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Abstract 
 
This thesis has two goals. Firstly, we consider the problem of model selection for the 

purposes of prediction. In modern science predictive mathematical models are 

ubiquitous and can be found in such diverse fields as weather forecasting, 

economics, ecology, mathematical psychology, sociology, etc. It is often the case 

that for a given domain of inquiry there are several plausible models, and the issue 

then is how to discriminate between them – this is the problem of model selection. 

We consider approaches to model selection that are used in classical [also known as 

frequentist] statistics, and fashionable in recent years methods of Akaike Information 

Criterion [AIC] and Bayes Information Criterion [BIC], the latter being a part of a 

broader Bayesian approach. We show the connection between AIC and BIC, and 

provide comparison of performance of these methods. 

 

Secondly, we consider some philosophical arguments that arise within the setting of 

the model selection approaches investigated in the first part. These arguments aim to 

provide counterexamples to the epistemic thesis of scientific realism, viz., that 

predictively successful scientific theories are approximately true, and to the idea that 

truth and predictive accuracy go together. 

 

We argue for the following claims: 1) that none of the criticisms brought forward in 

the philosophical literature against the AIC methodology are devastating, and AIC 

remains a viable method of model selection; 2) that the BIC methodology likewise 

survives the numerous criticisms; 3) that the counterexamples to scientific realism 

that ostensibly arise within the framework of model selection are flawed; 4) that in 

general the model selection methods discussed in this thesis are neutral with regards 

to the issue of scientific realism; 5) that a plurality of methodologies should be 

applied to the problem of model selection with full awareness of the foundational 

issues that each of these methodologies has. 
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1. Introduction and Classical Methods of Model Selection 

 

1.1 The Three Problems of Model Construction 

 

In life in general, and in science in particular, one is often interested in issues as to 

how to explain, or predict various phenomena. For instance, where would the cannon 

ball fall if one were to shoot it from a certain cannon? And, for that matter, what is 

the explanation as for why it is to fall [or has already fallen] in the predicted place 

[or, indeed, elsewhere]? Explanation is a fascinating subject in itself. However, in 

this thesis we shall concentrate on the no less fascinating subject of scientific [more 

specifically, statistical] prediction. 

 

So, let us get to the cannon ball example. How are we to predict where the cannon 

ball is to land if shot? In order to do so we come up with a model. That is, we engage 

into the process of abstraction and idealisation from the ‘real world’. We abstract 

from the features of the world that are deemed irrelevant for our purposes and take 

into account only the relevant facts according to Newton’s physics [which we will 

take for granted in this example] such as the angle of elevation of the cannon with 

respect to the ground level, the velocity of the cannon ball as it exits the barrel of the 

cannon, the weight of the cannon ball, the speed and direction of wind, friction in the 

barrel of the cannon, etc. We idealise certain features. For example, it may be 

impractical and costly to calculate the friction within the cannon’s barrel as it is, so 

we may assume that it is a totally smooth surface. We make further assumptions 

such as that the speed and direction of wind are both constant. We may sketch our 

model on the back of the envelope for ease of representation. Once we have done all 

of these, we have our predictive model. 

 

For our purposes we can think of a scientific model as a tool, which aids us in 

generating predictions of phenomena of interest. We are certain that the cannon ball 

model [quite possibly not in exactly the same way as it is envisaged here, but, we 

would venture, closely enough] was an important predictive tool utilised by the 

Western armies of a couple of centuries back. 
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At this junction let us draw an important distinction between theoretical and 

statistical modelling. This is not the only distinction one can draw, and for the 

purposes of this thesis we shall use it rather loosely, for we are concerned with 

statistical modelling that has theoretical influence/elements in it. However, this 

distinction provides conceptual clarity to our proceedings. A theoretical model is a 

model constructed using a general theory without involving data. The preceding 

example of a model is in fact an example of theoretical modelling. In this example 

such theory is Newtonian mechanics. We feed the initial conditions into the 

equations of Newton’s mechanics to yield our prediction. However, this thesis is 

going to be concerned with statistical models. These models are predominantly built 

from the data upwards without much use of the general theory, if any. To illustrate, 

let us use the setup of the cannon ball example. If we wanted to construct a ‘pure’ 

statistical predictive model, we would shoot several cannon balls from the cannon 

every time observing the quantities that we consider relevant such as the amount of 

gun power input, the angle of elevation of the cannon barrel, exit velocity, velocity 

and direction of wind, etc. When shooting cannon balls we would vary the relevant 

quantities – e.g., we would vary the amount of gunpowder, change the angle of 

elevation, etc. to see how it affects the distance that our cannon balls travel. Then we 

would come up with a model by means of correlating these data. We imagine 

[although we have not undertaken research into this matter] that early Chinese users 

of cannon technology and the medieval Western armies would have modelled the 

phenomenon in a way akin to our description of statistical modelling1. 

 

There is also a salient distinction within modelling between deterministic and 

probabilistic models. It has to be emphasised that this distinction is independent of 

the theoretical vs. statistical distinction. Deterministic models are such that the 

predictions that they issue are of a definitive nature. For example, a deterministic 

model may predict that given the current amount of gunpowder, the elevation of the 

cannon barrel and the velocity and direction of wind, the cannon ball will land 

exactly 552 metres due north if shot now2. Whereas, using the same example, the 

                                                 
1 Reader interested in the historical development of projectile technology is referred to Crosby (2002). 
2 For our purposes we take Popper’s definition of scientific determinism, viz.: ‘…the doctrine that the 
state of any closed physical system at any given future instant of time can be predicted, even from 
within the system, with any specified degree of precision, by deducing the prediction from theories, in 
conjunction with initial conditions whose required degree of precision can always be calculated [in 
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probabilistic variant thereof would yield a distribution of likely landings with 

probabilities attached to them. The following table provides examples of each of the 

four types of models. 

 

Models Theoretical Statistical 

Deterministic Cannon model constructed by using 

general theory which issues definitive 

“non-chancy” predictions  

Cannon model constructed 

by correlating data which 

yield a definitive curve such 

that all the data points lie on 

it 

Probabilistic A model of radioactive decay of 

radioactive elements.  

Cannon model constructed 

by correlating data which 

yield a definitive curve such 

that the data points lie close 

to it reflecting imprecision of 

measurement 

 

It is clear that the cannon ball model fits into the deterministic theoretical category. 

On the other hand, an example of a theoretical probabilistic model is the radioactive 

decay model, which is solidly based on the theory of quantum mechanics that issues 

probabilistic predictions. Deterministic statistical models, although logically 

possible, are in practice rather fictitious, for their construction involves highly 

restrictive conditions. For instance, in our cannon ball example, the cannon would 

have to be fired indoors to remove the factor of the wind, or a deterministic theory of 

the wind movement would have to be added, which on current scientific thinking is 

not feasible, because, among other conditions, it requires infinite precision of 

measurement of the initial conditions3. Still, we shall use deterministic statistical 

models for ease of introduction to the issue of model selection among probabilistic 

statistical models. 

 

                                                                                                                                          
accordance with the principle of accountability] if the prediction task is given.’ [Popper (1982):36] 
For a thorough discussion of determinism cf. Earman (1986). 
3 For a thorough introductory text on the mathematical chaos theory, of which this is an instance, 
please see Stewart (2002). 
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Indeed, in this thesis we concentrate on statistical probabilistic models. The reason 

for the focus on statistical modelling is that such models have gained prominence 

and play an enormous role in many sciences. The list of sciences that use statistical 

modelling keeps growing. It finds application in economics, sociology, mathematical 

psychology, environmental sciences, etc. 

 

A probabilistic statistical model is a mathematical equation, with the aid of which 

one describes the phenomenon under study in terms of random variables that have 

probability distributions ascribed to them. The explanation of what these terms are 

will be provided in section 1.3. As we mentioned at the very beginning of this 

chapter, in this thesis we concentrate on use statistical models for the purposes of 

prediction. 

 

Let us now turn to statistical models and see how they are constructed using a simple 

example. 

 

Suppose, for instance, that we are interested in finding out how the heights and 

weights are correlated with each other of, say, males, who are in their 20’s and who 

live in the London borough of Waltham Forest. The reason for such a fascination 

with the heights and weights could be that we are perhaps acting on behalf of the 

local health authority, which is in the process of planning a new hospital. The 

authority may be interested in obesity [e.g., they may want to predict what the Body 

Mass Index4 within the Borough would be], or in predicting as to what would be the 

optimal height of the doorways, the sizes of beds, weight load of equipment such as 

wheel chairs. They may also hold a general interest in the demography of the 

Borough.  

 

Let us suppose that we would like to predict the weight of any such male given his 

height. In order to draw an inference we need to do three things. First, we collect a 

sample of data from the population. Second, we choose the structure of the model 

                                                 
4 BMI is one of the most widely recognised indices used in order to classify weight of adults. It is 
defined as weight (kilograms) / height2 (metres). If one’s BMI is below 18.5, one is considered to be 
underweight (in particular, if BMI < 16, one is classified as “severely thin”) whereas if one’s BMI > 
25 one is considered to be overweight (in particular, if BMI > 30, one is classified as “obese”). 
Source: World Health Organization: http://apps.who.int/bmi/index.jsp?introPage=intro_3.html 



11 
 

[that is, the functional form of the model or, in other words, the family of models 

which have the same functional form but differ in that their parameters are set at 

different values] according to which the weights and heights are related. Third, 

having chosen the structure, we determine the values of parameters, that is, we pick a 

particular model5 from the family of models. Let us consider these steps in turn. 

 

1.1.1 Sampling 

 

This section is here solely for completeness of presentation of statistical modelling 

process. The focus of the thesis shall be entirely on the issue on model selection and 

on parameter estimation. We will be concerned with parameter estimation insofar as 

it is relevant to model selection. Hence we gloss over quite interesting issues in 

sampling6. We mention the solutions that we find reasonable and appealing without 

much argumentation in order to give the reader a sense of where we stand on these 

issues. 

 

The question as to how to draw such a sample properly has attracted a lot of attention 

in statistics. Sampling techniques can be divided into two categories – random 

sampling and judgement [representative] sampling7. 

 

1.1.1.1 Random Sampling 

 

In random sampling every member of the population has to have a known objective 

probability of being selected for sampling to be called random. In our example one 

way that this can be achieved is by assigning every known male in the borough of 

Waltham Forest a unique natural number, then putting each number on a separate 

ball, then placing all the balls in an urn and drawing n balls [n corresponding to the 

size of the sample] from the urn without looking [so that each ball has an equal 

                                                 
5 Our usage of the term ‘model’ here closely follows van Fraassen’s: ‘Thus in the scientists’ use, 
‘model’ denotes what I would call a model-type. Whenever certain parameters are left unspecified in 
the description of a structure, it would be more accurate to say … that we described a structure-type. I 
will continue to use the term ‘model’ to refer to specific structures, in which all relevant parameters 
have specific values.’ [van Fraassen (1980):44] Our notion of a model corresponds to van Fraassen’s 
‘model-type’ or ‘structure-type’.  
6 For further details and discussion of sampling cf. Stuart (1962), Stuart (1984), Urbach (1989). 
7 Ibid. 
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chance of being picked], noting down the numbers and contacting the individuals 

who had those numbers associated with them to find out what their heights and 

weights are. In fact, this is an example of simple random sampling, where every 

member of the population has an equal probability of being selected.  

 

A different way to do random sampling would be to divide the population into sub-

populations [strata] with respect to some characteristics that are believed to be 

correlated with the attributes of primary interest. So, in our weights/heights example, 

weights and heights of individuals are such attributes of primary interest, and the 

characteristics according to which the population of males can be divided could be 

the countries of their origin [for instance, it is commonly observed that males from 

Scandinavian countries tend to be relatively tall and slender, and, say, males from the 

Indian subcontinent also tend to be slender, but are relatively shorter than the 

Scandinavians], the level of their disposable income [males on the relatively lower 

incomes seem to consume more unhealthy foods], etc. Once the population is 

stratified in this way, the simple random sampling is done within each stratum. The 

merit of stratified sampling in comparison to simple random sampling is that in 

situations where there is at least some amount of prior knowledge about possibly 

correlated characteristics, stratification results in more precise estimation [i.e., 

inferences from stratified samples almost always have smaller variance – the 

measures of precision are to be discussed in subsequent sections]. Stratification 

maximises precision when the average values of observations are as different as 

possible, and their variances are as small as possible8. Intuitively, the maximal 

difference implies that the characteristic according to which the stratification was 

done is correlated with the attributes of interest. In fact stratification with respect to 

any characteristic leads to an increase in precision, so long as the size of the sample 

is small in proportion to the population, and the strata contain more than one 

member. 

 

Another type of random sampling is cluster sampling. In cluster sampling one also 

divides the population into sub-populations, but instead of doing random sampling 

within each sub-population, one randomly selects a single sub-population, and then 

                                                 
8 cf. Stuart (1962):49 
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makes up the sample from all the individuals within the selected sub-population.  An 

example of cluster sampling is list sampling. If we take the list of all the relevant 

males in our particular example in alphabetical order of their surnames, then divide 

the population with respect to the first letter of their surname in such a way that the 

number of individuals in each cluster is about the same [so if the number of 

individuals that have the letter S as the first letter of their surname is about the same 

as the number of males that have their surname begin with X or Y or Z, then we 

form two clusters – one S cluster and one XYZ cluster, and carry on in this fashion 

with respect to the other letters of the alphabet] and then randomly select one such 

sub-population to constitute our sample, then we will have done cluster sampling. 

An advantage of cluster sampling over stratified sampling is that sometimes 

population is naturally arranged into clusters – for example, into districts, or 

households, into groups of employees or different companies, etc. On the other hand, 

for cluster sampling to achieve an improvement in precision over stratified sampling, 

the individuals within the clusters have to be maximally varied. Intuitively that 

means that clusters should be as representative of variation within the population as 

possible. So, following the earlier example, if we are to do list sampling, under each 

first letter of a surname we would like to have some Scandinavians, some males 

from Indian subcontinent, etc., in our clusters roughly in proportion in which they 

occur in the whole population. If, however, our clusters are not varied, cluster 

sampling achieves much lower precision than both simple random and, a fortiori, 

stratified sampling. That is, if, say, the cluster ABC is randomly selected, and it so 

happens that young adult males from Scandinavia predominantly have such 

surnames, then we would have a sample skewed towards relatively slim tall males. 

 

1.1.1.2 Judgement Sampling 

 

Judgement [also known as representative] sampling is the same as stratified random 

sampling, but for one important feature – it is not random. The idea behind 

judgement sampling is that the most important thing that one [that is, a researcher 

who does sampling] has to do is to choose according to which categories the 

population should be divided into sub-populations. Once that is done, one then 

determines how many individuals should be ‘observed’ in each sub-population based 

on the proportion of the quantity of individuals in a given sub-population with 
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respect to the total number of individuals in the population. Then one picks the 

determined number of individuals in each sub-population [hence it is sometimes 

referred to as quota sampling] in whatever way it is most practicable to do so – 

randomisation in this case is not the sine qua non. 

 

Let us further clarify what the difference between stratified and judgement sampling 

is. Indeed, it is the case that in both methods one divides the population into sub-

population according to some salient characteristics. However, in stratified random 

sampling one has to draw samples from sub-population by randomised sampling, 

whereas in judgement sampling one is free to pick individuals for one’s sample 

according to one’s own ideas. 

 

1.1.2 Model Selection 

 

So, suppose that we have picked a sample in one of the ways described in the sub-

section above. What do we need to do further? We need to choose [or construct] a 

statistical model, which involves choosing the mathematical structure, and pick the 

values of parameters. In our usage ‘model selection’ refers to choosing the 

mathematical structure. The issues of what scientific models are, how they interact 

with theories and observations, etc. have attracted a lot of attention in the recent 

years9. However, as we mentioned in the beginning of this section, in this thesis we 

will consider statistical models only. 

 

Now, why do we need a statistical model in our example? Since we are interested in 

finding out the relationship between weights and heights of the males [say, we are 

trying to come up with a generalisation for the purposes of prediction as to what the 

height of any such male within the Borough will be, given his weight], we would 

like to know the form of this relationship. That is, for a given unit increase in height 

of a male, would his weight be expected to increase in linear proportion, or perhaps 

quadratic, or cubic, or in some other way? Would a unit change in height correspond 

to the same change in the weight if the person is relatively ‘tall’ rather than if he is 

                                                 
9 For a comprehensive survey cf. Frigg and Hartmann (2006). 
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somewhat ‘short’? To begin with, let us see what form statistical models can take in 

order to make sense of the model selection approaches. 

 

For now we will introduce deterministic statistical models, since they are in a sense 

simpler than probabilistic statistical models. It shall be easier to move onto 

probabilistic statistical models once we consider deterministic ones because these 

two types of models have many features in common. 

 

Y = aX + b is an example of a linear model [call it LIN]. Each combination of the 

values of parameters a and b would pick out a particular element within the linear 

model – an element of LIN. LIN has two variables – X is usually referred to as the 

independent variable and Y as the dependent variable. To make this model 

probabilistic one would need to introduce a random component [it is also often 

called an error term] ε: Y = aX + b + ε, where ε has a probability distribution10. 

Another example of a deterministic statistical model is the quadratic one [call it 

PAR]: Y = aX2 + bX + c. The elements of PAR for which a ≠ 0 are represented by 

parabolic curves in the Cartesian plane. Since in our example we are interested in 

predicting the weight, the dependent variable Y represents the weight measured, say, 

in kilograms, and the independent variable X represents the height measured, say, in 

centimetres. 

 

Now, the two schools of statistical thought within which the vast majority of 

statistical reasoning takes place are the so-called Classical statistics and Bayesian 

statistics. We defer consideration of Bayesian statistics until chapter 4. 

 

In chapter 2 we consider some of the methods of Classical statistics. These methods 

are not traditionally thought to be about model selection, although they can be 

viewed as such, at least to a limited extent [cf. Forster (2001)]. Roughly speaking, 

the methods of Classical statistics usually assume that the functional form of a 

hypothesis [or, in our usage above, a model] is known, and proceed to use samples 

of data to test models with the parameters set at particular values either by 

themselves or against an alternative model with different values of parameters, or to 

                                                 
10 This notion, among others, will be elucidated in section 1.3. 
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test two subsets of the same model against each another, or estimate parameters from 

samples of data by particular values [thus picking out an element of the model] or by 

ranges of values [thus narrowing the range of plausible elements within the model]. 

 

The reasons as to why we consider Classical statistical methods even though they are 

related to model selection in a rather limited sense are the following. Firstly, 

Classical statistics is the most influential type of statistical reasoning, familiarity 

with at least the major points of which is pre-requisite for any field of statistical 

analysis. Secondly, the methods of Classical statistics are used by many as the ‘gold 

standard’ against which all other methods are judged, including the methods which 

we consider in chapters 3 and 4, that take model selection as their explicit aim. 

Thirdly, the methods of Classical statistics have featured in the philosophical debate 

with regards to the putative connection between model selection methods and 

scientific realism, to the consideration of which we turn in chapter 5. 

 

In section 4.1 we consider the main features of Bayesian statistics, which has been 

the main rival to the Classical statistical thought in modern statistics11. In Bayesian 

statistics the issue of model selection arises quite naturally. 

 

1.1.3 Parameter Estimation 

 

At this point let us state that throughout this thesis we are concerned with parametric 

modelling. That is, with models which have finite-dimensional vector-valued 

parameters. For non-parametric methods see Silvey (1975):chapter 9 and Spanos 

(2001). 

 

As we mentioned in section 1.1.2, choosing a statistical model amounts to choosing 

a set of mathematical equations that have the same structure. E.g., Y = aX + b is a 

linear model specifying an uncountably infinite set of particular lines that have 

distinct values of parameters a, b. As we noted above, this linear equation does not 

amount to a probabilistic statistical model [it lacks a random component as it stands] 

but that will matter later on in the thesis. For the ease of introduction a deterministic 

                                                 
11 For an insightful summary of the debates both internal and external to the Classical statistics see 
Mayo (2005). 
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statistical model will do. Once we have picked/found our statistical model [suppose 

for now that we picked the linear model in our height/weight example, where X 

denotes the heights variable and Y denotes the weights variable], the task is to 

estimate the values of the parameters a and b from the sample data that we have. 

These values would give us a particular statistical model [that is, a particular element 

of linear model]. A formula whereby estimation is carried out is called an estimator, 

whereas the particular values that it takes are called the estimates. Logically there are 

infinitely many ways of doing so. Let us briefly see how the Classical and Bayesian 

approaches attempt to solve the issue. We shall go deeper into the Bayesian approach 

in section 4.1. The introduction below is conducted in very general terms because the 

definition and explanation of statistical terms necessary for more precise rendition is 

forthcoming in later sections. 

 

Classical statistics has a list of properties that an admissible estimator should have. 

The most important and most commonly used properties are unbiasedness, 

consistency, efficiency and possession of minimum squared error. Let us look at 

these in turn. 

 

An estimator is unbiased when the estimates that it yields across different samples 

are on average equal to the value of the true parameter.  An estimator is said to be 

consistent when, as the sample size tends towards infinity, the estimates provided by 

the estimator converge on the true value. An estimator is efficient just in case the 

estimates yielded from the estimator have the minimum spread among the estimators 

within the same class. That is, the range within which such estimates lie is on 

average the shortest [in statistical terminology, this is expressed as the estimator has 

the minimum variance]. Here is an example. Let us go back to the linear model Y = 

aX + b. Let us suppose that we want to estimate the value of the parameter a. In 

classical statistics we assume that the value of a is fixed but unknown. How should 

we go about the estimation? Again, without getting into the formal details, one way 

to do so would be this. We can plot the data points in the Cartesian plane and draw a 

line [that would be a particular manifestation of the linear model] in such a way that 

the sum of the squared vertical distances [that is, along the y-axis] from each point to 

the line is minimised. Thus this line would lie closer to each data point than any 

other element of the linear model [in the sense of minimal vertical square distance]. 
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The reasoning behind adopting such a method is that presumably our model should 

reflect the data as closely as possible in order to have any predictive success. We 

shall return to this point in chapter 3.  

 

Suppose now that our line is y = αx + β, where α and β are such that the line Y = αX 

+ β has the minimal sum of square distances to all data points within the sample. 

Now, suppose that we are restricting our attention to the group of linear estimators. 

That is, we are to pick estimators of a among the functions �� = cα + d, (�� stands for 

an estimator of a), so that a is a linear function of α. Now, what would be the best 

linear estimator among the infinitely many? The “classical” answer is that the best 

one is where c = 1 and d = 0. That is, �� = α. It is demonstrated that this estimator is 

unbiased, consistent and, under further conditions known as Gauss-Markov 

conditions [which there is no need to go into at this point], it has the minimum 

variance, i.e., that it is efficient. 

 

In Bayesian statistics point estimates are generally not provided because the 

inference is based on the full posterior distribution12, but point estimates can be 

derived. One popular method is called MAP – maximum a posteriori. Under this 

method the point estimator of a parameter is such that it provides the maximum 

posterior probability of the model in the light of the sample. This is equal to the 

mode of the posterior distribution. The mode of any sample is the value of random 

variable that occurs most frequently. To give a simple example, suppose that we 

rolled a die 7 times, and that the following is our sample of numerical outcomes: {1, 

1, 2, 4, 5, 5, 5}. In this case the mode is 5.13  

 

There is also the method of Maximum Likelihood Estimation. We defer 

consideration of this method until chapter 3, because understanding it will be crucial 

for the discussion of the Akaike Information Criterion in that chapter. 

 

                                                 
12 Roughly speaking, posterior probability distribution comprises a set of probabilities associated with 
each possible value of the parameters within a model in the light of data. We say more on this point in 
section 4.1. 
13 If the distribution is symmetrical univariate [i.e., it has only one random variable in it; we will see 
that the normal distribution is an example of such a distribution], the mean, mode and median are the 
same. The median of any sample is the middle value when the values arranged from the smallest to 
the largest in order. In this case the median is 4. 
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1.2 Methodological  Issues 

 

1.2.1 Sampling 

 

Please note that this section is here solely for the purpose of completeness of 

introducing the issue of model selection. The issues with sampling will not be 

considered in the rest of the thesis. It will be assumed that our data were gathered by 

some satisfactory method. So the issues in this section are flagged for possible 

interest of the reader, and some signposts are indicated as to where our philosophical 

opinion lies without much argument for or against, which is done deliberately. 

 

‘…Principle of Random Sampling asserts that satisfactory estimates can 
only be obtained from samples that are objectively random…’      

Howson and Urbach (2006):178 

 

The primary motivation for random selection of individuals to constitute the sample 

is that such a selection allows one to obtain a sample free of biases. A salient 

example of a possible bias is the selection bias. That is, conscious or unconscious 

tendency on behalf of the researcher to select members for the sample on the basis of 

some subjective idea as to what the salient characteristics of the population are. In 

random sampling what is important is the procedure whereby the sample is chosen, 

and not the actual outcome. The procedure has to be fair. That is, paradoxically [and 

it is called the central paradox of sampling theory14], if one selects the members of 

the sample solely on the basis of one’s own prejudices or ideas as to which particular 

members should be in the sample, and if exactly the same sample is chosen by the 

random process, the former sample would be inadmissible whereas the latter would 

be perfectly fine. Stuart says that this paradox is a hard pill to swallow. Nevertheless, 

he argues that the pill has to be swallowed in order to safeguard against unscrupulous 

researchers exercising their subjective biases. The notion of bias, incidentally, is 

different to that which we encounter in classical statistics with regards to the 

parameter estimation [cf. section 2.4.1]. Here the term ‘bias’ is used in synonymy 

with the term ‘prejudice’. 

 

                                                 
14 Stuart (1962) 



20 
 

So, from the point of view of a proponent of random sampling lack of randomisation 

opens judgement sampling to influence by biases or prejudice on behalf of 

researchers. However, there are several advantages that judgement sampling enjoys 

over random sampling. Judgement sampling focuses on the quality of the outcome of 

the procedure rather than on the procedure itself. This implies that the proponents of 

judgement sampling find it impossible to ‘swallow’ the paradox of random 

sampling. Judgement sampling is less costly and can be carried out much faster than 

random sampling. Judgement sampling avoids the issue of non-response. That is, 

situations when the individuals who have been painstakingly selected by random 

sampling cannot be reached or refuse to participate. Moreover, there is some 

inductive support for the effectiveness of representative sampling – for instance, 

success of political pre-election opinion polls, although it can be argued that the polls 

themselves lead to changes in behaviour on behalf of the electorate. Voters may 

engage in strategic voting on the basis of the results of such polls, thus creating a 

self-fulfilling prophecy. 

