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Abstract

This thesis has two goals. Firstly, we considergiabdlem of model selection for the
purposes of prediction. In modern science predictmathematical models are
ubiquitous and can be found in such diverse fietds weather forecasting,
economics, ecology, mathematical psychology, sogil etc. It is often the case
that for a given domain of inquiry there are selptausible models, and the issue
then is how to discriminate between them — thighés problem of model selection.
We consider approaches to model selection thatsed in classical [also known as
frequentist] statistics, and fashionable in regeaatrs methods of Akaike Information
Criterion [AIC] and Bayes Information Criterion [B], the latter being a part of a
broader Bayesian approach. We show the connectbmelen AIC and BIC, and

provide comparison of performance of these methods.

Secondly, we consider some philosophical argumibiatisarise within the setting of
the model selection approaches investigated iffitstepart. These arguments aim to
provide counterexamples to the epistemic thesisadéntific realism, viz., that

predictively successful scientific theories areragpnately true, and to the idea that

truth and predictive accuracy go together.

We argue for the following claims: 1) that nonetlod criticisms brought forward in

the philosophical literature against the AIC metblody are devastating, and AIC
remains a viable method of model selection; 2) thatBIC methodology likewise

survives the numerous criticisms; 3) that the ceraxamples to scientific realism
that ostensibly arise within the framework of modelection are flawed; 4) that in
general the model selection methods discussedsrittesis are neutral with regards
to the issue of scientific realism; 5) that a plityaof methodologies should be

applied to the problem of model selection with faWareness of the foundational
issues that each of these methodologies has.
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1. Introduction and Classical Methods of Model Selgtion

1.1 The Three Problems of Model Construction

In life in general, and in science in particulangas often interested in issues as to
how to explain, or predict various phenomena. Retance, where would the cannon
ball fall if one were to shoot it from a certaimmc@an? And, for that matter, what is
the explanation as for why it is to fall [or hasealdy fallen] in the predicted place
[or, indeed, elsewhere]? Explanation is a fasangasubject in itself. However, in
this thesis we shall concentrate on the no lessrfasng subject of scientific [more

specifically, statistical] prediction.

So, let us get to the cannon ball example. Hownagdo predict where the cannon
ball is to land if shot? In order to do so we campewith a model. That is, we engage
into the process of abstraction and idealisati@mfthe ‘real world’. We abstract
from the features of the world that are deemedewvent for our purposes and take
into account only the relevant facts according emwkbn’s physics [which we will
take for granted in this example] such as the anfjlelevation of the cannon with
respect to the ground level, the velocity of thernma ball as it exits the barrel of the
cannon, the weight of the cannon ball, the speéddaection of wind, friction in the
barrel of the cannon, etc. We idealise certainuiest For example, it may be
impractical and costly to calculate the frictionthim the cannon’s barrel as it is, so
we may assume that it is a totally smooth surfae. make further assumptions
such as that the speed and direction of wind atle bonstant. We may sketch our
model on the back of the envelope for ease of sgmtation. Once we have done all

of these, we have our predictive model.

For our purposes we can think of a scientific moaela tool, which aids us in
generating predictions of phenomena of interest.a¥éecertain that the cannon ball
model [quite possibly not in exactly the same wayitas envisaged here, but, we
would venture, closely enough] was an importantdigtesze tool utilised by the

Western armies of a couple of centuries back.



At this junction let us draw an important distimeti between theoretical and
statistical modelling. This is not the only distion one can draw, and for the
purposes of this thesis we shall use it ratherdlypdor we are concerned with
statistical modelling that has theoretical influefetements in it. However, this
distinction provides conceptual clarity to our predings. A theoretical model is a
model constructed using a general theory withowublinng data. The preceding
example of a model is in fact an example of thecabimodelling. In this example
such theory is Newtonian mechanics. We feed tha&alinconditions into the
equations of Newton’s mechanics to yield our preéaiic However, this thesis is
going to be concerned with statistical models. €hasdels are predominantly built
from the data upwards without much use of the gdrteeory, if any. To illustrate,
let us use the setup of the cannon ball exampheelivanted to construct a ‘pure’
statistical predictive model, we would shoot seivesmnon balls from the cannon
every time observing the quantities that we conmsidievant such as the amount of
gun power input, the angle of elevation of the acanbarrel, exit velocity, velocity
and direction of wind, etc. When shooting cannoltsb&e would vary the relevant
quantities — e.g., we would vary the amount of guvger, change the angle of
elevation, etc. to see how it affects the distaheé our cannon balls travel. Then we
would come up with a model by means of correlatihgse data. We imagine
[although we have not undertaken research intontfaigter] that early Chinese users
of cannon technology and the medieval Western arwieuld have modelled the

phenomenon in a way akin to our description ofstfaal modelling.

There is also a salient distinction within modea]lilnetween deterministic and
probabilistic models. It has to be emphasised tiatdistinction is independent of
the theoretical vs. statistical distinction. Detenistic models are such that the
predictions that they issue are of a definitiveurat For example, a deterministic
model may predict that given the current amourgwipowder, the elevation of the
cannon barrel and the velocity and direction of dyithe cannon ball will land

exactly 552 metres due north if shot foWhereas, using the same example, the

! Reader interested in the historical developmemirojectile technology is referred to Crosby (2002)
2 For our purposes we take Popper’s definition @rsific determinism, viz.: *...the doctrine that the
state of any closed physical system at any givéurduinstant of time can be predicted, even from
within the system, with any specified degree otmien, by deducing the prediction from theories, i

conjunction with initial conditions whose requirdégree of precision can always be calculated [in
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probabilistic variant thereof would yield a distiion of likely landings with
probabilities attached to them. The following taptevides examples of each of the

four types of models.

Models Theoretical Statistical

DeterministicCannon model constructed by ugCannon model construct
general theory which issues definilby correlating data whi
“non-chancy” predictions yield a definitive curve su
that allthe data points lie ¢
it

Probabilistic A model of radioactive decay [Cannon model construct
radioactive elements. by correlating data whi
yield a definitive curve su
that the data points lie cldg
to it reflecting imprecision

measurement

It is clear that the cannon ball model fits inte theterministic theoretical category.
On the other hand, an example of a theoreticalgintibtic model is the radioactive
decay model, which is solidly based on the thedrguantum mechanics that issues
probabilistic predictions. Deterministic statisticanodels, although logically
possible, are in practice rather fictitious, forithconstruction involves highly
restrictive conditions. For instance, in our cantal example, the cannon would
have to be fired indoors to remove the factor efwhnd, or a deterministic theory of
the wind movement would have to be added, whiclewment scientific thinking is
not feasible, because, among other conditionsedguires infinite precision of
measurement of the initial conditidhsStill, we shall use deterministic statistical
models for ease of introduction to the issue of eh@@lection among probabilistic

statistical models.

accordance with the principle of accountability]tlie prediction task is given.” [Popper (1982):36]
For a thorough discussion of determinism cf. Earfi®86).

% For a thorough introductory text on the mathenadtizhaos theory, of which this is an instance,
please see Stewart (2002).



Indeed, in this thesis we concentrate on statisfioababilistic models. The reason
for the focus on statistical modelling is that sunbdels have gained prominence
and play an enormous role in many sciences. Theflisciences that use statistical
modelling keeps growing. It finds application irbaomics, sociology, mathematical

psychology, environmental sciences, etc.

A probabilistic statistical model is a mathematieguation, with the aid of which

one describes the phenomenon under study in tefmendom variables that have
probability distributions ascribed to them. The lex@ation of what these terms are
will be provided in section 1.3. As we mentionedtla very beginning of this

chapter, in this thesis we concentrate on usesstati models for the purposes of
prediction.

Let us now turn to statistical models and see Hwy tire constructed using a simple

example.

Suppose, for instance, that we are interestedndirfg out how the heights and
weights are correlated with each other of, sayesjakho are in their 20’s and who
live in the London borough of Waltham Forest. Tlkason for such a fascination
with the heights and weights could be that we adgps acting on behalf of the
local health authority, which is in the processptinning a new hospital. The
authority may be interested in obesity [e.g., they want to predict what the Body
Mass Indekwithin the Borough would be], or in predicting taswhat would be the

optimal height of the doorways, the sizes of bedsght load of equipment such as
wheel chairs. They may also hold a general intemesthe demography of the

Borough.

Let us suppose that we would like to predict thégiveof any such male given his
height. In order to draw an inference we need tdhtee things. First, we collect a

sample of data from the population. Second, we shdbe structure of the model

“ BMI is one of the most widely recognised indicesdi in order to classify weight of adults. It is
defined as weight (kilograms) / heigffimetres). If one’s BMI is below 18.5, one is catesid to be
underweight (in particular, if BMI < 16, one is shified as “severely thin”) whereas if one’s BMI >
25 one is considered to be overweight (in partigufaBMI > 30, one is classified as “obese”).
Source: World Health Organization: http://apps.witdhmi/index.jsp?introPage=intro_3.html
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[that is, the functional form of the model or, ither words, the family of models
which have the same functional form but differ Imatt their parameters are set at
different values] according to which the weightd dmeights are related. Third,
having chosen the structure, we determine the saltiparameters, that is, we pick a

particular modelfrom the family of models. Let us consider thesps in turn.

1.1.1 Sampling

This section is here solely for completeness ofgmeation of statistical modelling
process. The focus of the thesis shall be entorlthe issue on model selection and
on parameter estimation. We will be concerned wahameter estimation insofar as
it is relevant to model selection. Hence we glogerayuite interesting issues in
sampling. We mention the solutions that we find reasonable appealing without
much argumentation in order to give the reademaeef where we stand on these

issues.

The question as to how to draw such a sample dropas attracted a lot of attention
in statistics. Sampling techniques can be dividei itwo categories — random

sampling and judgement [representative] sampling

1.1.1.1Random Sampling

In random sampling every member of the populatias to have a known objective
probability of being selected for sampling to bdezhrandom. In our example one
way that this can be achieved is by assigning ekeoyvn male in the borough of
Waltham Forest a unique natural number, then gutiach number on a separate
ball, then placing all the balls in an urn and dragan balls |n corresponding to the
size of the sample] from the urn without looking [that each ball has an equal

® Our usage of the term ‘model’ here closely follovan Fraassen’s: ‘Thus in the scientists’ use,
‘model’ denotes what | would call a model-type. \Waeer certain parameters are left unspecified in
the description of a structure, it would be moreuaate to say ... that we described a structure-tiype.
will continue to use the term ‘model’ to refer tpesific structures, in which all relevant parameter
have specific values.’ [van Fraassen (1980):44] @iion of a model corresponds to van Fraassen’s
‘model-type’ or ‘structure-type’.
j For further details and discussion of samplingstfiart (1962), Stuart (1984), Urbach (1989).

Ibid.

11



chance of being picked], noting down the numberd emntacting the individuals
who had those numbers associated with them to dimdwhat their heights and
weights are. In fact, this is an example of sim@ledom sampling, where every
member of the population has an equal probabifityeing selected.

A different way to do random sampling would be teide the population into sub-
populations [strata] with respect to some chareties that are believed to be
correlated with the attributes of primary interé, in our weights/heights example,
weights and heights of individuals are such attebuwf primary interest, and the
characteristics according to which the populatibmales can be divided could be
the countries of their origin [for instance, itaemmonly observed that males from
Scandinavian countries tend to be relatively tatl alender, and, say, males from the
Indian subcontinent also tend to be slender, bet ratatively shorter than the
Scandinavians], the level of their disposable inedmales on the relatively lower
incomes seem to consume more unhealthy foods], @bce the population is
stratified in this way, the simple random samplisglone within each stratum. The
merit of stratified sampling in comparison to siemphndom sampling is that in
situations where there is at least some amountiof gnowledge about possibly
correlated characteristics, stratification resuhlis more precise estimation [i.e.,
inferences from stratified samples almost alwaysehamaller variance — the
measures of precision are to be discussed in subsegections]. Stratification
maximises precision when the average values ofreaens are as different as
possible, and their variances are as small as lpeSsintuitively, the maximal
difference implies that the characteristic accaydia which the stratification was
done is correlated with the attributes of interéstfact stratification with respect to
any characteristic leads to an increase in pretisio long as the size of the sample
is small in proportion to the population, and theats contain more than one

member.

