by, for

instance, a proof that proceeds by cases), there is nothing that its being coincidental (or no

coincidence) would amount to. The mere existence of a proof that proceeds by cases and

makes salient the theorem’s decomposition into those cases does not suffice to make the

theorem coincidental. Rather, as I will suggest shortly, there must be no explanation that

treats all of those cases together.
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explainers in common even though it may remain coincidental that

those two mathematical facts hold.
Admittedly, in a given context, the axioms of (and definitions in

terms of) set theory and logic might be considered too remote to
qualify as a relevant kind of common explainer — just as the Big

Bang, although a common cause of the CIA agent’s presence and
His Excellency’s death, is typically considered too remote from these

events to keep them from qualifying as coincidental. However, let us
suppose that both of the Diophantine equations in the mathematical

coincidence we considered earlier could be solved by using the same
sophisticated formula applicable to a large class of Diophantine equa-

tions (just as the quadratic formula can be used to solve all quadratic
equations). Let us also suppose that this formula is salient in the

context in which we are examining these two equations. The two
derivations using the formula to solve these equations could neverthe-

less proceed by such dissimilar steps that they converge upon the same
expressions only when they have nearly reached their conclusions.

That the two equations have the same solutions would then seem
like an algebraic miracle. Yet the two components of this coincidence

have explanations of the relevant sort that appeal in important re-
spects to the very same fact (namely, the formula).

Perhaps, then, the analogy between mathematical and causal coin-
cidences should be drawn slightly differently: whereas the components

of a causal coincidence have no common causal explainer, the com-
ponents of a mathematical coincidence have no common mathemat-

ical explanation. In particular, there is no single proof by which both
are explained. The proof showing it to be no coincidence that the

n(n 1 1)/2 formula applies to both odd n and even n is a single
proof that covers both of these cases together, unlike the separate

proofs for odd n and even n that prompted us to wonder whether
or not it was a coincidence that the same formula applies to both.

Likewise, Nummela demonstrated the calculator-keyboard fact to
be no coincidence by giving a single proof covering all of the

calculator-keyboard numbers. In contrast, there is no single proof
solving both of the Diophantine equations together or deriving the

thirteenth digits of both p and e. Similarly, that each of the first thirty
integrals we saw equals p/2 is no coincidence (despite being mislead-
ing) in virtue of the proof of the general theorem covering those thirty

integrals together.
I believe this suggestion to be very much along the right track. The

components of a non-coincidence have a unified explanation of a kind
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that the components of a coincidence lack. Not all proofs (or perhaps

even all explanations) of the components of a mathematical non-

coincidence succeed in unifying them. But the fact that those compo-

nents have a unified explanation makes their truth non-coincidental.10

To cash out this suggestion, we must take the second proof I gave

that the n(n 1 1)/2 summation formula works for all n and we must

identify why that proof counts as a unified explanation of the for-

mula’s holding for both odd n and even n — a common explanation

of the two components. Alternatively, take the separate proofs for even

n and odd n. Together they prove that the formula holds for all n. Why

does this conjunction of proofs nevertheless fail to qualify as a

‘common’ or ‘unified’ explanation?

Consider the conjunction of the separate proofs of the summation

formula for even n and odd n. This conjunction has more than is

needed to prove that the formula holds for even n. When we omit

what is not needed, what remains does not suffice to prove that the

formula holds for odd n. In contrast, take the second proof I gave,

which covers all n together. Suppose we insert from the outset the

requirement that n be even, so that the argument proves only that the

formula holds for even n. No part of the argument is dispensable for

proving that result. Furthermore, nothing needs to be added to that

argument in order to prove that the formula holds for odd n as well.

We need only omit the initial restriction to even n; no part of the

10 Kitcher (1976, 1982, 1989) has argued that mathematical explanation should be understood

in terms of unification, which he elaborates in terms of many facts being derivable by the same

patterns of derivation (argument schemas), thereby reducing the number of types of facts that

have to be accepted as brute. Kitcher and I both emphasize common explanatory arguments

rather than common explainers (premises of those arguments). But Kitcher is concerned with

understanding explanation, not coincidence. He argues that what makes an argument explana-

tory is its belonging to the best systematization (the one that best satisfies the ideal of allowing

the most to be derived by using the fewest patterns of derivation, an ideal reminiscent of

Lewis’s ‘best system’ account of natural law). In contrast, I am not attempting to cash out

mathematical explanation; I am arguing that what makes for non-coincidence is common

explanation. I have not suggested that all explanations unify by reducing the number of

separate types of argument in the systematization. (Tappenden 2005 is a useful critique of

Kitcher’s account of mathematical explanation.) Moreover, Kitcher appeals to the notion of an

argument schema (since unification is produced by the repeated use of arguments having the

same schema), leaving him vulnerable to worries (he tries to address) about what should count

as gerrymandering a given schema’s boundaries. I do not appeal to the notion of a schema; on

my proposal, every component of a mathematical non-coincidence can be proved by the same

argument (not by arguments having the same schema). Finally, Kitcher (1975, p. 265) regards

proofs by mathematical induction as explanatory, whereas shortly I argue that generally they

are not (even though their argument schema allows a great deal to be derived).
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argument depended on that restriction, so once it is omitted, nothing

needs to be added to yield the result for all n, odd and even.