 

On balance, it seems that a halfway house approach is desirable. That is, doing a 

stratified random sampling depending on the amount of knowledge in the field, 

costs/speed required. If a lot is known about the phenomenon, and costs of random 

sampling are prohibitive, then representative sampling is just the ticket. 

 

1.2.2 Model Selection 

 

Model selection of a certain kind forms a considerable part of this thesis. So, 

suppose we have gathered our sample in a way suitable for us. We now have several 

models/equations that could be candidates for the predictive model we are to use. On 

what basis are we to pick one?  

 

The first choice that we have to make is whether we are to 

confirm/validate/test/choose between models that we have arrived at prior to 

considering our sample, or whether we are to attempt to construct the model by 

looking at the data – that is, by ‘letting the data speak for themselves’.  In this thesis 

we will be concerned with the former approach. There is a consensus that the latter 

methodology often leads to problems with spurious correlations and models that are 
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not useful for the purposes of prediction. More will be said of this topic in chapter 3, 

particularly in section  3.4.1.4. 

 

The second choice is the choice of the method thereby the model is to be chosen. As 

it is already mentioned in section 1.1.2, chapter 2 is dedicated to elucidation of the 

traditional statistical approaches to this issue. However, the core of this thesis [i.e., 

chapters 3 to 5] is dedicated to considering more novel approaches. 

 

1.2.3 Parameter Estimation 

 

We saw in section 1.1.3 that in the Classical approach to statistics one uses 

estimators that satisfy the list of desirable properties, whereas in Bayesian statistics 

one does not focus on estimation as such, but when one does do estimation, then one 

usually uses estimators that provide maximum a posteriori probability of the model 

being correct. Consequently, given these different objectives, the estimators, and 

hence the estimates, often differ between these methods. As we stated previously, we 

consider parameter estimation only insofar as it is relevant to our central issue of 

model selection. The parameter estimation debate is tangential to the issue of model 

selection, so we will not be going into it in any detail. For some arguments within 

the parameter estimation debate, see Howson and Urbach (2006).  

 

1.3 Probability Theory 

 

1.3.1 Probability Primer 

 

Statistical modelling is done in terms of random variables and probability 

distributions. These notions are part and parcel of the probability theory. So, in order 

to come to grips with how statistical modelling is done, we have to familiarise 

ourselves with central tenets of probability theory. This is the task of this section. 

There are several notions in this as well as in subsequent sections such as variance 

and statistical expectation, which are prima facie do not seem to do any useful work. 

However, familiarity with these formal tools is needed, for without it one would find 

it very difficult to comprehend the arguments given in later chapters of the thesis. 
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For the purposes of this section we introduce ‘probability’ as a primitive term [cf. 

Gillies (1973):232]. We shall not engage into the issue of interpretation of 

probabilities unless required for the discussion at hand15. 

 

The mathematical theory of probability can be thought of as a study of logical 

structure of uncertainty. This logical structure is determined by the axioms and all of 

their deductive consequences16.  

 

By way of introduction, let us consider a game of chance – for instance, that of the 

throwing of a die. What are the possible outcomes? We can get either 1, 2, 3, 4, 5 or 

6. The set of these values constitutes the outcome space: {1, 2, 3, 4, 5, 6}, that is, the 

set of all possible mutually exclusive outcomes of the process. Each of these 

outcomes is called a basic event. An event is a set of basic events. An event occurs 

when one of the set of the constitutive basic events occurs. For example, in our case 

an event can be ‘the number on the die is odd’. The corresponding set of the basic 

events is: {1, 3, 5}. 

 

We can think of events as propositions that are closed under the truth-functional 

logical operators of conjunction, disjunction and negation. For our purposes the 

distinction between propositions and events is not important. We treat them as 

mutually substitutable. 

 

Probability is measured by a real number between 0 and 1, where number 0 

corresponds to a logical contradiction and 1 corresponds to a tautology17.  

 

                                                 
15 For comprehensive surveys of the issues involved in interpreting probabilities please see Gillies 
(2000) and Hájek (2009). 
16 The presentation of the probability theory in this section including the axioms thereof closely 
follows Howson and Urbach (2006): chapter 2. 
17 Also, it is important to note that formally, an impossible event has the probability of 0, and an event 
which is certain to occur has the probability of 1, but the converse does not hold in either case [cf. 
Kolmogorov (1956):5]. That is, if an event has zero probability of occurring, it does not imply that it 
is impossible to occur. Let us once more use the cannon ball example. What is the probability of the 
shot cannon ball landing exactly 125 metres away from the cannon? The answer is that it is zero, for 
we represent distance by real numbers, of which there are uncountably infinitely many. So the 
probability of picking one of them at random would be 1/∞ that is zero. But clearly the event of the 
cannon ball landing exactly 125 metres from the cannon is not impossible. 



23 
 

The intuitive idea of probability is formalised in terms of the following axioms [in 

what follows P(Y) stands for the probability of any event Y]: 

 

(1) 0 ≤ P(A) ≤ 1 for any event A in the domain of P 

(2) P(logical truth) = 1 

(3) P(A or B) = P(A) + P(B) for any mutually exclusive events A and B 

(4) P(A|B) = P (A and B) / P(B) where P(B) > 0 

 

Conditional probability P(A|B) is the probability of occurrence of event A given that 

event B has occurred. For example, suppose that event A is that a roll of the die 

results in number six, and B is that a roll of the die results in an even number. 

Supposing further that the die is fair [this is the case when, for instance, its centre of 

gravity lies in its geometrical centre], P(A) = 1/6. However, conditional on the die 

giving us an even number as the outcome, the probability of observing six is 1/3. 

That is, P(A|B) = 1/3. 

 

Axiom 3 is sometimes extended to countably infinite sets of events mostly for 

mathematical convenience18. This, however, introduces some conceptual issues, but 

these need not concern us here19. 

 

Axiom 4 is sometimes introduced as a definition of conditional probability. 

However, we will treat it as a postulate on par with the other three. ‘The reason for 

this is that in some interpretations of the calculus, independent meanings are given to 

conditional and unconditional probabilities, which means that (4) cannot be true 

simply by definition.’ [Howson and Urbach (2006):16] Again, nothing in this thesis 

hangs on this point. 

 

An important deductive consequence of the Axiom 4 is Bayes Theorem [its 

importance is discussed at length in section 4.1]. In its most commonly used form it 

is: 
                                                 
18 ‘For, in describing any observable random process we can obtain only finite fields of probability. 
Infinite fields of probability occur only as idealized models of real random processes. We limit 
ourselves, arbitrarily, to only those models which satisfy [the Axiom of Countable Additivity]. This 
limitation has been found expedient in researches of the most diverse sort.’ [Kolmogorov (1956):15] 
19 For discussion cf. Gillies (2000):66-69, Howson (2008), Williamson (1999). 
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P(A|B) = P(B|A)P(A) / P(B) where P(B) ≠ 0 

 

Also, often P(B) can be substituted by the expression which is called the total law of 

probability: P(B) = [P(B|A)*P(A) + P(B|notA)*P(notA)] 

 

Let us illustrate the use of Bayes theorem with the following example. Suppose that 

we have a group of 100 students, 70 of whom study at college R and 30 are at 

college U. These students are to sit an examination, in which they either succeed or 

fail. Let us introduce the following propositions. J: A student studies at college R. C: 

A student studies at college U. S: A student passes the exam. F: A student fails the 

exam. Suppose further that we believe that a student from college R has 0.8 

probability of passing the exam, whereas a student from college U has 0.4 

probability of succeeding. We can represent these by conditional probabilities: P(S|J) 

= 0.8, P(S|C) = 0.4. Also P(J) = 0.3, P(C) = 0.7. Now suppose we would like to find 

out what the probability is of a student who passes the exam to have studied at 

college R [that is P(J|S)]. For this we employ the total probability form of Bayes 

theorem [since J and C are mutually exclusive exhaustive events]: 

 

P(J|S) = P(S|J)*P(J)/[P(S|J)*P(J) + P(S|C)*P(C)] = 0.8*0.3/[0.8*0.3+0.4*0.7] = 

0.24/0.52 = 0.46 [approximated to 2 decimal places – hereafter 2 d. p.] 

 

An important concept in the theory of probability is that of the probabilistic 

independence. Events A and B are said to be probabilistically independent just in 

case P(A and B) = P(A)xP(B). Hence substituting this expression into the Axiom 4 

[cf. page 23] we obtain the result that A and B are probabilistically independent if 

and only if P(A|B) = P(A) and P(B|A) = P(B). 

 

An important concept in statistics is that of a random variable. A random variable is 

a mathematical function from the space of elementary events to the elements of the 

set of real numbers. For example, suppose that we roll a die twice and record the 

outcomes of both rolls. A random variable in this case could be a summation 

between the two outcomes. So, if the first throw yields 1, and the second throw 5, 

then the realised value of the random variable is 6. By convention we denote random 
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variables by capital letters, and particular numerical realisations thereof by small 

letters. We are interested in how probability values are distributed over every 

possible realisation of the random variable(-s). Various probability distribution 

models provide a summary of this information. A probability distribution model is a 

function that maps numerical values of random variables onto probability values. 

That is, a probability distribution model tells one what probability value is associated 

with each value of a given random variable. We will ordinarily refer to probability 

distribution models as just probability distributions, as it is conventionally done in 

statistics. The following table is an example of a probability distribution P(X) for the 

random variable in this paragraph [denoted here as X] on the assumption that every 

elementary event is as probable as every other elementary event: 

 

X 2 3 4 5 6 7 8 9 10 11 12 

P(X

) 

1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36 

 

 

A cumulative probability distribution shows the accumulation of probability up to a 

given value of the random variable. It is commonly denoted as F(X=x), where x is a 

particular realisation of the random variable as a result of the experiment. F(X=x) is 

the probability that X takes on a value smaller than or equal to x. E.g., in our case of  

the die throwing experiment, F(X=4) = P(X=2) + P(X=3) + P(X=4) = 6/36. 

 

There is also a distinction between discrete and continuous probability distributions. 

In discrete distributions random variables can take on a finite or countably infinite  

number of values. So in our example with the rolling die we have a discrete 

probability distribution, since the random variable can only take discrete values. Let 

us illustrate the idea of a probability distribution with the example of the Binomial 

distribution, since it is reasonable to suppose that our experiment of throwing the die 

follows the Binomial distribution, which is a particular example of a discrete 

distribution. 
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The Binomial distribution applies in cases when there are just two exhaustive [that 

is, the sum of the probabilities of such events equals to one] and mutually exclusive 

[i.e., if one event takes place then the other event has the probability zero and vice 

versa] events. One event is usually referred to as ‘success’ and the other is ‘failure’. 

If the experiment is repeated n times, with the repetitions being independent of one 

another, and if the probability of success p each time is the same, then  

P(x) = n!px(1-p)(n-x)/x!(n-x)!, where x is the variable that denotes the number of 

successful outcomes. 

 

So, let us apply it to the die-throwing example. Suppose that we define event A as 

‘the number on the die is even’ and event B – ‘the number on the die is odd’. Events 

A and B are mutually exclusive – either A or B happen, but both of them cannot do, 

and exhaustive – every basic event belongs to either one20. Let us suppose that we 

are going to throw the die 10 times, and suppose that these throws will be 

independent of each other [that is, the probability of observing an even or odd 

number on each throw does not depend on the outcomes of the previous throws21]. 

Suppose further that each time we throw, the probability of A [let us call it ‘success’] 

and B [call it ‘failure’] is 0.5 respectively. Let us define a random variable X as 

representing the number of successes. So, for example, what is the probability that 

we will see exactly four even numbers? 

P (x = 4) = 10! 0.54 x 0.56 / 4!6! = 0.205 [correct to 3 decimal places] 

 

Now, continuous probability distributions are such that the random variables that 

they cover can take on an uncountably infinite number of values. Some random 

variables are continuous, i.e., they belong to the set of real numbers rather than just 

integers, as it is the case for discrete distributions. E.g., X is the volume of milk that 

a herd of cows yields, or the temperature in a room at certain time. Also continuous 

distributions are often introduced for mathematical convenience. Continuous 

distributions have probability density function f(x) such that f(x) = dF(x)/dx 

 

                                                 
20 Thus, B is called a complement of A. I.e., A is logically equivalent to not B, and P(B) = 1 – P(A). 
21 A more rigorous definition of probabilistic independence is this: X is probabilistically independent 
of Y just in case P(X|Y) = P(X). That is, the probability associated with various values of random 
variable X stays the same whatever value random variable Y takes on. 
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The distributions of continuous variables are called probability density functions 

rather than just probability distributions because, for any point x, they show the 

probability of the random variable taking on a value in the region of x. We are 

referring to probabilities in the region of certain values rather than to probabilities of 

point values themselves, because every point value [of uncountably infinitely many 

point values] of a continuous random variable has probability zero. An example of a 

continuous distribution is the Normal distribution. We shall say more of Normal 

distribution later. 

 

Another notion that we ought to introduce is that of statistical expectation. The 

expectation operator is quite convenient in order to define important properties of 

probability distributions. The expectation of a random variable is defined as a 

probability weighted average of all the values that the variable can take. That is, 

E(X) = Σn
i=1 xi P(xi), i = 1, 2, 3, …, n in the discrete case and E(X) = ∫ xp(x)dx [on 

the range of values of X from the smallest to the largest] when X is a continuous 

variable. Intuitively E(X) can be thought of as an average value of the random 

variable in the long run. 

 

Moments of a probability distribution are convenient ways to summarise some 

important properties of the distribution. We will concentrate on the two most 

important quantities – the mean µ and the variance σ2. The mean is a measure of 

location. It shows us where the centre of the distribution is. The mean is equal to the 

expectation of the random variable. I.e., µ = E(X). For instance, consider the die 

rolling example with the discrete random variable X and the following probability 

distribution: 

 

X i 1 2 3 4 5 6 

P(Xi) 1/6 1/6 1/6 1/6 1/6 1/6 

 

In this case µ = E(X) = 1/6(1 + 2 + 3 + 4 + 5 + 6) = 21/6 = 3.5 This of course does 

not mean that we would expect to obtain an outcome of 3.5 at some point in our 

experiment, for such an outcome is not in the set of possible values that our random 

variable can take on.  
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There are other measures of location such as the median [which refers to the middle 

value of the random variable rather than the probability-weighted average thereof], 

which have their advantages [the median is not affected by the outliers – the values 

that lie far away from the main body of data]. However, the mean is the predominant 

measure of location chiefly because it has ‘nice’ mathematical properties.  

 

Another important moment of a probability distribution is variance [σ2]. Variance is 

a measure of dispersion. It indicates how spread out the values of the random 

variable are around the mean of the distribution. In the discrete case, the variance is 

equal to the sum of the probability-weighted square deviations of every possible 

value of the random variable from the expectation of the random variable. In its 

simpler form, it can be demonstrated that the variance is equal to the expectation of 

the squared random variable minus the squared expectation of the variable itself. 

That is, Variance (X) = E(X2) – [E(X)]2. The standard deviation σ is the square root 

of the variance. The standard deviation is measured in the same units as the variable 

itself. Quite often the mean and variance are sufficient to uniquely define a 

probability distribution function [p.d.f.] – e.g., this is the case for normal 

distribution. In the die-rolling example above σ2 = 1/6(12 + 22 + 32 + 42 + 52 + 62) – 

3.52 = 81/6 – 12.25 = 13.5 – 12.25 = 1.25. Thus σ = 1.11822 (3 d. p.)  

 

1.3.2 Normal Distribution 

 

Quite possibly the most important probability distribution that is used in statistics is 

the so-called Normal Distribution. Firstly, a lot of phenomena have been observed 

[at least approximately] to follow this distribution – e.g., distribution of heights, 

exam marks, etc. Secondly, the importance of Normal Distribution stems from the 

Central Limit Theorem – if the individual observations constituting a sample are 

independently identically distributed, and as the number of such observations 

becomes large, the sample mean tends to be normally distributed, irrespective of the 

form of the distribution of the population itself, as long as the population variance is 

finite. An implication of the Central Limit Theorem [CLT] is that the binomial 

                                                 
22 Neither variance nor standard deviation can take on negative values. 
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distribution becomes approximately Normal as the number of observations n 

increases (some authors claim that in practice the approximation is reasonably close 

once n > 50).  

 

A continuous random variable X is said to be normally distributed with mean µ 

(E(X) = µ) and variance σ2 (Var(X) = σ2) [ordinarily represented as X ~ N(µ, σ2)] 

when its probability density function (PDF) is f(x) = e-(x-µ) (x-µ)/2σσ / (2πσ2)1/2 

 

Diagram 1 

 

The picture above represents the p.d.f. of the standard normal distribution. That is, 

the distribution of a random variable Z such that Z ~ N(0,1). We measure the p.d.f. 

of Z along the vertical axis, and the values of Z along the horizontal one. The 

standard normal distribution has practical importance because it has been tabulated. 

Any linear combination of the normally distributed random variable is itself normal, 

so if X ~ N(µ, σ2), then Z = [(X – µ) / σ] ~ N (0,1). Hence, any normal distribution 

can be transformed into the standard normal for ease of calculations. For example, 

suppose that our random variable X represents the heights of males within the 

London Borough of Waltham Forest [recall the example used in the beginning of this 

chapter]. Suppose further that X is normally distributed with E(X) = 180 cm, and σ = 

10 cm. That is, X ~ N(180, 10). Given this set up, suppose that we would like to find 
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out what the probability of observing at random a male who is taller than 195 cm is. 

In order to do so, we convert our random variable X into Z thus: 

P(X > 195) = P(Z > (195 – 180)/10) = P(Z > 1.5) In order to calculate this value by 

ourselves we would need to integrate the probability density function between 1.5 

and infinity. This is quite a laborious task, so instead we can look the value up in the 

tables for standard normal23. From such tables, P(Z > 1.5) = 0.0668. 

 

Now, let us pause for a short while to see what we have done so far and where are 

going to in the rest of the chapter, and, indeed, in the rest of the thesis. To begin 

with, we considered the issue of scientific prediction, restricting our attention to 

statistical problems. The example that we used was that of wishing to predict the 

weight of a male who resides within the London Borough of Waltham Forest on the 

basis of his height. We saw that in order to get to grips with a problem of this sort we 

needed to gather a suitable sample of observations, select a statistical model and 

estimate the parameters within the chosen model. We said that we would restrict our 

attention to the issue of model selection. Since statistical models are formalised in 

terms of probabilities, probability distributions and their moments, etc., we 

overviewed the probability theory and the necessary concepts and terms which 

equipped us to understand how statistical models work. In chapter 2  and in section  

4.1 we consider the two methodologies that currently dominate the field of statistical 

reasoning, viz., Classical and Bayesian respectively. We consider the issues that each 

of these methodologies has. From the third chapter onwards the thesis is dedicated to 

two major alternative approaches to model selection which have been developed 

since the early 70s of the 20th century, viz., Akaike Information Criterion (AIC) and 

Bayes Information Criterion (BIC). The chapter five considers the putative 

philosophical consequences of the model selection methodologies. 

 

 

 

 

 

 

                                                 
23 These tables are widely available. E.g. http://www.math.unb.ca/~knight/utility/NormTble.htm 
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2. Classical Statistics 

  

The name Classical statistics is, strictly speaking, a misnomer. Rather than being a 

unified methodology, it is in fact a heterogeneous collection of various methods such 

as R. A. Fisher’s, Neyman-Pearson’s, parameter and confidence interval estimation 

techniques, etc. However, we will follow the numerous text books on practical 

application of statistics in using this somewhat misguided terminology as a 

convenient umbrella term in cases when it does not matter which particular 

technique or method within it we refer to.24 

 

At the outset of the expositions of Classical statistics in this section, let us note a 

salient distinction between uses of probability between the Classical and Bayesian 

schools of statistical thought. In the latter, ‘…probability is used to provide a post-

data assignment of degree of probability, confirmation, support or belief in a 

hypothesis…’, whereas in the former ‘…probability is used to access the 

probativeness, reliability, trustworthiness, or severity of a test or inference 

procedure.’ [Mayo (2005):803] Simply put, in Bayesian statistics probability applies 

to hypotheses and data whereas in Classical statistics probabilities are used for 

assessment of inference procedures themselves. In other words, in Bayesian statistics 

hypotheses have probabilities whereas in the Classical context probabilities are used 

to control of various types of errors given inference procedures may generate. Note, 

incidentally, that we use the terms ‘hypothesis’ and ‘model’ interchangeably.  

 

2.1 Fisher25 

 

The modern approach to statistical inference was started by R. A. Fisher [Mayo 

(2005):804]. He considered that 

‘…the object of statistical methods is the reduction of data. A quantity of 
data, which usually by its mere bulk is incapable of entering the mind, is to 
be replaced by relatively few quantities which shall adequately represent the 
whole, or which, in other words, shall contain as much as possible, ideally 
the whole, of the relevant information contained in the original data. 

                                                 
24 Classical statistics is also often referred to as Frequentist due to the eponymous interpretation of 
probability that these methods usually use. 
25 The exposition of Fisherian and Neyman-Pearson methodologies closely follows Royall (1997) and 
Newbold (1995). 
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The problems which arise in reduction of data may be conveniently divided 
into three types:- 
(1) Problems of Specification. These arise in the choice of the mathematical 

form of the population. 
(2) Problems of Estimation. These involve the choice of methods of 

calculating from a sample statistical derivatives, or as we shall call them 
statistics, which are designed to estimate the values of the parameters of 
the hypothetical population. 

(3) Problems of Distribution. These include discussions of the distribution of 
statistics derived from samples, or in general any functions of quantities 
whose distribution is known. 

As regards problems of specification, these are entirely a matter for the 
practical statistician, for those cases where the qualitative nature of the 
hypothetical population is known do not involve any problems of this type. In 
other cases we may know by experience what forms are likely to be suitable, 
and the adequacy of our choice may be tested a posteriori. We must confine 
ourselves to those forms which we know how to handle, or for which any 
tables which may be necessary have been constructed. More or less elaborate 
forms will be suitable according to the volume of the data. Evidently these 
are considerations the nature of which may change greatly during the work of 
a single generation.’ 
Fisher (1922):311, 313, 314  

 

It does show that Fisher thought that the problems of model selection [or as he 

referred to them as problems of model specification] are important. However, in his 

methodology he confined himself to problems of estimation and distribution. On the 

other hand, Fisher’s method can still be considered to constitute model selection in 

the sense that in it we test an element of a given model, and if it is deemed to be 

incompatible with data, we then are faced with the choice to either choose a different 

element of the same model, or indeed to choose a different model – that would 

presumably be ‘a matter for the practical statistician’. But we are getting somewhat 

ahead of ourselves. 

 

Let us explain Fisherian methodology by means of an example. Suppose that we 

have a die-rolling set up such that the random variable A represents the number of 

even outcomes of rolling the die. We would like to provide a statistical model for 

this set up. In Fisher’s methodology one hypothesises a single model [referred to as 

the ‘null hypothesis’] with fixed values of parameters. In our case this idea 

corresponds to us hypothesising that, for instance, the phenomenon follows binomial 

distribution with success parameter p = 0.5 [let us define a successful outcome as 

such that when we observe an even number of dots on the die] corresponding to our 
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supposition that the die is fair. So, our model is that A is binomially distributed with 

p = 0.5. In order to complete the model, we also have to decide how many 

observations our sample is to consist of. Suppose for the sake of argument that we 

set out to roll the die 120 times. Hence A is binomially distributed with n = 120 and 

p = 0.5. Then we observe a relevant sample of data. In our case, such a sample would 

have 120 throws of the die, with the outcomes being either even or odd numbers on 

the upper most surface of the die when it comes to rest. It is standard practice to 

approximate binomial distribution by means of a normal distribution. The main 

conditions for doing so are that n is sufficiently large [most authors in statistical 

literature consider n > 50 as large enough] and that p is not too close to either 0 or 1. 

Both of these conditions obtain in our case, so the use of normal approximation is 

warranted. Let us put in some numbers for ease of understanding. Suppose that we 

roll the die 120 times26, and that 70 times it gave us an even number and 50 times an 

odd one. We will use the Normal approximation to the Binomial, where the mean 

and variance are calculated thus: µ = np, σ2 = np(1-p). Hence, A is normally 

distributed with the mean µ = 120x0.5 = 60 and variance σ2 = 120x0.5x0.5 = 30, in 

short: A ~ N(60, 30)  

 

Now, let us distinguish two sub-methods within Fisher’s methodology according to 

which we can proceed from here to test our supposition that the die is fair. The first 

one is the method of rejection trials, the second is the method of calculating so-called 

P-values.  

 

2.1.1 Rejection Trials  

 

So, we have our null hypothesis – that is, the model with the values of parameters 

fixed. In rejection trials the idea is that we test our model against data. The idea of 

testing is that one checks one’s sample of data against one’s model to see whether 

the data are consistent or significantly inconsistent27 with the correctness of the 

model [indeed, this facet of Fisherian methodology is often referred to as a ‘test of 

                                                 
26 We assume that each throw is independent and identically distributed, that is, each throws follows 
the Binomial distribution where the probability of success is constant and the same for each throw. 
27 The concept of significant inconsistency may strike the reader as odd, for in, for example, 
propositional  logic the concept of consistency is binary – either a set of propositions is consistent or 
it is not. We will look into this Fisherian use of the concept later in this section. 
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significance’]. Our model specifies a probability of observing every possible sample. 

We set a threshold probability value [it is usually referred to as the level of 

significance] and devise the following decision rule. If our model specifies that the 

observed outcome or outcomes at least as extreme have the probability of occurring 

greater than the critical value, we do not reject our model and tentatively uphold it 

until the next test. By ‘outcomes that are at least as extreme’ we mean those 

outcomes, that under the assumption that the null hypothesis is true have the 

probability that is at most as large as that of the actually observed outcome. If, on the 

other hand, the observed outcome or outcomes that are ‘at least as extreme’ have, 

according to our model, the probability of occurring which is lower than the level of 

significance, then we reject the model and seek an alternative one. With the level of 

significance and decision rule in place, we observe the sample, and comply with our 

decision rule. In order to make this method clearer, let us carry on with our example. 

