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Abstract 
Human error is a common source of accidents in 
complex plants. We believe that many human errors 
really are caused by lack of intelligence in the 
instrumentation and control systems, putting the 
operators in situations, which humans realistically 
cannot be expected to cope with. Through history, 
several computer-based algorithms have been proposed 
and used for automated sensor fault detection, alarm 
analysis, and fault diagnosis, to support human 
operators. The main problem with such algorithms is 
that they demand a large effort to build, validate, and 
especially rebuild when the p lant is changed. We 
propose the use of algorithms based on Multilevel Flow 
Models (MFM), which are graphical models of goals 
and functions  of technical systems. MFM provides a 
good basis for computer-based supervision and 
diagnosis, especially in real-time applications, were fast 
execution and guaranteed worst-case response times are 
essential. The expressive power of MFM is similar to 
that of rule-based expert systems, while the explicit 
representation of means-end knowledge and the 
graphical nature of the models make the knowledge 
engineering effort less and the execution efficiency 
higher than that of standard expert systems. 
 
If MFM -based measurement validation and alarm 
analysis had been used, the Three -Mile Island incident 
would not have happened. 
 
Introduction: Human Error 
There are several different kinds of causes of accidents 
in large industrial plants. Many accidents are caused by 
failures in the physical hardware or the control system 
software, while others are caused by insufficient or 
erroneous operation routines, training, and regulations. 
Yet another type of accident is caused by human error, 
which is the kind of accident where the human operators 
did not manage the plant correctly, even though the 
hardware was functioning, and the routines and training 
were fine. In fact, human error is a fairly common cause 
of accidents. 
 
Complex accidents often have several causes. For 
example, the infamous Three-Mile Island incident was 
caused by a malfunctioning valve (pilot-operated release 

valve, PORV), which remained open although the 
instruments showed that it had been closed. Thus, there 
were causes in both physical hardware (the valve), and 
the control system software (the erroneous indication). 
What really turned this into a serious incident, though, 
was that the operators did not understand the situation 
quickly enough. During several hours, they did not 
check the measurements downstream from the open 
valve, which would have told them that the valve had 
not closed, and that the reactor was loosing steam. Not 
until the next shift came on was the valve checked, and 
by then the core was almost uncovered. In the senate 
hearings, the failure to understand the situation and 
check whether the valve had indeed been closed was 
judged a human error,  Lees (1983). 
 
An implicit conclusion may seem to be that when 
human error is the cause of an accident, there is nothing 
wrong with the hardware or software. However, we 
strongly believe that many human errors are partly 
caused by shortcomings in the design of the cont rol and 
presentation systems. 
 
For example, in order to quickly find small problems, 
plants are equipped with a large number of alarms. But 
in a large accident, this may mean that too many alarms 
are activated, so that the operators cannot keep up with 
them, and the alarm system may become counter -
productive or even useless. For example, in the Thee-
Mile Island incident, the printer queue for the alarms 
was some three hours behind schedule, and more than 
100 audio alarms were active simultaneously, Lees 
(1983). Alarm showers may consist of several hundred 
alarms in less than a minute. When operators fail to act 
correctly under such circumstances, we consider it 
wrong to speak of human error, because no human 
would be able to handle the situation correctly. 
 
Improving Instrumentation and Control Systems 
Several methods for improving instrumentation and 
control systems have been proposed. Among these are:  
 
• Sensor fault detection, based on local monitoring of 

each sensor or global comparison between multiple, 
partly redundant sensors. The latter could possibly 



have helped the operators to have some suspicions 
about the PORV in the Three-Mile Island incident. 

• Alarm analysis, that is, separation of alarms into 
primary and consequential ones, where the latter 
can be suppressed. It is believed that the number of 
alarms activated during the Three-Mile Island 
incident could have been reduced by many orders 
of magnitude by an alarm analysis algorithm. 

• Fault diagnosis, where a computerized system 
performs measurements and asks questions in order 
to systematically find the primary explanations for 
a problem. 