The same approach accounts for the way that Nummela’s demon-

stration makes the calculator-keyboard result qualify as no coinci-

dence. We can prove that result by taking each of the sixteen

calculator-keyboard numbers, individually showing that number to

be divisible by 37, and then conjoining the sixteen proofs. If we

omit from this proof whatever is unnecessary for showing that (for

instance) 123321 is divisible by 37, then we omit the treatment of the

other fifteen numbers. What remains cannot show that (say) 321123 is

divisible by 37. On the other hand, suppose that we take Nummela’s

argument and use it to show that 123321 is divisible by 37. That argu-

ment begins by noting that 123321 takes the form

a.105 1 (a 1 d).104 1 (a 1 2d).103 1 (a 1 2d).102 1 (a 1 d).10 1 a.1

where a, a 1 d, and a 1 2d are three integers in arithmetic progression.

To extend this argument to show that every calculator-keyboard

number is divisible by 37, we need only omit the initial restriction

to 123321. Nothing needs to be added to the argument’s other steps in

order to cover the other fifteen calculator-keyboard numbers since all

of them take the above form.
No such unified proof exists of the fact that the Diophantine equa-

tions 2x2(x2 2 1) 5 3(y2 2 1) and x(x 2 1)/2 5 2
n 2 1 have exactly the

same five positive solutions. (Or, at least, so I presume, in presuming

this combination of facts to be coincidental.) We could take separate

procedures for solving the two equations and cobble them together

into one proof. But the steps of the procedure solving one equation

could then be omitted without keeping the proof from solving the

other equation. The stripped-down proof would be unable to solve the

first equation.
In short, then, the components of a non-coincidence can all be

given the same explanation in that there is a proof explaining them

all that possesses the following feature in connection with at least one

of the components. Suppose we take that single component of the

non-coincidence and make each step of the proof as logically weak

as it can afford to be while still allowing the proof to explain that

component. Then the weakened proof remains able to explain each of

the non-coincidence’s other components as well (once we remove any

restrictions to that single component, such as ‘Let n be even’ for the

summation formula). No further resources are needed to expand the
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explanation’s scope to cover all components of the non-coincidence.

In contrast, the various components of a mathematical coincidence

lack a single, unified explanation of this kind. Thus, for mathematical

truths F, G, H …

It is a coincidence that F and G and H … are all true if and only

if F, G, H … have no single, unified explanation

Admittedly, this elaboration of a ‘single, unified explanation’ may be

vague at the margins — for instance, in whether a given proof explain-

ing one component can be expanded to cover another component

merely by removing an otiose restriction, or only by adding some

slight further resource. But our notion of a ‘mathematical coincidence’

will, I suspect, be correspondingly vague in marginal cases. What

count as ‘further resources’ may also be context sensitive. That F

and G both hold may qualify in a given context as no coincidence if

the only further resource needed by some proof explaining F in order

also to explain G is regarded in that context as negligible. (We will see

an example in the following section.)
Here is another kind of intermediate case: Consider

(A) The number of points in a plane that uniquely determine a

conic section

(B) The degree of the alternating group that is the smallest

non-Abelian simple group

(C) The smallest degree general algebraic equation that is not

solvable in closed form

(D) The smallest n such that every nth Fibonacci number gains

another digit in its decimal expansion

It turns out (I believe) to be no coincidence that the same number

(namely, 5) is both (B) and (C). However, for each other pair of the

above, it is a coincidence that they refer to the same number (again, 5).

Now what about the fact that (A), (B), and (C) all pick out the same

number? By my account, it is a coincidence, since its three compo-

nents have no single, unified explanation. However, I think it would

sometimes be misleading to characterize this fact as coincidental and

simply leave it at that, since it is no coincidence that (B) and (C)

denote the same number. One might be inclined to say that it is not

a complete coincidence that (A), (B), and (C) all refer to the same

number. Although it is a coincidence, strictly speaking, there is a sense
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in which it is not as much of a coincidence as the fact that (A), (B), and

(D) all denote the same number. My account can accommodate such

‘degrees’ of being a coincidence.11

My approach also captures the grain of truth in the idea that if it is

a coincidence that F and G are both true, then G’s truth remains

surprising even in light of F’s truth: an explanation of F that is no

stronger than it needs to be fails to explain G. Furthermore, this

approach entails that 333 333 331’s character as composite (i.e. not a

prime number – as the product of 17 and 19 607 843), though insuf-

ficient to make it just a coincidence that 31, 331, 3 331, … , and 33 333 331

are all prime, is nevertheless relevant to its being coincidental. That 333

333 331 is not prime precludes a general theorem that any number is

prime if every digit in its decimal representation is ‘3’ except for a

11 Another kind of intermediate case: a theorem that has no single, unified explanation, but

although one explanation of the theorem decomposes it as F & G, another explanatory proof of

the theorem cross-cuts these components. (That is, there is another explanation that decom-

poses the theorem as H & J where H and J each includes some of the cases covered by F and

some covered by G.) The components F and G are not fully unified, but neither must they

receive entirely separate treatment.

A special case: suppose that one component is a mathematical axiom. Perhaps an axiom has

no explanation. Then the various components lack a single, unified explanation of the kind I

have just described, since one of the components has no explanation at all! But the fact that all

of those components are true is not then obviously coincidental — especially in a case where

the axiom explains the other component’s truth. One component’s lack of an explanation

should not suffice to make it coincidental that all of the components are true. (On the other

hand, perhaps axioms explain themselves, in which case they present no problem for my

proposal.). The only sorts of cases that I have seen characterized as ‘coincidental’ (or not)

in mathematical practice are cases where none of the components is an axiom. Consequently,

the proper way to characterize cases where one component has no explanation seems to me a

decidedly peripheral matter worthy of being treated as a special case. One option would be to

restrict the necessary and sufficient conditions for mathematical coincidence that I give in the

main text so that they apply only if every component has an explanation. The account could

then be extended as follows to cover cases where some component has no explanation: It is a

coincidence that F and G and H … are all true if and only if the components having explan-

ations have no common explanation (in the sense I describe in the main text) or a component

having no explanation figures in no such common explanation. Thus, if F is an axiom and has

no explanation, whereas G is explained by F, then it is no coincidence that F and G both hold,

since G’s explanation by F is trivially a common explanation of all of the components having

explanations, and F figures in that explanation. (This proposal entails that if F and G are

independent axioms without explanations, then it is coincidental that F and G are both true.