 

So, in our die rolling example we have binomial set up with n = 120 and p = 0.5, 

which we approximate by A ~ N (60, 30). Suppose [as it is commonly done] that we 

set the level of significance at 0.05. Testing at this level of significance has become 

conventional, although some practitioners prefer 0.01 or other levels – the choice of 

the level of significance appears arbitrary28. We now carry out our experiment and 

suppose that we observe 70 even numbers and 50 odd numbers respectively. Now, 

the question is: how likely are we to observe this outcome or the outcomes that are at 

least as extreme under our hypothesis of the fairness of the die? In our example the 

outcomes at least as extreme are: 71 even and 49 odd, 72 even and 48 odd, and so 

on, as well as 50 even and 70 odd, 49 even, and so on, because observing 50 even 

and 70 odd has the same probability as that of observing 70 even and 50 odd due to 

the symmetry of the distribution around its mean value, which in our case is 60 even 

and 60 odd; and 49 even, 48 even and so on all have lower probability of occurring 

than 50 even and consequently than 70 even. So, due to the symmetry, P (A ≥ 70) = 

P (A ≤ 50). Using the transformation of our normal distribution into the standard 

                                                 
28 ‘[Fisher] advocated 5% as the standard level (with 1% as a more stringent alternative); through 
applying this new methodology to a variety of practical examples, he established it is a highly popular 
statistical approach for many fields of science. … [Fisher] also wrote that “it is usual and convenient 
for experimenters to take 5 percent as a standard level of significance, in the sense that they are 
prepared to ignore all results which fail to reach this standard…” [Lehmann (1993):1243, 1244] For a 
contemporary debate on this topic see Hoover and Siegler (2008) and references therein. 
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normal, and the tabulation of the standard normal distribution, that we familiarised 

ourselves with previously, we obtain the following:  

P (A ≥ 70) or P (A ≤ 50) = 2p(Z ≥ (70-60)/301/2 ) = 2p(Z ≥ 1.83) = 2(1 – p (Z ≤ 

1.83)) = 2(1 – 0.9664) = 2x0.0336 = 0.0672 

 

That is, the probability of obtaining 70 even numbers out of 120 throws or an 

outcome that is at least as improbable is 0.0672 [that is, 6.72%] on the hypothesis 

that the die is fair. Since this probability is greater than our pre-determined rejection 

threshold value of 0.05, we do not reject our hypothesis of fairness of the die at 5 per 

cent significance level. Note, however, that if our significance level was, say, 0.1, we 

would have rejected the null hypothesis29. 

 

To clarify, the reasoning here is roughly this: we should reject a hypothesis upon 

observing an outcome [in our example that is 70 out of 120 throws] such that the 

probability of observing this or outcomes at least as extreme on supposition that the 

hypothesis is true is ‘low’ relative to the probability of observing other possible 

outcomes of the experiment. The probability is deemed ‘low’ when it is below the 

significance level [here it is 5%]. So our particular model has survived this test. 

 

2.1.2 P-values 

 

The method of p-values is formally very similar to that of rejection trials. The 

difference lies predominantly in the interpretation of results. 

 

The p-value is the probability of obtaining an outcome or a more extreme one on the 

supposition that the hypothesis is true. Recalling the example that we used in the 

                                                 
29 ‘Another consideration that may enter into the specification of a significance level is the attitude 
toward the hypothesis before the experiment is performed. If one firmly believes the hypothesis to be 
true, extremely convincing evidence will be required before one is willing to give up this belief, and 
the significance level will accordingly be set very low. (A low significance level results in the 
hypothesis being rejected only for a set of values of the observations whose total probability under the 
hypothesis is small, so that such values would be most unlikely to occur if [the null hypothesis] were 
true.)’ Lehmann (1986):70 It seems that in such cases Lehmann advocates using the significance level 
of something like 0.01. However, motivating such choice by ‘firm belief that the hypothesis is true’ 
does not seem to be open to classical statisticians, for they would need to explain further what 
constitutes this ‘firm belief’ [since they deny that hypotheses have probabilities of being true – see 
page 31], whereas this has a natural interpretation within the Bayesian statistics as there being a high 
prior probability of truth of the null hypothesis – cf. section 4.1. 
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rejection trials subsection, the p-value there was 6.72%. However, rather than 

creating a rule which directs us to a decision as to whether to reject or not  to reject 

the hypothesis at the pre-set level of significance, the p-value is taken to signify the 

strength of evidence against the hypothesis. This is based on the so-called Law of 

Improbability [here is a somewhat naïve rendition of it]: If the hypothesis implies 

that the probability p of observing a certain outcome is small, and the outcome has 

been observed, then p is evidence against the hypothesis, and the lower the 

numerical value of  p the stronger this evidence is.30  

 

There are several difficulties that Fisherian method runs into.  Let us consider some 

of them. 

 

Firstly, as we already mentioned, there is arbitrariness in choice of the significance 

level, so that one and the same observation may lead to either rejection or not of one 

and the same null hypothesis depending on that level. To be fair, this criticism only 

applies to the rejection trial method and not to the method of p-values. 

 

Secondly, the accept/reject nature of the rejection trials method does not take into 

account the strength of evidence that the sample provides us with. Again, this is 

prima facie problematic for the rejection trials method, not for the p-values. 

 

Thirdly, another issue with the rejection trials method is in the doubtful nature of the 

concept of what we call significant inconsistency, since in formal logic the concept 

of consistency is binary – for example, a set of propositions is either consistent or 

inconsistent. Fisher argues: ‘[Tests of significance] could ‘disprove’ a theory … and 

… when used accurately, [they] are capable of rejecting or invalidating hypotheses, 

in so far as these are contradicted by the data.’ [quoted in and added italics by 

Howson and Urbach (2006):150] It is rather clear that the data with a low probability 

of occurring under the null cannot be logically inconsistent with it. The quote 

indicates that Fisher wants significant inconsistency to be as close as possible to 

logical inconsistency.  Elsewhere Fisher (1956):39 equates his notion of statistical 

significance with the following disjunction: either the hypothesis is false or a very 

                                                 
30 For an in-depth analysis cf. Royall (1997):chapter 3. 
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rare event has occurred. Practitioners typically supplement this notion of statistical 

significance with that of practical significance. For instance, Agresti and Finlay 

(2009):163 discuss an example of testing the hypothesis that on average the 

population of the USA holds moderate ideological views. That is, the hypothesis that 

the sampling distribution is normal [with the variance estimated from the sample] 

and that the population mean is 4 as measured on the ordinal scale from 1 

representing extremely liberal views to 7 representing extremely conservative views. 

Supposing that in a very large sample the sample mean is 4.08, Agresti and Finlay 

(ibid.) calculate the p-value of approximately 10-11, which is extremely statistically 

significant. However, they contend that in this context the difference between 4 and 

4.08 is of no practical significance.  

 

Fourthly, there are no alternative hypotheses provided, so that even if we do not 

reject the null, perhaps there is at least one other hypothesis out there that we also 

would not reject, and which perhaps would have a higher p-value indicating that 

there are more evidence against the null, so that the alternative is somewhat better. 

I.e., a hypothesis whose parameters were fixed at the values which turned out to be 

closer to the actual observations; in our example one such hypothesis would be a 

model with the success rate set at p=0.55 rather than p=0.5, as it was the case for the 

null. 

 

Finally, even though the strength of evidence is attempted to be captured with the 

notion of p-values, the numerical expressions of p-values depend on how we define 

the outcome space, and as such they are arbitrary. Recall that in the example in this 

subsection we hypothesised that A ~ N (60, 30), and that we observed A = 70. Since 

the p-value is the probability of observing the actual outcome or outcomes at least as 

extreme on the supposition that the hypothesis is correct, we calculated the p-value 

as 0.0672. Now, for the sake of the argument, suppose that we have a colleague who 

is interested in our experiment31. Suppose that the colleague resides very far away 

from us, and that we have only the most primitive means of communicating with her. 

Knowing that we can only send her a signal in the form of a ‘Yes’ or ‘No’, we 

happened to have agreed with the colleague [when we had got a rare opportunity to 

                                                 
31 This example is a modified version of the one used in Royall (1997):68. 
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meet her a long while ago] that we would communicate ‘Yes’ if we got A = 70 and 

‘No’ if we got any other value. Hence, her outcome space consists of two values, 

viz., {70, not-70}, whereas ours is made up of 121 values. Now, our colleague also 

uses the Fisherian method, and wishes to calculate the p-value. Since A = 70 is the 

most extreme outcome that she can observe, her p-value is P(A=70) = 0.0138 [4 d. 

p.]32. Our p-values differ whereas we observed the same evidence – 70 even numbers 

out of 120 throws of the die. This example illustrates the point that p-values depend 

on outcomes that did not happen. As Jeffreys eloquently puts it in a much-quoted 

passage [where ‘P [integral]’ stands for ‘p-value’ and ‘law’ stands for ‘hypothesis’]: 

If P is small, that means that there have been unexpectedly large departures 
from prediction. But why should these be stated in terms of P? The latter 
gives the probability of departures, measured in a particular way, equal to or 
greater than the observed set, and the contribution from the actual value is 
nearly always negligible. What the use of P implies, therefore, is that a 
hypothesis that may be true may be rejected because it has not predicted 
observable results that have not occurred. This seems a remarkable 
procedure. On the face of it the fact that such results have not occurred might 
more reasonably be taken as evidence for the law, not against it. The same 
applies to all the current significance tests based on P integrals.’ 
Jeffreys (1961):385 

 

Arguably, the strength of evidence for or against any hypothesis should be solely 

based on the observations that have actually been made, and not on something that 

has never been observed. On this view, the way that one defines the outcome space 

should be irrelevant. The example that we use could hardly happen in modern 

academic life. However, this does not negate the methodological point it raises.  

 

We believe that the discussion in this subsection have served to indicate that there 

are substantial issues with using Fisherian methods for choosing either a family of 

models or a particular model. 

 

2.2 Neyman-Pearson 

 

In the previous section we looked at Fisherian methodology. At the end of that 

subsection we noted several disadvantages that the methodology has. In order to 
                                                 
32 We performed the calculation for P(A=70) using the binomial formula directly rather than the 
normal approximation, because when A is a continuous variable, any particular point value of it has 
the probability of zero. 



39 
 

overcome some of these disadvantages, J. Neyman and E. S. Pearson devise 

methodology that we are going to consider in this subsection.  

 

In Neyman-Pearson hypothesis testing approach one postulates two hypotheses 

[rather than one as in Fisher’s case], which are normally called the null hypothesis 

H0 and the alternative hypothesis H1. These hypotheses normally take one of the 

following three forms. First, both H0 and H1 are point hypotheses [that is, they are 

single models with different fixed values of parameters]. Second, H0 is a point 

hypothesis and H1 is a composite hypothesis [that is, a proper subset of a model with 

more than one element in it]. Third, both H0 and H1 are composite hypotheses. 

Having set up the hypotheses, one works out what the so-called rejection region is. 

The rejection region is calculated according to what is called the Fundamental 

Lemma by satisfying the following inequality: P(observation under 

H0)/P(observation under H1) ≤ k, where k is a constant depending on both the 

significance level [the same concept as in the Fisherian methodology above] and the 

hypotheses themselves [see Howson and Urbach (2006):148]. Informally, this 

guarantees that the rejection region lies between H0 and H1. After that one observes 

the data. Then one follows this decision rule, on the crucial assumption that one of 

the hypotheses is true: if the data is in the rejection region, then the null hypothesis is 

rejected and the alternative hypothesis is accepted; if the data does not fall within the 

rejection region, then the null hypothesis is accepted. This approach is alternatively 

called error probabilistic, because one of the most crucial elements of this method is 

the control of error probabilities. There are two types of errors that can be 

committed. The null hypothesis is rejected whereas it is true [this is called a Type I 

error], and the null hypothesis is accepted whereas the alternative hypothesis is true 

[Type II error]. 

 

A salient analogy here is that of court trials. The null hypothesis there is the 

innocence of the defendant [presumption of innocence]. If the court convicts the 

defendant when she is innocent that is a type I error, whereas when the court of law 

pronounces the defendant innocent while she is guilty that is the type II error. It is 

important which hypothesis is considered to be the null and alternative [just like in 

the court example]. This is because sometimes the inference changes if the null and 

alternative hypotheses are changed around. We will show an example of this later in 
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this section. Ordinarily the reason that is given for non-arbitrariness of such a choice 

is that it is usually quite clear what is the natural choice as to which hypothesis 

should be the null and which should be the alternative one. The null is usually the 

default ‘sceptical’ hypothesis. E.g., at the drug trial one would naturally want the 

hypothesis that the given tested drug has no effect to be the null and the hypothesis 

that the drug has a positive effect to be the alternative. We only want to accept drugs 

when we are quite confident that they do have an effect. In this case the type I error 

would be to accept the drug as effective whereas it actually has no effect. The type II 

error would be to accept the notion that the drug has no effect whereas it actually has 

a positive effect. Sometimes it is not that clear what should be the null and what 

should be the alternative. We will consider as to why this may matter by using an 

example further in this subsection. 

 

In the Neyman-Pearson [NP] approach one calculates the probabilities of committing 

each type of error. The prescription then is to try to minimise both error probabilities 

as much as possible. It is impossible to achieve these two objectives 

simultaneously33. For a given number of observations reduction in type I error 

implies increase in the type II error. So what normally happens is that the type I error 

is fixed at a desirable level [this level is usually called the critical level α, and is 

usually set anywhere between 10% and 1%] and then the required power of the test 

[power = 1 – P(type II error)] is achieved by increasing the sample size. The power 

of the test is the probability that a false null hypothesis is rejected. 

 

For the purposes of illustrating the idea of Neyman-Pearson testing, to begin with we 

take the most simple example of testing two point hypotheses. That is, both the null 

and the alternative hypothesise that the phenomenon in question follows the 

respective probability distribution models, and that the relevant parameters have  

sharp values. 

 

As it has become customary by now, suppose that we have a die, and that we have 

two alternative ideas as for the probability of obtaining even numbers when we 

throw the die [call it the rate of success]. Just as in the subsection on Fisher, we 

                                                 
33 This is the case when the number of observations is fixed. However, both types of error can be 
reduced if the sample size is increased. 
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suppose that we are in the binomial set up with the throws of the die assumed to be 

independently and identically distributed – so binomial probability distribution 

models represent both null and alternative hypothesis. Now, suppose for the sake of 

clarity of exposition that our null hypothesis is that the success rate is 0.55, and the 

alternative is 2/3. We set out to test these hypotheses by throwing the die 120 times. 

Since the number of observations is quite large, we will be using the normal 

approximation to the binomial for mathematical convenience. 

 

So, under the null hypothesis on average we expect to observe 66 even numbers, and 

under the alternative hypothesis we expect to observe 80 even numbers. We set the 

probability of type I error at 5%, which is the standard practice in classical statistics. 

Suppose that our experiment yields 70 even numbers [denoted as �� = 70]. Then let 

us calculate the minimum number of even numbers that we need to observe in order 

to reject the null. As before, under our null hypothesis the variance is nxpx(1-p) = 

120x0.55x0.45 = 29.7. Using this variance in the standard normal calculation, we 

obtain the following: 

P (Z > 1.64) = 0.05 => P (((�� – 66) / 29.71/2) > 1.64) = 0.05 => P (�� > 66+1.64x 

29.71/2)) = 0.05 => �� > 74.94 [2 d. p.] 

 

So, in order to reject the null hypothesis in favour of the alternative at α = 5% 

probability of type I error [it is also called the level of significance], we need to 

observe at least 75 even outcomes out of 120 rolls of the die. Since we actually 

observed 70, we do accept the null in this case. 

 

Now, let us work out the probability of type II error, i.e., of accepting  a false null 

hypothesis. In our binary set up, falsehood of null implies the truth of the alternative 

hypothesis. We have just established that we do not reject the null if we observe the 

number of evens to be less than 75. Probability of type II error then is the probability 

of observing less than 75 evens given that the true success rate is 80. Calculating the 

variance under the alternative hypothesis as np(1-p) = 120x2/3x1/3 ≈ 26.67 (2 d. p.) 

and transforming into units of the standard normal and using the tables for it, we 

obtain: 

(75 – 80) / 26.671/2 = -0.9682 So, P (Z < -0.9682) ≈ 0.1664 
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Consequently, the probability of rejecting a false null hypothesis in this test [that is, 

the power of the test] is 1 - 0.1814 = 0.8336. 

 

Now, let us look at testing a point null hypothesis versus a composite alternative, and 

also composite null versus composite alternative. The former in our example above 

would be something like H0: p = 0.55 vs H1: p > 0.55. The latter: H0: p ≤ 0.55 vs H1: 

p > 0.55. Notice that the assumption of the truth of either H0 or H1 becomes 

progressively more legitimate, particularly in the composite H0 vs composite H1 

case, where this assumption is correct providing that we have selection the correct 

model. It is interesting to note that in both of these cases the answer is the same as it 

was in the point H0 vs point H1 case above – we would reject H0 at α = 5% just in 

case we observe 75 or more even out of 120. However, now we cannot calculate the 

power of these tests, because in order to do so H1 has to specify particular point 

values for the parameters. So, what then of the idea that we should maximise the 

power at the given level of significance α? In these cases Neyman and Pearson 

employ the concept of Uniformly Most Powerful Unbiased (UMPU) tests. A test is 

Uniformly Most Powerful when for every model within H1 the power is maximised. 

It is also Unbiased when for each model within H1 the power of the test is not 

smaller than the significance level. Otherwise such a test would have a higher 

probability of rejecting a true H0 rather than rejecting a false one, which Neyman and 

Pearson deem undesirable. Both of our tests above are UMPU. The idea of the 

UMPU test becomes clearer when one considers tests of this type: H0: p = 0.55 vs 

H1: p ≠ 0.55. We will look into this important case in section 1.4.5. 

 

Here is a summary of some salient features of the power of a test from Newbold 

(1995):371: 

1. ‘Everything else being equal, the farther the true mean µ1 from the hypothesized 

mean µ0, the greater the power of the test.  

2. Everything else being equal, the smaller the significance level of the test, the 

smaller the power. In other words, reducing the probability of a Type I error will 

increase the probability of a Type II error. 

3. Everything else being equal, the larger the population variance, the lower the 

power of the test. We are less likely to detect small departures from the hypothesized 

mean when there is greater variability in the population. 
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4. Everything else being equal, the larger the sample size, the greater the power of 

the test. Again, this is intuitively plausible. The more information obtained from the 

population, the greater the chance of detecting any departure from the null 

hypothesis.’ 

 

Having considered the Neyman-Pearson approach in some detail, let us identify 

some key shortcomings that the method has. 

 

Firstly, the binary accept/reject set up is rather crude. The prescription to behave as if 

the accepted hypothesis was true [until further tests are carried out, that is] does not 

provide us with the information as to what amount of evidential support the 

hypothesis enjoys, or what amount of confidence we have in the truth of the 

hypothesis. It has to be stressed, however, that there is much disagreement on this 

point in philosophy of statistics. The proponents of the Neyman-Pearson 

methodology consider the binary nature of this approach as its strength. It allows 

them to answer the question ‘What should we do, given the data?’ rather than ‘How 

should we interpret the data as evidence regarding a hypothesis or one hypothesis 

versus another?’ [Royall (1997):4] Still, arguably we would be much more cautious 

with regards to decisions that we make on the basis of a weakly supported 

hypothesis [or, alternatively if we do not have a great amount of confidence in the 

truth of the hypothesis] rather than if the hypothesis had more evidence indicating its 

truth. On the other hand, error probabilities carry out this function indirectly. 

However, probability of type II error [that is, of accepting a false null hypothesis] 

crucially depends on what one chooses as the alternative hypothesis. As stated in 

point 1 above, the further the alternative hypothesis away from the null, the smaller 

the probability of type II error is [and, consequently the greater is the power of the 

test]. For instance, if in the example that we used in this section our alternative 

hypothesis was p = 0.7 rather than 2/3, then probability of type II error would have 

been approximately 0.0365 rather than 0.166434. 

 

Secondly, there is arbitrariness in the choice of the level of significance and in the 

choice as to which hypothesis is the null and which is the alternative one. The issue 

                                                 
34 The critical value: (75 – 84)/(120x0.7x0.3)0.5 = -1.7928. So P(Z<-1.7928) ≈ 0.0365 
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with the choice of the level of significance is very similar to the issue with the 

rejection trials method within Fisherian methodology. The problem with the choice 

of the null and alternative is the following. Suppose that in the example that we used 

in this subsection we choose the null hypothesis p = 2/3 and the alternative p = 0.55. 

Then for the rejection region with α = 0.05: P (Z<-1.64) = 0.05 => P ((�� – 

80)/26.670.5 < -1.64) = 0.05 => �� < 80 - 8.4695 => �� < 71.5305. So if we observe 

the value of �� of 71 or smaller, then we reject p = 2/3 hypothesis in favour of p = 

0.55. Suppose that we observe �� = 73. Under this set up we would accept the p = 2/3 

hypothesis whereas originally given this observation we would accept the  p = 0.55 

hypothesis! Notice also that, unlike the cases of a court trial or test of a new drug 

[where it is claimed that the default position of the presumption of innocence or the 

hypothesis of the drug having no effect respectively both naturally play the roles of 

the null hypothesis], there is no obvious reason in this case as to why one of these 

hypothesis should be the null.  

 

Thirdly, the approach suffers from something called Lindley Paradox. In fact 

Fisherian approach has the same issue. According to Lindley Paradox, as the number 

of observations grows, the proportion of successes at which we would just reject the 

H0 at a given level of significance becomes arbitrarily close to the proportion 

stipulated by null, and the power of the test tends to one. So even a tiny deviation of 

the proportion in sample from that of H0 is sufficient to reject the H0, which is 

counter-intuitive. Here is an illustration using our example of testing H0: p = 0.55 vs 

H1: p = 2/3. Previously we noted that we would reject H0 at α = 5% if we observed 

75 or more evens out of 120. That is, if the proportion of evens in the sample was 

greater than 74.94/120 = 0.6245. The power of the test was 0.8336. Now, suppose 

that our sample consists of 12000 observations. Then for the rejection region: P (Z > 

1.64) = 0.05 => P (((�� – 0.55x12000) / (0.55x0.45x12000)1/2) > 1.64) = 0.05 => P 

(�� >6600+1.64x 297001/2)) = 0.05 => �� > 6689.38 [2 d. p.], which corresponds to 

observing the proportion of 0.5574 or more of evens in the sample rather than 0.6245 

when the sample had 120 observations. In order to calculate  the power of this test 

we require the following quantity: (6689 – 8000) / 26671/2 = -25.36. So, P (Type II 

error) = P (Z < -25.36) ≈ 0 Hence the power of the test is approximately 1. To 

counterbalance this counter-intuitive result classical statisticians generally advise to 
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reduce the level of significance as the number of observations grows so that the test 

becomes less sensitive to small differences. However, this is a rather ad hoc 

manoeuvre that has no clear rationale with the NP methodology. Nonetheless, 

practical experience in using the NP framework suggests the expedience of this 

move in order to align NP with the intuitions of its practitioners. 

 

2.3 Fisher vs Neyman-Pearson 

 

In Neyman-Pearson approach to hypothesis testing to ‘accept’ the null hypothesis 

means that ‘…the data available do not provide enough evidence for rejection of the 

null hypothesis, given that we want to fix at alpha the probability of rejecting a null 

hypothesis that is true.’35 

 

So, what does this methodology prescribe that we do with regards to selecting a 

probability distribution model? If we accept the null hypothesis in the sense given 

above, then we should behave as if the null hypothesis were true. However, if we 

reject the null hypothesis then Neyman and Pearson urge us to behave as if the 

alternative hypothesis is true. They call this approach ‘inductive behaviour’. 

 

In contrast, Fisher’s rejection trials are very much like Karl Popper’s 

Falsificationism. Here is an unsophisticated rendition of Falsificationism. Scientists 

entertain certain hypotheses [conjectures]. There is no amount of evidence that 

would establish a given hypothesis as true [cf. the well-known problem of 

induction]. However, a single observation that is logically inconsistent with the 

hypothesis shows it to be false. So, rather than confirming hypotheses what one 

ought to do is to try to disconfirm [i.e., falsify] them. Similarly, in the rejection trials 

method, one sets up a structure akin to modus tollens. To repeat the discussion in 

section 2.1, if the hypothesis is true, then the given observation [in statistics usually a 

set of observations – a sample] has a certain probability of being observed. However, 

if the probability of observed sample is below a pre-determined threshold [i.e., the 

level of significance], then the observations are deemed to be significantly 

inconsistent with the hypothesis [in the sense that they are too improbable under the 

                                                 
35 Newbold (1995):329 
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hypothesis], hence the hypothesis is rejected. If, however, the probability is not 

below the threshold value, then the hypothesis is left in use until next trial. Fisher 

referred to this as ‘inductive inference’, which seems unwarranted because Popper 

considered that by his methodology of falsification he ‘dissolved’ the problem of 

induction. So if Fisher’s method is statistical falsificationism, then, presumably there 

is also no induction taking place, but at best corroboration through survival of 

numerous tests. However, the p-value methodology, which takes the p-value to 

measure the strength of evidence against the hypothesis [the lower the p-value the 

stronger is the evidence against the hypothesis], does not seem to align with 

falsificationism. We shall consider other ideas of Popper in chapters 4 and 5. 

 

Neyman and Pearson [NP] considered their methodology to be an improvement on 

Fisher’s, in that they introduced the idea of the power of the test. From their 

perspective the p-values only measure the probability of rejecting a true null 

hypothesis. However, in Fisher’s method there were no way to control for the 

probability of accepting the false null, which the power allows one to do. Fisher 

thought that the power should be a qualitative notion, for its quantitative calculation 

often involves unknown alternative hypothesis [such as is the case when the 

alternative is composite]. There are more points of disagreement between Fisher and 

NP, but there are of no consequence for our purposes. Interested reader is referred to 

Lehmann (1993) and Lenhard (2006). 

 

Indeed, notwithstanding the issues from which the NP method suffers, it can be 

considered to be a proper method of model selection. There are two competing 

hypotheses. Of course traditionally the hypotheses have the same mathematical 

structure, but this is not a necessary attribute of the method. Also, importantly, in the 

case when we test point [simple] H0 versus composite H1, the null hypothesis has not 

adjustable parameters and the alternative hypothesis has one adjustable parameter. 

This notion is going to be discussed at length in chapter 3. It will for now be 

sufficient to say that the difference in the number of freely adjustable parameters is 

an essential part of the model selection methods discussed in chapters 3 and 4. 

Finally, the Neyman-Pearson point null versus composite alternative case shall be 

used in chapter 5. 
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2.4 Point Estimation 

 

In sections 2.1 – 2.3 we looked at the classical methods of hypothesis testing. 

However, instead of testing hypotheses, scientists sometimes require estimates of 

parameter values from data. So, sections 2.4 and 2.5 are dedicated to brief 

introductions to the classical techniques of estimation by point values and intervals 

respectively, familiarity with which shall be useful for understanding the material in 

the subsequent chapters. 

 

2.4.1 Properties of Estimators 

 

Suppose that, rather than test hypotheses with regards to the probability distribution 

and the value of the population parameter as was done in the previous subsection, we 

would like to estimate a population parameter on the basis of a sample that we have 

drawn from the population and on the assumption that we have the right model-type. 