• Failure mode and effects analysis, where the 
consequences of breakdown of a certain physical 
component will be shown for other components and 
systems in the plant. 

 
Alarm analysis systems were in use on the nuclear 
reactors at Oldbury and Wylfa in the United Kingdom, 
Lees (1983). These systems were based on alarm tress, 
that is, graphical descriptions where the possible alarms 
are linked to each other, telling which alarms are 
causally connected with each other. 
 
However, these systems were not very successful. 
Referring to the Oldbury system, Long (1980) writes: 
 

“However, the performance of this and two related 
systems was reported at the meeting to be less than 
satisfactory. Specifically, the alarm trees were costly 
to develop, subject to error, and difficult to modify.” 

 
In later years, and especially after the Three-Mile Island 
incident, people have tried to use rule-based expert 
systems for automated fault diagnosis of complex 
plants. Again, the conclusions have been that the effort 
to build and update the knowledge needed in such a 
system is too large. Still, systems are constructed by, for 
example, Gensym Corporation and Cogsys, where the 
latter has built a system for alarm analysis based on 
fuzzy rules for a blast furnace plant in Australia. 
 
In this paper, we present a set of algorithms for operator 
support, based on multilevel flow models. The main 
advantage is that the knowledge engineering effort 
needed is relat ively small. Thus, we believe that these 
methods may indeed form a practical solution to many 
of the problems described, and help to avoid several 
kinds of human error. 
 
Multilevel Flow Models 
Multilevel flow models (MFM) are graphical models of 
goals  and functions  of technical systems. The goals 
describe the purposes of a system or subsystem, and the 
functions describe the capabilities of the system in terms 
of flows of mass, energy, and information. MFM also 

describes the relations between the goals and the 
functions that achieve those goals, and between 
functions and the subgoals, which provide conditions 
for these functions. MFM was invented by Morten Lind 
at the Technical University of Denmark, see Lind (1990 
a). Several new algorithms and implementations were 
contributed by Jan Eric Larsson at Lund Institute of 
Technology, see Larsson (1992, 1994 a, 1996). 
 
MFM provides a good basis for diagnostic algorithms. 
The work of Larsson (1996) describes three algorithms 
based on MFM: measurement validation, alarm 
analysis, and fault diagnosis. Other algorithms have 
been developed later, such as fuzzy alarm analysis, see 
Dahlstrand (1998), Larsson and Dahlstrand (1998), 
failure mode analysis, see Öhman (1999), and sensor 
fault detection. 
 
The measurement validation algorithm would have 
detected the discrepancy in the PORV flow at Three-
mile Island, and the alarm analysis would have 
drastically reduced the number of active alarms. Had 
these MFM algorithms been in use, the incident would 
never have happened. 
 
An Example of an MFM Model 
MFM has been thoroughly explained in Lind (1990 a) 
and Larsson (1992, 1996). Here a small example will be 
given, to show the basics of MFM modeling. We will 
use a part of the main circulation system of a nuclear 
power plant. A much simplified process graph, from an 
example in the master’s project Ingström (1998), is 
shown in Figure 1. 
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Figure 1. A process graph of the main recirculation 
system of a nuclear power plant. 

 
In this system, reactor tank water flows from the 
downcomer, via the valve V1, to the pump. After the 
pump, the water flows through the two parallel valves 



V2 and V3, back to the moderator tank. The pump is 
cooled by water. There is also a need for a frequency 
converter for the power to the pump, since the pump is 
frequency-controlled. Finally, the frequency converter 
must also be cooled. The purpose of the main water 
circulation is to control (moderate) the flow of neutrons 
in the reactor, and to cool it at the same time. 
 
The goals of this simple system are: “maintain desired 
water flow through the moderator tank,” “cool the 
pump,” “provide electrical energy with the correct 
frequency,” and “cool the frequency transformer.” 
 