Again, in view of mathematical practice, how we characterize such a case seems to me of little

interest.)

My view allows it to be a coincidence that F and G are both true, even if it is no coin-

cidence that F and (F and G) are both true because the conjunction of the separate explan-

ations of F and G counts as an explanation of (F and G) that needs no additional resources to

explain F. As we saw earlier, it can be a coincidence that F and G are both true, even if F & G is

logically equivalent to H & J and it is no coincidence that H and J are both true.
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final ‘1’ — and so forecloses a unified explanation of such a theorem,

which would make it no coincidence that 31, 331, 3 331, … , and 33 333 331

are all prime.12 Likewise, before you knew that 333 333 331 is not prime,

you might well have taken the fact that 33 331, 333 331, 3 333 331, and 33 333

331 are all prime as some evidence that it is no coincidence that 31, 331,

and 3 331 are all prime, since it was some evidence that there is a general

theorem (having a unified explanation) that all numbers of this form

are prime — which would make it no coincidence.

To make various components non-coincidental, their common

proof must be an explanation, not merely a deduction.13 For example,

consider the following example of a mathematical coincidence:

[C]onsider the decimal expansion of e, which begins 2.718281828 … It is

quite striking that a pattern of four digits should repeat itself so soon — if

you choose a random sequence of digits then the chances of such a pattern

appearing would be one in several thousand — and yet this phenomenon is

universally regarded as an amusing coincidence … (Gowers 2007, p. 34)

Of course, there are many ways to derive e’s value, and each of them

consists of a common proof of the third-through-sixth digits together

with the seventh-through-tenth digits. For example, we could derive

them from the fact that e equals the sum of (1/n!) for n 5 0, 1, 2, 3, … .

However, such a common proof does not explain why the seventh-

through-tenth digits are 1828 or why they repeat the third-through-

sixth digits. It merely proves that they are and do. There is, I suggest,

no reason why this pattern of digits repeats. It just does.14 (Of course,

12 Leavitt (2007, p. 182) characterizes the fact that these are all prime as a ‘coincidence’,

considering that 333 333 331 is not prime.

13 If we take proofs of two arbitrary theorems and combine their steps by using gerryman-

dered, wildly disjunctive, gruesome predicates, then the resulting proof is typically not an

explanation of the resulting theorem. Its predicates do not refer to mathematical natural

properties and kinds. An explanation of some wildly disjunctive theorem ‘All triangles or

prime numbers are … ’ consists of an explanation of the triangle result together with an

explanation of the result concerning prime numbers. (For more on mathematical natural

properties and kinds, see Corfield 2005 and Tappenden 2008.)

14 By the same token, there might be a proof that the thirteenth digits of p and e are the

same that does not proceed by first computing p to thirteen digits and then computing e to

thirteen digits. Instead, the proof might deduce various independent linear combinations of p
and e (e.g. (p1 e)/2, 2p1 3e), from which p2 e, and ultimately perhaps even the thirteenth

digits themselves, might be inferred. (That the thirteenth digit of p2 e is 0 would show that

p’s and e’s thirteenth digits differ by 1 at most.) After all, as Tim Gowers suggested to me in

pressing this point, there are ways of calculating linear combinations of ˇ2 and ˇ3 without

calculating either ˇ2 or ˇ3. Would such a proof — every part of which concerns both p and

e — give the components of this coincidence a ‘single, unified explanation’? Not if the proof

fails to explain why those linear combinations take on their values.
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my account of mathematical coincidence leaves us with the task of

understanding what a mathematical explanation is, and of doing so

without appealing to the notion of a mathematical coincidence. Fair

enough — but my account of mathematical coincidence is not thereby

rendered empty or uninteresting.)

Here is another example. We could deduce that the sum S of the

first n natural numbers is n(n 1 1)/2 from the premise that

S 2 5 (n4 1 2n3 1 n2)/4, with the same proof whether n is even or

odd. But this common proof would do nothing to rule out the pos-

sibility that the same formula holds for even n and odd n only as a

matter of coincidence. Presumably, the fact that S 2 5 (n4 1 2n3 1 n2)/4

does not explain why S 5 n(n 1 1)/2. If anything, the expression for S

explains the expression for S 2.
Likewise, consider the proof of the summation formula that pro-

ceeds by mathematical induction:

Show that for any natural number n, the sum of the first n

natural numbers is equal to n(n 1 1)/2.

For n 5 1, the sum is 1, and n(n 1 1)/2 5 1(2)/2 5 1.

If the summation formula is correct for n 5 k, then the sum

of the first k 1 1 natural numbers is [k(k 1 1)/2] 1

(k 1 1) 5 (k 1 1)[(k/2) 1 1] 5 (k 1 1)(k 1 2)/2, so the summation

formula is correct for n 5 k 1 1.

For this argument to be explanatory, the fact that the summation

formula works for every natural number would have to be explained

in part by the fact that the summation formula works for n 5 1. But

the case of n 5 1, though more mathematically tractable than other

cases, seems to have no special explanatory privilege over them.
After all, we could just as well have started our proof with n 5 5,

working upward and downward from there:

For n 5 5, the sum is 1 1 2 1 3 1 4 1 5 5 15, and n(n 1 1)/2 5

5(6)/2 5 15.