For instance, we may know that our population of interest is normal and may know 

the value of the standard deviation, but not know the value of the mean. In this case 

we come up with an estimator. That is, a function that has the values of sample 

observation as its inputs and the estimate of the relevant parameter as the output. 

How do we come up with such a function? After all, we can think of many possible 

estimators. In classical statistics the estimators have to have desirable properties, i.e., 

unbiasedness, consistency and efficiency36. In our case, it seems natural to estimate 

the population mean by the sample mean ��. The sample mean does possess the 

desirable properties.37 

 

2.4.2 Mean Squared Error 

 

Suppose that we have two estimators such that the first one is unbiased but it has a 

relatively large variance, whereas the second one is biased but it has a smaller 

variance. Here the two criteria of desirability are in conflict. In cases like these an 

extra criterion is employed, which allows for a trade-off between the two. Mean 

Squared Error (MSE) is such a meta-criterion. It is the expectation of the square 

                                                 
36 We briefly touched on this issue in section 1.1.3. 
37 See Newbold (1995) for the mathematical derivations. 
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difference between the estimator and the population parameter. It can be shown that 

it is equal to sum of the squared bias and the variance of the estimator. The 

corresponding rule is to choose an estimator that has the smallest MSE. 

 

We shall see the relevance of the properties of estimators to our discussion in 

chapters 3 and 4. 

 

2.5 Confidence Intervals 

 

Quite often, however, one is interested in the question as to how confident one 

should be in the reliability of one’s point estimates. Hence there is a method of 

confidence intervals designed to answer such a question. Confidence interval 

procedure gives us an interval estimator, rather than a point one, which has a degree 

of confidence attached to it that the population parameter lies within the interval. 

 

For example, suppose we draw a sample of n observations with mean �̅ from a 

normally distributed population with known standard deviation σ. We would like to 

find a 95% confidence interval for µ. This confidence interval is given by 

 

�̅ – 1.96σ / n1/2 < µ < �̅ + 1.96σ / n1/2 Notice that as the number of observations 

increases, the corresponding confidence interval shortens. 

 

For example, suppose that X ~ N (µ, 1), and that we have a sample of 36 

observations where �̅ = 0.5. What is the confidence interval for the µ? It is the 

following:   

0.5 - 1.96/6 < µ < 0.5 + 1.96/6, which is -0.1733 < µ < 0.8267.  

 

The usual interpretation of this interval is that if we keep repeating the experiment 

[i.e., keep drawing random samples from the population], in the limit 95% of the 

intervals yielded by this procedure will contain the true value of the population mean 

µ38. Hence the procedure gives us 95% probability [in the sense of limiting relative 

frequency] that the intervals contain µ. However, once we have observed a particular 

                                                 
38 For a representative example, see Newbold (1995):275. For a thorough analysis of the issue of 
interpreting confidence intervals see Howson and Urbach (2006): section 5.f.2 
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sample and calculated the particular lower and the upper limits of the associated 

confidence interval, the frequentist probabilistic interpretation is no longer available 

to us. This is a manifestation of the general difficulty that the frequentist 

interpretation of probabilities has with the single-case probabilities. This issue, 

however, of no consequence to the main issue of this thesis, viz., the problem of 

model selection. 

 

It is interesting to note [and we shall employ this fact in chapter 4] that the 

confidence interval estimation procedure is equivalent to the following NP test 

where c is a constant: H0: µ = c vs H1: µ ≠ c. That is, we would reject H0 at (100% - 

confidence level %) level of significance just in case c lies outside of the confidence 

interval. In the example above we would reject the H0 at 100% - 95% = 5% level of 

significance if and only if either  c < -0.1733 or c > 0.8267. Here our rejection region 

is distributed equally to both ‘tails’ of the distribution [i.e. 2.5% in each tail] in order 

for the test to be an UMPU. For mathematical details see Lehmann (1986). 

 

2.6 Intermediate Conclusion and Plan 

 

In chapter 1 we introduced the issue of prediction in science. We identified the three 

ingredients required for this task: data collection, model selection and parameter 

estimation.  We drew distinctions between theoretical and statistical models, and 

between deterministic and probabilistic models. We stated that this thesis will 

mainly be concerned with statistical model selection. In this chapter we  provided an 

overview of some widely used model selection methods, viz., Fisherian and 

Neyman-Pearson. We noted some shortcomings in each of these methods. Chapter 

three is dedicated to detailed consideration of a relatively new method of model 

selection that is based on so-called Akaike Information Criterion [AIC]. In chapter 

four we consider Bayesian statistics in general as it applies to the problem of model 

selection and relatively novel methodology of model selection based on Bayes 

Information Criterion [BIC] in particular, and then provide comparison and contrast 

with the AIC. Chapter five is dedicated to exploring some philosophical 

consequences of AIC and BIC methods, and in particular to their putative relevance 

to the debate on scientific realism. 
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3. The Akaike Information Criterion 

 

3.1 Introduction 

 

 ‘So far, when speaking of ‘an alternative hypothesis’ I have meant some 
hypothesis genuinely different from the one under test. But in practice 
Neyman and Pearson do not use ‘alternative hypothesis’ in such a sense, 
and this constitutes my second objection to their principle of alternative 
hypotheses. In practice the alternative hypotheses considered by Neyman 
and Pearson are nothing but the same hypothesis with different 
parameter values. Suppose, for example, that the hypothesis under test is 
that ξ is normal µ0, σ0, then the alternatives will be that ξ is normal with 
different µ, σ (or, in some cases, just with different µ). Thus the 
alternatives generally considered when the Neyman-Pearson theory is 
applied are merely trivial variants of the original hypothesis. But this is 
an intolerably narrow framework. We could (and should) consider a 
much wider variety of different alternatives. For example we might 
consider alternatives which assign a distribution to ξ of a different 
functional form.’  

Gillies (1973):208, italics added 

 

Let us revisit some of the highlights from chapter 1 relevant to the project of  this 

thesis. There we identified three problems in parametric statistical modelling – 

coming up with a ‘good’ sample of data, choosing the model-type and fixing the 

parameters thus picking a particular model within the model-type. In the rest of this 

thesis we shall focus on the second issue, viz., the problem of model selection. We 

will be working on the assumption that we already have a sample of data which has 

been collected in an acceptable way as discussed in section 1.1.1. The choice of a 

family of models and estimating the parameters thus picking a particular model 

within the chosen family quite often goes hand in hand. However, we shall focus on 

choosing model-types since, even though there are disagreements about how to 

estimate parameters, the pros and cons of each estimation method are rather well 

established, whereas there still much more light that needs to be shed on the issue of 

model selection. We will consider the issue of parameter estimation only when it has 

a bearing on the issue of model selection. 

 

We think that it would be fair to say that the quote above represents a common 

perception of the NP framework. In our view, however, the NP framework can be 
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viewed as providing a method for model selection. Firstly, just because the 

alternatives generally considered in the NP approach are of the same functional 

form, it does not imply that they have to be – this is a limitation due to the users of 

the method, and not of the method itself. Although we are not aware of any actual 

attempts of NP testing the null and alternative hypotheses of different functional 

forms, we do not see why in principle this cannot be done. Naturally this would 

introduce extra mathematical difficulties for, for example, data would be assumed to 

be arising from different sampling distributions, but this is still a theoretical 

possibility – cf. Gillies (1973):216. Secondly, even when it is used in the way it 

commonly is, there are cases when model selection can be said to occur. That is, in 

the special case of simple null versus composite alternative testing. Admittedly, this 

is a substantial limitation, although we would reserve the term ‘intolerably narrow 

framework’ to the Fisherian methodology. We of course would like to use a broader 

framework than either Fisherian or Neyman-Pearson for model selection, and indeed 

this chapter is dedicated to considering one of such frameworks – the Akaike 

Information Criterion [AIC]. The other framework – that of the Bayes Information 

Criterion [BIC] – we shall discuss in chapter 4. 

 

Nowadays, there are myriads of methods for model selection. The main reasons why 

we concentrate our attention on the two methods – the AIC and BIC – are that, 

firstly, a lot of methods are related to these two, so the methodological and 

philosophical points that are raised in this thesis by and large carry over, and 

secondly the AIC and BIC have attracted most attention out of all the other model 

selection methodologies in recent philosophical literature. 

  

So, the subject of this chapter is the model selection method based on the so-called 

Akaike Information Criterion 39 [AIC]. 

 

In order to illustrate the idea of AIC let us come back to one of the examples 

employed in chapter 1, i.e., to the problem of finding an association between weights 

and heights of the males within the London Borough of Waltham Forest. Assume 

that we have collected an admissible sample. Suppose, for ease of introduction, that 

                                                 
39 Our presentation of AIC is largely based on Burnham and Anderson (2002) and Konishi and 
Kitagawa (2008) 
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we have two competing deterministic statistical models – linear and quadratic. By 

the linear model we mean the infinite set of polynomials of the first degree that have 

the functional form y= ax + b such that each individual model is an element of this 

set with the values of parameters a and b fixed at particular levels. Examples of such 

models would be linear curves y = 2x + 3, y = 1.6x – 5, etc.  Likewise, the quadratic 

model is the infinite set of polynomials of the second degree that have the functional 

form y= ax2 + bx + c such that each individual model is an element of this set with 

the values of parameters a, b and c fixed at particular levels. Notice that in the 

quadratic model there is no model with the value of parameter a set to zero, for such 

a model would be an element of the linear family. Thus we define our families of 

models to be non-nested. The importance of this point will be discussed in section 

4.3.1. 

 

Now, why is it that we are comparing the models simpliciter, whereas   previously 

we were often looking at comparing models with the parameters set at particular 

values as it was the case in Neyman-Pearson methodology in chapter 2? This is 

because now we focus on comparing the functional forms of models [that is, 

concentrating on the model selection step] rather than on comparing functional forms 

of models together with the particular values of parameters. 

 

An obvious way of going about choosing between these two models would be to 

start with a plot of the data points from the sample in the Cartesian plane such that 

the heights would be measured along the x-axis and the corresponding weights of the 

individuals measured along the y-axis. Then, following the most wide-spread 

approach which urges one to prefer models that reflect the observations as closely as 

possible, one could find the linear model and the quadratic model that 

correspondently lie maximally close to the data points. This closeness of fit to data 

points is conventionally calculated by the sum of the squared vertical distances 

[hereafter – by the SOS] from each point to the given curve. Unless data point lie on 

a perfectly straight line, the best fitting member of the quadratic model will provide 

closer fit to data than the best fitting element of the linear model because of the extra 

flexibility allowed by having three adjustable parameters [a, b and c] rather than two 

[a and b]. The notion of an adjustable parameter will receive detailed attention 

further in this chapter. It shall for now suffice to define an adjustable parameter as a 
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parameter such that every change in its value would pick out a different element 

within the given model.  

 

Following the reasoning above, a family of polynomials of the third, fourth, and so 

on degrees would contain elements that provide progressively closer fit to the given 

data points. This culminates with a perfect fit of a model within the family of 

polynomials of (n-1)th degree, where n corresponds to the number of observations 

that comprise our sample. In this case that best fitting element of this family will go 

through every data point [as long as there are no data points such that one data point 

is vertically directly above the other data point], thus having the sum of the squared 

vertical distances [SOS] at zero. If the closeness of fit is our one and only criterion 

for choosing a model, we will choose such a polynomial [Forster and Sober 

(1994):4]. Now, what of our objective of modelling? Recall that we set out in chapter 

1 to do modelling for predictive purposes. How predictively successful would we 

expect the chosen polynomial of (n-1)th degree to be? Would we expect the data 

points from a new sample within the population to lie on or close to the polynomial? 

Intuitively the answer is ‘no’, because such a polynomial would have picked up all 

the idiosyncrasies of the observations making up this particular sample. Even though 

the sample may have been chosen well – for instance, it may well be representative 

of the population [which in itself is not a given – recall section 1.1.1], still we would 

expect the sample to have at least some variation from the population as the whole 

[again section 1.1.1].  

 

So, why exactly did we get into this trouble with the polynomial of (n-1)th degree? 

One answer is that the corresponding family of polynomial models was too flexible, 

that is, it contained too many adjustable parameters. Since the closeness of fit 

increases with more adjustable parameters, it would be natural to think that any 

given family of models should be penalised for the number of adjustable parameters 

that the model uses. On the other hand, one would not want the model to have too 

few adjustable parameters so that the model reflects the given data too remotely. So, 

there seems to be a trade-off between closeness of fit of a model and the number of 

adjustable parameters it uses to achieve this fit, with an optimal balance of these two 

attributes somewhere in-between the two extremes. In fact, this is the notion that one 
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arrives at through using the AIC methodology, to detailed consideration of which we 

now turn. 

 

3.2 Components of AIC 

 

In the 1970s the Japanese statistician Hirotugu Akaike derived a formal expression 

of the idea of the trade-off between the closeness of fit of a model to the data points 

and the number of adjustable parameters that the models employs to do so40. Let us 

consider his method, which consists of two main components – the maximum 

likelihood estimation and Kullback-Leibler divergence.  

 

3.2.1 Maximum Likelihood Estimation 

 

Maximum Likelihood Estimation [MLE] is a popular statistical method of estimating 

parameters given a statistical model form. We delayed consideration of this method 

to this chapter [the reader will recall that we went through estimation techniques 

used in classical statistics in the previous chapter] because it naturally aligns with the 

subject matter of this chapter, i.e., the AIC methodology. The reason for considering 

the MLE method here is that the Akaike Information Criterion can be viewed as an 

extension of this method which allows us to not only estimate parameters of the 

model given the model, but also to choose the model as well.  

 

It is simplest to understand the MLE method by coming back to the Bayes Theorem: 

P(H|E) = P(E|H)xP(H)/P(E) where ‘E’ stands for observed evidence [a sample of 

data, in our case] and ‘H’ stands for a statistical model with parameters. Recall that 

we said in the previous chapter that P(E|H) is commonly referred to as the 

likelihood. That is, P(E|H) is the probability of observing the sample of data at hand 

given that our statistical model is correct. The MLE method allows us to provide 

estimates of the parameters of the model on assumption that the model is correct. 

The methodological prescription in MLE is this: choose the values of parameters in a 

way that maximises the likelihood. As per usual, in order to comprehend the concept, 

it is most convenient to look at an example. 

                                                 
40 Akaike (1973). It is curious to note that this is the same year in which Gillies suggested testing 
alternative hypothesis with different functional form as per quote at the beginning of this chapter. 
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Let us again consider the example of throwing a die and noting whether the outcome 

is an even or an odd number. Suppose that we roll the die 4 times, and that we 

observed 3 odd and 1 even outcome. Let us define the success rate p as the ratio of 

the number of odd outcomes to the total number of throws. In order to estimate the 

success rate p using MLE we need to maximise P(E|H), where ‘E’ stands for the 

observation that 3 out of 4 throws are odd, and ‘H’ stands for the binomial model 

with unknown success rate p. So, unlike our example in the section dedicated to NP 

statistics in chapter 2 where we tested null and alternative hypotheses about 

particular point values of the success rate p, here we would like to estimate this value 

without any particular ideas as to what it could be. 

 

Recalling the formal expression of Binomial distribution [for details please see 

chapter 1], the following obtains: 

P(3 out of 4 odd | success rate p, binomial probability model) = 4!p3(1-p)/3!1! =  

4 p3(1-p) 

We can now conceptualise this expression as a function of the success rate parameter 

given the observation, say, L(p|data, functional form of the model). This is called a 

likelihood function. Here p is variable and data is fixed. Now, in order to find the 

MLE estimate of p we maximise the obtained likelihood function using conventional 

mathematical techniques, which yields an MLE estimate p = 0.75 (recall that p ∈ 

[0,1]). This means that given the binomial probability model, p = 0.75 maximises the 

probability of observing 3 out of 4 odd numbers. In general, the MLE technique 

provides parameter estimates that fit the given model as close as possible to the data. 

 

3.2.2 Kullback-Leibler Divergence 

 

Kullback-Leibler divergence [K-L] is the second ingredient necessary to obtain 

Akaike’s result. Kullback and Leibler (1951) derived a measure that aims to 

calculate the information lost when a given distribution [say, f] is approximated by 

some other distribution [say, g]. This information measure [from now on the K-L 

measure] turned out to be equal to the Shannon’s entropy used in information theory 

[cf. Shannon and Weaver (1949)]. The K-L measure is in the continuous case 

defined as:  
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I (f, g) = ∫ f(x) ln (f(x) / g (x | θ)) dx                                                           (1) 

where “ln” stands for the natural logarithm and θ is a vector of adjustable 

parameters. 

 

The K-L measure is sometimes incorrectly referred to as a ‘distance’. It can only 

heuristically be thought of as a directed ‘distance’ [or divergence] from a model g to 

a model f. It is directed because for any model f and any model g such that if it is not 

the case that f ≡ g then I (f, g) ≠ I (g, f). So it does not satisfy the usual conditions on 

a distance measure41. Hence we shall only refer to the K-L measure as a divergence 

or information in the precise sense as provided in the first paragraph of this section. 

Also, I (f, g) = 0 if and only if f ≡ g and for any f, g: I (f, g)  ∈ [0, ∞). 

 

For illustration, here is an example of using the K-L information for two discrete 

models. The example is due to Konishi and Kitagawa (2008):33, notation has been 

modified to fit our usage: 

 

Assume that two dice have the following probabilities for rolling the numbers 
one to six: 
ga = {0.2, 0.12, 0.18, 0.12, 0.20, 0.18} 
gb = {0.18, 0.12, 0.14, 0.19, 0.22, 0.15} 
In this case, which is the fairer die? Since an ideal die has the probabilities f = 
{1/6, 1/6, 1/6, 1/6, 1/6, 1/6}, we take this to be true model. When we 
calculate the K-L information, I (f, g), the die that gives the smaller value 
must be closer to the ideal fair die. When we deal with discrete random 

variables, calculating the value of I (f, g) = ∑ 	

�

�
 ��

��

��
 we obtain I (f, ga) = 

0.023 and I (f, gb) = 0.020. Thus in terms of K-L information, it must be 
concluded that die gb is the fairer of the two. 

 

Now, if we interpret distribution f as the truth [or the actual data generating 

distribution, or some such like notion – we will leave a more careful consideration of 

this notion until the next chapter] and g as a model which is used to approximate f, 

and in addition assume that the truth is fixed, then under some general conditions [cf. 

Burnham and Anderson (2002) for a fully rigorous mathematical derivation] Akaike 

(1973) established that a relative divergence from g to f can be estimated by the 

                                                 
41 A function is a distance measure if for any three vectors l, m and n, it assigns positive real numbers 
r subject to the following conditions: 
r (l, l) = 0; r (l, m) = r (m, l) [symmetry]; r (l, m) ≤ r (l, n) + r (n, m) [triangular inequality] 
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maximised log-likelihood function ln(L(�� | data, gi )) for each model gi, [i = 

{1,…,r}] from the set of r models in the choice set. However, Akaike found that 

such a maximum likelihood estimator is asymptotically positively biased [cf. section 

2.4.1], and that in large samples the bias is approximately equal to K – that is, the 

number of adjustable/estimable parameters in the model. 

 

Then by multiplying ln(L(�� | data, gi )) – K by (–2)42 he defined the Akaike 

Information Criterion:  

(AIC)                        – 2ln(L(�� | data, gi)) + 2K. 

 

Model selection using AIC proceeds thus. First of all, a set of competing models is 

compiled on the basis of the background information, theoretical results/ideas in the 

field or research, previous research, etc. Hereafter we refer to such a set as the choice 

set. Then the data are considered.43 Then in each model the adjustable parameters are 

set at their maximum likelihood levels so that an element of each model is obtained 

such that it provides the closest fit to the given data. Then the AIC scores are 

calculated for each of these closest fitting elements. In a sense the closest fitting 

elements of each model represent their respective models. The model which has the 

maximum likelihood element with the smallest AIC score is chosen. 

 

Since we do not know the “full reality” f, only the differences in the AIC scores 

between the models in the choice set are interpretable, and not the absolute values. 

When considering the differences, the constants C cancel out, so Akaike scores are 

on an interval scale lacking a true zero but preserving the relative distances [i.e., 

ratios of distances], whereas the K-L information itself is measured on a ratio scale 

with a true zero. So, AIC gives us an expected directed K-L distance from the given 

model to the unknown full reality relative to models in the choice set, and no others. 

This means that by using AIC we do not have epistemic access to the directed 

distance from models to the truth in the absolute sense. This highlights the 

importance of picking the models for the choice set with the utmost care and 
                                                 
42 Multiplication by (– 2) was done for “historical reasons”. For instance, under certain assumptions, – 
2ln (ML1/ML2) is asymptotically χ2 distributed. 
43 The sample could have been gathered prior to the compilation of the choice set or afterwards. This 
is irrelevant so long as the data were not used in creation of the choice set. For the discussion of this 
point please see section 3.4.1.4 below. 
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consideration for the background information and available experience and 

knowledge in the field at hand. This is what we meant when we drew a distinction 

between theoretical and statistical modelling [cf. section 1.1] and said that the 

distinction is not sharp because we are concerned with statistical modelling which 

has theoretical elements in it. These theoretical elements play their part when one 

picks the families of models to compile the choice set. 

 

Due to the meaningfulness only of AIC differences, it is recommended to calculate 

the AIC differences, ∆i = AIC i – AICmin, for each model in the choice set.  These 

are estimates of the expected K-L differences from gi(x | θ) to f relative to the model, 

which has the smallest AIC score [denotes by AIC min]. The best estimated model has 

∆i = ∆min = 0. There is always at least one best AIC estimated model within the 

choice set. The ∆i values allow for ranking of models within the choice set. The 

(naïve) methodological rule is: choose the model with ∆i = ∆min = 0. A refinement of 

this rule is considered further. 

 

In order to work out the relative strength of evidence for each model, the likelihood 

L(gi | x) of model gi, given data x, is defined in the literature to be proportional to exp 

( - 0.5 ∆i)) Then, for ease of interpretation, all L(gi | x) for each model in the choice 

set are normalised to yield so-called “Akaike weights”, wi, which all add up to 1. 

 

wi = exp ( - 0.5 ∆i) / Σ
n

i=1 exp ( - 0.5 ∆i) 

 

Burnham and Anderson (2002) refer to these weights as “model probabilities” or 

“the weight of evidence in favour of model i”. Akaike weights ratios are equal to 

relative likelihood ratios [i.e., for a pair of models i and j, L(gi | x) / L(gj | x) = wi / 

wj], which are in the AIC literature taken to ‘…represent the evidence about fitted 

models as to which is better in a K-L information sense.’ [Burnham and Anderson 

(2002):78] 

 

Let us consider an example of actually using the AIC method for model selection. 

Naturally, it would be great to develop further one of our earlier examples, say, the 

one from chapter 1 on relating weights and heights of male residents of the London 



59 
 

Borough of Waltham Forest.  Unfortunately we do not have any data for our mock 

example, so we shall have to use a different example which is structurally similar to 

our weights/heights e.g. In any case we can use the weights/heights example to 

introduce the actual example we shall use. 

 

So, starting with the simplest case, suppose that we come up with a probabilistic 

statistical model for our weights/heights example and suppose that this model is of a 

linear regression type. That is, weights [the response variable Y] and heights [the 

regressor variable X] are linearly related thus: Y = aX + b + ε, where a is the 

gradient of the line, b is the intercept with the y-axis and ε is the residual error term 

which accounts for the deviations of data from our linear model. It is commonly 

assumed that the deviations from the line are probabilistically independent from one 

another [cf. section 1.3], and that ε is normally distributed with zero mean and a 

constant standard deviation σ, where σ is estimated from data. We shall go along 

with this assumption. Suppose that we wish to use the least squares method of linear 

regression. That is, we find the element of our linear model in such a way that the 

sum of the vertical distances from this element to the data points [SOS] is the 

smallest among all the elements of our model. The least squares linear regression is 

in fact a special case of general maximum likelihood estimation. We can thus obtain 

the AIC scores with the output of standard regression packages using this formula:  

AIC = n ln(��2) + 2K   

where K is the number of estimated regression parameters including σ 2 [in our case 

there are three adjustable parameters – a, b and σ]; ��2 [the estimated variance] is 

equal to its maximum likelihood estimator (Σ�̂i
2/n). 

 

However, our mock example of weights/heights is very artificial. Although it seems 

reasonable to think that weights increase with heights, trying to predict weights with 

heights seems insufficient. For instance, we may also wish to include the dietary 

preferences [on the thinking that those with preference to foodstuffs that contain 

more energy would be heavier], the weight of the mother and the weight of the father 

reflecting the idea that our males’ weight could possibly be related to that of their 

parents. There can be many other variables we may wish to consider. Now instead of 

simple linear regression we have a multiple regression case:  Y = aX1 + bX2 + cX3 + 
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dX4 + ε, where X1 stands for the height, X2 – for the preference for particular type of 

food [perhaps as measured by the average amount of kilocalories such food 

contains], X3 and X4 – for the weights of the mother and the father respectively. 

Now, which variables are relevant for predicting the value of Y? In the absence of 

further knowledge, it seems that we have 24 – 1 = 15 possible models to choose 

from, assuming that at least one variable is relevant. 

 

So, here is a much used example which is commonly referred to as Hald’s Cement 

Hardening Data – several references are cited by Burnham and Anderson (2002):99-

103. This example is structurally the same as our multiple regression case above. 

The table below represents heat evolved during the hardening of 13 samples of 

Portland cement and four variables that may be related to it – the tables are from 

Ghosh and Samanta (2001). 

 

Cement hardening data with four regressor variables x1, x2, x3 and x4 and a 
response variable y 
x1 x2 x3 x4 Y 

7 26 6 60 78.6 

1 29 15 52 74.3 

11 56 8 20 104.3 

11 31 8 47 87.6 

7 52 6 33 95.9 

11 55 9 22 109.2 

3 71 17 6 102.7 

1 31 22 44 72.5 

2 54 18 22 93.1 

21 47 4 26 115.9 

1 40 23 34 83.8 

11 66 9 12 113.3 

10 68 8 12 109.4 

where the regressor variables (in percentage of the weight) are: x1 = calcium 
aluminate (3CaO.Al2O3), x2 = tricalcium silicate (3CaO.SiO2), x3 = tetracalcium 
alumina ferrite (4CaO.Al2O3.Fe2O3) and x4 = dicalcium silicate (2CaO.SiO2); the 
response variable is y = total calories given off during hardening per gram of cement 
after 180 days. 
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Our purpose is to select a model for predicting the evolution of heat in Portland 

cement on the basis of its chemical composition. We assume no detailed knowledge 

of physics or chemistry, and so engage in probabilistic statistical model selection [as 

opposed to theoretic]. Thus we put the 15 possible models in our choice set [of 

course we could also consider models with quadratic, cubic etc. terms, but that 

would be unnecessary for our purposes] and calculate Akaike differences AIC (∆). 