The functions of the system are, among others, the 
downcomer’s ability to provide water, the pump’s 
ability to transport water, and the heat exchanger’s 
ability to transport heat. An MFM model of this system 
is shown in Figure 2. 
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Figure 2. An MFM model of the main recirculation 
system. 

 
In the MFM model, there are four flows. The flow 
network M1 describes the water flow from the 
downcomer to the moderator tank. The network E1 
describes the transport of thermal energy from the pump 
to the cooling water. The network E2 describes the flow 
of electrical energy from the supply, via the frequency 
transformer, to the pump. Finally, the network E3 
describes the flow of thermal energy from the frequency 
transformer to the cooling water. Thus, M1 is a model 
of a mass flow, and E1 to E3 are models of energy 
flows. In the network M1 the functions are, from left to 
right: 1) a source of water, realized by the downcomer; 
2) a transport, realized by the valve V1; 3) a balance, 
realized by the pipe between V1 and the pump; 4) 
another transport, realized by the pum p; 5) another 

balance, realized by the forking pipe between the pump 
and the two parallel valves V2 and V3; 6) two 
transports, realized by the valves V2 and V3; 7) a 
balance, realized by the pipe sections between V2 and 
V3, and the moderator tank; 8) a transport, realized by 
the pipe that runs into the moderator tank; and finally, 
9) a sink, realized by the moderator tank. The networks 
E1 to E3 contain energy flow functions describing the 
flows of electrical and thermal energy. 

 
It should be noted that MFM describes how different 
flows enable each other. In the simple example in 
Figure 2, it can be seen that the cooling water flow E3 is 
necessary for the proper function of the frequency 
converter, and that the cooling water flow E1 and the 
electrical flow E2 are needed to keep the main water 
flow operating.  
 
Algorithms Based on MFM 
Over the years, Larsson and his research group have 
developed several algorithms based on MFM. The 
algorithms are as follows: 
 
Quantitative Sensor Validation 
This algorithm uses quantitative process measurements 
to detect inconsistencies between redundant sensor 
values. In this way, it can detect faulty sensors and 
leaks. It can also provide guesses about the correct 
values, which can be used as “validated” values instead 
of the faulty ones. 

 
Discrete Sensor Validation 
This algorithm uses discrete (alarm) values to detect 
inconsistencies between redundant indications. In this 
way, it can detect faulty sensors and leaks. It can also 
provide guesses about the correct values, which can be 
used as “validated” values instead of the faulty ones. 

 
Alarm Analysis 
This algorithm sorts discrete status indicators, such as 
events and alarms, into primary and consequential. In 
this way, it can pinpoint the root causes of large alarm 
showers correctly, and it allows for alarm suppression 
without risking suppression of the primary cause. 

 
Fault Diagnosis 
This algorithm uses discrete process measurements to 
search from observed fault indications to root causes. 
The result is a complete explanation of a fault situation. 
The algorithm uses fault observations to guide the 
search and avoiding unnecessary measurements. 

 
Action Planning 
This algorithm uses the results of the other algorithms to 
generate fault reports in different formats, including 
recommen dations on corrective action plans. 

 



Failure Mode Analysis 
This algorithm calculates future consequences of 
actions, given a process state and one or several 
proposed faults or actions. In this way, it is an on-line 
planning support tool. 

 
Reliability Analysis 
This algorithm uses known measures of availability or 
reliability for each component to calculate similar 
measures for subsystems and entire processes, either 
off-line during design or on-line during operation. 

 
Trend Analysis 
This algorithm uses historical signal data (trend data) to 
provide early warning of faults, before alarm limits are 
exceeded. 

 
Alarm Cleanup 
This algorithm uses comparison of redundant status 
indications and alarms to detect erroneously set alarm 
limits, that is, to pinpoint alarms that are activated when 
they should not be, and alarms, which are silent when 
something is wrong. 