If the summation formula is correct for n 5 k, then (I showed

earlier) it is correct for n 5 k 1 1.

If the summation formula is correct for n 5 k (where k> 1), then

the sum of the first k 2 1 natural numbers is [k(k 1 1)/2] 2k 5 k

[(k 1 1)/2 2 1] 5 k(k 2 1)/2, so the summation formula is correct

for n 5 k 2 1.
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If the proof by mathematical induction is explanatory, then this very

similar proof proceeding upwards and downwards from n 5 5 should

presumably also be explanatory. There is nothing to distinguish the

two proofs, except for where they start. But they cannot both be

explanatory, since then the summation formula’s working for n 5 1

would help to explain why it works for n 5 5 and the summation

formula’s working for n 5 5 would help to explain why it works for

n 5 1. Mathematical explanations, whatever they are, had better not

run in a circle.15

Thus, the proof by mathematical induction, though treating even n

and odd n together, fails to make it no coincidence that n(n 1 1)/2

applies to both even n and odd n because it fails to explain why the

15 If mathematical ‘explanations’ run in a circle, then they are nothing like scientific ex-

planations; the mathematical explanans is not responsible for the explanandum. Of course, this

argument might lead us to worry that there is no such thing as mathematical ‘explanation’

properly so called, since there are many, equally good ways to axiomatize mathematics, and

under different axiomatizations, the ‘explanatory’ arguments run in opposite directions. Any

account of what a mathematical explanation is must face this problem, and I offer no such

account here. I am using the notion of a mathematical explanation to understand the phe-

nomenon of mathematical coincidence, and in so far as this notion is useful in understanding

mathematical coincidence and other phenomena, there is good reason to suppose that there is

such a thing as mathematical explanation. (See Sect. 4.) For more comprehensive arguments

that mathematical explanation is an important part of mathematical practice, along with many

examples, see Hafner and Mancuso 2005 and references therein. (See also note 4.) I shall resist

the urge to say anything more about mathematical explanation except this: That a proof ’s

explanatory power depends somehow on its audience’s interests, broadly speaking, does not

entail that a proof ’s explanatory power for some audience is nothing more than its being the

kind of proof that the audience wants for whatever reason (e.g. in view of its premises, its

strategy, its perspicuity, its brevity, its wit, or the collateral information it supplies). (Contrast

Resnik and Kushner 1987.)

My argument that mathematical inductions are generally not explanatory (see Lange 2009a)

presupposes that if the fact that the summation formula works for n 5 1 helps to explain why it

works for every natural number, then in particular, the fact that the summation formula works

for n 5 1 must help to explain why it works for n 5 5. I do not base this step on the premise

that if a fact helps to explain a given universal generalization, then it must help to explain

every instance of that generalization. For instance, various past decisions that my wife and I

made help to explain why we have exactly two children, and thereby help to explain why every

family on my block has exactly two children (a coincidence), but they do not help to explain

why our neighbors, the Smith’s, have exactly two children. Rather, certain facts about my

family’s history explain our case, whereas various facts about the Smith’s history explain their

case. However, this kind of piecemeal explanation would not be taking place if the principle of

mathematical induction together with the summation formula’s working for n 5 1 helped to

explain why it works for every natural number; it would not be the case that the principle of

induction sufficed to explain why the summation formula works for n 5 5 whereas the for-

mula’s working for n 5 1 sufficed to explain why it works for (say) n 5 12. (Thanks to

Alexander Skiles for discussion of this point.)

326 Marc Lange

Mind, Vol. 119 . 474 . April 2010 � Lange 2010

 at U
niversity of N

orth C
arolina at C

hapel H
ill on A

ugust 27, 2010
m

ind.oxfordjournals.org
D

ow
nloaded from

 

http://mind.oxfordjournals.org/


formula holds; it merely shows that the formula holds.16 However,

suppose we take the argument that proceeds upwards and downwards

from n 5 5 and omit the step showing that the summation formula

works for n 5 5. Instead, we work upwards and downwards from an

arbitrary n to show that if the summation formula works for one

natural number n, then it works for all others. Since this argument

fails to privilege any value of n, it may well count as explaining why the

summation formula works either for all n or for no n — that is, as

explaining why it is not the case that the summation formula works

for some but not all n. Furthermore, this argument is unified in its

treatment of odd n and even n in the manner I described earlier. After

all, for the argument to begin from some n and to proceed upwards

and downwards by steps of 1 each time, ultimately to cover every odd

n, the argument must along the way cover every even n as well. Given

that the summation formula works for all n, this explanation of why it

works either for all or for no n ties together the even component and

the odd component so as to make it no coincidence that the formula

applies both to even n and odd n.
Therefore, I must weaken slightly the necessary and sufficient con-

ditions I just proposed for some combination of mathematical facts to

be no coincidence. Those conditions demanded a common proof for

all components. But now we see that this proof need not explain why

(or even prove that) every component of the non-coincidence is true.

It need only explain why (and prove that) all of the components of the

non-coincidence are true if any one is true — that is, why they all stand

or fall together. As before, each component must receive the same

explanation: if we take a single component and make each step of

16 Hafner and Mancosu (2005, p. 237) and Hanna (1990, pp. 10–11) contend that according

to working mathematicians, proofs by mathematical induction are paradigms of

non-explanatory proofs — but they offer no account of why proofs by mathematical induction

fail to explain.