That is, the model with AIC (∆) = 0 is deemed AIC-best. In the table below the first 

column indicates the type of model by showing which variables are included in each 

model. For example, the model in the first row has only x1 and x2 in it and thus it has 

four adjustable parameters [K = 4] – the two parameters that are multiplied by the 

variables, the intercept with the y-axis and the variance. Another point to note is that 

below there is a column for AICc, which is a version of AIC used when the number 

of data points are small [remember that AIC is an asymptotically unbiased estimator 

of relative expected K-L divergence] relative to the number of adjustable parameters 

used in the ‘maximal’ model in the choice set – viz., the model which has the highest 

number of adjustable parameters of all models in the choice set. Sugiura (1978) and 

Hurvich and Tsai (1989) found that when the ratio of the sample size to the number 

of adjustable parameters in the maximal model is small [some consider that this is 

the case when the ratio is below 40 – cf. Burnham and Anderson (2002):66] there is 

a small sample bias which requires a [second order] correction. An intuitive 

explanation for this bias is that when the ratio is small there are more adjustable 

parameters than can be justified with such limited data. So, AICc penalises  models 

that use extra adjustable parameters relative to other models in the choice set 

disproportionately more than does the AIC. Our sample consists of only n = 13 

observations, and the maximal model in the choice set has six adjustable parameters, 

so it is more appropriate for us to use AICc for model selection. All the 

methodological points about AIC carry over pretty much verbatim to AICc.  

AICc = AIC + 
��(��
)

� � 

 

In the table below the model which has only variables x1 and x2 in it is AICc-best. 

The maximum likelihood (ML) element [i.e., the element that fits the data most 

closely] of this model is:  

y = 52.6 + 1.468x1 + 0.662x2, and �� = 2.11 [Burnham and Anderson (2002):103] 

Also notice that there are some models that are not that far from the AICc-best one. 
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In particular, models in rows two, three, four and five all have the AICc differences 

below 4. According to the ‘rule of thumb’ that is used in AIC methodology [which 

applies equally to both AIC and AICc], these models also have some support. The 

rule of thumb is that models that are within 2 units of the AIC-optimal model have 

substantial support, those that are between 4 and 7 units away from the AIC-optimal 

model have considerably less support, and those that are more than 10 units away 

have virtually no support at all [Burnham and Anderson (2004):271]. 

Model K AIC (∆) AICc (∆) 

12 4 0.45 0 

124 5 0 3.13 

123 5 0.04 3.16 

14 4 3.77 3.32 

134 5 0.75 3.88 

234 5 5.6 8.73 

1234 6 1.97 10.52 

34 4 14.88 14.43 

23 4 26.06 25.62 

4 3 33.88 31.1 

2 3 34.2 31.42 

24 4 35.66 35.21 

1 3 38.55 35.77 

13 4 40.14 39.7 

3 3 44.09 41.31 

Ghosh and Samanta (2001):1143 

 

3.3 Some Features and Properties of AIC 

 

Here are some properties of the AIC, some of which may seem self-evident. 

 

• AIC differences between models based on different sets of data cannot be 

compared.  

• The order of computation of AIC scores is irrelevant.  

• Models that are not in the choice set are out of the consideration.  
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Probably the most important feature of the AIC methodology is its use of K-L 

divergence. However, there are several alternative measures of discrepancy between 

distributions [cf. Konishi and Kitagawa (2008):31]. Is there a justification for using 

the K-L divergence rather than any other measure of divergence or distance between 

distributions? 

 

Burnham and Anderson (2002) assert that ‘the relative K-L distance is the link 

between information theory and the log-likelihood function that is a critical element 

in AIC model selection.’ [Burnham and Anderson (2002):87] ‘The K-L distance 

between models is a fundamental quantity in science and information theory … and 

is the logical basis for model selection in conjunction with likelihood inference.’ 

[Burnham and Anderson (2002):54] 

 

Burnham and Anderson’s (2002) argument for the use of the K-L discrepancy in 

model selection rather than any other measure is in its essence nothing over and 

above an argument by analogy – roughly, success in some fields implies success 

other fields. Their argument for the special status of K-L discrepancy is two-fold. 

Firstly, this quantity has its natural place in information theory [e.g., Shannon 

information entropy], which they consider to be a fundamental advance in 20th 

century science. Secondly, entropy is of fundamental importance in statistical 

mechanics. So, the former seems to assert that K-L actually arises from the 

information theory and the latter is an argument by analogy. They site as important 

Bolzmann’s theorem connecting entropy to negative logarithm of probability. 

 

With regards to the latter argument we agree with Jaynes (1957):621: 

‘The mere fact that the same mathematical expression -∑pilogpi occurs 
both in statistical mechanics and in information theory does not in itself 
establish any connection between these fields. This can be done only by 
finding new viewpoints from which thermodynamic entropy and 
information-theory entropy appear as the same concept.’ 

 

On the matter of asymmetry of K-L discrepancy measure Burnham and Anderson 

[arguably the authors of the most definitive and up-to-date work on the subject of 

AIC – i.e., Burnham and Anderson (2002)] say only the following: ‘…I (f, g) ≠ I (g, 
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f); nor should they be equal, because the roles of truth and model are not 

interchangeable.’ [Burnham and Anderson (2002):56] It is hard to say what to make 

of this remark. One may try to interpret it in a way that approximating a model by 

truth is not a sensible thing to do because it is the approximation the other way 

around that interests us, hence, calculating the distance makes sense in one direction 

only. However, granting to the truth the special status, it still does not constitute a 

reason as to why a distance to it should be any different from the distance from it. 

This asymmetry seems to a natural interpretation in thermodynamics as an increase 

in entropy, and it represents the arrow of time: to go back to the previous state 

requires more energy than to go from it. However, in our context of model selection 

there is no obvious reason of this sort for the asymmetry of our divergence. So much 

for the argument from analogy with thermodynamics! 

 

We find that the most convincing argument for using the K-L divergence rather than 

any other is that the K-L divergence lends itself easily [and some may say naturally] 

to approximation by the ML technique, which is well-established within modern 

statistics.44 Still, the lack of symmetry is worrisome and should be born in mind as a 

shortcoming. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
44 According to Akaike himself, the connection occurred to him in March 1971 when he was standing 
on the train from his home to the institute where he worked at the time [Findley and Parzen 
(1995):111]. 
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3.4 Philosophical Issues with AIC 

Recent philosophical literature contains/identifies several issues with the AIC 

methodology. Issues considered in this section are to do with adequacy of AIC as a 

model selection methodology, its use and limits. Some external applications of AIC 

in broader philosophy of science context are dealt with in chapter 5. 

 

  3.4.1 The Subfamily Problem 

 

3.4.1.1 Statement of the Problem 

 

The problem that is identified in this section is related to the issue as to where we get 

the models from to compile the choice set.  

 

The subfamily problem [identified by Forster and Sober (1994)] can be explained in 

the following manner. Suppose that a model that we pick for the choice set is an (n-

1)th degree polynomial such that it contains an element which perfectly fits the n 

data points that we have [i.e., SOS = 0]. Moreover, this particular polynomial is the 

only element of the given model [that is, the model constitutes a singleton set]. This 

‘model’ and its element will be chosen by an information criterion45 as optimal 

whatever the alternatives since it has no adjustable parameters [K = 0] and it fits the 

data perfectly! 

 

3.4.1.2 The Forster-Sober Solution 

 

Forster and Sober’s (1994) apparent solution of this problem is based on what they 

call the Error Theorem and the distinction that they draw between statistically 

unbiased and epistemically unbiased estimation. 

The Error Theorem: Error[Estimated(A(F))] = Residual Fitting Error + Common 

Error + Sub-family Error.46 Here A(F) denotes the predictive accuracy of the family 

of curves F. 

                                                 
45  All information criteria suffer from this problem – cf. Forster and Sober (1994):18, fn 27. 
46 Forster and Sober (1994):19 
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An estimator is statistically unbiased if and only if its expectation is equal to the 

actual value of the parameter that it is used to estimate. The idea of epistemic bias is 

best described by means of an example. Suppose that we have a statistically unbiased 

estimator. Let us increase its variance arbitrarily in such a way that the estimator’s 

mean value is unaffected. We still have a statistically unbiased estimator. But, argue 

Sober and Forster, it is epistemically biased since there is at least one other unbiased 

estimator, which has a smaller variance than the one at hand. Forster and Sober argue 

that the ad hoc application of Akaike’s Theorem to the singleton models as described 

above is statistically unbiased but epistemically biased, and that this is implied by 

the Error Theorem. Let us see how. 

 

The Common Error is the same for all the models, so it cancels out. The Residual 

Fitting Error is both statistically and epistemically unbiased. However, the Sub-

family Error is statistically unbiased but sometimes epistemically biased. 

 

Forster and Sober illustrate how this epistemic bias arises in the following way. 

Suppose we have a very large data set that exhibits strong linearity. We 
wish to estimate the predictive accuracies of L(LIN) and L(POLY-n), 
where POLY-n is the family of n-degree polynomials with n parameters 
free, and L(F) is obtained by using the data to single out the best fitting 
curve in family F. We may apply Akaike’s Theorem to (LIN) and 
(POLY-n) directly, or we can apply it to the singleton families 
containing just L(LIN) and L(POLY-n), respectively. The surprising fact 
– that the ad hoc Akaike’s estimate for L(POLY-n) and L(LIN) will 
always favour L(POLY-n), because it is always closer to the data. In 
sum, both the direct and the ad hoc method of accuracy estimation are 
statistically unbiased (as required by Akaike’s Theorem), but the ad hoc 
application of Akaike’s method yields an estimate that we know is too 
high. The ad hoc application yields an estimate that is epistemically 
biased. [Footnote 31: Although the estimate is known to be too high, 
given the data at hand, the Akaike estimate of the predictive accuracy of 
that same singleton family relative to other data sets generated by the 
true ‘curve’ will be too low. On average, of course, the estimate will be 
centred on the true value.]  

Forster and Sober (1994):21 

 

Forster and Sober say that the Error Theorem is in fact a ‘meta-theorem’ – it is 
a theorem about the ‘meaning’ of Akaike’s Theorem.47 They state that this 

                                                 
47 Ibid. 
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result is closely related to the one in Sakamoto et al. (1986):77. So, let us 
consider it48. 

-½AIC(K ) = (mean expected log likelihood) + (common error) + 

(individual error) 

Let us analyse this result. The common error does not depend on the number of 

adjustable parameters, K, in a given model, so K does not have a bearing on the 

model selection. The individual error is a sum of two expressions. Let individual 

error = (C + D)49. C’s variance is equal to K, and C increases as K increases. 

However, D decreases with increase in K. Now, due to the subfamily problem, K = 

0. Hence the individual error does not have a bearing on the model selection either. 

But the mean expected log likelihood of L(POLY-n) is higher than that of L(LIN). 

Thus, the AIC(L(POLY-n)) is smaller than AIC(L(LIN)). So the AIC methodological 

rule prescribes the choice of L(POLY-n). Therefore, we conclude that using 

Sakamoto’s result does not solve the subfamily problem. Hence, it appears to be the 

case that the closely related Error Theorem does not solve it either.50 There is a 

reason to think that the ad hoc application of Akaike’s Theorem is epistemically 

biased, viz., our perception that L(POLY-n) picks up too many errors by fitting the 

data too closely. But we argue that the epistemic bias is not implied by the Error 

Theorem. So, we are seemingly back where we started from – the subfamily 

problem. We thus conclude that Forster and Sober (1994) do not succeed in 

resolving the subfamily problem by using their Error Theorem and the distinction 

between the statistical and epistemic bias. 

 

3.4.1.3 Replies from Kukla and Kieseppä 

 

Kukla (1995) starts off with noting that: ‘(1) …there are infinitely many equally 

good candidate-curves relative to any given set of data, and (2) … these best 

candidates include curves with indefinitely many bumps.’ [Kukla (1995):248] 

Presumably by ‘equally good candidate-curves’ Kukla means models that fit the data 

equally well, but differ in their predictions of future data. 

                                                 
48 This part follows Sakamoto et al. (1986): 76-81. 
49 For the full mathematical rigor cf. Ibid. 
50 Indeed, Kieseppä [(1997): 40] aptly remarks on this argument from Error Theorem: ‘This is a 
clever argument, but the unrigorous way in which it has been presented makes it very difficult to 
evaluate whether it really solves the subfamily problem.’ 
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So, the first problem is: just SOS fitting with (n-1)th degree polynomial allows for 

any prediction whatsoever; the second problem: linear relationships would never be 

used contrary to common scientific practice. Kukla states that Forster and Sober 

(1994) ignore the first problem and concentrate on the second. 

 

Kukla raises the following issue. Take families of models which contain as their 

elements polynomials, say, of (n-1)th degree such that they have (n-1) adjustable 

parameters [i.e., one of the parameters is fixed] and the best fitting element in each 

such family has the SOS equal to that of the best fitting element of the family that 

contains polynomials of (n-2)nd degree with (n–1) adjustable parameters. AIC would 

give these two models an equal score. Importantly, both models have the same Sub-

family Error [as per Forster and Sober – cf. section 3.4.1.2], but the elements in the 

former have an arbitrary number of bumps. So, seemingly we do not have an 

epistemic criterion for showing that a polynomial of a degree lower than another and 

the same SOS is epistemically preferable/predictively more accurate. 

 

As an example, consider linear and quadratic functions. Pick a quadratic function 

with one fixed parameter [thus the number of adjustable parameters that are left is 

two] and adjust the remaining adjustable parameters in such a way that the 

expression has the same SOS as the linear function. There are in fact infinitely many 

expressions of this sort [we can repeat the procedure with polynomials of higher and 

higher order].  

 

Forster (1995a) says that there is nothing wrong with having infinitely many curves 

with the same predictive accuracy. The problem arises when the criteria consider 

curves predictively equally accurate whereas they are in fact not [In footnote 2 page 

349 he says that a bumpier curve could be closer to truth if the truth were bumpy, but 

on average would not be.]: ‘…Kukla appeals to the intuition that very bumpy curves 

are not expected to have equal predictive accuracy…I concede that Kukla’s intuition 

is correct.’ [p. 349] Forster51 addresses the second problem raised by Kukla by 

                                                 
51 In what follows Best(PAR) stands for the actual truth; L(PAR) – best fitting member of the model 
of all parabolas; L(LIN) – best fitting element of the model of all linear curves; Qi – a model of 2nd 
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devising a geometric example and showing that it can be interpreted interpretation 

within the Akaikean framework in the case of curve fitting, on  

the key assumption … that the location of L(PAR) is governed by a 
Gaussian (i.e. Normal) distribution centred at Best(PAR) with a variance 
inversely proportional to the number of data. As a result L(PAR) will 
stray less from Best(PAR) as data accumulate. … Note that this 
‘normality’ assumption does not require that the noise in the data itself is 
Gaussian. [Footnote 8: ‘Kukla’s presentation is potentially misleading in 
that he talks as if the sum of square deviations (SOS) is always the 
appropriate measure of fit, but this is only the case for Gaussian errors. 
AIC uses the general measure of log-likelihood to measure fit, as we 
made clear in Forster and Sober [1994].’] The assumption is about the 
effect of noise in parameter space… The significance of this ‘normality’ 
assumption is that it licenses a geometrical interpretation of hypothesis 
space.  

Forster(1995b):353-354 

 

Forster’s interpretation of the geometric example shows that a randomly selected 

L(Qi) will do worse [in the sense of being on average less predictively accurate] than 

L(LIN). Going through the mathematical details of his Theorem, Forster states that 

‘[a] remarkable feature of this result is that the average advantage of LIN over Qi 

does not depend on the amount that curves in PAR are capable of performing better 

than anything in LIN.’ [Forster(1995b):356] 

 

Forster proposes a modification of the AIC in order to correct for the problem 

introduced by Kukla’s way of choosing families of models for the choice set. 

According to him, the AIC score for the polynomial should be increased by ∆K/n, 

where ∆K is the increase in the number of adjustable parameters and N is the number 

of data points. In his subsequent papers on the Akaike methodology [and information 

criteria in general[, however, Forster does not include the proposed correction of 

AIC52. This seems to indicate that correcting AIC measure by quantity ∆K/n has to 

be used when among the models that one considers at choice set step are those of the 

Qi type. Moreover, in order for the reply to Kukla to work, one has to randomly 

select a model Qi among the models of its type to be considered the choice set. 

 

                                                                                                                                          
degree polynomials with one fixed parameter; L(Qi) – the best-fitting element of Qi, which is equal in 
simplicity and fit to L(LIN). 
52 Nor is it generally used by statisticians. 
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Even if we accept Forster’s answer as a partial solution to Kukla’s challenge, 

Kieseppä (1997):39-40 poses a problem to which Forster’s geometrical construction 

has no answer. Kieseppä considers a situation where one happens to include a model 

of Qi type in the family of models for consideration prior to observing data. Then 

Forster’s solution does not apply, but arbitrariness in the choice of models for the 

choice set remains. Would Forster call this arrangement ad hoc? Kieseppä states that 

to choose the hierarchy, we seem to require the knowledge about what good 

scientific hypotheses look like, which does not stem from mathematical theorising.  

 

3.4.1.4 Our Own Dissolution of the Problem 

 

Interestingly, we have not come across the subfamily problem anywhere in the 

extensive literature aimed at statisticians, who are interested in foundational issues as 

well as in application of the statistical techniques. Perhaps this is due to this issue not 

being seen as a serious problem. We think that it is not a serious problem, although 

as we argue in sections 3.4.1.2 and consider in section 3.4.1.3 it has evaded proper 

resolution hitherto.  In fact we go as far to argue that this is not a problem for model 

selection – we dissolve it. 

 

Firstly, suppose that we put in the choice set a model which contains all linear 

functions as its elements and a model which only contains a single element, e.g., y = 

2x2 +3x – 5. Why would we want to include the latter model? There are two potential 

reasons – either we have had a preliminary analysis of data and found out that this is 

the best fitting parabola out of the model of all parabolas or we have good reasons to 

think that this is a good model on the basis of currently accepted theories, our 

experience in the field, etc. If we do it for the first reason, then we suggest that a 

‘counterfactual’ move could be made in order to stop the subfamily problem from 

appearing. That is, one should not check the data first – the models should be chosen 

for the choice set on the basis of the background knowledge that we have prior to 

observing/considering the data set that we are using for model selection. And if one 

is already quite familiar with the data, one should ‘forget’ that one is familiar with it.  

Arguably, even if we already have collected our data sample, we should not attempt 

to reflect the sample in the hypotheses in our choice set. Even if we have strong 

familiarity with the data, we should ‘delete’ it or ‘forget it‘ when considering which 
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models to include in our choice set. For instance, we are quite surprised that Howson 

and Urbach (2006) do not adopt this stance on the subfamily problem rather than 

calling it ‘…this rather devastating objection.’ [Howson and Urbach (2006):294] On 

the contrary, this argument is analogous to, and our stance is very much consistent 

with the one adopted by them with regards to the Old Evidence Problem in Bayesian 

Confirmation theory53. Here is a brief rendition of the Old Evidence Problem [for 

more details see Howson and Urbach (2006):297-301; for an overview of other 

attempts to solve the old evidence problem cf. Earman (1992):chapter 5]. It is 

commonly thought in the philosophy of science that if you build a hypothesis to 

entail known data, that hypothesis cannot draw any support for itself from that data. 

Only new data can confer confirmation onto a hypothesis. Sometimes, however, new 

theories are not purpose-built to fit old data, but once they are developed 

independently of the already known data, on occasion it is post factum found that 

they do fit old data. It is commonly thought that in such a case the old data supports 

the new hypothesis. However, in Bayesian confirmation theory [which, very briefly, 

is the idea that data E confer evidential support onto a hypothesis H when the 

posterior probability of the hypothesis H in the light of data E is greater than its prior 

probability] the probability of data that has already been observed [called it ‘Eold‘] is 

P(Eold)=1 and also the likelihood of Eold is P(Eold|H)=1. Hence using the Bayes 

Theorem, P(H|Eold)=P(H), so the old evidence does not confirm the hypothesis, 

contrary to our intuition. Howson and Urbach propose a counterfactual move to 

remove the evidence implied by the hypothesis from the background information, on 

which all the propositions in Bayesian theory are conditional. Then the old evidence 

can provide support to the hypothesis H. 

 

A closely related idea is the use-novelty account of support of hypotheses by 

evidence [cf. Worrall (2002)]. 

 

‘A fact will be considered novel with respect to a given hypothesis if it did 
not belong to the problem-situation which governed the constitution of the 
hypothesis.’ 
Zahar (1973):103 

                                                 
53 We think it would be fair to say that Howson and Urbach (2006) do not consider the Old Evidence 
Problem to be a problem at all, and find it incredible to see that so much effort has been expended on 
trying to resolve it. Again, we find ourselves in an analogous position with regards to the Subfamily 
Problem. 



72 
 

 

Under this account only novel facts in this sense provide support to hypothesis. So 

on this idea using the singleton hypothesis y = 2x2 +3x – 5 would be fine as long as 

the given sample of data has not been used in order to construct this hypothesis 

[irrespective of the period of time in which such a sample was collected]. If this 

element of the parabolic model then would provide a perfect fit, that would be 

absolutely fine. 

 

Secondly, we have good prior reasons for choosing the particular values for the 

parameters only if we already have a good idea as for the functional form of the 

relationship between variables. In other words, there is hardly any model uncertainty. 

Since the problem of model selection is essentially the problem of model 

uncertainty, there is no place for model selection and hence for model selection 

criteria’s use in such a case. So, this defeats the very purpose of model selection. 

Employing this procedure is akin to doing the following. Instead of carefully 

selecting a small number of competing hypotheses on the grounds of our background 

knowledge and theoretical research and then observing the data, we are now going to 

have a thorough trawl through the data and find the best fitting model of an arbitrary 

dimension. Then we shall form a model consisting of this singleton model and retro 

check whether it obtains the highest AIC score among any other possible models. 

And then – low and behold – we will find out that it does! The question then arises 

as to the purpose of such an exercise – we know in advance that such a procedure 

would give us the top AIC score, whatever the data we are going to observe. Of 

course this emphasises the logical point of the subfamily problem, but in the process 

it defeats the very purpose of model selection, which is to choose the optimal 

mathematical structure of a model for predictive purposes because there is 

uncertainty as to what this structure should be, and some prima facie viable 

alternatives available. 

 

Finally, even if one might find the ‘counterfactual’ move unappealing, we think that 

for the purposes of model selection in the case when the ‘artificial’ fixing of 

singleton hypotheses within the choice set takes place, the sense in which K is the 

number of adjustable parameters should be that “capable of being adjusted at some 

point in time”, rather than just “free to be adjusted now”. Hence, a model containing 
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y = 2x2 +3x – 5 as its sole element would still have three adjustable parameters in the 

relevant sense. This is because it is an element of the model with three adjustable 

parameters. From this point of view, in section 3.4.1.3 L(Qi) would have more 

adjustable parameters than L(LIN), since we deliberately fixed (importantly, at a 

non-zero value) an adjustable parameter in L(Qi). Problem dissolved. 

 

3.4.2 The Problem of Language Variance 

 

3.4.2.1 Grue Problem 

 

 De Vito (1997):392 makes a two-fold claim: ‘The problem with using Akaike’s 

theorem for hypothesis choice is that the number of parameters associated with a 

given hypothesis is a matter of convention. In addition, for any hypothesis there is no 

a priori way to generate the right family of curves to which the hypothesis belongs.’  

 

De Vito demonstrates the former claim by applying the information criteria (he 

focuses on AIC, but the argument, if correct, would also apply to BIC and other 

information criteria) to Goodman’s New Riddle of Induction. 

 

Here is the argument. Suppose that we hypothesise as to the colour of emeralds over 

time. Let us define a predicate Grue such that ‘object x is grue at time t if and only if 

x is green at time t and t < 2100, or x is blue at time t and t ≥ 2100.’ [Forster (1999): 

92] Hence, we have two hypotheses regarding the properties of emeralds: 

 

Green Hypothesis: ‘All emeralds are green (at all times).’ 

Grue hypothesis: ‘All emeralds are grue (at all times).’ 

 

These hypotheses fit the current data equally well, but De Vito argues the Grue 

hypothesis contains one adjustable parameter [viz., t] whereas Green hypothesis has 

none, so AIC would lead us to favour Green hypothesis. Now, define predicate Bleen 

such that ‘object x is bleen at time t if and only if x is blue at time t and t < 2100, or x 

is green at time t and t ≥ 2100’. [Forster (1999):94] Note that in the language in 

which the predicates Grue and Bleen are taken to be ordinary, an ‘…object x is green 

at time t if and only if x is grue at time t and t < 2100, or x is bleen at time t and t ≥ 
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2100.’ [Forster (1999):94] Hence, Green hypothesis becomes: ‘All emeralds x are 

such that, if t < 2100 then x is grue at time t and if t ≥ 2100 then x is bleen at time t.’ 

[Forster (1999):94] whereas the Grue hypothesis in this language is still the same: 

‘All emeralds are grue (at all times).’ Now, in this new language both hypotheses fit 

the data equally well, but now the Green hypothesis has more parameters than the 

Grue one. So, by application of AIC, in this language one should favour the Grue 

hypothesis. The number of adjustable parameters that models have depends on the 

particular conceptualisation of the world. Hence, information criteria suffer from 

language variance. 

 

Forster (1999) replies to this argument by agreeing with De Vito that the application 

of AIC does not solve Goodman’s New Riddle of Induction and that this problem is 

a curve-fitting one. Forster argues, however, that De Vito draws from this an 

incorrect conclusion. The correct conclusion is that AIC does not apply to all curve-

fitting problems. 