Another type of random sampling is cluster samplingcluster sampling one also
divides the population into sub-populations, budtéad of doing random sampling
within each sub-population, one randomly selectingle sub-population, and then

8 cf. Stuart (1962):49
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makes up the sample from all the individuals witthia selected sub-population. An
example of cluster sampling is list sampling. If teé&e the list of all the relevant
males in our particular example in alphabeticaleorf their surnames, then divide
the population with respect to the first letterttodir surname in such a way that the
number of individuals in each cluster is about #ame [so if the number of
individuals that have the letter S as the firdeleodf their surname is about the same
as the number of males that have their surnamenbeigh X or Y or Z, then we
form two clusters — one S cluster and one XYZ @ystind carry on in this fashion
with respect to the other letters of the alphabet] then randomly select one such
sub-population to constitute our sample, then wi léive done cluster sampling.
An advantage of cluster sampling over stratifiedngiang is that sometimes
population is naturally arranged into clusters + &xample, into districts, or
households, into groups of employees or differentganies, etc. On the other hand,
for cluster sampling to achieve an improvementrgcision over stratified sampling,
the individuals within the clusters have to be maadly varied. Intuitively that
means that clusters should be as representativariaition within the population as
possible. So, following the earlier example, if are to do list sampling, under each
first letter of a surname we would like to have soBrandinavians, some males
from Indian subcontinent, etc., in our clustersgtdy in proportion in which they
occur in the whole population. If, however, our sters are not varied, cluster
sampling achieves much lower precision than bathpk random and, a fortiori,
stratified sampling. That is, if, say, the cluséC is randomly selected, and it so
happens that young adult males from Scandinavialopneantly have such
surnames, then we would have a sample skewed tewaatively slim tall males.

1.1.1.2Judgement Sampling

Judgement [also known as representative] sampdiniyge same as stratified random
sampling, but for one important feature — it is mahdom. The idea behind
judgement sampling is that the most important thimgt one [that is, a researcher
who does sampling] has to do is to choose accortingvhich categories the
population should be divided into sub-populatio@ce that is done, one then
determines how many individuals should be ‘obseriredach sub-population based

on the proportion of the quantity of individuals & given sub-population with

13



respect to the total number of individuals in thepglation. Then one picks the
determined number of individuals in each sub-pgpdalhence it is sometimes
referred to as quota sampling] in whatever waysitmost practicable to do so —

randomisation in this case is not #ige qua non

Let us further clarify what the difference betwestratified and judgement sampling
is. Indeed, it is the case that in both methods dimeles the population into sub-
population according to some salient charactessttowever, in stratified random
sampling one has to draw samples from sub-populdip randomised sampling,
whereas in judgement sampling one is free to pnkviduals for one’s sample

according to one’s own ideas.

1.1.2 Model Selection

So, suppose that we have picked a sample in otieeofvays described in the sub-
section above. What do we need to do further? \Wel n@ choose [or construct] a
statistical model, which involves choosing the reathtical structure, and pick the
values of parameters. In our usage ‘model seléctiefers to choosing the

mathematical structure. The issues of what scientiodels are, how they interact
with theories and observations, etc. have attraatéot of attention in the recent
years. However, as we mentioned in the beginning of $ieistion, in this thesis we

will consider statistical models only.

Now, why do we need a statistical model in our epgla® Since we are interested in
finding out the relationship between weights andjits of the males [say, we are
trying to come up with a generalisation for thegmses of prediction as to what the
height of any such male within the Borough will lpgven his weight], we would

like to know the form of this relationship. That fer a given unit increase in height
of a male, would his weight be expected to increadmear proportion, or perhaps
quadratic, or cubic, or in some other way? Wouldhé change in height correspond

to the same change in the weight if the persoelgtively ‘tall’ rather than if he is

° For a comprehensive survey cf. Frigg and Hartn{2006).
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somewhat ‘short’? To begin with, let us see whamfstatistical models can take in

order to make sense of the model selection appesach

For now we will introduce deterministic statisticabdels, since they are in a sense
simpler than probabilistic statistical models. lal be easier to move onto
probabilistic statistical models once we considetetministic ones because these

two types of models have many features in common.

Y = aX + b is an example of a linear model [call it LIN]. Bacombination of the
values of parameteis andb would pick out a particular element within theear
model — an element of LIN. LIN has two variableX4s usually referred to as the
independent variable and Y as the dependent variabb make this model
probabilistic one would need to introduce a randoomponent [it is also often
called an error term§: Y = aX + b + ¢, wheree¢ has a probability distributioh
Another example of a deterministic statistical modethe quadratic one [call it
PAR]: Y =aX? + bX + c. The elements of PAR for which#a0 are represented by
parabolic curves in the Cartesian plane. Sinceunexample we are interested in
predicting the weight, the dependent variable Yespnts the weight measured, say,
in kilograms, and the independent variable X repmesthe height measured, say, in

centimetres.

Now, the two schools of statistical thought withivhich the vast majority of
statistical reasoning takes place are the so-c&ledsical statistics and Bayesian
statistics. We defer consideration of Bayesiansited until chapter 4.

In chapter 2 we consider some of the methods a$d@ilal statistics. These methods
are not traditionally thought to be about modelesgbn, although they can be
viewed as such, at least to a limited extent [ciisker (2001)]. Roughly speaking,
the methods of Classical statistics usually asstimaé the functional form of a
hypothesis [or, in our usage above, a model] isMna@and proceed to use samples
of data to test models with the parameters set aaticplar values either by

themselves or against an alternative model witfedifit values of parameters, or to

9 This notion, among others, will be elucidatedenton 1.3.
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test two subsets of the same model against eathanor estimate parameters from
samples of data by particular values [thus pickingan element of the model] or by

ranges of values [thus narrowing the range of jideiglements within the model].

The reasons as to why we consider Classical stalishethods even though they are
related to model selection in a rather limited semse the following. Firstly,
Classical statistics is the most influential typestatistical reasoning, familiarity
with at least the major points of which is pre-nsge for any field of statistical
analysis. Secondly, the methods of Classical sittiare used by many as the ‘gold
standard’ against which all other methods are jddgecluding the methods which
we consider in chapters 3 and 4, that take modectsen as their explicit aim.
Thirdly, the methods of Classical statistics hag@tdired in the philosophical debate
with regards to the putative connection between ehalection methods and

scientific realism, to the consideration of which turn in chapter 5.

In section 4.1 we consider the main features ofeBen statistics, which has been
the main rival to the Classical statistical thoughtnodern statisti¢d. In Bayesian

statistics the issue of model selection arisesequaturally.

1.1.3 Parameter Estimation

At this point let us state that throughout thissieave are concerned wigfarametric
modelling. That is, with models which have finiten@nsional vector-valued
parameters. For non-parametric methods see Sili®y5).chapter 9 and Spanos
(2001).

As we mentioned in section 1.1.2, choosing a s$tadismodel amounts to choosing
a set of mathematical equations that have the sameture. E.g., Y aX + bis a
linear model specifying an uncountably infinite sét particular lines that have
distinct values of parameteasb. As we noted above, this linear equation does not
amount to grobabilistic statistical model [it lacks a random component asands]

but that will matter later on in the thesis. Fog #ase of introduction a deterministic

1 For an insightful summary of the debates bothrirsteand external to the Classical statistics see
Mayo (2005).
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statistical model will do. Once we have picked/fdwur statistical model [suppose
for now that we picked the linear model in our Ielgeight example, where X

denotes the heights variable and Y denotes the higeigariable], the task is to

estimate the values of the parame@m@ndb from the sample data that we have.
These values would give us a particular statistivadiel [that is, a particular element
of linear model]. A formula whereby estimation &red out is called an estimator,
whereas the particular values that it takes aledat#the estimates. Logically there are
infinitely many ways of doing so. Let us brieflyesbow the Classical and Bayesian
approaches attempt to solve the issue. We shalegper into the Bayesian approach
in section 4.1. The introduction below is condudtedery general terms because the
definition and explanation of statistical terms emsary for more precise rendition is

forthcoming in later sections.

Classical statistics has a list of properties Hratadmissible estimator should have.
The most important and most commonly used progeree unbiasedness,
consistency, efficiency and possession of minimwuased error. Let us look at

these in turn.

An estimator is unbiased when the estimates thgkltls across different samples
are on average equal to the value of the true pteam An estimator is said to be
consistent when, as the sample size tends towaiidgy, the estimates provided by
the estimator converge on the true value. An estima efficient just in case the
estimates yielded from the estimator have the mininspread among the estimators
within the same class. That is, the range withincivrsuch estimates lie is on
average the shortest [in statistical terminolobis ts expressed as the estimator has
the minimum variance]. Here is an example. Let adgck to the linear model Y =
axX + b. Let us suppose that we want to estimate the valube parametea. In
classical statistics we assume that the value isffixed but unknown. How should
we go about the estimation? Again, without getimg the formal details, one way
to do so would be this. We can plot the data pamthe Cartesian plane and draw a
line [that would be a particular manifestation lo¢ tinear model] in such a way that
the sum of the squared vertical distances [thatiagg the y-axis] from each point to
the line is minimised. Thus this line would lie &4 to each data point than any

other element of the linear model [in the sensewiimal vertical square distance].
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The reasoning behind adopting such a method ispttestumably our model should
reflect the data as closely as possible in orderae any predictive success. We

shall return to this point in chapter 3.

Suppose now that our line is yox + 8, whereo andp are such that the line Y &X

+ £ has the minimal sum of square distances to all gaints within the sample.
Now, suppose that we are restricting our attentoothe group of linear estimators.
That is, we are to pick estimatorsabhmong the functiona = ca + d, (@ stands for
an estimator o#), so thata is a linear function o&. Now, what would be the best
linear estimator among the infinitely many? Thea%dical” answer is that the best
one is where ¢ = 1 and d = 0. Thatdss a. It is demonstrated that this estimator is
unbiased, consistent and, under further conditigm®wn as Gauss-Markov
conditions [which there is no need to go into as tpoint], it has the minimum
variance, i.e., that it is efficient.

In Bayesian statistics point estimates are genenatit provided because the
inference is based on the full posterior distribo'tf, but point estimates can be
derived. One popular method is called MAP — maximairposteriori. Under this

method the point estimator of a parameter is shel it provides the maximum

posterior probability of the model in the light tife sample. This is equal to the
mode of the posterior distribution. The mode of aayple is the value of random
variable that occurs most frequently. To give aptemrexample, suppose that we
rolled a die 7 times, and that the following is sample of numerical outcomes: {1,
1,2, 4,5, 5, 5}. In this case the mode i$ 5.

There is also the method of Maximum Likelihood Estiion. We defer
consideration of this method until chapter 3, beeaunderstanding it will be crucial

for the discussion of the Akaike Information Criggrin that chapter.

12 Roughly speaking, posterior probability distrilmticomprises a set of probabilities associated with
each possible value of the parameters within a irindbe light of data. We say more on this pomt i
section 4.1.

13 |f the distribution is symmetrical univariate [i.é& has only one random variable in it; we willes
that the normal distribution is an example of sadfistribution], the mean, mode and median are the
same. The median of any sample is the middle vatuen the values arranged from the smallest to
the largest in order. In this case the median is 4.

18



1.2Methodological Issues

1.2.1 Sampling

Please note that this section is here solely fer glarpose of completeness of
introducing the issue of model selection. The issuith sampling will not be
considered in the rest of the thesis. It will bsussed that our data were gathered by
some satisfactory method. So the issues in thifoseare flagged for possible
interest of the reader, and some signposts areated! as to where our philosophical

opinion lies without much argument for or agaimgtjch is done deliberately.

‘...Principle of Random Sampling asserts that sattsfy estimates can
only be obtained from samples that are objectivahdom...’

Howson and Urbach (2006):178

The primary motivation for random selection of wmiduals to constitute the sample
Is that such a selection allows one to obtain apsarfree of biases. A salient
example of a possible bias is the selection bia&gt TS, conscious or unconscious
tendency on behalf of the researcher to select raesfbr the sample on the basis of
some subjective idea as to what the salient chexiatits of the population are. In
random sampling what is important is the procedunereby the sample is chosen,
and not the actual outcome. The procedure has faibdhat is, paradoxically [and
it is called the central paradox of sampling thé8njf one selects the members of
the sample solely on the basis of one’s own pregglor ideas as to which particular
members should be in the sample, and if exactlysmee sample is chosen by the
random process, the former sample would be inadlhesehereas the latter would
be perfectly fine. Stuart says that this paradaxterd pill to swallow. Nevertheless,
he argues that the pill has to be swallowed inmtalsafeguard against unscrupulous
researchers exercising their subjective biases. Mdi®n of bias, incidentally, is
different to that which we encounter in classictdtistics with regards to the
parameter estimation [cf. section 2.4.1]. Here tdren ‘bias’ is used in synonymy

with the term ‘prejudice’.