Some philosophers may believe that 1 is ontologically prior to the other natural numbers —

for instance, that the natural numbers are fundamentally an inductively generated set with 1 as

its first element. Whatever argument these philosophers give that 1 is prior would break the

symmetry between a proof of the summation formula by mathematical induction and its proof

by proceeding upwards and downwards from 5. I have not contended that all mathematical

inductions fail to explain or that the summation formula’s inductive proof fails to explain —

merely that it explains only if the formula’s working for n 5 1 is somehow explanatorily prior

to its working for n 5 5. My main concern here will shortly be to explain why we must weaken

slightly the conditions that I have just proposed for some combination of mathematical facts

to be no coincidence. For that purpose, it suffices that we accept at least for the sake of

argument that the inductive proof of the summation formula is not explanatory.
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the proof as logically weak as it can afford to be, while still allowing the

proof to prove that that component is true if any one of the compo-

nents is true, then the weakened proof must be able to prove, for each

of the other components as well, that it is true if any one of the

components is true.17

4. Two applications: mathematical and scientific explanation

I have suggested that there is a close connection between mathematical

explanation and mathematical coincidence: two mathematical facts are

no coincidence when they have a common mathematical explanation.

Of course, there is some controversy in philosophy over whether or

not there are any explanations in mathematics. I suggest that any

motivation we may have for thinking that there are mathematical

coincidences should also motivate us to think that there are mathem-

atical explanations, since the notion of a mathematical coincidence

can be understood only in terms of the notion of a mathematical

explanation.
Here is an example that nicely brings out the connection

between mathematical explanation and mathematical coincidence.

17 According to my proposal, it is a coincidence that the thirteenth digit of p is the same as

the thirteenth digit of e. By the same token, my proposal entails that it is a coincidence that

(say) the twelfth digit of p is 8 and the fifth digit of e is 2. It might seem that these two cases

ought to be treated differently. In particular, it might appear that my proposal fails to account

for the strangeness of even asking whether it is a coincidence that the twelfth digit of p is 8 and

the fifth digit of e is 2. However, I believe the strangeness to be adequately accounted for by

our having no reason at all to suspect that these two facts have a common explanation. That p
and e have the same digit (9) in the same decimal place (thirteenth) might have suggested that

there was a common explanation, but that they have different digits in different places is not at

all suggestive. Analogous considerations apply to causal coincidences. That you and I are both

at the mall this afternoon is (let us suppose) coincidental, and although it is no less coinci-

dental that you are there and Honolulu is the capital of Hawaii, to call this fact ‘coincidental’

(or even to ask whether or not it is) may well mislead by suggesting that one might reasonably

have suspected a certain kind of common cause.

In addition, though, it may be that the distinction between proofs that explain and proofs

that merely prove (and hence the distinction between mathematical coincidences and

non-coincidences) arises only in a context where some feature of the result being proved is

salient. If so, then to characterize as ‘coincidental’ the fact that the twelfth digit of p is 8 and

the fifth digit of e is 2 is to presuppose that this fact exhibits some salient feature — when

actually it may well not. Without some salient feature, it may not make sense even to ask

whether or not it is a coincidence. (See also note 19.)
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Consider the fraction 1/(1 1 x2). By long division,

ð1þ x2Þ Þ

1� x2 þ x4 �…

1

�ð1þ x2Þ

� x2

�ð�x2 � x4Þ

x4

�ðx4 þ x6Þ

..

.

it yields the Taylor series

1 2 x2 1 x4 2 x6 1 … .

Plainly, for real number x , this series will converge only if |x|< 1.

(When |x|> 1, each successive term’s absolute value is greater than
its predecessor’s, so the sum will oscillate in an ever widening

manner.)
Why does dividing (1 1 x2) into 1 generate a series that converges if

|x|< 1 but diverges if |x|> 1? After all, 1/(1 1 x2) is perfectly

well-defined for |x|� 1. We have here a mathematical why-question
that seems to demand an answer: a mathematical explanation. We can

prove that the series converges only if |x|< 1, but such a proof may still
leave the why-question unanswered. As Michael Spivak says in his

famous textbook:

A careful assessment of our situation will reveal some unexplained facts.

… [M]ysterious behavior is exemplified … strikingly by the function

f(x) 5 1/(1 1 x2), an infinitely differentiable function which is the next

best thing to a polynomial function. … If |x|� 1, the Taylor series does not

converge at all. Why? What unseen obstacle prevents the Taylor series from

extending past 1 and –1? Asking this sort of question is always dangerous,

since we may have to settle for an unsympathetic answer: it happens

because it happens — that’s the way things are! In this case there does

happen to be an explanation, but this explanation is impossible to give

[here at the end of Chapter 23]; although the question is about real

numbers, it can be answered intelligently only when placed in a broader

context. (Spivak 1980, p. 482)
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Those who are suspicious of the very concept of a mathematical

explanation will need to explain away remarks like Spivak’s.

The mathematical explanation that Spivak foreshadows is given by

the proof of this theorem (see Spivak 1980, p. 524):

For any power series
P

anzn (from n 5 0 to 1), either it con-

verges for all complex numbers z, or it converges only for z 5 0,

or there is a number R> 0 such that it converges if |z|<R and

diverges if |z|>R.

This theorem’s proof ‘helps explain the behavior of certain Taylor

series obtained for real functions, and gives the promised answers to

the questions raised at the end of Chapter 23’ (Spivak 1980, p. 528). For

although f(z) 5 1/(1 1 z2) does nothing outrageous when z equals a real

number with absolute value equal to 1 (remaining well-defined, con-

tinuous, and infinitely differentiable), it does go undefined for an

imaginary number with absolute value (or ‘modulus’) equal to 1:

f(i) 5 1/(1 1 i2) 5 1/0. That is why the Taylor series diverges at x> 1.