 

Forster argues that De Vito misconstrues the notion of adjustable parameter. In fact, 

neither the Green nor the Grue hypothesis contain any adjustable parameters in the 

sense that this notion is used in Akaike’s methodology. A model contains adjustable 

parameters just in case a change in these parameters will pick out a different element 

in the model. In the case discussed by De Vito, the competing models are singleton 

sets [containing exactly one element respectively], hence all the parameters are 

adjusted. Exactly the same applies to the hypotheses when they are described in the 

‘Grue’ language. So, in either case AIC is unable to distinguish between the 

hypotheses. Another problematic aspect of posing the problem the way that De Vito 

does is that AIC applies only to probabilistic hypotheses: ‘The concept of fit in 

Akaike’s theorem is derived from the Kullback-Leibler discrepancy, which requires 

that the competing hypotheses are probabilistic (so that the likelihoods are well-

defined.)’ [Forster (1999):93] We could turn Green and Grue hypotheses into 

probabilistic ones by assuming that the observation errors are probabilistic. Even if 

we do so, AIC will not give us any reason to prefer one hypothesis over the other, 

which is contrary to our intuitions that Green hypothesis should be preferable to 

Grue hypothesis. 
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Forster modifies De Vito’s example in such a way that Grue hypothesis does contain 

an adjustable parameter –instead of fixing time parameter at value of 2100, it is now 

t = θ. Now, does AIC tell us to pick Green hypothesis rather than Grue? No, it does 

not, because ‘…Akaike’s notion of simplicity aims to quantify the sampling error in 

the parameter estimates. But in this example, there is still no sampling error in the 

estimation of the grue parameter θ. …[T]he grue model is unidentifiable in the sense 

that there is no unique value of θ that maximizes the fit with the seen data. There is 

no over fitting or under fitting in the relevant sense.’ [Forster (1999):96] Intuitively, 

AIC helps us when we have to predict future data by considering the observed data 

and stipulating that the future data comes from the same distribution. In this case, 

however, no such assumption can be made – we have no idea how (if at all) the 

distribution of θ is connected to the distribution of the observed data. 

 

3.4.2.2 Reparametrisation under Transformation 

 

De Vito poses a more general argument than that considered in the previous sub-

section. He gives an example in virtue of which under a certain transformation of the 

coordinate system a family of parabolic functions (PAR) becomes a linear one 

(LIN), and a linear family becomes parabolic. On the assumption that the SOS of the 

perspective best fitting elements of both is the same, De Vito argues that the AIC 

will recommend different curve in each situation. De Vito concludes that in virtue of 

his results a realist solution to the curve fitting problem is not warranted since the 

closeness to truth cannot be relative to a particular conceptualisation of the world. 

 

Forster replies to this charge as well. ‘The main problem is that transformations do 

not map a single member of PAR into a unique member of PAR’, so there is no 

sense in which the transformed families are equivalent representations of the old 

families.’ [Forster (1999):95] The argument is based on the assumption, which is 

used in the derivation of Akaike’s Theorem. That is, if F is a subfamily of G that F 

cannot be more complex than G and this subset relation is preserved under any one-

to-one transformation. So, if F is a subset of G then F’ is a subset of G’ and so is less 

than or equally complex. 
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As a part of his argumentation, Forster rather informally goes through the first part 

of a proof of Akaike’s Theorem. An intermediate step in the proof is an estimation of 

the discrepancy between the curve that fits best the observed data and the true curve 

[∆(θ)] by Taylor-expanding this discrepancy around θ* in terms of ∆(θ*), [where θ* 

is presumably the best fitting element of a given model (Forster (1999) does not 

define what he takes θ*  to be)] and showing that Taylor expansion is language 

invariant. Having gone through the theorem, Forster concludes that ‘…[K] is not 

simply the number of adjustable parameters, but the number of parameters that 

contribute to the expected discrepancy in a certain way. Given the fact that Taylor 

expansion is language invariant, and expected values are language invariant, there is 

no way in which this number can change by any redescription of the families of the 

curves. … It is convenient to describe k as equal to the number of adjustable 

parameters only because the equality holds in most cases. … [L]anguage invariance 

is built in at the very beginning.’’ [Forster (1999):100] 

 

Kieseppä (2001b) comments that one has to fix the representation in which one 

makes decisions. In Bayesian context, if one has not fixed a particular representation 

then one cannot use the difference in the visual simplicity of curve in order to fix the 

priors – lower for more ‘complicated’ curves and higher for ‘simpler’ ones, because 

different polynomials can have identical mathematical properties under a 

transformation. [Kieseppä (2001b):784] 
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4. Bayesian Statistics and the Bayes Information Criterion Methodology 

 

In the previous chapter we considered the AIC model selection methodology and 

defended it against various objections brought to bear in the literature. The purpose 

of this chapter is to see how Bayesian statistics approaches the issue of model 

selection, to consider the Bayes Information Criterion [BIC] methodology which is 

placed within Bayesian statistics, to defend the BIC methodology against various 

objections, and finally to compare and contrast the AIC and BIC methodologies. 

 

  4.1 Bayesian Statistics 

 

   4.1.1 Bayes Theorem 

 

Bayesian statistics is a unified methodology of statistical inference that is based on 

Bayes Theorem [cf. section 1.3.1]. Recall the Theorem: 

 

P(A|B) = P(B|A)xP(A)/P(B) where P(B) > 0 

 

Let us replace proposition A with proposition H, which stands for ‘the hypothesis is 

true’, and proposition B with proposition E – ‘a certain amount of evidence has been 

observed’. Hence: 

 

P(H|E) = P(E|H)xP(H)/P(E) where P(E) > 0 

 

P(H|E) is called the posterior probability of H in the light of evidence E [in other 

words, the probability that H is true after data has been observed], P(E|H) is the 

likelihood of observing the evidence E conditional on the truth of the hypothesis H 

[often simply referred to as the likelihood], P(H) is the prior probability of H being 

true [or the probability of H being true before data has been observed] and P(E) is 

the probability of observing data mentioned in proposition E. The prior probabilities 

in Bayesian statistics are always conditional on the background knowledge. So 

properly speaking we should write P(H|background knowledge) instead of simply 

P(H). However, we omit the background knowledge to simplify the notation.  
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In Bayesian statistics, the Bayes theorem is usually expressed as 

 

P(H|E) ∝ P(E|H)xP(H) 

 

That is, the posterior is proportional to likelihood times the prior. The constant of 

proportionality is 1/P(E). 

 

The process by which we draw inference in Bayesian statistics is the following. We 

first have a prior probability P(H) of the hypothesis being true in the first place. Then 

we observe data and work out what the likelihood of it is. Then we update our 

probability of the hypothesis H in the light of data E through the Bayes Theorem. 

The prior does not have to be purely a priori. It is in fact conditional on all the 

available information before we observe the new data sited in proposition E [or the 

data that we are not aware of as yet]. The important point to note about Bayesian 

statistics is that once the posterior distribution [or posterior probability density in 

case of continuous variables] is generated by means of the Bayes Theorem, further 

inference in it [such as the determination of the highest density region – Bayesian 

equivalent of the confidence intervals] is solely based on this posterior, that is, on the 

probability distribution in the light of the current observations. Let us now consider 

in detail the formation of prior probabilities. We shall not impart similar attention to 

likelihoods since their calculation is uncontroversial. 

 

4.1.2 Priors 

 

4.1.2.1 Objectivity and the Principle of Indifference 

 

Let us begin by considering the origins of a prior probability distribution. As we 

already mentioned, the prior distribution [as, indeed, any other probability 

distribution in Bayesian statistics] reflects the subjective degree of belief of a given 

researcher about, for instance, distribution of probabilities associated with different 

values of a parameter. The use of prior distributions is considered by many to be the 

major weakness of the Bayesian approach [indeed, its Achilles heel]. The charge is 

that since it is possible for different researchers to come up with widely divergent 

priors, their posteriors would be quite different as well, thus making the science of 
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statistics a thoroughly subjective enterprise. This is an unpalatable conclusion if 

objectivity is something that science should strive for. There have been several 

proposals over the years [indeed over a couple of centuries] as the possible ways in 

which the priors can be made more ‘objective’. By far the most popular idea has 

been the Principle of Indifference [POI].54 The POI states that every basic event  in 

the outcome space should be assigned equal probability. To illustrate, in our die-

throwing example we have two basic events - odd and even number on the face of 

the die. So, by the POI, prior probability of odd number and prior probability of even 

number should be 0.5 respectively. Unfortunately the POI runs into trouble. If we 

transform the continuous parameter space in a non-linear way [say, if we have 

parameter v, we transform it into something like 1/v], then what was a uniform 

distribution over v [uniform distribution is the result of application of the POI in case 

of continuous parameters] becomes a non-uniform one. Here is a nice example: 

 

‘Suppose we have a mixture of wine and water and we know that at most 
there is 3 times as much of one as of the other, but nothing more about the 
mixture. We have 1/3 ≤ wine/water ≤ 3 and by the Principle of Indifference, 
the ratio of wine and water has a uniform probability density in the interval 
[1/3, 3]. Therefore P(wine/water ≤ 2) = (2–1/3)/(3–1/3) = 5/8. But also 1/3 ≤ 
water/wine ≤ 3 and by the Principle of Indifference, the ratio of water to wine 
has a uniform probability density in the interval [1/3, 3]. Therefore 
P(water/wine ≥ 1/2) = (3–1/2)/(3–1/3) = 15/16. But the events ‘wine/water ≤ 
2’ and ‘and water/wine ≥ ½’ are the same, and the Principle of Indifference 
has given them different probabilities.’  
Gillies (2000):38 

 

There are other approaches to the ‘objective’ priors, such as the use of entropy 

priors55. However, in the limit this prior is uniform, and hence does suffer from the 

POI paradoxes as well as the original POI itself [cf. Howson and Urbach 

(2006):section 9.a.3]. 

 

Subjective Bayesians respond with two arguments. Firstly, said subjectivity of priors 

is not a weakness of the method, but its strength. Secondly, there are various 

technical results that can crudely be called ‘washing out theorems’ that show that 

under quite general conditions [the most important of which is that the prior assigns 

                                                 
54 Here we use terminology introduced by Keynes (1921).  
55 cf. Williamson (2007) and (2010) 
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a non-infinitesimal probability in the region of likelihood], as the number of 

observations accumulates, the likelihood rapidly gains disproportionately larger 

weight than the prior, and the posteriors obtained with different priors in the limit 

converge onto the same value. 56 We shall say more about priors in the next section. 

 

4.1.2.2 Conjugate Priors 

 

Suppose that we have managed to bring ourselves to be happy with the idea that 

there is no such thing as objective priors [for a lot of people this happiness is 

unreachable]. How are we to build our prior distribution then? Let us use the 

example of throwing the die and noting the even and odd numbers. Theoretically our 

prior can be of any shape [naturally subject the constraints given by the probability 

axioms]. However, if the prior comes from a different family of distributions to that 

of the posterior, our calculations would be rather difficult. So quite often in practical 

applications so-called conjugate priors are used. That is, conjugate priors are such 

that they come for the same family of distributions as the posterior. Naturally, one 

would not want to sacrifice the ability of express one’s beliefs for sheer 

mathematical convenience. Very often, however, conjugate priors are flexible 

enough to allow one to express one’s prior degrees of belief sufficiently well.   

 

So, back to rolling the die. As was the case in the section of classical statistics,  

suppose that we are happy that we have the Binomial set up. A conjugate prior for a 

Binomial is a Beta distribution. 

 

A random variable X has a Beta distribution if its p.d.f. is: 

xa-1(1-x)b-1/B(a,b), 0 < x < 1,  

where B(a,b): B(a,b)=∫xa-1(1-x)b-1dx (integrated from 0 to 1) 

The mean and variance of X: E(X) = a/(a+b), Var(X) = ab/(a+b)2(a+b+1) 

 

Below are some diagrams showing some examples of Beta distribution plots, where 

‘First’ stands for the parameter a, and ‘Second’ - for b57. 

                                                 
56 Howson and Urbach (2006):chapter 9 
57 The diagrams have been generated with the MiniTab software. 
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Diagram 2 

 

Diagram 3 
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Diagram 4 

 

Diagram 5 
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Diagram 6 

 

Diagram 7 
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The diagrams allow visual appreciation of a high degree of flexibility with which 

one’s prior probability distribution can be expressed using the Beta distribution. In 

particular, when a = b, the corresponding p.d.f. is symmetric [diagram 2 is a special 

case of the uniform distribution [when a = b = 1] and diagram 7 looks similar to the 

Normal distribution with a = b = 5; generally when a = b = constant, as the constant 

grows larger, the distribution concentrates around the middle values with 

increasingly smaller variance]. When both a and b are smaller than 1 then the 

distribution is almost bi-valued, that is, most of the probability density is distributed 

in the extremes of the distribution, rather than in the centre [see diagrams 3 and 5]. In 

particular, when a < b, there is more density on the left hand side, and the greater the 

difference between a and b, the more density there is on the left hand side. The 

opposite holds when b > a. Finally, on diagrams 4 and 6, both a and b are greater 

than 1. On the diagram 4 a > b, hence the distribution is skewed to the right, whereas 

when b > a the opposite holds [see diagram 6]. The severity of the skew depends on 

the magnitude of the difference between a and b.  

 

The prior distribution is pa-1(1-p)b-1 

The likelihood is pr(1-p)n-r, where p is the probability of success, r is the number of  

successes out of n observations. 

So, the posterior probability is proportional to pa+r-1(1-p)b+n-r-1 

The posterior distribution is pa+r-1(1-p)b+n-r-1/B(a+r,b+n-r), 0<p<1 

So, for instance, if we have a uniform prior, i.e., a = b = 1, the posterior distribution 

is pr(1-p)n-r/B(r+1,n-r+1) 

 

4.1.3 Model Selection Based on Bayes Factors 

 

Suppose that we have two point hypotheses H0 and H1 [just as in chapter 2] that we 

would like to compare in the light of observed data. In the Bayesian approach it is 

done on the basis of the Bayes factor. The easiest way to define the Bayes factor is in 

terms of the odds ratio. Posterior odds is the ratio of posterior p0 probability of H0  to 

the posterior probability p1 of H1 – that is, p0/p1. Prior odds is the ratio of prior 

probability c0 of H0  to the prior probability c1 of H1 – c0/c1. So, Bayes factor (B) in 

favour of H0 against H1 is the ratio of the Posterior odds: 
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B = (p0/p1)/(c0/c1) 

 

Good (1950) proposed an interpretation of B such that 0 < B < 1 means that H1 is 

favoured in comparison to H0, 1 < B < 10 means that H0 is moderately favoured to 

H1, 10 < B < 100 – that H0 is strongly favoured to H1. 

 

Let us apply this reasoning to an example that we used in the subsection on Neyman-

Pearson methodology. There we had a die-rolling set up such that we set out to roll 

the die 120 times in order to test two hypotheses against one another, viz., that the 

probability of obtaining even outcomes is 0.55 [denote it as H0] or 2/3 [denote it as 

H1]. Suppose, as we did, that we observe 70 even numbers out of 120 rolls of the die. 

What inference would we draw within the Bayesian methodology? 

 

In the previous subsection it was noted that the likelihood in this set up is pr(1-p)n-r, 

so here it is p70(1-p)50. Let us use the conjugate prior in the form of Beta distribution. 

Hence our prior is pa-1(1-p)b-1, where we should determine the value of parameters a 

and b. Suppose that we opt for a uniform prior a = b = 1. The posterior probability is 

proportional to pa+r-1(1-p)b+n-r-1, so in our case it is p70(1-p)50. Let us calculate the 

Bayes factor B: B = 0.5570x0.4550/0.6670x0.3450 = 4.6608 (4 d. p.) Now suppose that 

we had a different prior, say where a = 3 and b = 2. Let us calculate the Bayes factor 

for this eventuality: B = 0.5572x0.4551/0.6672x0.3451 = 4.2826 (4 d. p.) The Bayes 

factors are very similar. On the basis of I. J. Good’s interpretation of Bayes factors, 

this implies that H0 is moderately favoured over H1. Note that on the basis of this 

quite moderately sized set of data, the Bayes factor is not that sensitive with respect 

to the priors – it is dominated by the likelihoods. 

 

4.1.4 Point Estimation and Bayesian Confidence Interval 

 

Very often Bayesian point estimates are biased in the Classical sense [cf. section 

2.4.1] and are different to the Classical estimators. For example, in the Binomial case 

the Bayesian point estimate for the probability of success is: (a+r)/(a+b+r). If the 

prior is uniform, this corresponds to (r+1)/(n+2). In fact, the only prior that 

corresponds to the Classical estimate of r/n is when a = b = 0. 
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Bayesian confidence intervals are often [but not always] the same as those derived in 

Classical statistics, but their interpretation is quite different. That is, unlike their 

classical counterparts [cf. section 2.5] the Bayesian confidence intervals are 

interpreted directly in terms of probabilities. So, to say that a parameter lies within a 

certain interval with 95 % confidence is to say that the parameter has a 95 % 

probability of lying within said interval. 

 

4.2 Bayes Information Criterion 

 

In fact the name ‘Bayes Information Criterion’ is somewhat misleading since what 

has come to be widely known as BIC neither has anything to do with Shannon’s 

Information Theory [cf. Shannon and Weaver (1949)], nor is it the one and only 

Bayesian Information Criterion. Indeed, there is a plethora of model selection criteria 

within Bayesian framework – cf. Spiegelhalter (2002), Konishi and Kitagawa 

[(2008):chapter 9]. However, we will concentrate on BIC in particular, for three 

reasons. Firstly, even though BIC and other Bayesian criteria differ in details, they 

remain based within the same methodology, so the philosophical points by and large 

apply to them all. Secondly, BIC has received particular attention in the 

philosophical literature. Thirdly, like AIC, BIC is the most widely used Bayesian 

model selection criterion in statistical practice. 

 

BIC is due to Schwarz (1978). That is why it is sometimes referred to the SIC 

[Schwarz Information Criterion] or the Schwarz Criterion or Schwarz’s Bayesian 

Information Criterion. However, we shall continue referring to it as BIC following 

the most common usage in the literature. 

 

To get started, recall the discussion in section 4.1. One of the features of Bayesian 

statistics that we looked at there were the Bayes factors. Bayes factors are used to see 

which model from a given range is favoured by the sample data at hand. Bayes 

factors are the basis of model selection in Bayesian statistics.  

 

Recall that if we suppose that we have two models, say, H1 and H2, and for 

simplicity of exposition assuming that H1 and H2 are mutually exclusive and 

exhaustive, so that our data E arose from one of these models, the following holds: 
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That is, Posterior odds = Bayes factor x Prior odds. If the priors on our models are 
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where θi is a K-dimensional vector of parameters of the model Hi, and π(θi|Hi) is the 

prior probability of the vector of parameters θi given the model Hi – so called 

parameter prior. In order to obtain the full Bayesian solution the Bayes factor has to 

be combined with the model priors. Thus there are two prior distributions involved. 

 

The integrals involved in the above expression for B12 are often mathematically 

intractable, and have to be estimated by numerical methods such as Laplace 

approximation [cf. Kass and Raftery (1995): 777-778, and Konishi and Kitagawa 

(2008): 231-236]. Bayes Information Criterion is essentially an easy-to-calculate 

approximation to the natural logarithm of the Bayes factor. 

 

In a large sample with independent identically distributed data points the following 

holds [for a full formal proof cf. Schwarz (1978), Cavanaugh and Neath (1999) or 

Burnham and Anderson (2002)]: 

 

iiiiiii BICdHHEprHEpr ≈−=− ∫ })|(),|(ln{2)|(ln2 θθπθ  

 

where BICi = nKHE iii ln),ˆ|ln(2 +− θ , and iθ̂  is the maximum likelihood estimator 

of the Ki–dimensional parameter vector θi of the model Hi. In the notation of chapter 

2, BIC = – 2ln(L(�� | data, gi)) + Kln(n) 
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Notice that –2lnB12 ≈ BIC1 – BIC2 

 

The BIC methodological rule is the same as for the AIC – that is, to choose the 

model which has the smallest BIC score. 

 

The following table shows how the differences in BIC scores between two mutually 

exclusive exhaustive models correspond to the differences in Bayes factors and 

posterior probabilities [on the assumption of equal model priors]. This table 

resembles a similar ‘rule of thumb’ used in the AIC methodology [cf. section 3.2.2]. 

 

Grades of evidence corresponding to Values of the Bayes Factor for H1 against 
H2, the BIC Difference and the Posterior Probability of H1 
BIC Difference Bayes Factor pr (H1|E) Evidence 

0 – 2 1 – 3 0.5 – 0.75 Weak 

2 – 6 3 – 20 0.75 – 0.95 Positive 

6 – 10 20 – 150 0.95 – 0.99 Strong 

> 10 > 150 > 0.99 Very Strong 

From Raftery (1995):138, notation modified to fit our usage 

 

We shall provide an example of use of the BIC in section 4.5.2. In fact it shall be the 

same Hald’s Cement Hardening Data example that we employed in section 3.2.2. 
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4.3 Philosophical Issues with BIC 

 

4.3.1 Nesting 

 

Let us return to models LIN and PAR that we used as examples to introduce the AIC 

in chapter 3. LIN is a model which has all linear equations as its elements: y = a + 

bx. PAR is a model which has all parabolic equations as its elements: y = a + bx + 

cx2. As things stand, LIN is a proper subset of PAR, i.e., every element of LIN is an 

element of PAR, and PAR has more elements than LIN. LIN is said to be nested in 

PAR. Hence according to probability calculus pr(LIN) ≤ pr(PAR) [Popper (1968)]. 

Probability of LIN equals to probability of PAR just in case all the elements of PAR 

in which c ≠ 0 have probability zero. The same inequality applies to the posterior 

probabilities of LIN and PAR. That is, for any data E, the following holds: pr(LIN|E) 

≤ pr(PAR|E). So the posterior probability of PAR is at least as large as that of LIN 

whatever evidence we observe. Hence the posterior odds ratio 

[pr(LIN|E)/pr(PAR|E)] ≤ 1, so in Bayesian methodology LIN would not be preferred 

to PAR on any evidence at all. However, on the basis of the BIC methodology it is 

possible to prefer LIN to PAR. That is, it can be the case that [BIC(LIN) – 

BIC(PAR)] < 0. This leads Forster (2000):214 to a conclusion that ‘Bayes’ method is 

one thing and BIC is another. The latter is not always an approximation of the 

former.’ Let us see where the difference between Bayes’ method and BIC lies in this 

case. 

 

Recall from section 4.2 of this chapter that the BIC method provides an 

approximation to the Bayes Factor B12. The Bayes factor is essentially a ratio of 

integrated likelihoods of the data, which is an average of the likelihoods assigned to 

the data by each element of the model weighted by the prior probability distribution 

over all the elements of the model given that the model is correct. Even though LIN 

is nested in PAR, their Bayes factor is not restricted to any particular interval of 

values. That is, the Bayes factor of LIN against PAR (BLIN,PAR) can be greater than 1. 

Intuitively this is because the prior probability distribution over the parameters in 

PAR is spread more ‘thinly’ over the three parameters rather than over the two, as it 

is the case in LIN. If the data exhibits considerable linearity then the likelihoods of 

the elements in LIN are weighted higher by their priors within the integrated 
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likelihood than their linear counterparts in PAR. [cf. Kuha (2004):213] Hence the 

possibility of BLIN,PAR > 1. In general, for any model H1 that is nested in another 

model H2 the following holds. If H1 contains an element which is ‘true’ (we shall 

spend more time on the topic as to what is a ‘true’ model in the next subsection) and 

thus H2 contains the true element as well, then as the number of observations tends 

to infinity, B12 also tends to infinity. This is the case for almost any distribution of 

prior probabilities to the parameters given the respective models [cf. Dawid and 

Senn (2011):19]. 

 

Recall, however, that fully Bayesian model selection is based on posterior odds, 

where Posterior odds = Bayes factor x Prior odds. If we base our model selection 

solely on Bayes factors, our model selection is not affected by the issue of nesting of 

models, but our methodology is semi Bayesian, because we only use the priors over 

the parameters given the correctness of respective models, but do not employ priors 

over models themselves. Once we combine a Bayes factor with prior odds we obtain 

the result that the posterior odds of LIN against PAR are never greater than one. The 

BIC method provides an approximation of Bayes factor, so it also provides an 

approximation to the posterior odds just in case the priors over models themselves 

are equal, i.e., the prior distribution of the models is uniform – the Prior odds are 

then equal to 1. So the fully Bayesian model selection based on nested models would 

never favour a model with fewer adjustable parameters to an alternative with more 

adjustable parameters. As we discussed in the beginning of chapter 3, this is not a 

desirable feature of a model selection methodology. 

 

Forster’s conclusion cited above is correct in the case of nested models – if we wish 

to do fully Bayesian model selection properly we cannot work with nested models. A 

natural solution to this issue seems to present itself. Once we remove all linear 

elements from PAR and thus define PAR*: y = a + bx + cx2 where c ≠ 0, then LIN is 

no longer nested in PAR*, and there are no longer any restrictions on what values 

both prior and posterior odds can take. Moreover, surely it is more fruitful to select 

among incompatible models rather than between general models and their special 

cases [cf. Howson and Urbach (2006):289]. 
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Nonetheless, there are further arguments that the move from, in Forster’s 

terminology, truly nested models (like LIN and PAR) to quasi-nested models (like 

LIN and PAR*) makes the Bayesian model selection somehow inferior to the other 

methods which do not have this issue: ‘This maneuver succeeds in restoring 

consistency to [Bayesian] claims. Nevertheless, it does not resolve the puzzle about 

why there should be any difference between truly nested and quasi-nested models. In 

the other methods of model selection, such as AIC …, there is no difference between 

these two cases.’ [Forster(2000):214] 

 

Curiously we have not come across the following considerations being made explicit 

in the extensive literature on model selection. Let us investigate as to why the AIC 

methodology works equally well with both nested and non-nested models. Let us use 

models LIN and PAR again. To calculate the AIC scores we find an element of each 

model which has the maximum likelihood within the respective model. Within LIN 

that would obviously be a particular line. What about the element which has the 

maximum likelihood within PAR? It would almost invariably be a parabola with c ≠ 

0 [unless all the data points lie on a straight line, in which case the element with the 

maximum likelihood will be the same in both LIN and PAR. In the realm of 

probabilistic statistical modelling that we are concerned with we would expect this 

eventuality to be extremely rare.]. A parabolic curve has three adjustable parameters 

rather than two as it is the case for a linear curve, hence allowing the former to fit the 

data better, and thus to have a higher maximum likelihood. So, even though LIN is 

nested within PAR, as far as using AIC for model selection is concerned, PAR 

would almost always be represented by a parabola and penalised for using three 

adjustable parameters. The fact that LIN is nested in PAR is therefore irrelevant – 

LIN and PAR* would always yield exactly the same AIC scores as their nested 

counterparts [bar the case of complete linearity in data]. AIC-based model selection 

would have exactly the same outcome whether the models in the choice set are 

nested or not. This result generalises to nested models of any mathematical structure. 

By using only incompatible models in our choice set we can use both AIC and BIC 

at the same time and compare their results. 