% Stuart (1962)
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So, from the point of view of a proponent of randsampling lack of randomisation
opens judgement sampling to influence by biasespmjudice on behalf of
researchers. However, there are several advanthgegidgement sampling enjoys
over random sampling. Judgement sampling focuseéleoquality of the outcome of
the procedure rather than on the procedure if6bl§ implies that the proponents of
judgement sampling find it impossible to ‘swallowhe paradox of random
sampling. Judgement sampling is less costly andeatarried out much faster than
random sampling. Judgement sampling avoids thes is§unon-response. That is,
situations when the individuals who have been paknsgly selected by random
sampling cannot be reached or refuse to participstereover, there is some
inductive support for the effectiveness of représre sampling — for instance,
success of political pre-election opinion pollshalgh it can be argued that the polls
themselves lead to changes in behaviour on belhatieo electorate. Voters may
engage in strategic voting on the basis of theltesi such polls, thus creating a

self-fulfilling prophecy.

On balance, it seems that a halfway house apprizadbsirable. That is, doing a
stratified random sampling depending on the amainknowledge in the field,
costs/speed required. If a lot is known about thenpmenon, and costs of random
sampling are prohibitive, then representative sargps just the ticket.

1.2.2 Model Selection

Model selection of a certain kind forms a consiberapart of this thesis. So,
suppose we have gathered our sample in a way kuftatus. We now have several
models/equations that could be candidateshfepredictive model we are to use. On

what basis are we to pick one?

The first choice that we have to make is whether veee to
confirm/validate/test/choose between models that hase arrived at prior to
considering our sample, or whether we are to atteimpronstruct the model by
looking at the data — that is, by ‘letting the dspeeak for themselves’. In this thesis
we will be concerned with the former approach. €hiera consensus that the latter

methodology often leads to problems with spuriousetations and models that are
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not useful for the purposes of prediction. Morel Wwé said of this topic in chapter 3,

particularly in section 3.4.1.4.

The second choice is the choice of the method Ilyeiree model is to be chosen. As
it is already mentioned in section 1.1.2, chaptés @8edicated to elucidation of the
traditional statistical approaches to this issuewklver, the core of this thesis [i.e.,

chapters 3 to 5] is dedicated to considering moxeehapproaches.

1.2.3 Parameter Estimation

We saw in section 1.1.3 that in the Classical agpghmoto statistics one uses
estimators that satisfy the list of desirable props, whereas in Bayesian statistics
one does not focus on estimation as such, but wherdoes do estimation, then one
usually uses estimators that provide maximum aepasi probability of the model

being correct. Consequently, given these diffemanjectives, the estimators, and
hence the estimates, often differ between theshodst As we stated previously, we
consider parameter estimation only insofar as relsvant to our central issue of
model selection. The parameter estimation debatnential to the issue of model
selection, so we will not be going into it in angtail. For some arguments within

the parameter estimation debate, see Howson arath/{2006).

1.3Probability Theory

1.3.1 Probability Primer

Statistical modelling is done in terms of randomrialdles and probability
distributions. These notions are part and parcéh®fprobability theory. So, in order
to come to grips with how statistical modelling dene, we have to familiarise
ourselves with central tenets of probability theofhis is the task of this section.
There are several notions in this as well as irssgbent sections such as variance
and statistical expectation, which are prima falmenot seem to do any useful work.
However, familiarity with these formal tools is weel, for without it one would find

it very difficult to comprehend the arguments givemater chapters of the thesis.
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For the purposes of this section we introduce ‘phility’ as a primitive term [cf.
Gillies (1973):232]. We shall not engage into thesuie of interpretation of
probabilities unless required for the discussiohaatd®.

The mathematical theory of probability can be thdugf as a study of logical
structure of uncertainty. This logical structureletermined by the axioms and all of

their deductive consequenties

By way of introduction, let us consider a game lodirice — for instance, that of the
throwing of a die. What are the possible outcom#&g?can get either 1, 2, 3, 4, 5 or
6. The set of these values constitutes the outspaee: {1, 2, 3, 4, 5, 6}, that is, the
set of all possible mutually exclusive outcomestloé process. Each of these
outcomes is called a basic event. An event is @fskasic events. An event occurs
when one of the set of the constitutive basic eseoturs. For example, in our case
an event can be ‘the number on the die is odd’. ddreesponding set of the basic
events is: {1, 3, 5}.

We can think of events as propositions that aresedounder the truth-functional
logical operators of conjunction, disjunction anelgation. For our purposes the
distinction between propositions and events is ingtortant. We treat them as

mutually substitutable.

Probability is measured by a real number betweean® 1, where number O
corresponds to a logical contradiction and 1 cgwass to a tautology

!> For comprehensive surveys of the issues involweihtierpreting probabilities please see Gillies
(2000) and Hajek (2009).

® The presentation of the probability theory in teisction including the axioms thereof closely
follows Howson and Urbach (2006): chapter 2.

7 Also, it is important to note that formally, anpossible event has the probability of 0, and ameve
which is certain to occur has the probability ofblif the converse does not hold in either case [cf.
Kolmogorov (1956):5]. That is, if an event has zprobability of occurring, it does not imply that i
is impossible to occur. Let us once more use timaa ball example. What is the probability of the
shot cannon ball landingxactly125 metres away from the cannon? The answer isttlzazero, for
we represent distance by real numbers, of whichetlzge uncountably infinitely many. So the
probability of picking one of them at random wolld 1fo that is zero. But clearly the event of the
cannon ball landing exactly 125 metres from thenoaris not impossible.
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The intuitive idea of probability is formalised tarms of the following axioms [in

what follows P(Y) stands for the probability of aeyent Y]:

(1) 0<P(A)< 1 for any event A in the domain of P

(2) P(logical truth) = 1

(3) P(A or B) = P(A) + P(B) for any mutually exclus events A and B
(4) P(AIB) =P (A and B) / P(B) where P(B) >0

Conditional probability P(A|B) is the probability occurrence of event A given that
event B has occurred. For example, suppose thait éves that a roll of the die
results in number six, and B is that a roll of the results in an even number.
Supposing further that the die is fair [this is t@se when, for instance, its centre of
gravity lies in its geometrical centre], P(A) = 1Bowever, conditional on the die
giving us an even number as the outcome, the pildlgatf observing six is 1/3.
That is, P(A|B) = 1/3.

Axiom 3 is sometimes extended to countably infirsets of events mostly for
mathematical convenien®e This, however, introduces some conceptual issusts,

these need not concern us Rere

Axiom 4 is sometimes introduced as a definition aafnditional probability.
However, we will treat it as a postulate on parhwifte other three. ‘The reason for
this is that in some interpretations of the calsulndependent meanings are given to
conditional and unconditional probabilities, whiateans that (4) cannot be true
simply by definition.” [Howson and Urbach (2006)]#sgain, nothing in this thesis

hangs on this point.

An important deductive consequence of the Axioms4Bayes Theorem [its
importance is discussed at length in section 4nliks most commonly used form it

is:

'8 ‘For, in describing any observable random prosesscan obtain only finite fields of probability.
Infinite fields of probability occur only as ideadid models of real random processég& limit
ourselves, arbitrarily, to only those models whgdtisfy [the Axiom of Countable AdditivityThis
limitation has been found expedient in researclidéiseomost diverse sort.” [Kolmogorov (1956):15]
9 For discussion cf. Gillies (2000):66-69, HowsoA@g), Williamson (1999).
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P(A|B) = P(BJA)P(A) / P(B) where P(B)0

Also, often P(B) can be substituted by the expogssihich is called the total law of
probability: P(B) = [P(B|A)*P(A) + P(B|notA)*P(noth

Let us illustrate the use of Bayes theorem withfttlewing example. Suppose that
we have a group of 100 students, 70 of whom studgodege R and 30 are at
college U. These students are to sit an examinaiiowhich they either succeed or
fail. Let us introduce the following propositiors.A student studies at college R. C:
A student studies at college U. S: A student paisegxam. F: A student fails the
exam. Suppose further that we believe that a stufftem college R has 0.8
probability of passing the exam, whereas a studemn college U has 0.4
probability of succeeding. We can represent thgseohditional probabilities: P(S|J)
= 0.8, P(S|C) = 0.4. Also P(J) = 0.3, P(C) = 0.@8w\suppose we would like to find
out what the probability is of a student who pases exam to have studied at
college R [that is P(J|S)]. For this we employ tb&l probability form of Bayes

theorem [since J and C are mutually exclusive estiaievents]:

PIS) = P(SII)*PQ)/[P(S|I)*PJ) + P(S|C)*P(C)J08*0.3/[0.8*0.3+0.4*0.7] =
0.24/0.52 = 0.46 [approximated to 2 decimal placbsreafter 2 d. p.]

An important concept in the theory of probability that of theprobabilistic
independenceEvents A and B are said to be probabilisticaligapendent just in
case P(A and B) = P(A)xP(B). Hence substituting #apression into the Axiom 4
[cf. page 23] we obtain the result that A and B rebabilistically independent if
and only if P(A|B) = P(A) and P(B|A) = P(B).

An important concept in statistics is that of adam variable. A random variable is
a mathematical function from the space of elemgngaents to the elements of the
set of real numbers. For example, suppose thatoWe rdie twice and record the
outcomes of both rolls. A random variable in these could be a summation
between the two outcomes. So, if the first throelds 1, and the second throw 5,

then the realised value of the random variable By6convention we denote random
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variables by capital letters, and particular nugarrealisations thereof by small
letters. We are interested in how probability valuee distributed over every
possible realisation of the random variable(-s)rides probability distribution
models provide a summary of this information. Ak@ability distribution model is a
function that maps numerical values of random Ve onto probability values.
That is, a probability distribution model tells owbat probability value is associated
with each value of a given random variable. We willinarily refer to probability
distribution models as just probability distribut&) as it is conventionally done in
statistics. The following table is an example girabability distribution P(X) for the
random variable in this paragraph [denoted herg]am the assumption that every

elementary event is as probable as every otheresiary event:

X |2 3 4 5 6 7 8 9 10 [11 12

P(X|1/36 |2/36 [3/36 [4/36 |5/36 [6/36 |5/36 |4/36 [3/36 [2/36 |[1/36

A cumulative probability distribution shows the aowulation of probability up to a

given value of the random variable. It is commaorénoted as F(X=x), where x is a
particular realisation of the random variable assult of the experiment. F(X=x) is
the probability that X takes on a value smallentbaequal to x. E.g., in our case of
the die throwing experiment, F(X=4) = P(X=2) + P@= P(X=4) = 6/36.

There is also a distinction between discrete amdimoous probability distributions.
In discrete distributions random variables can takea finite or countably infinite
number of values. So in our example with the rgllidie we have a discrete
probability distribution, since the random variabbn only take discrete values. Let
us illustrate the idea of a probability distributiavith the example of the Binomial
distribution, since it is reasonable to suppose dlba experiment of throwing the die
follows the Binomial distribution, which is a padiar example of a discrete
distribution.
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The Binomial distribution applies in cases wherrgéhare just two exhaustive [that
is, the sum of the probabilities of such eventsaéxjto one] and mutually exclusive
[i.e., if one event takes place then the other ehas the probability zero and vice
versa] events. One event is usually referred tswascess’ and the other is ‘failure’.
If the experiment is repeatedtimes, with the repetitions being independent roé o
another, and if the probability of succgssach time is the same, then

P(x) = n!f(1-pf"™/x!(n-x)!, where x is the variable that denotes thenber of

successful outcomes.

So, let us apply it to the die-throwing examplep@se that we define event A as
‘the number on the die is even’ and event B — fthenber on the die is odd’. Events
A and B are mutually exclusive — either A or B happbut both of them cannot do,
and exhaustive — every basic event belongs toreithé®. Let us suppose that we
are going to throw the die 10 times, and suppos¢ these throws will be
independent of each other [that is, the probabiityobserving an even or odd
number on each throw does not depend on the outofmthe previous throy.
Suppose further that each time we throw, the prtibabf A [let us call it ‘success’]
and B [call it ‘failure’] is 0.5 respectively. Lais define a random variable X as
representing the number of successes. So, for dgampat is the probability that
we will see exactly four even numbers?