We can recognize that this is indeed a genuine mathematical

explanation by noticing that this theorem’s proof removes what

would otherwise have been a mathematical coincidence. Is it a coin-

cidence that the two Taylor series

1/(1 2 x2) 5 1 1 x2 1 x4 1 x6 1 …

1/(1 1 x2) 5 1 2 x2 1 x4 2 x6 1 …

are alike in that, for real x, each converges when |x|< 1 but diverges

when |x|> 1? This might seem utterly coincidental (like the fact that

the two Diophantine equations have exactly the same positive solu-

tions) since although 1/(1 2 x2) at x 5 1 goes undefined, 1/(1 1 x2)

behaves quite soberly there. However, when we look at matters in

terms of the complex plane, it is no coincidence: both functions go

undefined at some point on the unit circle centered at the origin (the

first at z 5 1, the second at z 5 i), so by the theorem, each series con-

verges inside the circle but not outside it. The behaviors of the two

series have a common mathematical explanation given by the proof of

this theorem. That explanation makes their similar behavior no

coincidence.18

18 Steiner (1978b, pp. 18–19; 1990, pp. 105–7) likewise says that this theorem concerning

complex power series explains why the Taylor series for 1/(1 1 x2) converges at |x|< 1 but not at

|x|>1 — and, as Steiner notes (1990, p. 106), Waismann says the same (in his 1982, pp. 29–30).

Neither mentions mathematical coincidence or compares the convergence of the series for
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(Admittedly, to explain the behavior of the 1/(1 1 x2) series, a proof

explaining the theorem must be supplemented by the fact that

1/(1 1 z2) goes undefined at z 5 i. This fact, in turn, plays no role in

explaining the behavior of the 1/(1 2 x2) series; besides the theorem’s

proof, that explanation also appeals to the fact that 1/(1 2 z2) goes

undefined at z 5 1. However, in a context where infinite series and

the like are being placed on the table, we ordinarily would regard these

humble further resources as quite negligible. In such a context, a proof

explaining the theorem qualifies as a single, unified explanation of the

behaviors of both series, making their similarity no coincidence.)
The force of a question like ‘Is it just a coincidence that the Taylor

series for 1/(1 1 x2) and 1/(1 2 x2) both converge at |x|< 1 but not at

|x|> 1?’ may well be easier to grasp than the force of a question like

‘What explains why the Taylor series for 1/(1 1 x2) converges at |x|< 1

but not at |x|> 1?’ It may initially be difficult to see what could pos-

sibly constitute such an explanation, whereas it is easy to appreciate

the ‘Is it just a coincidence … ’ question as seeking some feature

common to the two functions that makes their Taylor series behave

alike despite the functions’ profoundly different behaviors at x 5 1.

A similar phenomenon occurs in connection with scientific explan-

ation: Encountering the question ‘Why is gravity an inverse-square

force?’, a student may well find it difficult to see what this question

could possibly be looking for. But she may readily understand the

point of asking ‘Is it nothing but a coincidence that both gravity

and electrostatic repulsion are inverse-square forces?’

Thus, in a given case, mathematical coincidence may be easier than

mathematical explanation to recognize as an interesting issue.

Although one might initially think that there is no sense in asking

for a mathematical explanation over and above a proof of the non-

convergence of 1/(1 1 x2)’s series at |x|> 1, one might nevertheless

promptly recognize that there is a fact (albeit perhaps unknown)

about whether the common behavior of the two series is a mathem-

atical coincidence. In this light, one might then recognize a distinction

1/(1 2 x2), though both are concerned with the remarkable fact (a coincidence?) that imaginary

numbers arise in apparently unrelated branches of mathematics (e.g. the factorization of poly-

nomials and the convergence of power series). (My thanks to a referee for kindly calling

Steiner’s papers to my attention.)
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between proofs that explain and proofs that fail to explain why the

1/(1 1 x2) series is non-convergent for |x|> 1.19

Even if (as I have argued) a proof that makes some result

non-coincidental does so by virtue of being explanatory, we may
come to recognize a given proof as explanatory by first appreciating

that it makes some result non-coincidental. Indeed, someone who
initially doubts that there is any such thing as a ‘mathematical explan-
ation’ may nevertheless readily appreciate some proofs as rendering

non-coincidental what would otherwise be counted as mathematical
coincidences — and may thereby be persuaded that there are mathem-

atical explanations.
Besides giving us some purchase on mathematical explanations, my

account of mathematical coincidence can also help us to understand a
certain kind of scientific explanation. As an example, let us take these

two phenomenological regularities:

h [E] h [E]
T2 [V2] T1 [V1] L

h [E] h [E]

a

b

Consider a cylinder (see figure) of length L, radius a, generating heat that

keeps it at constant temperature T
1
. (It might be a current-carrying wire or

a steam-conveying airduct, for example.) The cylinder is surrounded by a

uniform layer of thermal insulation, thickness (b 2 a), the outside of which

is kept at temperature T
2
. We find experimentally that in all such cases, the

rate at which heat is generated inside the cylinder, thence to pass through

19 Nevertheless, perhaps this distinction exists only in certain conversational contexts, such

as a context where it is salient that some other series exhibits the same convergence behavior.

Perhaps in such a context, an explanation of one series’ convergence behavior would have to

exploit its possession of a property possessed by the other series as well, thereby explaining

why they both exhibit this behavior. (See also n. 17.)
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the cylinder’s surface, is proportional to L (T
1
2 T

2
)/ ln(b/a), where ‘ln(x)’

is x’s natural logarithm. (Arrows in the figure depict the direction of heat

flow h.)