 

In our view the puzzle as to why the move from truly nested to quasi-nested models 

in the choice set should make a difference is answered rather simply in the light of 
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the discussion in this section. It makes a difference in the case when we wish to use 

BIC methodology in the fully Bayesian way. We think that ‘quasi-nested’ 

terminology makes the move from LIN and PAR to LIN and PAR* in the choice set 

sound insubstantial whereas it is a rather important move. After all, by taking LIN 

out of PAR, we remove an uncountably infinite subset of PAR, which is not that 

trivial. Another important move, once the non-nesting of the models in the choice set 

is established, is the assumption of a uniform prior over the models in order for the 

differences in BIC scores to directly approximate the posterior odds on models. We 

shall look further into this assumption in section 4.4.1. 

 

4.3.2 Truth 

 

There are two closely related issues that have been identified with regards to the BIC 

methodology and truth. 

 

Firstly, it is often argued [for example, Spiegelhalter et al. (2002)] that in order for 

the BIC to perform properly as a model selection criterion it is necessary to have a 

“true” model in the choice set. In this context by the “true” model it is usually meant 

something along these lines: “a model precisely representing the full reality 

underlying the phenomena in question”. Within the AIC methodology a true model 

is such that its Kullback-Leibler divergence from the putative “truth” is zero. It 

seems rather unlikely that every time that we choose models to constitute the choice 

set we manage to include a true one in it. So in what are no doubt numerous cases 

when there are no true models in the choice set the application of the BIC 

methodology seems meaningless and inappropriate. 

 

Secondly, it is said [for example, Forster and Sober (1994):22] that AIC and BIC 

were designed for different purposes. Namely, AIC was designed to maximise 

predictive accuracy and BIC to maximise the probability of a model to be true. So, 

they are best for the respective jobs they were designed for, and no more. 

 

Indeed, the original derivation of the BIC due to Schwartz (1978) contains an 

assumption that the true model is within the choice set. However, since then the BIC 

has been derived in a more general way without employing the true model 
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assumption – cf. Cavanaugh and Neath (1999). Given this, a question naturally arises 

as to what we are to make of model probabilities within the BIC methodology. There 

is a mathematical theorem which states that for independent identically distributed 

sampling as the number of observations n tends to infinity one of the models within 

the choice set tends to 1 and the rest tend to 0 in probability [Burnham and Anderson 

(2004):276]. What are we to make of this result? What does pr (Hi|E) = 1 mean in 

the case when no model in the choice set is true? 

 

We can say that a model is quasi-true if it is the closest model to truth in the 

Kullback-Leibler sense in the choice set. The asymptotic convergence in probability 

to 1 of one of the models within the choice set means that this model is quasi-true in 

the sense indicated [Burnham and Anderson (2004)]. It is curious to see the K-L 

divergence emerging in the Bayesian context of the BIC methodology. Nevertheless 

here it is. There is actually another interesting way this connection works via scoring 

rules. 

 

Scoring rues are designed to measure predictive performance against observations of 

probabilistic models [both theoretical and statistical as per distinction introduced in 

chapter 1] or of probability judgements expressed by individuals. Here, as in the rest 

of thesis, we shall concern ourselves with probabilistic predictions derived from 

models. As usual, it is perhaps most illuminating to explain the concept by means of 

an example. [For a rigorous overview of scoring rules cf. Gneiting and Raftery 

(2007).] Suppose that we have two models H1 and H2 which provide probabilistic 

predictions of whether it will rain on a given day. Suppose that we would like to 

have a comparison of their predictive performance by means of using a mathematical 

rule which quantifies a discrepancy between the probabilities that the models yield of 

it raining next day and the actual observations of the events. In the table below 

[which is a stylised version of the table in Baron (2008):120] in the top row denoted 

‘Event occurred?’ ‘Yes’ stands for the observation that it rained the next day after 

the models provided probabilistic forecasts, and ‘No’ stands for the event that it did 

not rain. In each column there are probabilities of it raining on the given day 

provided by each of the two models respectively. 
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Now that we have data what formal expression should we use to measure the 

predictive performance? One of the popular scoring rules is the quadratic rule. It 

works the following way. Let us take the first ‘Yes’ column in the table above as an 

example. There model H1 predicted rain with probability 0.9 and model H2 with 

probability 0.8. Since it did actually rain we take the ‘true’ probability of it raining 

on that day to have been 1. [As we mentioned in chapter 1 when introducing the 

elementary probability theory, it is not an aim of this thesis to delve into the issue of 

interpreting probabilities.] In the quadratic rule we square the discrepancy between 

the ‘true’ probability and the predicted probability. So, for the day in the first column 

the discrepancy for model H1 is (1 – 0.9)2 = 0.01; for model 2: (1 – 0.8)2 = 0.04. The 

total quadratic score is provided by adding all of the discrepancies together thus: 

 

Quadratic Total Score for model H1 = (1 – 0.9)2 + (0 – 0.1)2 + (0 – 0.4)2 + (1 – 0.8)2 

+ (1 – 0.3)2 = 0.71 

 

Quadratic Total Score for model H2 = (1 – 0.8)2 + (0 – 0)2 + (0 – 0.3)2 + (1 – 0.9)2 + 

(1 – 0.1)2 = 0.95 

 

The model with the lowest quadratic total score is considered to be the most 

predictively successful for a given sample of data. The minimum achievable total 

quadratic score is zero. In fact within the theory of scoring rules the quadratic rule is 

identified as a strictly proper rule. Informally [for the formal definition cf. Gneiting 

 Event 

occurred

? 

Yes No No Yes Yes Logarithmic 

Total Score 

Quadratic 

Total Score 

Probability 

of event 

occurring 

given by: 

        

H1  0.9 0.1 0.4 0.8 0.3 -2.14866 0.71 

H2  0.8 0 0.3 0.9 0.1 -2.98776 0.95 
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and Raftery (2007):359], strictly proper rules are such that there is no strategy of 

assigning probabilities to events in order to improve the total score (in the quadratic 

rule’s case that would mean to lower the total score) except than to stick to the 

probabilities that a given model issues. That is, there is no way to ‘beat the system’, 

in a manner of speaking. Strictly proper scoring rules bear a certain similarity to the 

exclusion of gambling systems in the context of gambling. A gambling system is a 

set of instructions specifying when and how much to bet when playing a game of 

chance [for example, roulette] with the aim of improving monetary gain – ‘beating 

the odds’ [for an in depth consideration of the law of excluded gambling systems cf. 

Gillies (2000):chapter 5]. Baron (2008):121 gives an example of an improper scoring 

rule. 

 

Another example of a strictly proper rule, which is in fact pertinent to our topic of 

the BIC methodology is the logarithmic scoring rule. It works in the following way. 

If a model predicts the occurrence of an event with probability p and the event 

subsequently occurs, then the score is ln(p).  If the event does not occur, then the 

score is ln(1 – p). So, for the day in the first column the logarithmic score for the 

model H1 is ln(0.9) = -0.10536; for H2: ln(0.8) = -0.22314. The total logarithmic 

score is provided by the sum of the individual scores. Hence: 

 

Logarithmic Total Score for Model H1 = ln(0.9) + ln(1-0.1) + ln(1-0.4) + ln(0.8) + 

ln(0.3) = ln(0.9x0.9x0.6x0.8x0.3) = -2.14866 

 

Logarithmic Total Score for Model H2 = ln(0.8) + ln(1-0) + ln(1-0.3) + ln(0.9) + 

ln(0.1) = ln(0.8x1x0.7x0.9x0.1) = -2.98776 

 

The model with the highest logarithmic total score is considered to be the most 

predictively successful for a given sample of data. The maximum achievable total 

logarithmic score is zero. 

 

Good (1952) points to the following result: 

ln(BF12) = total logarithmic score of model 1 – total logarithmic score of model 2, 

which with simple algebraic manipulations is approximated by -0.5x(BIC1 – BIC2). 
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So there is a way to interpret BIC scores as providing a measure of predictive 

success, on par with the AIC methodology. Another striking result is that the 

mathematical expectation of a logarithmic score is equal to the Kullback-Leibler 

divergence [Ehm and Gneiting (2009, Addendum 2010):4]. 

 

Recall that the AIC methodology aims to provide an unbiased estimate of the 

expected relative K-L divergence to ‘truth’. Then it seems surprising that even 

though the BIC methodology also has a link to the K-L divergence, the numerical 

expressions of the AIC and BIC criteria are different. In a nutshell, the difference lies 

firstly in the use of maximum likelihoods in the AIC as opposed to the integrated 

likelihoods in BIC and secondly in the fact that the penalty term 2K appears as a 

correction of a bias [in the sense that this notion is explained in chapter 1] in the AIC 

whereas Kln(n) in the BIC appears during approximation of the integrated likelihood. 

The connection between AIC and BIC is explored further in section 4.4. 

 

4.4 Connection between BIC and AIC 

 

Perhaps it does not come as a huge surprise that AIC and BIC are connected. After 

all, the only difference in the formal expressions between AIC and BIC is that the 

penalty term K [i.e., the number of adjustable parameters] is multiplied by 2 in AIC 

and by ln(n) in BIC. There are two ways in which we shall explore this connection. 

Both of these shall show what would be required in order to yield the AIC from the 

Bayesian perspective of BIC. This is the easiest way to exhibit the link between AIC 

and BIC, since Bayesian methodology allows us the flexibility of priors. Recall that 

in order to use BIC as an approximation to the fully Bayesian way, two sets of priors 

are determined – the priors over parameters given the models, and the priors over 

models themselves. In two subsections below we shall explore the kind of priors 

required to yield AIC from BIC. In section 4.4.1 we shall look at the type of model 

prior required [while using the same parameter prior as in BIC] in order to derive 

AIC. In section 4.4.2 we shall look at the type of parameters prior required [while 

using the same uniform prior over models as in BIC] in order to derive AIC. 
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4.4.1 Connection via Model Priors 

 

Burnham and Anderson (2004) show that if we use the following model prior instead 

of a uniform one, we derive the AIC rather than BIC: 

 

qi = 
"#$	(

&
'
�� ()(�) ��)

∑ *+,-
./& (

&
'
�. ()(�) 	�.)

 

 

This prior is an increasing function of both of the size of data sample and of the 

number of adjustable parameters. That is, for a given number of observations in the 

sample, models with relatively larger number of adjustable parameters have higher 

probabilities than models that have relatively fewer number of adjustable parameters. 

Also an increase in the sample size brings about an increase in the difference in 

probability of models with different numbers of adjustable parameters. This can be 

seen in the simple example in the table below, where we performed calculations of 

such prior probabilities of two models with two and three adjustable parameters 

respectively with samples consisting of 10 and 100 observations respectively. The 

two models are assumed to be exhaustive and mutually exclusive.  

 

 n = 10 n = 100 

K = 2 0.4626 0.2137 

K = 3 0.5374 0.7863 

 

Burnham and Anderson call the model prior which takes us from the BIC to the AIC 

a ‘savvy’ prior and argue that this prior is more sensible than the uniform prior used 

in BIC. In fact they go as far as to state that the very use of the uniform model prior 

implies that the model selection is done in order to find the true model rather than in 

order to maximise the predictive performance. Unfortunately they do not offer any 

argument as to why this should be the case. We disagree with their position. In our 

view any model prior whatsoever expresses the probability assignment to each 

model in the choice set that it is (quasi-)true given the background knowledge in the 

domain of inquiry. The model prior does not and cannot by itself express our belief 

[or lack thereof] that the choice set contains a true model. For any model prior 

whatsoever we can represent the posterior odds as the difference in logarithmic 
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predictive scores. Moreover, there is another way to show that Burnham and 

Anderson’s claim with regards to the “meaning” of model priors is incorrect. We 

shall consider it in the next section. 

 

There is a way, however, to argue for Burnham and Anderson’s contention that the 

savvy model prior is more sensible than the uniform one. In fact Popper (1968, 

Appendix viii) provides a version of such an argument. Popper argues that simpler 

hypotheses [‘simpler’ in the precise sense that they have relatively fewer adjustable 

parameters] have relatively lower probabilities. In his view simpler hypotheses have 

more empirical content, which is measured by the degree of their testability. Simpler 

hypotheses are more testable in the sense that there is a greater variety of 

observations that would falsify them. That is in Popper’s view there is a larger 

number of possible data points that would be incompatible with a simpler 

hypothesis, and so more possibilities for the simpler hypothesis to be wrong relative 

to a more complex hypothesis. 

 

‘Simple statements, if knowledge is our object are to be prized more highly 
than less simple ones because they tell us more; because their empirical 
content is greater; and because their better testable’.  
Popper (1968):142, original italics 

 

Jeffreys (1961) holds the opposite view to Popper on the issue of probability of 

relatively simpler hypotheses. In his opinion the simpler the hypothesis is, the higher 

its prior probability, ceteris paribus. This he calls the Simplicity Postulate. He gives 

two reasons for this postulate. Firstly, simpler hypotheses are more likely to be 

predictively successful [Jeffreys (1961):4]. Secondly, the Simplicity Postulate fits 

well the common scientific practice, at least in physics. That is, Jeffreys argues that 

physicists behave as if they consider simpler hypotheses more likely to be true  by 

always considering a linear hypothesis first, and only then a quadratic one, and so on 

[Jeffreys (1961):47 and Jeffreys (1973):63].  

 

Starting with the second of Jeffreys’ reasons, our view is that it is perfectly 

compatible with physicist’s behaviour to think that she considers simpler hypotheses 

first for ease of calculations and in an exploratory way, rather than necessarily due to 

believing that the simpler hypotheses are true. The order in which a scientist 
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considers hypotheses does not necessarily imply any particular order of probabilities. 

Indeed, as we just have seen, Popper reached the opposite conclusion, and his 

approach fits this scientific behaviour as well as that of Jeffreys. 

 

The first reason for adopting the Simplicity Postulate [that simplicity is the guide to 

predictive success] requires an independent argument for it. As it stands, it is just an 

assertion. Prima facie, it would be equally reasonable to state that complexity is the 

guide to predictive success. It is true that simplicity has for a long time been 

considered to be one of the attributes of a good scientific theory [cf. for instance 

Kuhn (1977)]. However, we do not think that adopting the Simplicity Postulate as 

the constraint on setting the model priors is a sensible strategy. Scientists should be 

free to set the model priors in the way that they deem appropriate given the particular 

background knowledge and the domain of inquiry. Note that even though Jeffreys’ 

Simplicity Postulate implies that the prior probability over the models in the choice 

set is a decreasing function of the model complexity as measured by the number of 

adjustable parameters that the model contains, still in his own examples he uses the 

uniform prior over models – “for calculation”. We shall consider Popper’s argument 

that the simplicity of a hypothesis varies in the opposite direction to its probability in 

detail in chapter 5. 

 

Notice, incidentally, that we have so far managed to avoid talk of simplicity, 

parsimony and such-like notions. In our view, the interpretation of the penalty terms 

in both AIC and BIC as ‘simplicity in action’ is unnecessary. In both AIC and BIC 

the penalty for complexity arises from the formalism itself – in the AIC the penalty 

term for the number of parameters arises as the correction term for the asymptotic 

bias, and in the BIC it arises during the process of approximation to the integrated 

likelihood. The notion of simplicity was not input into either of these methods – it 

emerged from the formalism as a by-product. Thus we do not concentrate our 

attention on this feature, for we get no epistemic purchase on it over and above the 

model selection criteria themselves. 

 

For us there is no full proof formal way to prescribe how model priors should be set. 

Each particular case demands deliberation on this issue. Every purely formal rule for 

setting priors is ad hoc. 
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4.4.2 Connection via Parameter Priors 

 

We mentioned in the beginning of this section that there are two ways of deriving the 

AIC result from the BIC methodology. The first way was to keep the parameter 

priors the same as in the BIC and to derive a model prior which would take us to the 

AIC result. This is what we did in the previous section. Now we shall keep the 

uniform model prior fixed, and show that there is a parameter prior which again 

takes us to the AIC result from the BIC setting. 

 

This section closely follows Kieseppä (2001a). His approach is to consider how 

informative any given probability distribution is. From chapter 1 recall that it is often 

possible to fully determine a probability distribution by two numbers [depending on 

the distribution] – by its mean and its variance [this is the case for the normal 

distribution – cf. section 1.3.2]. The variance is the measure of dispersion of a given 

distribution. That is it measures how spread out the possible values that the 

parameter can take given the structure of the distribution. The higher the variance the 

more spread out the distribution is around its mean value. So the variance is said to 

measure the informativeness of a given distribution in the sense that the higher the 

variance the less informative the distribution is since there are more possible values 

that the parameter can take. In the multiple regression case the variance is substituted 

by the covariance matrix, but the idea is the same. It is also noted that the 

informativeness of a probability distribution is proportionate to the number of 

observations. That is the more observations it is based on, the higher its 

informativeness. It is then possible to rank different probability distributions by their 

informativeness in terms of the number of observations expected to be required in 

order to obtain given variance. [For formal treatment of this topic cf. Kieseppä 

(2001a).] Here is the formula for a general Bayesian model selection criterion 

without assuming any particular parameter prior: 

 

– 2ln(L(�� | data, gi)) + Kln(n/n0) 

where n0 is the measure of informativeness in terms of how many observations the 

information in the parameter prior is based on. Kieseppä applies this idea to the AIC 
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and BIC results and shows that the informativeness of BIC parameter prior is 

equivalent to a sample with one observation [with n0 = 1] whereas the parameter 

prior required in order to obtain the AIC result has the informativeness equivalent to 

e-2n observations. Hence the BIC parameter prior has constant informativeness 

independent of the number of observations contained in a given sample, whereas the 

AIC result is equivalent to the Bayesian result with the parameter prior which is 

more informative and its informativeness grows with the number of observations in 

the sample. 

 

In fact there are infinitely many Bayesian models selection criteria – it all depends 

what value of n0 one finds appropriate. Kieseppä (2001a) argues that this is a 

potential weakness of the Bayesian approach, because it seems to lose any normative 

character to the conclusions of model selection. In our view this flexibility is a 

positive attribute of Bayesian model selection methodology allowing one to reflect 

one’s ideas about the way the parameters distributed within each individual model 

selection problem. 

 

Finally, regarding Burnham and Anderson’s contention in the previous section that 

imposition of a uniform model prior in BIC somehow commits us to the search for 

truth whereas their savvy model priors that lead to AIC do no such thing. In this 

section all of our results assume the uniform prior distribution over models. We have 

derived AIC under this assumption. Hence, their contention is incorrect. 

 

4.5 Comparison between BIC and AIC 

 

4.5.1 Statistical Consistency 

 

Numerous sources [e.g., Keuzenkamp and McAleer (2001)] state that AIC is not a 

statistically consistent estimate. However, the BIC is statistically consistent. 

 

Different questions can be asked about consistency of AIC. 

1 ‘..[W]hether AIC is a consistent method of maximizing predictive accuracy in 

the sense of converging on the hypothesis with the greatest predictive accuracy 

in the large sample limit. 
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2 …[W]hether AIC is consistent estimator of predictive accuracy, which is a 

subtly different question from the first. 

3 …[W]hether AIC converges to the smallest true model in a nested hierarchy 

of models. 

The answer to the first two questions will be yes, …while the answer to the third is 

no, AIC is not consistent in this sense, but this fact does not limit its ability to 

achieve its goal.’ [Forster (2001):113] 

 

The AIC was designed as an estimator of predictive accuracy, so the charge should 

be that AIC fails to be consistent with respect to estimating the predictive accuracy. 

Forster shows that this is not the case. ‘Akaike’s own criterion minimizes the 

quantity –2(logL(θ^
K) – K), which estimates –2nA(θ^

K). But note that this is a strange 

thing to estimate, since it depends on the number of seen data, n.’ [Forster 

(1999):113] ‘The correct response to the ‘problem’ is to divide the estimator and 

target by n, so that the target does not depend on the sample size. … AIC does 

provide a consistent estimate of predictive accuracy when it is properly defined.’ 

[Forster (1999):114] It seems that Forster asserts that the AIC as it is commonly 

defined (see Introduction) is inconsistent with respect to predictive accuracy.  

 

However, Kieseppä also discusses the question of consistency of AIC and reaches 

similar conclusions to Forster, but still uses the original form of AIC. So, it seems 

that either Forster is incorrect in saying that the proper definition of AIC score is the 

one divided by the number of data points in the sample, or Kieseppä is correct in 

using the original AIC.  

 

Bandyopadhayay and Boik (1999) note that ‘[Forster’s claim] is true in the special 

case of regression models where σ2 is a known constant. In addition, if one is willing 

to assume that the approximating family is identical to the true family of models, 

then AIC is a consistent estimator of predictive accuracy. Forster’s claim, however, 

is not true in general. If the approximating family misspecifies the true family, then 

AIC no longer is consistent.’ [Bandyopadhayay and Boik (1999):S400] 

 

Now, Forster turns to the charge that AIC is inconsistent with respect to estimating 

K. Forster considers the case of nested models, and distinguishes two cases. In the 



103 
 

first case, ‘…the true hypothesis will first appear in a model of dimension K*, and in 

every model higher in the hierarchy.’ [Forster (2001):114] Now the question arises 

of the desirability of estimating k as close as possible to K*. Forster notes that in 

cases where data is drawn from quite a narrow range and supposing that we are 

choosing between LIN and PAR, ‘…for even quite large values of n, it may be best 

to select LIN over PAR, and better than any other family of polynomials higher in 

the hierarchy. Philosophically speaking, this is the interesting case in which a false 

model is better than a true model. However, for sufficiently high values of n, this 

will change, and PAR will be the better choice [because the problem of over fitting is 

then far smaller]. Again, this is an example in which asymptotic results are 

potentially misleading because they do not extend to intermediate data sizes.’ 

[Forster (2001):114] 

 

‘In the second case the true hypothesis does not appear anywhere in the hierarchy of 

models. In this case the model bias will keep decreasing as we move up the 

hierarchy, and there will never be a point at which it stops decreasing. …There is no 

universally valid theorem that shows that BIC does better than AIC.’ [Forster 

(2001):115] ‘In both cases, the optimum model moves up the hierarchy as n 

increases. In the first case, it reaches maximum value K*, and then stops. The crucial 

point is that in all cases, the error of AIC (as an estimate of predictive accuracy) 

converges to zero as n tends to infinity.’ [Forster (2001):115, italics added] Forster 

says that other information criteria are also consistent and he urges that it is most 

important what happens in the intermediate case and not in the limit. 

 

It is rather difficult to see what exactly Forster claims at the end of the day. At the 

beginning of the section on consistency he seems to argue that AIC is not consistent 

with respect to estimating k and that this is of no consequence since this is not what 

AIC was designed to estimate anyhow, whereas the end of this section seems to 

suggest that AIC is actually consistent with respect to K {for example, ‘After all, 

AIC does successfully converge on the true hypothesis!’ [Forster (2001):115]}. 

 

Kieseppä (2003) sheds clearer light on the issue by stating the result that ‘…when 

the sample size is large and the true curve is actually a horizontal straight line, the 

probability with which AIC will correctly recommend the model which contains 
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only horizontal straight lines is approximately 95%, and the probability that it will 

recommend the larger model which contains also all the other straight lines is 

approximately 5%.’ [page 18] Unfortunately, Kieseppa had to omit the proof of this 

result due to the limitations of space. This result is in line with Forster’s 

argumentation that AIC serves the purpose of picking hypotheses that are 

predictively accurate rather than that of finding/converging upon the true model with 

the minimum number of dimensions: ‘…it [AIC’s recommendation] will with a very 

great probability be an acceptable choice, if the aim of the researcher is to find a 

curve which is “predictively accurate”, although it will be a bad choice if her aim is 

to find out whether the true curve is a horizontal line or not.’ [page 19] 

 

4.5.2 Relative Performance 

 

When the number of observations in a sample exceeds 8 [i.e., when ln(n) > 2], BIC 

starts to give progressively greater weight to hypotheses with fewer adjustable 

parameters relative to AIC. Studies indicate that, all other things being equal, BIC 

performs better in set-ups where there are very few variables with strong effects 

whereas AIC performs best in contexts when there are several variables with 

moderate effects. 

 

Let us return to the example that we used in chapter 3 to show how the AIC 

methodology works, and add the BIC to it. We repeat the table it here for 

convenience. 

 

Cement hardening data with four regressor variables x1, x2, x3 and x4 and a 
response variable y 
x1 x2 x3 x4 y 

7 26 6 60 78.6 

1 29 15 52 74.3 

11 56 8 20 104.3 

11 31 8 47 87.6 

7 52 6 33 95.9 

11 55 9 22 109.2 

3 71 17 6 102.7 
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1 31 22 44 72.5 

2 54 18 22 93.1 

21 47 4 26 115.9 

1 40 23 34 83.8 

11 66 9 12 113.3 

10 68 8 12 109.4 

Where the regressor variables (in percentage of the weight) are: x1 = calcium 
aluminate (3CaO.Al2O3), x2 = tricalcium silicate (3CaO.SiO2), x3 = tetracalcium 
alumina ferrite (4CaO.Al2O3.Fe2O3) and x4 = dicalcium silicate (2CaO.SiO2); the 
response variable is y = total calories given off during hardening per gram of cement 
after 180 days. 
 

Model K BIC (∆) AIC (∆) AICc (∆) 

12 4 0 0.45 0 

124 5 2.73 0 3.13 

123 5 2.65 0.04 3.16 

14 4 3.46 3.77 3.32 

134 5 3.4 0.75 3.88 

234 5 8.31 5.6 8.73 

1234 6 5.06 1.97 10.52 

34 4 14.8 14.88 14.43 

23 4 26.82 26.06 25.62 

4 3 29.6 33.88 31.1 

2 3 29.78 34.2 31.42 

24 4 34.42 35.66 35.21 

1 3 32.18 38.55 35.77 

13 4 36.84 40.14 39.7 

3 3 37.9 44.09 41.31 

Ghosh and Samanta (2001):1143 

 

As we can see, in this case BIC and AICc results broadly agree with one another. 
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5. Model Selection Methods and Scientific Realism 

 

5.1 Introduction 

 

In the previous chapters we surveyed the classical and some most recently developed 

approaches to model selection. We have seen that all methods have their strengths 

and weaknesses. We reviewed the objections to the methods and argued that none of 

them were devastating so long as one is aware of their foundations. In this chapter 

we explore what consequences, if any, the methods of model selection that we have 

considered have for some wider issues in the philosophy of science. In particular, 

what bearing these methods have on the debate on the scientific realism/anti-realism. 

 

There are several versions of scientific realism available out there. However, we find 

that the following three theses capture the features of scientific realism well.  

 

‘Scientific Realism is a philosophical view about science that consists in three 

theses. The Metaphysical Thesis: the world has a definite and mind-independent 

structure. The Semantic Thesis: scientific theories should be taken at face value. 

They are truth-conditioned descriptions of their intended domain, both observable 

and unobservable. The Epistemic Thesis: mature and predictively successful 

scientific theories are well-confirmed and approximately true of the world.’  