P (x = 4) = 10! 0.5x 0.5 / 416! = 0.205 [correct to 3 decimal places]

Now, continuous probability distributions are sutlat the random variables that
they cover can take on an uncountably infinite nembf values. Some random
variables are continuous, i.e., they belong tostteof real numbers rather than just
integers, as it is the case for discrete distramngi E.g., X is the volume of milk that
a herd of cows yields, or the temperature in a ramertain time. Also continuous
distributions are often introduced for mathematic@nvenience. Continuous

distributions have probability density functif(®) such thaf(x) = dF(x)/dx

%0 Thus, B is called aomplemenof A. |.e., A is logically equivalent to not B, @P(B) = 1 — P(A).

2L A more rigorous definition of probabilistic indepmence is this: X is probabilistically independent
of Y justin case P(X]|Y) = P(X). That is, the prbbiy associated with various values of random
variable X stays the same whatever value randomhlarY takes on.
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The distributions of continuous variables are chlpFobability density functions
rather than just probability distributions becaue, any point x, they show the
probability of the random variable taking on a walun the region of x. We are
referring to probabilities in the region of certaaues rather than to probabilities of
point values themselves, because every point jaluencountably infinitely many
point values] of a continuous random variable habgbility zero. An example of a
continuous distribution is the Normal distributioe shall say more of Normal
distribution later.

Another notion that we ought to introduce is thatstatistical expectation. The
expectation operator is quite convenient in ordedéfine important properties of
probability distributions. The expectation of a dam variable is defined as a
probability weighted average of all the values ttie variable can take. That is,
E(X) = ="-1 x P(%),i = 1, 2, 3, ..., nin the discrete case and E(X)xp(x)dx [on

the range of values of X from the smallest to thigest] when X is a continuous
variable. Intuitively E(X) can be thought of as amerage value of the random

variable in the long run.

Moments of a probability distribution are converniemays to summarise some
important properties of the distribution. We wilbrcentrate on the two most
important quantities — the meanand the variance®. The mean is a measure of
location. It shows us where the centre of the ithgtion is. The mean is equal to the
expectation of the random variable. l.e.= E(X). For instance, consider the die

rolling example with the discrete random variableaixd the following probability

distribution:
X 1 2 3 4 5 6
P(Xi) 1/6 1/6 1/6 1/6 1/6 1/6

In this caseu = E(X) = 1/6(1 +2+ 3 +4 + 5 + 6) = 21/6 = 3.5i3 of course does
not mean that we would expect to obtain an outcom®.5 at some point in our
experiment, for such an outcome is not in the $gbssible values that our random

variable can take on.
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There are other measures of location such as tileam@wvhich refers to the middle
value of the random variable rather than the pridibalveighted average thereof],
which have their advantages [the median is notctdteby the outliers — the values
that lie far away from the main body of data]. Heee the mean is the predominant

measure of location chiefly because it has ‘nicatimematical properties.

Another important moment of a probability distrilout is varianced?]. Variance is

a measure of dispersion. It indicates how spreadtloel values of the random
variable are around the mean of the distributiarthke discrete case, the variance is
equal to the sum of the probability-weighted squaegiations of every possible
value of the random variable from the expectatibrihe random variable. In its
simpler form, it can be demonstrated that the waeas equal to the expectation of
the squared random variable minus the squared &@&tmet of the variable itself.
That is, Variance (X) = E(} — [E(X)]>. The standard deviatianis the square root
of the variance. The standard deviation is measurése same units as the variable
itself. Quite often the mean and variance are &efit to uniquely define a
probability distribution function [p.d.f.] — e.g.this is the case for normal
distribution. In the die-rolling example abov&= 1/6(F + 2 + ¥ + £# + 5 + &) —
3.5=81/6 —12.25=13.5-12.25=1.25. Thus1.118* (3 d. p.)

1.3.2 Normal Distribution

Quite possibly the most important probability dsiition that is used in statistics is
the so-called Normal Distribution. Firstly, a lot phenomena have been observed
[at least approximately] to follow this distributio- e.g., distribution of heights,
exam marks, etc. Secondly, the importance of Nofsiribution stems from the
Central Limit Theorem — if the individual obsenats constituting a sample are
independently identically distributed, and as thember of such observations
becomes large, the sample mean tends to be nordisifibuted, irrespective of the
form of the distribution of the population itsedfs long as the population variance is

finite. An implication of the Central Limit TheoredqCLT] is that the binomial

22 Neither variance nor standard deviation can takeemative values.
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distribution becomes approximately Normal as theniber of observations n
increases (some authors claim that in practiceagpgoximation is reasonably close

once n > 50).

A continuous random variable X is said to be nolyndistributed with meam
(E(X) = p) and variances® (Var(X) = ¢?) [ordinarily represented as X ~ IN(c?)]
when its probability density function (PDF) is fx)s* (/200 | (9r52)1/2

-4 -3 -2 -1 0 1 2 3 4

Diagram 1

The picture above represents the p.d.f. of thedstahnormal distribution. That is,
the distribution of a random variable Z such that Kl(0,1). We measure the p.d.f.
of Z along the vertical axis, and the values of l@dng the horizontal one. The
standard normal distribution has practical impareabecause it has been tabulated.
Any linear combination of the normally distributethdom variable is itself normal,
so if X ~ N, ¢°), then Z = [(X —u) / 6] ~ N (0,1). Hence, any normal distribution
can be transformed into the standard normal foe efscalculations. For example,
suppose that our random variable X represents #ights of males within the
London Borough of Waltham Forest [recall the exaanyged in the beginning of this
chapter]. Suppose further that X is normally dmited with E(X) = 180 cm, ansl=
10 cm. That is, X ~ N(180, 10). Given this set syppose that we would like to find
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out what the probability of observing at random @erwho is taller than 195 cm is.
In order to do so, we convert our random variablet® Z thus:

P(X > 195) = P(Z > (195 — 180)/10) = P(Z > 1.5)omer to calculate this value by
ourselves we would need to integrate the probghdénsity function between 1.5
and infinity. This is quite a laborious task, setead we can look the value up in the
tables for standard nornialFrom such tables, P(Z > 1.5) = 0.0668.

Now, let us pause for a short while to see whahexe done so far and where are
going to in the rest of the chapter, and, indeeadhe rest of the thesis. To begin
with, we considered the issue of scientific praditt restricting our attention to
statistical problems. The example that we used twas of wishing to predict the
weight of a male who resides within the London Bmylo of Waltham Forest on the
basis of his height. We saw that in order to gejrips with a problem of this sort we
needed to gather a suitable sample of observatg®iect a statistical model and
estimate the parameters within the chosen modelsa\kthat we would restrict our
attention to the issue of model selection. Sinegistical models are formalised in
terms of probabilities, probability distributionsnda their moments, etc., we
overviewed the probability theory and the necessamcepts and terms which
equipped us to understand how statistical model&k.wo chapter 2 and in section
4.1 we consider the two methodologies that curyesitiminate the field of statistical
reasoning, viz., Classical and Bayesian respegtiVée consider the issues that each
of these methodologies has. From the third chaptesards the thesis is dedicated to
two major alternative approaches to model selectubich have been developed
since the early 70s of the 2@entury, viz., Akaike Information Criterion (AlGnd
Bayes Information Criterion (BIC). The chapter fiveonsiders the putative

philosophical consequences of the model selectiethodologies.

% These tables are widely available. E.g. http://wmath.unb.ca/~knight/utility/NormTble.htm
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2. Classical Statistics

The name Classical statistics is, strictly speakagnisnomer. Rather than being a
unified methodology, it is in fact a heterogeneoakection of various methods such
as R. A. Fisher’'s, Neyman-Pearson’s, parametercanfidence interval estimation
techniques, etc. However, we will follow the numesotext books on practical
application of statistics in using this somewhatsgnided terminology as a
convenient umbrella term in cases when it does matter which particular

technique or method within it we refer#b.

At the outset of the expositions of Classical st in this section, let us note a
salient distinction between uses of probabilitywsstn the Classical and Bayesian
schools of statistical thought. In the latter, ‘.apability is used to provide a post-
data assignment of degree of probability, confifomt support or belief in a
hypothesis...”, whereas in the former ‘...probabilitg used to access the
probativeness, reliability, trustworthiness, or esty of a test or inference
procedure.’ [Mayo (2005):803] Simply put, in Bayasistatistics probability applies
to hypotheses and data whereas in Classical gtatigtobabilities are used for
assessment of inference procedures themselvethdnwords, in Bayesian statistics
hypotheses have probabilities whereas in the @alssontext probabilities are used
to control of various types of errors given infezermprocedures may generate. Note,

incidentally, that we use the terms ‘hypothesigl anodel’ interchangeably.

2.1 Fishet®

The modern approach to statistical inference wagest by R. A. Fisher [Mayo
(2005):804]. He considered that

‘...the object of statistical methods is the reduttmf data. A quantity of
data, which usually by its mere bulk is incapadi@mtering the mind, is to
be replaced by relatively few quantities which thdequately represent the
whole, or which, in other words, shall contain ascim as possible, ideally
the whole, of the relevant information containedhe original data.

24 Classical statistics is also often referred t&F@sjuentist due to the eponymous interpretation of
probability that these methods usually use.

%> The exposition of Fisherian and Neyman-Pearsomodelogies closely follows Royall (1997) and
Newbold (1995).
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The problems which arise in reduction of data maycbnveniently divided

into three types:-

(1) Problems of Specification. These arise in the ahoicthe mathematical
form of the population.

(2) Problems of Estimation. These involve the choice noéthods of
calculating from a sample statistical derivativessas we shall call them
statistics, which are designed to estimate theegabf the parameters of
the hypothetical population.

(3) Problems of Distribution. These include discussiohthe distribution of
statistics derived from samples, or in general famgtions of quantities
whose distribution is known.

As regards problems of specification, these aréredyta matter for the

practical statistician, for those cases where theligtive nature of the

hypothetical population is known do not involve grgblems of this type. In
other cases we may know by experience what foredilaly to be suitable,
and the adequacy of our choice may be teatpdsteriori We must confine
ourselves to those forms which we know how to handt for which any
tables which may be necessary have been constridted or less elaborate
forms will be suitable according to the volume loé tdata. Evidently these
are considerations the nature of which may chamngatly during the work of
a single generation.’
Fisher (1922):311, 313, 314

It does show that Fisher thought that the probledsnodel selection [or as he
referred to them as problems of model specificdtave important. However, in his
methodology he confined himself to problems ofreation and distribution. On the
other hand, Fisher's method can still be considévecbnstitute model selection in
the sense that in it we test an element of a gimedel, and if it is deemed to be
incompatible with data, we then are faced withdheice to either choose a different
element of the same model, or indeed to choosdferefit model — that would

presumably be ‘a matter for the practical statistic But we are getting somewhat

ahead of ourselves.

Let us explain Fisherian methodology by means okesample. Suppose that we
have a die-rolling set up such that the randomabéei A represents the number of
even outcomes of rolling the die. We would likepimvide a statistical model for
this set up. In Fisher's methodology one hypotlesse single model [referred to as
the ‘null hypothesis’] with fixed values of parareet. In our case this idea
corresponds to us hypothesising that, for instatmeephenomenon follows binomial
distribution with success paramefer= 0.5 [let us define a successful outcome as

such that when we observe an even number of dotiseodie] corresponding to our
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supposition that the die is fair. So, our modehet A is binomially distributed with
p = 0.5. In order to complete the model, we alsoeh&vy decide how many
observations our sample is to consist of. Suppos¢he sake of argument that we
set out to roll the die 120 times. Hence A is biraiy distributed withn = 120 and

p = 0.5. Then we observe a relevant sample of dtataur case, such a sample would
have 120 throws of the die, with the outcomes beiltiger even or odd numbers on
the upper most surface of the die when it comeses$b It is standard practice to
approximate binomial distribution by means of amal distribution. The main
conditions for doing so are thatis sufficiently large [most authors in statistical
literature considen > 50 as large enough] and tlpais not too close to either O or 1.
Both of these conditions obtain in our case, sou® of normal approximation is
warranted. Let us put in some numbers for easendénstanding. Suppose that we
roll the die 120 times, and that 70 times it gave us an even number @rides an
odd one. We will use the Normal approximation te Binomial, where the mean
and variance are calculated thys:= np, 6°> = np(1-p). Hence, A is normally
distributed with the meap = 120x0.5 = 60 and variane@ = 120x0.5x0.5 = 30, in
short: A ~ N(60, 30)

Now, let us distinguish two sub-methods within [Eis® methodology according to
which we can proceed from here to test our suppaosihat the die is fair. The first
one is the method of rejection trials, the secanithé method of calculating so-called

P-values.