Consider a cylinder (see figure again, now using the labels in square

brackets) of electrically conductive material of length L, radius a, held at a

constant voltage (electrical potential) V
1
. The cylinder is surrounded by a

uniform layer of electrical insulation (dielectric), thickness (b 2 a), the

outside of which is kept at voltage V
2
. We find experimentally that in

all such cases, the charge on the cylinder is proportional to L (V
1
2 V

2
)/

ln(b/a). (Arrows in the figure depict the direction of the electric field E.)

Is it a coincidence that these two results are so strongly analogous? Yes,

in one respect: the two physical processes are clearly distinct. They

cannot be reduced to a common underlying physical process in the
way that the tides, planetary motion, and falling bodies can. After all,

the electric field is not heat. The laws of electrostatics do not govern

thermodynamics.
But in another respect, it is no coincidence that the two results are

analogous. The analogy would have been coincidental if the more
fundamental laws of electrostatics and thermodynamics had been ut-

terly unlike. But in fact, they take exactly the same form, and that is

why these two results take the same form. Of course, if we gerryman-
der or are excessively liberal about what counts as a ‘form’, then any

two equations take the ‘same form’. But the laws governing electro-

statics and thermodynamics take the same form in the sense that there
is a single mathematical proof deriving both of the phenomenological

results I mentioned from the respective more fundamental laws.

Let us see why. There is what James Clerk Maxwell called a ‘physical
analogy’ between electrostatics and heat flow: a positively (negatively)

charged body plays the nomic role of a heat source (sink), an electric

field plays the role of an unequally heated body, potential difference
plays the role of temperature difference, and so forth. Since analogous

quantities play analogous nomic roles, ‘any result we may have ob-

tained either about electricity or about the conduction of heat may be
at once translated out of the language of the one science into that of

the other without fear of error’ (Maxwell 1881, p. 52). That translata-

bility reflects the fact that the same mathematical derivation from the
respective more fundamental laws covers both phenomenological re-

sults; each step in the derivation can equally well involve electrostatic

or thermodynamic quantities. This physical analogy has the practical
advantage of giving us two results for the price of one derivation.

More importantly for our purposes, the physical analogy makes it
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no mathematical coincidence that these two phenomenological results

are so similar.
The relevant more fundamental equations of electrostatics [thermo-

dynamics] are as follows: (i) that the rate of heat flow h [the electric

field E] at a given point is proportional to the negation of the tem-

perature T [electrical potential V] gradient there, and (ii) that the heat

flux
R

h • ds [electric field flux
R

E • ds] through an enclosing surface is

proportional to the heat Q generated [electric charge q] within. That is

(where ‘/’ represents ‘is proportional to’):

h / � grad T E / � grad V
Ð

h • ds / Q
Ð

E • ds / q:

Note the analogy between the two sets of equations. The two phenom-

enological results can thus be given the same derivation. (I shall use

the thermodynamic variables.)

From symmetry, h is independent of the direction, so it depends

only on the distance from the apparatus’ center line. Consider a

cylinder concentric with the apparatus, with radius r. Its surface

area is 2prL. For this surface, that
R

h • ds/Q entails that

2prLh/Q, and so h/Q/2prL. Since h /2 grad T, it follows that

h /2 dT/dr, or dT/dr/2 h. Substituting for h, dT/dr/2 Q/2prL.

Integrating from r 5 a to r 5 b, we find
R

(dT/dr) dr 5 (T
2
2 T

1
)

/2 (Q/2pL) ln(b/a). Thus, Q/ L (T
1
2 T

2
)/ ln(b/a).

If we exchange thermodynamic quantities for electrostatic ones, we

can use the same mathematical proof to yield the electrostatic result

(Feynman, Leighton, and Sands 1963, p. 12-2).20

Thus, considering the analogy between the more fundamental equa-

tions of thermodynamics and electrostatics, it is no coincidence that

the phenomenological thermodynamic and electrostatic results are

analogous. That is to say, this combination of thermodynamic and

electrostatic results is no mathematical coincidence: a mathematical

proof that is no stronger than it needs to be in order to derive the

thermodynamic result from the more fundamental thermodynamic

equations also suffices to derive the electrostatic result from the

more fundamental electrostatic equations.
Of course, since heat and electric charge are not the same thing,

there is no scientific explanation of the more fundamental

20 An analogous point could be made regarding the parallel proofs of dual theorems in

projective geometry.
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thermodynamic equations that appeals to exactly the same facts (or

even nearly so) as some explanation of the more fundamental electro-

static equations. Plausibly, when we say that it is a coincidence that the

CIA agent was in the capital just when His Excellency dropped dead,

we mean that these two facts have no causal explanations (of a relevant

sort) that appeal (in important respects) to the same facts. Such a

coincidence, involving the absence of common scientific explainers,

I will term a ‘physical coincidence’ to distinguish it from a mathem-

atical coincidence, which (I have suggested) involves the absence of a

common mathematical explanation.

These two notions are similar enough that it makes sense for us to

regard both as varieties of coincidence. Yet they are distinct, as the

thermodynamic/electrostatic case illustrates. That the phenomeno-

logical thermodynamic and electrostatic results are analogous is a

physical coincidence, since the more fundamental laws responsible

for each result are not the same.21 But it is no mathematical coinci-

dence, since the same mathematical proof can be used to derive each

phenomenological result from the more fundamental equations that

scientifically explain it.
The analogy between the phenomenological thermodynamic and

electrostatic results can be physically coincidental yet mathematically

no coincidence because the more fundamental equations responsible

for the respective results concern different things (heat and electric

charge) yet have a common mathematical form. From mathematical

equations of that form, we can derive a mathematical result — and the

variables in those equations and in that result can be interpreted either

thermodynamically or electrostatically. So there is a mathematical der-

ivation (given above) of the thermodynamic regularity from the more

fundamental thermodynamic equations such that (even if we make

each step of the derivation as logically weak as it can afford to be while

still allowing the proof to go through) the same proof can derive the

electrostatic regularity from the more fundamental electrostatic

21 Though physically coincidental, the fact that the phenomenological thermodynamic and

electrostatic results are analogous is physically necessary (i.e. follows entirely from natural