[Psillos (2007):226] 

 

First, our focus is going to be the Epistemic Thesis. It presupposes both the 

metaphysical and the semantic theses. We will look at the epistemic thesis in its 

simplified form. That is, as the notion that predictively successful scientific theories 

are approximately true. There are numerous arguments both pro and con scientific 

realism in general and the epistemic thesis in particular. Arguably, among many 

arguments about scientific realism, the two most prominent ones so far are the no-

miracles argument [some, including ourselves, consider it an intuition – cf. Worrall 

(1994)] and the argument from pessimistic meta-induction. 

 

The no-miracles argument [NMA – this formulation is due to Putnam (1975)] 

purports to establish that predictive success of scientific theories licences the 
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inference to their [approximate] truth. That is, why else would a theory be 

predictively successful? It would be a ‘miracle’ if a theory were predictively 

successful but false. 

 

In counterbalance to the NMA there is the argument from pessimistic meta-induction 

[cf. Laudan (1981)]. It has been noticed that there have been some very predictively 

successful theories in the history of science that eventually turned out to be, strictly 

speaking, false. The paradigm example is Newtonian mechanics, which was 

superseded by Einstein’s theories of relativity. If such predictively successful 

theories like Newton’s can be shown to be false, it may well be the case that other 

predictively successful theories that are currently entertained may eventually turn out 

to be false too. 

 

Second, we shall look at an argument against the popular idea within the scientific 

realism field that science aims to find true theories. 

  

5.2 Sober’s Counterexamples 

 

Model selection methods that we have been considering in this thesis attempt to 

capture predictive success, so it is natural to wonder whether these methods have any 

bearing on the issue of scientific realism. In fact, Elliot Sober (1999, 2002) takes up 

the challenge to show, firstly, contrary to the Epistemic Thesis of Scientific Realism, 

that there are false scientific theories [in our case probabilistic hypotheses] that are 

predictively successful. In fact Sober does not quite put it this way himself, but his 

argument clearly goes against the epistemic thesis. We consider this counterexample 

in section 5.2.1. The second counterexample purports to show that seeking truth and 

maximising predictive accuracy do not always go together. We consider this 

counterexample in section 5.2.2. 
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5.2.1 On the Epistemic Thesis of Scientific Realism 

 

Let us consider Sober’s example with differences in mean heights of corn plants in 

two different fields. Suppose that there are two adjacent fields in which corn grows, 

and suppose that we are interested in testing the following hypotheses about the 

average heights of wheat plants in both populations. We are doing so in the Neyman-

Pearson way:  

H0: |µ1 – µ2|  = 0 

H1: |µ1 – µ2| ≠ 0  

 

Sober argues that the null hypothesis is obviously false – surely the two population 

means cannot be exactly equal to several decimal places. Hence H1 is obviously true. 

Scientists, however, routinely test such false hypotheses against true hypotheses. 

Assuming that scientists are rational and that the predictive accuracy is their only 

goal, Sober urges us to conclude that false hypotheses can be maximally predictively 

accurate – that is, sometimes even more predictively accurate than true hypotheses. 

Unless scientists believe that H0 is more predictively successful than H1, they would 

not bother testing such obviously false hypotheses against obviously true ones. 

Scientists seem to be willing to accept a false hypothesis as long as it is predictively 

successful. This argument, he contends, lends credence to methodological 

instrumentalism – ‘the idea that theories are instruments for making predictions, 

[and] that predictive accuracy is the only consideration that matters [in science]’ 

[Sober (1999): 4, 5]. 

 

There are counter arguments that deny that the sole goal of scientists is the accuracy 

of prediction. However, we have a different angle, and are willing to grant predictive 

accuracy as the goal in this particular example from statistics. Indeed in this thesis 

we have been looking at model selection exclusively for predictive purposes. We 

shall concentrate on the part of the argument that goes against the simplified version 

of the epistemic thesis of scientific realism. This argument against the epistemic 

thesis seems to be the following. The epistemic thesis asserts that predictively 

successful hypotheses are approximately true. Here we ostensibly have an example 
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of a hypothesis which is predictively successful [we assume so] but which is 

obviously false. 

 

Recall from chapter 2 a feature of the NP hypothesis testing methodology is that it is 

important which hypothesis is H0 and which is H1. The method is more conservative 

towards H0, so [depending on H1] it can take quite a substantial difference between 

µ1 and µ2 to reject H0 in favour of H1 [the actual testing for this difference is done 

using respective sample means θ1 and θ2]. We contend that rather than thinking that 

a false hypothesis is more predictively accurate, scientists in this case use  

H0: |µ1 – µ2| = 0 as a place-holder for H0: ‘the difference between µ1 and µ2 is 

sufficiently small for us to disregard for our purposes’. What is ‘sufficiently small’ 

or statistically insignificant in the NP methodology is defined by the range of values 

of the parameter which is not the critical region [cf. section 2.2]. However, we 

briefly considered the notion of practical significance in section 2.1.2. We believe 

that our interpretation of what scientists take H0 to stand for is consistent with this 

notion. There is also a notion of substantive significance [cf. Mayo and Spanos 

(2006) and references contained therein] that relies on the meta-statistical principle 

of severity of a statistical test. Unlike practical significance, the severity of a test and 

hence its substantive significance has a precise quantitative expression. It is 

calculated on the basis of observed data. The severity of a test is analogous to the 

concept of severe testing used by Popper (1968) – the more severe a test that a 

scientific theory survives, the more corroborated it is. Here the greater degree of 

severity confers more evidential support to a statistical hypothesis. Hence the 

concept of severity of a statistical test moves away from the behavioural 

interpretation of NP tests towards evidential support one. There is a lively debate on 

this subject of severity testing – cf. Achinstein (2003), Howson (1995, 1997), Mayo 

(1996, 2003, 2005). Here we shall no pursue this topic further, but note that it may 

constitute a fruitful avenue for further research in general, and in connection with 

Sober’s views in particular.  

 

Returning to the case that Sober discusses, it is important to note that in this case the 

testing of H0 against H1 at, say, the 5% level of significance is equivalent to finding a 

95% confidence interval for |µ1 – µ2| [cf. section 2.5]. In fact Sober seems to have 

found just such an interval by means of simulations: ‘[The] simulations closely agree 



110 
 

with the analytic solution that Branden Fitelson obtained, according to which [H0] 

will be more predictively accurate (in expectation) than [H1] precisely when  

| µ1 – µ2 | < 1.34898 σ/√n.’ Sober (1999):21, footnote 7 

 

Sober and Fitelson in fact found a confidence interval for |µ1 – µ2|! Once we 

reinterpret this case in such a way that rather than using a deliberately false 

hypothesis for greater predictive accuracy, the scientists implicitly check whether the 

differences in means fall within the confidence interval, i.e., they implicitly check 

whether | µ1 – µ2 | < 1.34898 σ/√n , it is no longer obvious at all that the H0 is false. 

We contend that scientists who use such point versus composite hypothesis tests 

simply do not spell out in detail what they intend to achieve by such testing, for it is 

often makes little practical difference for them if there is an insignificant deviation 

from zero. On this basis we argue that the putative connection between the falsity of 

a hypothesis and its predictive accuracy disappears. Scientists may be just a bit fast 

and loose with regards to describing the hypotheses, for the NP framework allows 

them to do so.  

 

‘If scientists interpret the [H0] as saying that the means are no more than 2 
inches apart, then they should not reject the [H0] when they find that θ1 and 
θ2 differ by 1 inch in a large sample. However, this is precisely what they do. 
This argument generalizes to any setting of ε, large or small. The behaviour 
of scientists shows that they interpret [H0] literally.’ 
Sober (1999):28, notation modified to fit our usage 

 

In our confidence interval for | µ1 – µ2 | above, ε = 1.34898 σ/√n. That is, ε is the 

critical value beyond which H0 is rejected. As n increases, the critical value ε 

becomes smaller. In the limit as n tends to infinity, ε tends to zero. Hence, if this was 

the way that the NP method was used, in a large enough sample more or less any 

deviation in the difference between sample means θ1 and θ2 from zero would lead to 

rejection of H0. We contend that in the quote above Sober’s account of statistical 

practice is inaccurate. The users of NP tests often reduce the critical region [or, 

equivalently in our case of the confidence interval interpretation, they would increase 

the level of confidence beyond 95%] to account for the over-sensitivity of the test 

with large n to the tiniest differences in values – cf. our discussion of Lindley 

Paradox in section 2.2. The behaviour of scientists as we know it is consistent with 

our interpretation that they do not take H0 literally. 
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So, if Sober’s attempt to show that H0 is obviously false does not succeed, is there a 

way to reformulate his counterexample? We think that there is, but it does not 

succeed either. Let us start with consideration of the notion of hypothesis 

‘acceptance’ that Sober employs. 

 

 

‘In formulating the question as one about “acceptance”, I leave open whether 
“acceptance” means believing that the hypothesis is true or believing that it 
will be predictively accurate. [footnote: Although I’ll formulate the problem 
in terms of the concept of “acceptance”, this is a matter of convenience; the 
dichotomous concept of acceptance could be replaced with the concept of 
degree of belief. Formulated in the latter way, the question would be whether 
the goal of science is to say how probable it is that various hypotheses are 
true, or to say how predictively accurate one should expect those hypotheses 
to be.]’  
Sober (1999):14 

 

As it is usually understood, to accept a hypothesis within the NP framework means 

to behave as if it is true [cf. sections 2.2 and 2.3 for elaboration]. Thus in the 

example with corn plants accepting H0 [when the difference between sample means 

falls within the confidence interval] involves behaving as if H0 is true, and not 

behaving as if it was false, as Sober suggests. In the quote above Sober would be 

happy to replace this dichotomous concept of acceptance by talking of probability of 

hypotheses. As we know, there is no place for probabilities of hypotheses in the NP 

methodology. We would need to move to the Bayesian framework to use this 

concept sensibly. Let us try to recast the counterexample in a Bayesian way. 

 

In a Bayesian rendition of the corn plant example the scientists would have to be 

explicit about what range of values they would expect the differences in the mean  

values of the two populations of plants to lie in. Let us then take the de facto 

confidence interval of a kind that Sober and Fitelson yielded in the NP example 

above as our null hypothesis and the interval outside the confidence interval as our 

alternative – thus null and alternative are exhaustive and mutually exclusive. For the 

sake of an argument let us suppose that ε = 3 so that our hypotheses are: 

H0: (µ1 – µ2) ∈  [-3, 3] 

H1: (µ1 – µ2) ∈ (-∞, -3) ∪ (3, ∞) 
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We need to assign prior probabilities to these hypotheses. Sober could argue that H0 

should be assigned much lower probability than H1, possibly on the grounds that the 

interval of possible values that is suggested by H0 is much shorter than that of H1. So 

in this context rather than arguing that the null hypothesis is obviously false but is 

nonetheless deemed by the scientists predictively successful [as before], Sober could 

argue that the null has much lower probability of being true [prior to observing the 

difference in sample means], but it is still deemed more predictively successful than 

the alternative which has a higher probability. This argument sounds Popperian – 

recall our discussion of model priors in section 4.4.1. It could be argued in the spirit 

of Popper that H0 has a much higher empirical content than H1 – that is, there are 

many more possible observations that are incompatible with H0 rather than with H1. 

If this were the case then we would assign much lower prior probability to H0 than to 

H1 – in proportion to their respective empirical contents. 

 

Unfortunately this argument does not work either. Choice of the interval [-3, 3] may 

suggest that the scientists have an expectation of (µ1 – µ2) to lie within this interval, 

presumably on the basis of their background knowledge. This suggests that at the 

very least there is no reason to set the prior on the null much lower than that of the 

alternative.  

 

5.2.2 Truth and Predictive Accuracy 

 

In philosophy of science it is commonly thought that in addition to the three theses 

cited in section 5.1, scientific realist is committed to seeking truth as the aim of 

science.  How does it connect with the aim of predictive accuracy, which we have 

been assuming in this thesis? The two aims seem to occur together – we would 

expect true theories to be most predictively accurate [cf. Nagel (1979):139]. 

However, Sober (1999) uses the following example to show that seeking truth and 

maximising predictive accuracy do not always coincide. 

‘Suppose that one of the buses numbered 1-10 takes you right to Fred’s door, 
while the other nine take you very far away; on the other hand, all of the 
buses numbered 11-20 go very near Fred’s house, though none of them goes 
right to his door. … If your goal is to get as close as possible to Fred’s house, 
you should take a bus numbered 11-20. The point is this: even if a bus with a 
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low number is the one that goes closest to Fred’s house, it doesn’t follow that 
the best way to get close to Fred’s house is to take a low-numbered bus. … 
This suggests that there may be inference problems in which trying to find 
the truth and trying to maximise predictive accuracy lead to different 
decisions. The bus example suggests that this may be possible even if no 
hypothesis is more predictively accurate than the truth.’  
Sober (1999):13 

 

Here finding the truth maximises predictive accuracy, but the probability of picking 

the true hypothesis is low whereas the alternative is to pick a hypothesis which is 

very close to truth with certainty. 

 

We agree with Sober that in his bus to Fred’s house example trying to find the truth 

and trying to maximise predictive accuracy leads to different decisions, and that we 

would also take a bus numbered 11-20. However, we argue that if we refine the goal 

of finding the truth in a quite natural way, then we restore the connection between 

truth and predictive accuracy. 

 

In this example there is uncertainty as to how far a given bus would take us from 

Fred’s house. We suggest that this uncertainty can be handled probabilistically. In 

this case we can substitute the goal of seeking the truth by the goal of minimising the 

expectation [in the statistical sense of a probability weighted average – cf. chapter 1] 

of the divergence from truth. Then trying to minimise the expectation of the 

divergence from truth and trying to maximise predictive accuracy lead to the same 

decision – choosing a higher numbered bus. In contexts of uncertainty of the kind 

that is there in the bus to Fred’s house example a scientific realist should refine her 

aim from seeking truth to minimising expected divergence from truth. Indeed, it is 

not accidental that scientific realists use the concept of approximate truth in the 

epistemic thesis of scientific realism. Likewise the aim of approximate truth is more 

realistic than that of truth simpliciter. Minimising expected divergence from truth 

can be thought of as operationalising the concept of approximate truth. 

 

Using the bus to Fred’s house example Sober argues against the principle that: 

 

(*) If you want to maximize A and T maximizes A, then the best way to maximize A 

is to try to maximize T. [Sober (1999):12] 
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We think that once we refine our goal in the way suggested, the bus to Fred’s house 

example provides support to the principle (*). In the example we are urged to choose 

a bus 11-20, because such a choice would minimise the distance to the Fred’s house 

[which is the proxy for actual truth in the example]. Arguably such minimisation of 

distance to truth can be thought of as maximisation of truth. Indeed, this is the very 

idea behind the AIC framework, which aims to minimise the K-L divergence to 

‘truth’. In this example the expected distance to Fred’s house in each case is a 

probability-weighted average of minimum Euclidean distances within Fred’s house 

that each bus from No. 1 to 10 and from No. 11 to 20 respectively brings one. For 

instance, using the Principle of Indifference as per section 4.1.2.1 the probability of 

picking the bus to ‘truth’ is 0.1. It is obvious that the expected average distance 

would be shorter if one were to choose a bus from No. 11 to 20. This does not 

violate the idea that the search for the minimum expected divergence [in this case 

Euclidean distance] from truth and search for predictively accuracy go hand in hand. 

 

5.3 AIC, BIC and the Epistemic Thesis of Scientific Realism 

 

In section 5.2.1 we argued contra Sober that when properly understood the Neyman-

Pearson methodology was logically consistent with the simplified epistemic thesis of 

scientific realism [that predictively successful scientific theories are approximately 

true]. There we attempted to give Sober’s corn plants example a Bayesian twist, but 

conclude that it was not successful either. 

 

Let us now see what relation if any the AIC and BIC methods have to the epistemic 

thesis of scientific realism.  

 

In section 3.2.2 we saw that the AIC was derived as the asymptotically unbiased 

estimator of relative expected Kullback-Leiber divergence from the putative ‘truth’. 

In section 4.3.2 we saw that the BIC can also be thought as estimating the Kullback-

Leibler divergence from the ‘truth’, but in a Bayesian way and on the assumption 

that the predictive performance of models in the choice set is properly judged by the 

logarithmic scoring rule. There we referred to the AIC or BIC-best model as quasi-

true in the precise sense that such a model is relatively K-L closer to the ‘truth’ than 

any other model within the choice set, although the quasi-true model can still be 
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arbitrarily far away from such ‘truth’ – we have no idea about the absolute rather 

than relative divergence. In section 4.4 we showed the connection between AIC and 

BIC within the Bayesian setting. Therefore, the following deliberations apply to both 

AIC and BIC methods, although for ease of presentation we will be mentioning AIC 

only. 

 

So in the AIC model selection we set out to find a quasi-true model within the range 

of models that we think may be relevant to the problem at hand. Suppose that the 

AIC-best model that we have found actually turns out to be predictively successful. 

Does it then mean that this model is approximately true? Unfortunately the answer 

has got to be – not necessarily. Just because the AIC method was explicitly set up to 

approximate the relative K-L divergence from truth in a given set of models in order 

to maximise predictive accuracy, and the AIC-best model is then found to be 

predictively successful, this is no argument for success in approximating the truth. 

We simply do not know whether we succeeded in this endeavour – to re-iterate, it is 

still possible for the AIC-best model to be arbitrarily far away from the truth, nothing 

in the AIC method precludes this. The person in the bus to Fred’s house example [let 

us call her Daisy] in section 5.2.2 potentially has epistemic access to how 

approximately true her selected hypothesis turns out to be. All she has to do is to 

bring a tape measure [or some device that utilises the Global Positioning System – 

we are going to take it for granted that there is some reliable method of measuring 

the distance that Daisy can use] with her and measure the actual distance from the 

bus stop at which she eventually gets off to Fred’s house. Notice that this measure 

simultaneously serves as a measure of the predictive success of the hypothesis that 

Daisy selected and as a measure of its approximate truth [or divergence from truth, 

which we use interchangeably]. In our case we also have epistemic access to how 

predictively successful our AIC-best model has turned out to be, but crucially we do 

not have the luxury of epistemic access to the actual divergence between our AIC-

best model and truth. Hence the AIC model selection methodology does not yield an 

argument against the epistemic thesis of scientific realism either. That is, there is no 

way to argue that, despite our best efforts to the contrary, our predictively successful 

AIC-best model is in fact further away from the truth than all the other models 

within the choice set. In other words there is no way to show by means of an 

argument that our predictively successful model is in fact quasi-false. 
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Of course it is tempting to argue that it is highly unlikely that the predictive success 

of our AIC-best model is attributable to anything else except for its relative closeness 

to truth. However, that puts us back on the familiar grounds of the No-Miracles 

Argument, which in its turn familiarly counted by a type of pessimistic meta-

induction [which we contend is more accurately referred to as ‘the pessimistic 

induction from the history of science’ – cf. Godfrey-Smith (2003):177]. There are 

instances of model selection not leading to predictively successful models or 

yielding models that are predictively successful for a while, and then cease to be 

such, particularly in a field such as economics where successful predictive modelling 

is notoriously elusive. 

 

We thus conclude that the model selection methodologies considered in this thesis 

are neutral with respect to the arguments regarding the epistemic thesis of scientific 

realism. They do, however, serve the purpose of recasting the familiar arguments in 

the new light, which can be illuminating. 

 

There is a further worry that our neutrality conclusion could play into the hands of 

the antirealists since being a scientific realist is not required in order to understand 

the model selection methods considered in this thesis. This worry seems to stem 

from an argument that antirealists such as van Fraassen (1980) put forward, viz., the 

argument that scientific realism is unnecessarily inflationist. That is, the statement 

that predictively successful scientific theories are [approximately] true is logically 

stronger than the statement that predictively successful scientific theories are 

empirically adequate. One can maintain the latter [as van Fraassen does] while 

remaining agnostic about the former, and not lose anything scientifically important 

in the process. 

 

We think that there is no onus on someone who finds the No-Miracles Argument 

plausible, and accepts the philosophical position of scientific realism, to provide 

further justification of their philosophical stance by having to demonstrate what 

useful purpose their commitment to scientific realism serves in a particular field of 

science. Naturally, it is superb when one’s philosophical views lead to advances in 

the empirical realm, but it would in our view be too strong a requirement for 
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judgement of viability of such views. In this work there is nothing to undermine the 

plausibility intuitions behind the No-Miracles Argument. We venture that our 

neutrality conclusion really is neutral with regards to the debate between scientific 

realists and antirealists. 

 

Finally, one may wonder, as indeed some have done, whether the model selection 

methodologies that we consider in this thesis can be used to rationally reconstruct the 

key moments of model choice in history of science. For example, Forster and Sober 

(1994):14-15 argue that the AIC methodology provides a reason for choice of 

Copernicus’s astronomy as compared to Ptolemy’s astronomy. Kieseppä (1997):37-

39 points out that the AIC framework has not been proved to apply to periodic 

functions [in fact there are examples of failures of such applications] and that neither 

of the astronomical systems are in the form of statistical hypotheses specifying 

different probability distributions for the observable quantities. On these grounds we 

agree with Kieseppä [ibid.] that reconstructing this case in terms of AIC model 

selection is implausible. We struggle to come up with another case in history of 

science which could be reconstructed in the model selection fashion with some 

plausibility. Does this affect our analysis of the relation between the model selection 

criteria and the issue of scientific realism? We believe that it does not. It does, 

however, remind us of exactly which types of models the model selection methods 

are applicable to. 
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6. Conclusion 

 

In this thesis we have considered the classical approaches such as those due to 

Ronald Fisher and to Jerzy Neyman and Egon Pearson, as well as more recent 

approaches of Akaike Information Criterion and Bayes Information Criterion to the 

problem of model selection for predictive purposes. We find that the Fisherian 

approach can be thought of as an approach to the problem of model selection only in 

a rather Pickwickian sense, the Neyman-Pearson method in a limited but nonetheless 

viable sense, and the AIC and BIC methods in the fully-blown sense of aiming to 

choose a model with the optimal mathematical structure. We then move onto 

considering the numerous objections that have been raised in the recent 

philosophical literature to the AIC and BIC methods. Chief among these objections 

is the Subfamily Problem [about rendering the method defunct by fixing of 

adjustable parameters within models in the choice set in the light of the sample of 

data at hand] that we look into within the AIC setting, and the issues with the nesting 

of models and the ostensible requirement for inclusion of the ‘true’ model within the 

choice set for the BIC method. Upon careful consideration of the foundations of the 

AIC and BIC and of the arguments involved, we argue that at the very least none of 

these issues are devastating for the two methodologies of model selection. We then 

show that there are ways to connect AIC and BIC within the setting of the Bayesian 

theory of statistics and argue pace Burnham and Anderson (2004) that the way in 

which one sets model priors does not imply any particular attitude towards the aim 

of using the BIC method. We also show that within the Bayesian setting there are in 

fact infinitely many model selection criteria that have similar form to AIC and BIC. 

Namely, they penalise the maximum likelihood of the best-fitting element of the 

given model by a function of the variance of the parameter prior multiplied by the 

number of adjustable parameters that the model contains. We argue that this state of 

affairs is favourable for the scientists who can choose the prior according to their 

ideas and the background knowledge about the problem at hand – the diagrams in 

section 4.1.2.2 exhibit the amazing flexibility of priors. We then provide an overview 

of the circumstances under which the AIC and BIC are said to perform better than 

one another. 
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Then we consider two counterexamples that are due to Elliott Sober (1999 and 

2002). The counterexamples were against the simplified form of the Epistemic 

Thesis of Scientific Realism [that predictively successful theories are approximately 

true] and against the idea popular among scientific realists that the aim of science is 

to search for theories that are true. In the former counterexample Sober argues that 

the way that scientists put the Neyman-Pearson methodology to in every day use 

indicates that they expect to be predictively accurate hypotheses that are obviously 

false. Assuming that the scientists are rational, Sober concludes that scientists’ 

behaviour implies that they are methodological instrumentalists. Sober states that 

methodological instrumentalism commits one to using theories as tools for making 

predictions, and to having predictive accuracy as the one and only goal of scientific 

endeavour. We go along with Sober’s assumption about the goal of predictive 

accuracy, but argue that he misconstrues the way that scientists use the NP 

methodology. Contrary to Sober, we argue that the Neyman-Pearson methodology is 

logically consistent with the epistemic thesis of scientific realism. We attempt to 

give Sober’s counterexample Bayesian rendition using some ideas in the spirit of 

Karl Popper, but conclude that his argument does not succeed this way either. 

 

Sober’s second counterexample attempts to show that searches for theories that are 

true and for the theories that are predictively successful do not always coincide. 

Sober thus argues that the popular idea in the scientific realist camp that the goal of 

scientific enterprise is to find theories that are true can go against maximising 

predictive accuracy, the latter arguably being a desirable feature of any scientific 

theory. We argue that his counterexample does not succeed in demonstrating that the 

link between [at least approximate] truth and predictive accuracy is bogus. 

 

However, we go on to argue that the AIC and BIC methods are actually neutral with 

regards to the debate about the epistemic thesis of scientific realism. That is, these 

methods neither lend support to nor go against the epistemic thesis. On the other 

hand, we think that AIC and BIC do provide a different angle from which to view 

the familiar arguments within scientific realism, namely, the No-Miracles Argument 

and the Pessimistic Meta-Induction. Our view is that the conclusion of neutrality of 

our formal methods of model selection with respect to some issues within scientific 

realism is indicative of the general idea that it is extremely rare for purely formal 
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methods to settle philosophical disputes. Nonetheless, in trying to do so one at the 

very least gains additional valuable insights. 

 

It is important for us to emphasise that notwithstanding the fact that in the domain of 

the AIC and BIC methods the talk of simplicity and its predictive accuracy 

maximising virtue has been pervasive, in this thesis simplicity is hardly mentioned, 

and when it is mentioned, it is only as short hand for ‘relatively fewer number of 

adjustable parameters’. The reason for not paying homage to simplicity in the AIC 

and BIC context is this. The AIC was designed to provide unbiased estimates of 

relative expected Kullback-Leibler divergence from a set of models to the ‘truth’, 

where the penalty for complexity in the form of the number of adjustable parameters 

arose as a by-product in order to correct the asymptotic bias. In the BIC the penalty 

for complexity arose as a by-product of approximating often computationally 

intractable integrated likelihoods. So in neither of these frameworks was simplicity 

built-in as an important consideration. Moreover, we find that we do not lose 

anything by ignoring simplicity and treating it as an epiphenomenon. 

 

Finally we suggest that the best handle on the problem of model selection is to be 

gained by applying different approaches to the same issue with full awareness of the 

foundational and philosophical issues involved. We sincerely hope to have at least 

partially served this purpose in this thesis. 
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