2.1.1 Rejection Trials

So, we have our null hypothesis — that is, the rhadld the values of parameters
fixed. In rejection trials the idea is that we test model against data. The idea of
testing is that one checks one’s sample of datasigane’s model to see whether
the data are consistent or significantly inconsiéfewith the correctness of the

model [indeed, this facet of Fisherian methodolsgpften referred to as a ‘test of

6 We assume that each throw is independent andiddéintdistributed, that is, each throws follows
the Binomial distribution where the probabilitysfccess is constant and the same for each throw.
" The concept ofsignificant inconsistency may strike the reader as odd, forfon example,
propositional logic the concept of consistenchiigary — either a set of propositions is consistent
it is not. We will look into this Fisherian usethie concept later in this section.
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significance’]. Our model specifies a probabiliyatnserving every possible sample.
We set a threshold probability value [it is usuatBferred to as thdevel of
significancé and devise the following decision rule. If our deb specifies that the
observed outcome or outcomes at least as extrewgetha probability of occurring
greater than the critical value, we do not rejaat model and tentatively uphold it
until the next test. By ‘outcomes that are at leastextreme’ we mean those
outcomes, that under the assumption that the nyplothesis is true have the
probability that is at most as large as that ofabiially observed outcome. If, on the
other hand, the observed outcome or outcomes thathleast as extreme’ have,
according to our model, the probability of occugrimhich is lower than the level of
significance, then we reject the model and see&lt@nnative one. With the level of
significance and decision rule in place, we obséneesample, and comply with our

decision rule. In order to make this method cledetmus carry on with our example.

So, in our die rolling example we have binomial gptwith n = 120 and p = 0.5,
which we approximate by A ~ N (60, 30). Supposeiféascommonly done] that we
set the level of significance at 0.05. Testinghid tevel of significance has become
conventional, although some practitioners preféd @r other levels — the choice of
the level of significance appears arbitf&ryWe now carry out our experiment and
suppose that we observe 70 even numbers and 5@uwdbders respectively. Now,
the question is: how likely are we to observe thikcome or the outcomes that are at
least as extreme under our hypothesis of the fegro¢ the die? In our example the
outcomes at least as extreme are: 71 even anddi978deven and 48 odd, and so
on, as well as 50 even and 70 odd, 49 even, amh sbecause observing 50 even
and 70 odd has the same probability as that ofreinge70 even and 50 odd due to
the symmetry of the distribution around its mealu@awhich in our case is 60 even
and 60 odd; and 49 even, 48 even and so on all loaxex probability of occurring
than 50 even and consequently than 70 even. Sapodhe symmetry, P (& 70) =

P (A < 50). Using the transformation of our normal dimition into the standard

%8 {[Fisher] advocated 5% as the standard level (With as a more stringent alternative); through

applying this new methodology to a variety of pieaitexamples, he established it is a highly popula
statistical approach for many fields of science[Fisher] also wrote that “it is usual and convenien

for experimenters to take 5 percent as a standame bf significance, in the sense that they are
prepared to ignore all results which fail to re#luls standard...” [Lehmann (1993):1243, 1244] For a
contemporary debate on this topic see Hoover aggle&3i (2008) and references therein.
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normal, and the tabulation of the standard nornmtibution, that we familiarised
ourselves with previously, we obtain the following:

P (A> 70) or P (A< 50) = 2p(Z> (70-60)/30"?) = 2p(Z> 1.83) = 2(1 — p (X
1.83)) = 2(1 — 0.9664) = 2x0.0336 = 0.0672

That is, the probability of obtaining 70 even numsbeut of 120 throws or an

outcome that is at least as improbable is 0.067&t [is, 6.72%] on the hypothesis
that the die is fair. Since this probability is gier than our pre-determined rejection
threshold value of 0.05, we do not reject our higpsts of fairness of the die at 5 per
cent significance level. Note, however, that if significance level was, say, 0.1, we

would have rejected the null hypothé3is

To clarify, the reasoning here is roughly this: sheuld reject a hypothesis upon
observing an outcome [in our example that is 70aut20 throws] such that the
probability of observing this or outcomes at leastextreme on supposition that the
hypothesis is true is ‘low’ relative to the proldliof observing other possible
outcomes of the experiment. The probability is degriow’ when it is below the

significance level [here it is 5%]. So our parteEnumodel has survived this test.

2.1.2P-values

The method of p-values is formally very similar tteat of rejection trials. The

difference lies predominantly in the interpretatadiresults.

The p-value is the probability of obtaining an aute or a more extreme one on the

supposition that the hypothesis is true. Recaltimg example that we used in the

29 *Another consideration that may enter into thecfjimation of a significance level is the attitude
toward the hypothesis before the experiment isoperéd. If one firmly believes the hypothesis to be
true, extremely convincing evidence will be reqditeefore one is willing to give up this belief, and
the significance level will accordingly be set vdow. (A low significance level results in the
hypothesis being rejected only for a set of vahfethe observations whose total probability undher t
hypothesis is small, so that such values would bstmnlikely to occur if [the null hypothesis] were
true.)’ Lehmann (1986):70 It seems that in suclesaghmann advocates using the significance level
of something like 0.01. However, motivating sucloick by ‘firm belief that the hypothesis is true’
does not seem to be open to classical statisticifansthey would need to explain further what
constitutes this ‘firm belief’ [since they deny tHaypotheses haverobabilities of being true — see
page 31], whereas this has a natural interpretatitmn the Bayesian statistics as there beinggh hi
prior probability of truth of the null hypothesisct: section 4.1.
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rejection trials subsection, the p-value there WBa&2%. However, rather than
creating a rule which directs us to a decisionoawtiether to reject or not to reject
the hypothesis at the pre-set level of significartke p-value is taken to signify the
strength of evidence against the hypothesis. Thisased on the so-called Law of
Improbability [here is a somewhat naive renditidnitp If the hypothesis implies
that the probabilityp of observing a certain outcome is small, and tikeane has
been observed, thep is evidence against the hypothesis, and the lother
numerical value ofp the stronger this evidence®fs.

There are several difficulties that Fisherian mdthans into. Let us consider some

of them.

Firstly, as we already mentioned, there is arbitess in choice of the significance
level, so that one and the same observation malytteaither rejection or not of one
and the same null hypothesis depending on that. [&eebe fair, this criticism only
applies to the rejection trial method and not ®niethod of p-values.

Secondly, the accept/reject nature of the rejectimhs method does not take into
account the strength of evidence that the sampeiges us with. Again, this is
prima facie problematic for the rejection trialstha, not for the p-values.

Thirdly, another issue with the rejection trialstheal is in the doubtful nature of the
concept of what we call significant inconsistensince in formal logic the concept
of consistency is binary — for example, a set @ppsitions is either consistent or
inconsistent. Fisher argues: ‘[Tests of signifianmould ‘disprove’ a theory ... and
... when used accurately, [they] are capable of tiejg@or invalidating hypotheses,
in so far as these amontradicted by the data[quoted in and added italics by
Howson and Urbach (2006):150] It is rather cleat the data with a low probability
of occurring under the null cannot begically inconsistent with it. The quote
indicates that Fisher wants significant inconsisjeto be as close as possible to
logical inconsistency. Elsewhere Fisher (1956)88ates his notion of statistical
significance with the following disjunction: eithéme hypothesis is false or a very

%0 For an in-depth analysis cf. Royall (1997):chagter
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rare event has occurred. Practitioners typicallyptement this notion of statistical
significance with that ofractical significance. For instance, Agresti and Finlay
(2009):163 discuss an example of testing the hwysmhthat on average the
population of the USA holds moderate ideologicaws. That is, the hypothesis that
the sampling distribution is normal [with the varte estimated from the sample]
and that the population mean is 4 as measured enottinal scale from 1
representing extremely liberal views to 7 reprasgneéxtremely conservative views.
Supposing that in a very large sample the samplnn®e4.08, Agresti and Finlay
(ibid.) calculate the p-value of approximately't0which is extremely statistically
significant. However, they contend that in this teom the difference between 4 and

4.08 is of no practical significance.

Fourthly, there are no alternative hypotheses pexi so that even if we do not
reject the null, perhaps there is at least onerdilipothesis out there that we also
would not reject, and which perhaps would have ghén p-value indicating that

there are more evidence against the null, so teatlternative is somewhat better.
l.e., a hypothesis whose parameters were fixedeavalues which turned out to be
closer to the actual observations; in our example such hypothesis would be a
model with the success rate set at p=0.55 ratlaer pi0.5, as it was the case for the

null.

Finally, even though the strength of evidence isnapted to be captured with the
notion of p-values, the numerical expressions ghloes depend on how we define
the outcome space, and as such they are arbiRagall that in the example in this
subsection we hypothesised that A ~ N (60, 30),thkatiwe observed A = 70. Since
the p-value is the probability of observing theuattoutcome or outcomes at least as
extreme on the supposition that the hypothesi®igect, we calculated the p-value
as 0.0672. Now, for the sake of the argument, ssgpgwat we have a colleague who
is interested in our experiméhtSuppose that the colleague resides very far away
from us, and that we have only the most primitiveams of communicating with her.
Knowing that we can only send her a signal in thenf of a ‘Yes’ or ‘No’, we
happened to have agreed with the colleague [whehadegot a rare opportunity to

3L This example is a modified version of the one useRoyall (1997):68.
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meet her a long while ago] that we would commuic¥es’ if we got A = 70 and
‘No’ if we got any other value. Hence, her outcospace consists of two values,
viz., {70, not-70}, whereas ours is made up of ¥2lues. Now, our colleague also
uses the Fisherian method, and wishes to calctiiat@-value. Since A = 70 the
most extreme outcome that she can observe, helup-iaP(A=70) = 0.0138 [4 d.
p.J]*2. Our p-values differ whereas we observed the saitence — 70 even numbers
out of 120 throws of the die. This example illustgathe point that p-values depend
on outcomes that did not happen. As Jeffreys elufp@uts it in a much-quoted
passage [wherd>[integral]’ stands for ‘p-value’ and ‘law’ standsrf‘hypothesis’]:

If P is small, that means that there have been uneegligdirge departures
from prediction. But why should these be statedeirs of P? The latter
gives the probability of departures, measured parmicular way, equal tor
greater thanthe observed set, and the contribution from thaahoalue is
nearly always negligibleWhat the use of P implies, therefore, is that a
hypothesis that may be true may be rejected beciusas not predicted
observable results that have not occurrethis seems a remarkable
procedure. On the face of it the fact that suchlteave not occurred might
more reasonably be taken as evidence for the latvagainst it. The same
applies to all the current significance tests basel integrals.’

Jeffreys (1961):385

Arguably, the strength of evidence for or againsg aypothesis should be solely
based on the observations that have actually beste nand not on something that
has never been observed. On this view, the waydimatdefines the outcome space
should be irrelevant. The example that we use ctadlly happen in modern

academic life. However, this does not negate thihodelogical point it raises.

We believe that the discussion in this subsectiavehserved to indicate that there
are substantial issues with using Fisherian metliedshoosing either a family of
models or a particular model.

2.2 Neyman-Pearson

In the previous section we looked at Fisherian otlogy. At the end of that

subsection we noted several disadvantages tham#tbeodology has. In order to

32 \We performed the calculation for P(A=70) using ireomial formula directly rather than the
normal approximation, because when A is a contisu@uiable, any particular point value of it has
the probability of zero.
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overcome some of these disadvantages, J. NeymanEard. Pearson devise

methodology that we are going to consider in thissgction.

In Neyman-Pearson hypothesis testing approach astulptes two hypotheses
[rather than one as in Fisher's case], which amenatly called the null hypothesis
Ho and the alternative hypothedis. These hypotheses normally take one of the
following three forms. First, botklp andH; are point hypotheses [that is, they are
single models with different fixed values of paraems]. SecondH, is a point
hypothesis andll; is a composite hypothesis [that is, a proper suliisatmodel with
more than one element in it]. Third, boktly and H; are composite hypotheses.
Having set up the hypotheses, one works out wheasthcalled rejection region is.
The rejection region is calculated according to twisacalled theFundamental
Lemma by satisfying the following inequality: P(obserngat under
Ho)/P(observation undeH;) < k, wherek is a constant depending on both the
significance level [the same concept as in thedfiah methodology above] and the
hypotheses themselves [see Howson and Urbach (2a@8§) Informally, this
guarantees that the rejection region lies betwéeandH;. After that one observes
the data. Then one follows this decision rule, lo& d¢rucial assumption that one of
the hypotheses is true: if the data is in the tejaaegion, then the null hypothesis is
rejected and the alternative hypothesis is acceptdte data does not fall within the
rejection region, then the null hypothesis is ategpThis approach is alternatively
called error probabilistic, because one of the noastial elements of this method is
the control of error probabilities. There are twygpds of errors that can be
committed. The null hypothesis is rejected wheireastrue [this is called a Type |
error], and the null hypothesis is accepted whetleaslternative hypothesis is true

[Type Il error].