laws). That two facts are physically necessary does not suffice to make a given consequence

of them no physical coincidence. For instance, nineteenth-century chemists believed it phys-

ically necessary that all noncyclic alkane hydrocarbons differ in molecular weight by integral

multiples of 14 units, and they also believed it physically necessary that the atomic weight of

nitrogen is 14 units. But they termed it ‘coincidental’ (albeit physically necessary) that all

noncyclic alkanes differ in molecular weight by integral multiples of the atomic weight of

nitrogen. Noncyclic alkanes contain no nitrogen. (See, for instance, van Spronsen 1969,

pp. 73–4, and my 2000, pp. 203–7.)
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equations. In other words, the two physical theories leave us with

exactly the same mathematical problem, and therefore it is no math-

ematical coincidence that the two problems have analogous answers.

William Thomson (later Lord Kelvin), who discovered this analogy,

put the point nicely:

Corresponding to every problem relative to the distribution of electricity

on conductors, or to forces of attraction or repulsion exercised by

electrified bodies, there is a problem in the uniform motion of heat which

presents the same analytical conditions, and which, therefore, considered

mathematically, is the same problem. (Thomson 1845, p. 27, my emphasis)

Without the notion of a mathematical coincidence, we would be

unable to specify why a correct scientific explanation of the similarity

between the two phenomenological results cannot be simply a scien-

tific explanation of the first result conjoined to a scientific explanation

of the second. Such a conjunction might seem perfectly appropriate as

an explanation considering that their similarity is a physical coinci-

dence. But it incorrectly characterizes their similarity as a mathemat-

ical coincidence — as just a kind of algebraic miracle. In contrast, any

correct scientific explanation of their similarity identifies the particular

mathematical features that, by being present in both cases, account for

the similarity between the two results by enabling the same mathem-

atical argument to derive those results from the respective more fun-

damental equations.22

22 Colyvan has similarly suggested that ‘if two different physical systems are governed by the

same differential equation, it’s clear that there is some similarity between these systems, no

matter how disparate the systems may seem … It seems plausible, at least, that this similarity is

structural … ’ (Colyvan 2001, p. 83).

Dimensional explanations, I have argued elsewhere (2009c), are another kind of non-causal

scientific explanation that uses structural features of more fundamental equations to unify

physically dissimilar phenomenological laws.

Some philosophers have argued that certain other physical facts are explained by mathem-

atical theorems. (For discussion see: Baker 2005; Colyvan 2001 and 2002; Melia 2002; Steiner

1978b and references therein.) Steiner (1978b, p. 19) contends that if the physics is removed

from such a mathematical explanation of a physical fact, then a mathematical explanation of

some mathematical theorem remains, whereas ‘[i]n standard scientific explanations, after

deleting the physics nothing remains’. I agree that if the physics is removed from an explan-

ation of the similarity between these two phenomenological results, then the two results and

their derivations become one. But if a mathematical theorem is explained by the argument

thereby produced, then the same theorem must be explained by the argument that is produced

when the physics is removed from a ‘standard scientific explanation’ of just one of these

phenomenological results using the more fundamental equations that entail it (since the

same mathematical derivation is produced in both instances). In that event, it would not be

the case that nothing remains after deleting the physics from this standard scientific

explanation.
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Other scientific explanations work in the same way. For instance,

consider the mathematical proof that Poisson (1811, pp. 11–19) uses to
explain why two forces compose according to the ‘parallelogram of

forces’. Poisson’s proof derives the parallelogram of forces from vari-
ous symmetries that forces exhibit (such as that equal and opposite

forces cancel). The same mathematical proof can also be used to
deduce that various other directed quantities (such as electric current
densities, bulk magnetizations, and entropy fluxes) also compose ac-

cording to parallelogram laws since those quantities exhibit analogous
symmetries. Thus, if all of these various parallelogram laws are ex-

plained by Poisson-style arguments, then it is no mathematical coin-
cidence that these various quantities, despite their physical diversity, all

compose in the same way:

[T]he proof which Poisson gives of the ‘parallelogram of forces’ is

applicable to the composition of any quantities such that turning them end

for end is equivalent to a reversal of their sign. (Maxwell 1873, p. 10)

Even if there is no common reason why equal-and-opposites cancel for

light, water, velocity, force, energy, electric current, and so forth, there
is (if Poisson-style explanations are correct) a basic similarity among

them that makes it no (mathematical) coincidence that they all com-
pose parallelogramwise.23

Our account of mathematical coincidence has thus paid dividends
in helping us to recognize one kind of understanding that certain
scientific explanations supply. The concept of a mathematical coinci-

dence plays an important role in scientific practice.

5. Conclusion

I think that G. H. Hardy is implicitly appealing to the notion of a

mathematical coincidence when he praises theorems having proofs where

There are no complications of detail – one line of attack is enough in each

case … We do not want many ‘variations’ in the proof of a mathematical

theorem: ‘enumeration by cases’, indeed, is one of the duller forms of

mathematical argument (Hardy 1967, p. 113)

On my view, that is because a proof by cases (such as the first proof

I gave of the summation formula) cannot show the theorem to be no

23 For more on Poisson’s argument (and further lessons to be learned from various rival

explanations of the parallelogram of forces), see my 2009b.
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coincidence. A proof by cases is the only explanation that a mathem-

atical coincidence is capable of receiving.24
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