 
Verification of Redundancy 
This algorithm checks whether redundant subsystems 
rely on common support systems. If so, true redundancy 
may be compromised and the process design is faulty. 

 
Verification of Safety Classification 
This algorithm checks whether classified subsystems 
rely on non -classified support systems. If so, safety may 
be compromised. 
 
Verification of Redundancy 
This algorithm checks whether redundant subsystems 
rely on common support systems. If so, true redundancy 
may be compromised. 

 
All the algorithms above use the same MFM model, that 
is, the MFM model is the “knowledge database” for the 
algorithms. This has some obvious advantages: 
 
• A single modeling effort will provide the database 

needed for a whole set of different diagnostic tasks. 
• The same MFM model can be used throughout the 

life cycle of the process, for different design and 
supervision tasks. 

 
Advantages of MFM Algorithms 
The algorithms described in Larsson (1996) are based 
on discrete logic where the “sensor” values are low, 
normal, or high, and the resulting values are consistent 
or inconsistent, working or failed, primary or 
consequential, etc. In other words, MFM uses a 
linguistic interpretation of logic variables, just as do 
rule-based expert systems and systems based on fuzzy 

logic. In addition, the MFM algorithms all operate by 
searching in fixed graphs. We have aimed at always 
producing algorithms that can handle the full MFM  
syntax, including closed loops in both the flows and the 
means-end dimension, as well as every kind of multiple 
fault situation. In addition, these complex cases should 
be handled by search methods of linear or sublinear 
complexity. So far, all of our pre sented methods fulfill 
these requirements. Together with the discrete logic, 
explicit means-end concepts, and graphical nature of 
MFM, this gives several advantages: 
 
• The explicit description of goals and functions 

gives a small semantic gap between the diagnostic 
task formulation and the knowledge representation. 

• The graphical representation provides strong 
support for knowledge base overview and 
consistency, and there is no need for a specialized 
knowledge engineering tool. 

• The high level of abstraction makes knowledge 
acquisition, knowledge engineering, and knowledge 
base validation and support considerably easier than 
with standard rule-based systems or fuzzy logic 
systems. 

• The graphical nature of the models allows the 
algorithms to have good real -time properties, such 
as an easily computed worst-case time, low 
memory demands, and high efficiency. 

• The high level of abstraction allows the algorithms 
to be very fast. A worst-case fault diagnosis on the 
Guardian system, for example, takes less than 80 
micros econds on a 500 MHz Pentium Computer. 

 
These advantages have been observed in practice, 
during the development of the Steritherm system and 
during the Guardian project, when MFM was compared 
to several other modeling methodologies, see Larsson 
(1996), Larsson et al. (1997 b), and Larsson and Hayes -
Roth (1998). Furthermore, we have corroborated these 
evaluations in an alarm analysis project for the 
Barsebäck nuclear power plant, Larsson (1998), Larsson 
and Öhman (1998), Öhman (2000 a, b). 

 
Experiences of MFM from the Steritherm Project 
The author’s doctor’s project used two target processes, 
a small lab tanks system and Steritherm, Larsson 
(1992). The latter is a widely used, moderately sized 
process for ultra-high temperature (UHT) treatment of 
dairy product s. 
 
The most important observation from this effort was 
that the knowledge engineering effort needed to build 
the MFM model of Steritherm was considerably less 
than for the other diagnostic methods also used in the 
KBRTCS project. These other algorithms were MIDAS, 
Oyeleye (1989) and Finch (1989), a system using signed 



directed graphs, (SDG), and the Diagnostic Model 
Processor, (DMP), Petti et al. (1990), Petti and Dhurjati 
(1991), and Petti (1992), a representation based on 
quantitative equations. 
 
Experiences of MFM from the Guardian Project 
The Guardian project aimed at developing a monitoring 
and diagnosis system for use with post-operative 
intensive-care patients, see Larsson et al. (1997 a, b) and 
Larsson and Hayes -Roth (1998), and resulted in a 
demonstrator system which was successfully tested on 
realistic scenarios. In the verification tests that were 
performed during the project, the system outperformed 
the human test subjects, see Larsson et al. (1997 b). 
 