A salient analogy here is that of court trials. Tinall hypothesis there is the
innocence of the defendant [presumption of innoegnié the court convicts the
defendant when she is innocent that is a typeorewhereas when the court of law
pronounces the defendant innocent while she igygtnat is the type Il error. It is
important which hypothesis is considered to berthi and alternative [just like in
the court example]. This is because sometimesniieeeince changes if the null and

alternative hypotheses are changed around. Weskollv an example of this later in
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this section. Ordinarily the reason that is givenrfon-arbitrariness of such a choice
is that it is usually quite clear what is the natuthoice as to which hypothesis
should be the null and which should be the alteraatne. The null is usually the

default ‘sceptical’ hypothesis. E.g., at the drugltone would naturally want the

hypothesis that the given tested drug has no eftebe the null and the hypothesis
that the drug has a positive effect to be the réiieve. We only want to accept drugs
when we are quite confident that they do have &tefln this case the type | error
would be to accept the drug as effective whereastitally has no effect. The type II

error would be to accept the notion that the drag o effect whereas it actually has
a positive effect. Sometimes it is not that cledratvshould be the null and what
should be the alternative. We will consider as toywhis may matter by using an

example further in this subsection.

In the Neyman-Pearson [NP] approach one calcuthgeprobabilities of committing
each type of error. The prescription then is tadryninimise both error probabilities
as much as possible. It is impossible to achievesehtwo objectives
simultaneousl?. For a given number of observations reduction yipet! error
implies increase in the type Il error. So what naltypnhappens is that the type | error
is fixed at a desirable level [this level is usyathlled the critical leveb, and is
usually set anywhere between 10% and 1%] and tiemeiquired power of the test
[power = 1 — P(type Il error)] is achieved by irgseng the sample size. The power

of the test is the probability that a false nulpbthesis is rejected.

For the purposes of illustrating the idea of NeyrRa&arson testing, to begin with we
take the most simple example of testing two poygdiheses. That is, both the null
and the alternative hypothesise that the phenomeénoqguestion follows the

respective probability distribution models, andttii@e relevant parameters have

sharp values.

As it has become customary by now, suppose thdtave a die, and that we have
two alternative ideas as for the probability of abing even numbers when we

throw the die [call it the rate of success]. Justirathe subsection on Fisher, we

% This is the case when the number of observat®figsed. However, both types of error can be
reduced if the sample size is increased.
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suppose that we are in the binomial set up withtlihews of the die assumed to be
independently and identically distributed — so bmal probability distribution
models represent both null and alternative hypath&ow, suppose for the sake of
clarity of exposition that our null hypothesis &t the success rate is 0.55, and the
alternative is 2/3. We set out to test these hygxeh by throwing the die 120 times.
Since the number of observations is quite large, wilk be using the normal

approximation to the binomial for mathematical cemence.

So, under the null hypothesis on average we expemhserve 66 even numbers, and
under the alternative hypothesis we expect to @Bs@d even numbers. We set the
probability of type | error at 5%, which is the siard practice in classical statistics.
Suppose that our experiment yields 70 even nunjdersoted aX = 70]. Then let
us calculate the minimum number of even numberswieaneed to observe in order
to reject the null. As before, under our null hypesdis the variance ixpx(1-p) =
120x0.55x0.45 = 29.7. Using this variance in thendard normal calculation, we
obtain the following:

P (Z > 1.64) = 0.05> P (X — 66) / 29.7% > 1.64) = 0.05=> P (X > 66+1.64x
29.7%) = 0.05=> X > 74.94 [2 d. p.]

So, in order to reject the null hypothesis in favof the alternative abn = 5%
probability of type | error [it is also called tHevel of significance], we need to
observe at least 75 even outcomes out of 120 oblihe die. Since we actually

observed 70, we do accept the null in this case.

Now, let us work out the probability of type Il eryi.e., of accepting a false null
hypothesis. In our binary set up, falsehood of mapllies the truth of the alternative
hypothesis. We have just established that we dogjett the null if we observe the
number of evens to be less than 75. Probabilitymé Il error then is the probability
of observing less than 75 evens given that thedugeess rate is 80. Calculating the
variance under the alternative hypothesis@-p) = 120x2/3x1/3~ 26.67 (2 d. p.)
and transforming into units of the standard noraradl using the tables for it, we
obtain:

(75 — 80) / 26.6%° = -0.9682 So, P (Z < -0.9682)0.1664
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Consequently, the probability of rejecting a fatgd# hypothesis in this test [that is,
the power of the test] is 1 - 0.1814 = 0.8336.

Now, let us look at testing a point null hypothesessus a composite alternative, and
also composite null versus composite alternative fbrmer in our example above
would be something likélp: p = 0.55 vsH;: p > 0.55. The lattertHy: p < 0.55 vsH;:

p > 0.55. Notice that the assumption of the truthedher Hp or H; becomes
progressively more legitimate, particularly in thempositeHy vs compositeH;
case, where this assumption is correct providirag te have selection the correct
model. It is interesting to note that in both aésh cases the answer is the same as it
was in the pointHp vs pointH; case above — we would rejddg ata = 5% just in
case we observe 75 or more even out of 120. Howewer we cannot calculate the
power of these tests, because in order to dél;sbas to specify particular point
values for the parameters. So, what then of tha tat we should maximise the
power at the given level of significane® In these cases Neyman and Pearson
employ the concept of Uniformly Most Powerful Undea (UMPU) tests. A test is
Uniformly Most Powerful when for every model withiihy, the power is maximised.

It is also Unbiased when for each model withlp the power of the test is not
smaller than the significance level. Otherwise sachkest would have a higher
probability of rejecting a trukl, rather than rejecting a false one, which Neymah an
Pearson deem undesirable. Both of our tests abméJ®IPU. The idea of the
UMPU test becomes clearer when one considers ¢éstss type:Ho: p = 0.55 vs

Hi: p# 0.55. We will look into this important case in sen 1.4.5.

Here is a summary of some salient features of thwep of a test from Newbold
(1995):371.:

1. ‘Everything else being equal, the farther theetmearnu; from the hypothesized
meanuo, the greater the power of the test.

2. Everything else being equal, the smaller thaiBa@nce level of the test, the
smaller the power. In other words, reducing thebphility of a Type | error will
increase the probability of a Type Il error.

3. Everything else being equal, the larger the faijmn variance, the lower the
power of the test. We are less likely to detectlsdepartures from the hypothesized

mean when there is greater variability in the papah.
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4. Everything else being equal, the larger the $arsize, the greater the power of
the test. Again, this is intuitively plausible. There information obtained from the
population, the greater the chance of detecting daparture from the null

hypothesis.’

Having considered the Neyman-Pearson approach rire stetail, let us identify

some key shortcomings that the method has.

Firstly, the binary accept/reject set up is rattrede. The prescription to behave as if
the accepted hypothesis was true [until furthetstage carried out, that is] does not
provide us with the information as to what amoufteweidential support the
hypothesis enjoys, or what amount of confidence hage in the truth of the
hypothesis. It has to be stressed, however, tleae tis much disagreement on this
point in philosophy of statistics. The proponent§ the Neyman-Pearson
methodology consider the binary nature of this apph as its strength. It allows
them to answer the question ‘What should we dcergithe data?’ rather than ‘How
should we interpret the data as evidence regaraihgpothesis or one hypothesis
versus another?’ [Royall (1997):4] Still, arguaklg would be much more cautious
with regards to decisions that we make on the basisa weakly supported
hypothesis [or, alternatively if we do not haveraag amount of confidence in the
truth of the hypothesis] rather than if the hypsthdiad more evidence indicating its
truth. On the other hand, error probabilities caoyt this function indirectly.
However, probability of type Il error [that is, atcepting a false null hypothesis]
crucially depends on what one chooses as the atieenhypothesis. As stated in
point 1 above, the further the alternative hypathasvay from the null, the smaller
the probability of type Il error is [and, conseqtignhe greater is the power of the
test]. For instance, if in the example that we usedhis section our alternative
hypothesis was p = 0.7 rather than 2/3, then piibtyabf type Il error would have
been approximately 0.0365 rather than 0.2664

Secondly, there is arbitrariness in the choiceheflevel of significance and in the
choice as to which hypothesis is the null and wicthe alternative one. The issue

% The critical value: (75 — 84)/(120x0.7x®3) -1.7928. So P(Z<-1.7928)0.0365
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with the choice of the level of significance is yesimilar to the issue with the
rejection trials method within Fisherian methodgloghe problem with the choice
of the null and alternative is the following. Suppdhat in the example that we used
in this subsection we choose the null hypothesis2f3 and the alternative p = 0.55.
Then for the rejection region with = 0.05: P (Z<-1.64) = 0.05> P (X —
80)/26.67° < -1.64) = 0.05> X < 80 - 8.4695=> X < 71.5305. So if we observe
the value otX of 71 or smaller, then we reject p = 2/3 hypothesifavour ofp =
0.55. Suppose that we obseX'e 73. Under this set up we would accepthe2/3
hypothesis whereas originally given this observatiee would accept thg = 0.55
hypothesis! Notice also that, unlike the cases obwart trial or test of a new drug
[where it is claimed that the default position loé tpresumption of innocence or the
hypothesis of the drug having no effect respecgtivath naturally play the roles of
the null hypothesis], there is no obvious reasothis case as to why one of these

hypothesis should be the null.

Thirdly, the approach suffers from something calleddley Paradox. In fact
Fisherian approach has the same issue. Accordihigptitey Paradox, as the number
of observations grows, the proportion of successaghich we would just reject the
Ho at a given level of significance becomes arbityadlose to the proportion
stipulated by null, and the power of the test tetadsne. So even a tiny deviation of
the proportion in sample from that éfy is sufficient to reject thédy, which is
counter-intuitive. Here is an illustration usingr@xample of testinglo: p = 0.55 vs
Hi: p = 2/3. Previously we noted that we would rejdgtata = 5% if we observed
75 or more evens out of 120. That is, if the prtiparof evens in the sample was
greater than 74.94/120 = 0.6245. The power of ¢isé was 0.8336. Now, suppose
that our sample consists of 12000 observationsn Tovethe rejection region: P (Z >
1.64) = 0.05=> P ((¥ — 0.55x12000) / (0.55x0.45x120606) > 1.64) = 0.05=> P

(X >6600+1.64x 29706)) = 0.05=> X > 6689.38 [2 d. p.], which corresponds to
observing the proportion of 0.5574 or more of eviarthe sample rather than 0.6245
when the sample had 120 observations. In ordealtulate the power of this test
we require the following quantity: (6689 — 800@667> = -25.36. So, P (Type |I
error) = P (Z < -25.36% 0 Hence the power of the test is approximatelyfd.
counterbalance this counter-intuitive result cleaisstatisticians generally advise to
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reduce the level of significance as the numberbsieovations grows so that the test
becomes less sensitive to small differences. Howetves is a ratherad hoc

manoeuvre that has no clear rationale with the N&hadology. Nonetheless,
practical experience in using the NP framework sstg)the expedience of this

move in order to align NP with the intuitions of firactitioners.

2.3 Fisher vs Neyman-Pearson

In Neyman-Pearson approach to hypothesis testingctept’ the null hypothesis
means that ‘...the data available do not provide ghavidence for rejection of the
null hypothesis, given that we want to fix at algha probability of rejecting a null
hypothesis that is trué”

So, what does this methodology prescribe that wevillo regards to selecting a
probability distribution model? If we accept thellnwypothesis in the sense given
above, then we should behave as if the null hysmheere true. However, if we
reject the null hypothesis then Neyman and Peawsge us to behave as if the

alternative hypothesis is true. They call this apgh ‘inductive behaviour'.

In contrast, Fisher's rejection trials are very mudike Karl Popper’s
Falsificationism. Here is an unsophisticated raadibf Falsificationism. Scientists
entertain certain hypotheses [conjectures]. Ther@d amount of evidence that
would establish a given hypothesis as true [cf. thell-known problem of
induction]. However, a single observation that egitally inconsistent with the
hypothesis shows it to be false. So, rather tharfirroing hypotheses what one
ought to do is to try to disconfirm [i.e., falsif{tjem. Similarly, in the rejection trials
method, one sets up a structure akin to modusn®ll€o repeat the discussion in
section 2.1, if the hypothesis is true, then thvegiobservation [in statistics usually a
set of observations — a sample] has a certain pilitlgaof being observed. However,
if the probability of observed sample is below a-getermined threshold [i.e., the
level of significance], then the observations areerded to be significantly
inconsistent with the hypothesis [in the sense tiney are too improbable under the

% Newbold (1995):329
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hypothesis], hence the hypothesis is rejectedhdfyever, the probability is not
below the threshold value, then the hypothesigfisih use until next trial. Fisher
referred to this as ‘inductive inference’, whicleses unwarranted because Popper
considered that by his methodology of falsificatioe ‘dissolved’ the problem of
induction. So if Fisher's method is statisticakfatationism, then, presumably there
is also no induction taking place, but at best aworation through survival of
numerous tests. However, the p-value methodologdyictwtakes the p-value to
measure the strength of evidence against the hgpistiithe lower the p-value the
stronger is the evidence against the hypothesisgs dnot seem to align with

falsificationism. We shall consider other ideas?opper in chapters 4 and 5.

Neyman and Pearson [NP] considered their methogidimdpe an improvement on
Fisher’s, in that they introduced the idea of thewver of the test. From their
perspective the p-values only measure the probabiif rejecting a true null
hypothesis. However, in Fisher's method there wewseway to control for the
probability of accepting the false null, which thewer allows one to do. Fisher
thought that the power should be a qualitativeamtfor its quantitative calculation
often involves unknown alternative hypothesis [swh is the case when the
alternative is composite]. There are more pointdisgreement between Fisher and
NP, but there are of no consequence for our pugpdsterested reader is referred to
Lehmann (1993) and Lenhard (2006).

Indeed, notwithstanding the issues from which tHe mNethod suffers, it can be
considered to be a proper method of model seleclitrere are two competing
hypotheses. Of course traditionally the hypothesage the same mathematical
structure, but this is not a necessary attributin@imethod. Also, importantly, in the
case when we test point [simpldj versus composite;, the null hypothesis has not
adjustable parameters and the alternative hypathes one adjustable parameter.
This notion is going to be discussed at length lapter 3. It will for now be
sufficient to say that the difference in the numbgfreely adjustable parameters is
an essential part of the model selection methodsudsed in chapters 3 and 4.
Finally, the Neyman-Pearson point null versus cositpoalternative case shall be

used in chapter 5.
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2.4 Point Estimation

In sections 2.1 — 2.3 we looked at the classicalhous of hypothesis testing.
However, instead of testing hypotheses, scienistaetimes require estimates of
parameter values from data. So, sections 2.4 abdaf dedicated to brief
introductions to the classical techniques of esimnaby point values and intervals
respectively, familiarity with which shall be uskfar understanding the material in

the subsequent chapters.

2.4.1 Properties of Estimators

Suppose that, rather than test hypotheses withrdgega the probability distribution
and the value of the population parameter as wae dothe previous subsection, we
would like toestimatea population parameter on the basis of a sampltewd have
drawn from the population and on the assumptionwleahave the right model-type.
For instance, we may know that our population ¢érest is normal and may know
the value of the standard deviation, but not knbg/\talue of the mean. In this case
we come up with an estimator. That is, a functibat thas the values of sample
observation as its inputs and the estimate of ¢hevant parameter as the output.
How do we come up with such a function? After a# can think of many possible
estimators. In classical statistics the estimatare to have desirable properties, i.e.,
unbiasedness, consistency and effici@hcy our case, it seems natural to estimate
the population mean by the sample m&XinThe sample mean does possess the

desirable propertie¥.

2.4.2 Mean Squared Error

Suppose that we have two estimators such thatrdteohe is unbiased but it has a
relatively large variance, whereas the second snbiased but it has a smaller
variance. Here the two criteria of desirability ameconflict. In cases like these an
extra criterion is employed, which allows for adezoff between the two. Mean

Squared Error (MSE) is such a meta-criterion. Ithe expectation of the square

% We briefly touched on this issue in section 1.1.3.
37 See Newbold (1995) for the mathematical derivation
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difference between the estimator and the populaiamameter. It can be shown that
it is equal to sum of the squared bias and theamae of the estimator. The

corresponding rule is to choose an estimator thatie smallest MSE.

We shall see the relevance of the properties afmasirs to our discussion in

chapters 3 and 4.
2.5 Confidence Intervals

Quite often, however, one is interested in the tiolesas to how confident one
should be in the reliability of one’s point estimst Hence there is a method of
confidence intervals designed to answer such atiquesConfidence interval
procedure gives us an interval estimator, rathan #n point one, which has a degree

of confidence attached to it that the populatiorapeeter lies within the interval.

For example, suppose we draw a sample @fbservations with meax from a
normally distributed population with known standaleviations. We would like to

find a 95% confidence interval far This confidence interval is given by

% —1.96 / n*? < p <% + 1.96 / n¥? Notice that as the number of observations

increases, the corresponding confidence intenateshs.

For example, suppose that X ~ I, (1), and that we have a sample of 36
observations wherx = 0.5. What is the confidence interval for the It is the
following:

0.5-1.96/6 4. < 0.5 + 1.96/6, which is -0.1733;x< 0.8267.

The usual interpretation of this interval is thiatve keep repeating the experiment
[i.e., keep drawing random samples from the popr§tin the limit 95% of the
intervals yielded by this procedure will contair tinue value of the population mean
u®8, Hence theproceduregives us 95% probability [in the sense of limitirejative

frequency] that the intervals containHowever, once we have observed a particular

% For a representative example, see Newbold (1985):Eor a thorough analysis of the issue of
interpreting confidence intervals see Howson anbdh (2006): section 5.f.2
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sample and calculated the particular lower anduiger limits of the associated
confidence interval, the frequentist probabilistiterpretation is no longer available
to us. This is a manifestation of the general clify that the frequentist
interpretation of probabilities has with the singhkse probabilities. This issue,
however, of no consequence to the main issue efttigsis, viz., the problem of

model selection.

It is interesting to note [and we shall employ tiféEt in chapter 4] that the
confidence interval estimation procedure is eqentlto the following NP test
wherec is a constantHy: © = ¢ vsHj: i # ¢. That is, we would rejedt, at (100% -
confidence level %) level of significance just imsec lies outside of the confidence
interval. In the example above we would rejectiiaeat 100% - 95% = 5% level of
significance if and only if eithec < -0.1733 orc > 0.8267. Here our rejection region
is distributed equally to both ‘tails’ of the digwtion [i.e. 2.5% in each tail] in order
for the test to be an UMPU. For mathematical detsgle Lehmann (1986).

2.6 Intermediate Conclusion and Plan

In chapter 1 we introduced the issue of predictioscience. We identified the three
ingredients required for this task: data collectiomodel selection and parameter
estimation. We drew distinctions between theoattand statistical models, and
between deterministic and probabilistic models. ¥fated that this thesis will
mainly be concerned with statistical model selectio this chapter we provided an
overview of some widely used model selection meshodz., Fisherian and
Neyman-Pearson. We noted some shortcomings in @fatttese methods. Chapter
three is dedicated to detailed consideration oélatively new method of model
selection that is based on so-called Akaike InfaromaCriterion [AIC]. In chapter
four we consider Bayesian statistics in generat applies to the problem of model
selection and relatively novel methodology of modelection based on Bayes
Information Criterion [BIC] in particular, and thgmwovide comparison and contrast
with the AIC. Chapter five is dedicated to explgrirsome philosophical
consequences of AIC and BIC methods, and in pdatica their putative relevance

to the debate on scientific realism.
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3. The Akaike Information Criterion

3.1 Introduction

‘So far, when speaking of ‘an alternative hypotfidshave meant some
hypothesis genuinely different from the one undest.tBut in practice
Neyman and Pearson do not use ‘alternative hypisthassuch a sense,
and this constitutes my second objection to theiciple of alternative
hypotheses. In practice the alternative hypothesasidered by Neyman
and Pearson are nothing but the same hypothesis different
parameter values. Suppose, for example, that thethgsis under test is
that¢ is normaluo, oo, then the alternatives will be thais normal with
different x4, o (or, in some cases, just with differenj. Thus the
alternatives generally considered when the Neynearden theory is
applied are merely trivial variants of the origirmsipothesis. But this is
an intolerably narrow framework. We could (and dbpwonsider a
much wider variety of different alternativeBor example we might
consider alternatives which assign a distributiam & of a different
functional form.

Gillies (1973):208, italics added

Let us revisit some of the highlights from chapterelevant to the project of this
thesis. There we identified three problems in patain statistical modelling —
coming up with a ‘good’ sample of data, choosing thodel-type and fixing the
parameters thus picking a particular model witlh@ model-type. In the rest of this
thesis we shall focus on the second issue, vie.ptbblem of model selection. We
will be working on the assumption that we alreadyéna sample of data which has
been collected in an acceptable way as discussedciion 1.1.1. The choice of a
family of models and estimating the parameters thigking a particular model
within the chosen family quite often goes hand amdh However, we shall focus on
choosing model-types since, even though there m&gkements about how to
estimate parameters, the pros and cons of eadghat&tm method are rather well
established, whereas there still much more ligat tieeds to be shed on the issue of
model selection. We will consider the issue of pater estimation only when it has

a bearing on the issue of model selection.

We think that it would be fair to say that the quatbove represents a common

perception of the NP framework. In our view, howewbae NP framework can be
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viewed as providing a method for model selectioirstly, just because the
alternatives generally considered in the NP approae of the same functional
form, it does not imply that they have to be — ikis limitation due to the users of
the method, and not of the method itself. Althowg are not aware of any actual
attempts of NP testing the null and alternative dtlgpses of different functional
forms, we do not see why in principle this cannetdmne. Naturally this would
introduce extra mathematical difficulties for, 'example, data would be assumed to
be arising from different sampling distributionsytbthis is still a theoretical
possibility — cf. Gillies (1973):216. Secondly, everhen it is used in the way it
commonly is, there are cases when model selectiarbe said to occur. That is, in
the special case of simple null versus compostarradtive testing. Admittedly, this
Is a substantial limitation, although we would resethe term ‘intolerably narrow
framework’ to the Fisherian methodology. We of seuwould like to use a broader
framework than either Fisherian or Neyman-Pearsomiodel selection, and indeed
this chapter is dedicated to considering one ohsirtameworks — the Akaike
Information Criterion [AIC]. The other frameworkthat of the Bayes Information

Criterion [BIC] — we shall discuss in chapter 4.

Nowadays, there are myriads of methods for modetsen. The main reasons why
we concentrate our attention on the two methodee-AIC and BIC — are that,
firstly, a lot of methods are related to these two, the methodological and
philosophical points that are raised in this thdsysand large carry over, and
secondly the AIC and BIC have attracted most atienbut of all the other model

selection methodologies in recent philosophicaléture.

So, the subject of this chapter is the model sieleachethod based on the so-called
Akaike Information Criterion 3 [AIC].

In order to illustrate the idea of AIC let us corback to one of the examples
employed in chapter 1, i.e., to the problem of ifigdan association between weights
and heights of the males within the London Borooglwaltham Forest. Assume
that we have collected an admissible sample. Sepfosease of introduction, that

39 Our presentation of AIC is largely based on Bumhand Anderson (2002) and Konishi and
Kitagawa (2008)
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we have two competing deterministic statistical gled- linear and quadratic. By
the linear model we mean the infinite set of polyimals of the first degree that have
the functional form y=ax + b such that each individual model is an elemenhi t
set with the values of parametarandb fixed at particular levels. Examples of such
models would be linear curves y = 2x + 3, y = 1-6%, etc. Likewise, the quadratic
model is the infinite set of polynomials of the @ed degree that have the functional
form y=ax? + bx + ¢ such that each individual model is an elemenhis et with
the values of parametees b and c fixed at particular levels. Notice that in the
quadratic model there is no model with the valupartimeten set to zero, for such
a model would be an element of the linear familjug we define our families of
models to benon-nestedThe importance of this point will be discussedséction
4.3.1.

Now, why is it that we are comparing the modsglspliciter, whereas previously
we were often looking at comparing models with gagameters set at particular
values as it was the case in Neyman-Pearson mddgydor chapter 2? This is
because now we focus on comparing the functionahgoof models [that is,
concentrating on the model selection step] rathan bn comparing functional forms

of models together with the particular values afpaeters.