For the Guardian project, a large MFM model of the 
human body was developed. It covers all systems 
needed for intensive-care unit monitoring. The 
algorithms provided accurate, reliable, and easily tuned 
diagnostics, and they were much faster than the other 
algorithms in Guardian. In addition, the knowledge 
engineering effort needed for the MFM model was 
clearly less than what was needed for the other 
metho dologies. 
 
The two other methods used in Guardian were REACT 
and PCT, (parsimonious covering theory), Larsson, 
Hayes -Roth, and Gaba (1997 a), Larsson, Hayes -Roth, 
Gaba, and Smith (1997 b), Larsson and Hayes -Roth 
(1998). Both these representations needed considerably 
more work than MFM, mainly because they rely on 
numerical weights for conditional probabilities for a 
sign to be observed given that a disease is present. 
 
The Barsebäck Project 
In this project, we developed MFM models of selected 
main systems of the Barsebäck nuclear power plant, in 
cooperation between the Department of Information 
Technology and Southern Sweden Power Supply 
(Sydkraft AB). The aim was to provide fast and reliable 
alarm analysis based on MFM. The master’s thesis 
Ingström (1998) presented a first MFM model of the 
main systems of the power plant. Test scenarios came 
from the nuclear simulator facility at KSU, Studsvik. A 
demonstrator system was ready in the autumn of 2000 
and the results so far have been described in Öhman 
(2000 a, b). 
 
Related Work  
The main contributions to MFM have been made by 
Morten Lind and his group. Lind (1990 a, 1994) 
describes the basics of MFM, while Lind (1990 b) 
contains an early suggestion for a diagnostic system. 
Lind has also treated real-time diagnosis, Lind (1990 c), 
and design of operator interfaces, Lind (1989).  
 

MFM has also been used in nuclear safety research, De 
et al. (1982) and Businaro et al. (1985), in operator 
interfaces for fault diagnosis, Duncan and Prætorius 
(1989), for constructing COGSYS diagnostic systems, 
Sassen (1993), for fault diagnosis in process industry, 
Walseth (1993), and in intelligent man-machine systems 
for nuclear plants, Monta et al. (1991). 
 
MFM can be compared to other modeling and diagnosis 
methodologies, such as rule-based expert systems, fuzzy 
logic, qualitative physics based on Reiter’s algorithm, 
Hamscher et al. (1992), Reiter (1987), Greiner et al. 
(1989), classical statistical methods, methods from 
control theory, Frank (1996), and neural networks. In 
comparison to expert systems and fuzzy logic, MFM 
imposes a deep model structure of means and ends, as 
opposed to a shallow rule-based representation. It 
differs from qualitative physics in that it explicitly 
represents goals and functions, avoids general logic, and 
is computationally more efficient, while qualitative 
physics has been geared towards diagnosis of electrical 
circuits, a task which MFM is not very well adapted for. 
MFM differs from statistical and control theory methods 
in that it uses discrete and more abstract representations, 
and thus is useful on a higher level of decision and 
diagnosis. For example, control theory methods are 
usually aimed at fault detection on control loop level, 
while MFM is aimed at diagnostic reasoning on a plant -
wide level. Finally, MFM differs strongly from neural 
networks in that it explicitly represents human 
knowledge using linguistic concepts, and that the model 
construction relies almost completely on available 
human knowledge and not on automatic generalization 
of test cases. 
 
Conclusions 
MFM provides a good basis for diagnostic algorithms 
for industrial processes. Among its advantages is an 
explicit description of goals and functions, a relatively 
easy knowledge engineering task due to the graphical 
and highly abstract nature of MFM models, and finally, 
the possibility to produce very fast algorithms with good 
real-time properties. With MFM, it is possible to reduce 
the number of accidents caused by human error. 
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