An obvious way of going about choosing between dh®g models would be to
start with a plot of the data points from the sampl the Cartesian plane such that
the heights would be measured along the x-axigl@dorresponding weights of the
individuals measured along the y-axis. Then, foltgyvthe most wide-spread
approach which urges one to prefer models thataethe observations as closely as
possible, one could find the linear model and theadgatic model that
correspondently lie maximally close to the dataniThis closeness of fit to data
points is conventionally calculated by the sum loé squared vertical distances
[hereafter — by the SOS] from each point to theegieurve. Unless data point lie on
a perfectly straight line, the best fitting membéithe quadratic model will provide
closer fit to data than the best fitting elementhaf linear model because of the extra
flexibility allowed by having three adjustable pau@ters §, b andc] rather than two
[a and b]. The notion of an adjustable parameter will reeedetailed attention

further in this chapter. It shall for now suffiae define an adjustable parameter as a
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parameter such that every change in its value wpidk out a different element

within the given model.

Following the reasoning above, a family of polynalsiof the third, fourth, and so
on degrees would contain elements that providerpssively closer fit to the given
data points. This culminates with a perfect fit asfmodel within the family of
polynomials of Q-1)th degree, whera corresponds to the number of observations
that comprise our sample. In this case that b#stgielement of this family will go
through every data point [as long as there areata ploints such that one data point
is vertically directly above the other data poinlijus having the sum of the squared
vertical distances [SOS] at zero. If the closersdd# is our one and only criterion
for choosing a model, we will choose such a polymbnjForster and Sober
(1994):4]. Now, what of our objective of modellingecall that we set out in chapter
1 to do modelling for predictive purposes. How pegdely successful would we
expect the chosen polynomial of-{)th degree to be? Would we expect the data
points from a new sample within the populationiéodn or close to the polynomial?
Intuitively the answer is ‘no’, because such a polyial would have picked up all
the idiosyncrasies of the observations making igpghrticular sample. Even though
the sample may have been chosen well — for instainoey well be representative
of the population [which in itself is not a giverrecall section 1.1.1], still we would
expect the sample to have at least some variaton the population as the whole

[again section 1.1.1].

So, why exactly did we get into this trouble wittetpolynomial of if-1)th degree?
One answer is that the corresponding family of pofgial models was too flexible,
that is, it contained too many adjustable pararset8ince the closeness of fit
increases with more adjustable parameters, it woeldhatural to think that any
given family of models should be penalised for tlnenber of adjustable parameters
that the model uses. On the other hand, one wartldvant the model to have too
few adjustable parameters so that the model reflbet given data too remotely. So,
there seems to be a trade-off between closend#sobfa model and the number of
adjustable parameters it uses to achieve thiwifi, an optimal balance of these two

attributes somewhere in-between the two extrennefack, this is the notion that one

53



arrives at through using the AIC methodology, ttaded consideration of which we

now turn.

3.2 Components of AIC

In the 1970s the Japanese statistician Hirotuguké&kderived a formal expression
of the idea of the trade-off between the closewéss of a model to the data points
and the number of adjustable parameters that tteelm@mploys to do &b Let us

consider his method, which consists of two main gonents — the maximum

likelihood estimation and Kullback-Leibler divergen

3.2.1 Maximum Likelihood Estimation

Maximum Likelihood Estimation [MLE] is a popularasistical method of estimating
parameters given a statistical model form. We amlagonsideration of this method
to this chapter [the reader will recall that we wémough estimation techniques
used in classical statistics in the previous chigptcause it naturally aligns with the
subject matter of this chapter, i.e., the AIC mdithlogy. The reason for considering
the MLE method here is that the Akaike Informat©nterion can be viewed as an
extension of this method which allows us to notyoestimate parameters of the

model given the model, but also to choose the masialell.

It is simplest to understand the MLE method by canback to the Bayes Theorem:
P(H|E) = P(E|H)xP(H)/P(E) where ‘E’ stands for alved evidence [a sample of
data, in our case] and ‘H’ stands for a statistinaddel with parameters. Recall that
we said in the previous chapter that P(E|H) is comign referred to as the
likelihood. That is, P(E|H) is the probability dbgerving the sample of data at hand
given that our statistical model is correct. The BMimethod allows us to provide
estimates of the parameters of the model on assumittat the model is correct.
The methodological prescription in MLE is this: dse the values of parameters in a
way that maximises the likelihood. As per usuabrder to comprehend the concept,

it is most convenient to look at an example.

40 Akaike (1973). It is curious to note that thistie same year in which Gillies suggested testing
alternative hypothesis with different functionaifoas per quote at the beginning of this chapter.
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Let us again consider the example of throwing aadig noting whether the outcome
iIs an even or an odd number. Suppose that we helldte 4 times, and that we
observed 3 odd and 1 even outcome. Let us defmasubcess rage as the ratio of
the number of odd outcomes to the total numbehmws. In order to estimate the
success rate using MLE we need to maximise P(E|H), where ‘Ensts for the
observation that 3 out of 4 throws are odd, andstdinds for the binomial model
with unknown success rape So, unlike our example in the section dedicateNRP
statistics in chapter 2 where we tested null aneérrsdtive hypotheses about
particular point values of the success rate p, wergvould like to estimate this value

without any particular ideas as to what it could be

Recalling the formal expression of Binomial distion [for details please see
chapter 1], the following obtains:

P(3 out of 4 odd | success ratédinomial probability model) = #f(1-p)/3!1! =

4 p’(1-p)

We can now conceptualise this expression as aifumof the success rate parameter
given the observation, saly(p|data, functional form of the model). This is cdlke
likelihood function Herep is variable and data is fixed. Now, in order todfithe
MLE estimate ob we maximise the obtained likelihood function usgaogventional
mathematical techniques, which yields an MLE edstenpa= 0.75 (recall thap €
[0,1]). This means that given the binomial probi&pinodel,p = 0.75 maximises the
probability of observing 3 out of 4 odd numbers.general, the MLE technique
provides parameter estimates that fit the givenehasd close as possible to the data.

3.2.2 Kullback-Leibler Divergence

Kullback-Leibler divergence [K-L] is the second rmedient necessary to obtain
Akaike’s result. Kullback and Leibler (1951) demivea measure that aims to
calculate the information lost when a given disttibn [say,f] is approximated by

some other distribution [sag]. This information measure [from now on the K-L
measure] turned out to be equal to the Shannotfemnused in information theory
[cf. Shannon and Weaver (1949)]. The K-L measurenighe continuous case

defined as:
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1 (f, g) = f(x) In (f(x) / g (x |0)) dx 1)
where “In” stands for the natural logarithm amWdis a vector of adjustable

parameters.

The K-L measure is sometimes incorrectly referrechs a ‘distance’. It can only
heuristically be thought of asdirected‘distance’ [or divergence] from a modgto

a modelf. It is directed because for any moflahd any modej such that if it is not
the case thdt= g thenl (f, g) #1 (g, ). So it does not satisfy the usual conditions on
a distance measuteHence we shall only refer to the K-L measure dévargence

or informationin the precise sense as provided in the firstgraph of this section.

Also, | (f, g) = 0 if and only iff =g and for anyf, g. | (f, g) € [0, ).

For illustration, here is an example of using thd knaformation for two discrete
models. The example is due to Konishi and Kitagé2@98):33, notation has been

modified to fit our usage:

Assume that two dice have the following probalastfor rolling the numbers
one to Six:

={0.2,0.12, 0.18, 0.12, 0.20, 0.18}
op ={0.18, 0.12, 0.14, 0.19, 0.22, 0.15}
In this case, which is the fairer die? Since amlidée has the probabilitids
{1/6, 1/6, 1/6, 1/6, 1/6, 1/6}, we take this to lmie model. When we
calculate the K-L informationl, (f, g), the die that gives the smaller value
must be closer to the ideal fair die. When we dedh discrete random

variables, calculating the value bff, g) = >¢_, f; ln Li we obtainl (f, Ga) =

0.023 andl (f, g») = 0.020. Thus in terms of K- L mformatlon it nmuse
concluded that dig, is the fairer of the two.

Now, if we interpret distributionf as the truth [or the actual data generating
distribution, or some such like notion — we wilhle a more careful consideration of
this notion until the next chapter] agdas a model which is used to approximiate
and in addition assume that the truth is fixedntheder some general conditions [cf.
Burnham and Anderson (2002) for a fully rigoroustimeanatical derivation] Akaike

(1973) established that a relative divergence fgpo f can be estimated by the

“1 A function is a distance measure if for any threetorsl, m andn, it assigns positive real numbers
r subject to the following conditions:
r{,)=0;r{,m)=r (m,Il) [symmetry];r (I, m)<r (I, n) +r (n, m) [triangular inequality]
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maximised log-likelihood function Ih(f | data g )) for each model ig[i =
{1,...,r}] from the set ofr models in the choice set. However, Akaike founat th
such a maximum likelihood estimator is asymptolycpositively biased [cf. section
2.4.1], and that in large samples the bias is apmately equal t&K — that is, the
number of adjustable/estimable parameters in thdemo

Then by multiplying In(8 | data g )) — K by (=2f? he defined theAkaike
Information Criterion:
(AIC) — 2Ir((8 | data, g)) + 2K.

Model selection using AIC proceeds thus. Firstlgfaaset of competing models is
compiled on the basis of the background informattbaoretical results/ideas in the
field or research, previous research, etc. Hereaferefer to such a set as tieice

set Then the data are considefé@hen in each model the adjustable parameters are
set at their maximum likelihood levels so that &meent of each model is obtained
such that it provides the closest fit to the givdata. Then the AIC scores are
calculated for each of these closest fitting eletsieln a sense the closest fitting
elements of each model represent their respectodets. The model which has the

maximum likelihood element with the smallest Al@ixis chosen.

Since we do not know the “full realityf, only the differences in the AIC scores
between the models in the choice set are intefgestand not the absolute values.
When considering the differences, the const@antancel out, so Akaike scores are
on an interval scale lacking a true zero but presgrthe relative distances [i.e.,
ratios of distances], whereas the K-L informatitself is measured on a ratio scale
with a true zero. So, AIC gives us an expectedctie K-L distance from the given
model to the unknown full realityelative tomodels in the choice set, and no others.
This means that by using AIC we do not have epistemscess to the directed
distance from models to the truth in the absolué@ss. This highlights the
importance of picking the models for the choice a&h the utmost care and

“2 Multiplication by (- 2) was done for “historicaasons”. For instance, under certain assumptions, —
2In (ML1/ML,) is asymptotically? distributed.

3 The sample could have been gathered prior todh®itation of the choice set or afterwards. This
is irrelevant so long as the data were not usedtéation of the choice set. For the discussiorisf t
point please see section 3.4.1.4 below.
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consideration for the background information andailable experience and
knowledge in the field at hand. This is what we nteahen we drew a distinction
between theoretical and statistical modelling [@ction 1.1] and said that the
distinction is not sharp because we are concern#d statistical modelling which

has theoretical elements in it. These theoretitahents play their part when one

picks the families of models to compile the chaeé

Due to the meaningfulness only of AIC differencéss recommended to calculate
the AIC differences, A; = AIC; — AICnn, for each model in the choice set. These
are estimates of the expected K-L differences fg{m| ) to f relative to the model,
which has the smallest AIC score [denote®bY min]. The best estimated model has
Ai = Amin = 0. There is always at least one best AIC esachahodel within the
choice set. Thé\; values allow for ranking of models within the atmiset. The
(naive) methodological rule is: choose the mod#h Wj = An,in = 0. A refinement of

this rule is considered further.

In order to work out the relative strength of evide for each model, the likelihood
L(gi | X) of modelg;, given data, is defined in the literature to be proportiorakkp
(- 0.5A))) Then, for ease of interpretation, k(g | X) for each model in the choice

set are normalised to yield so-called “Akaike weésdjw;, which all add up to 1.

w; = exp (- 0.5A) / Z"i=; exp (- 0.54)

Burnham and Anderson (2002) refer to these weightSmodel probabilities” or
“the weight of evidence in favour of modél Akaike weights ratios are equal to
relative likelihood ratios [i.e., for a pair of meldi andj, L(gi | X) / L(g; | X) = w; /
w;], which are in the AIC literature taken to ‘...repeat the evidence about fitted
models as to which is better in a K-L informati@nse.’ [Burnham and Anderson
(2002):78]

Let us consider an example of actually using th€ Alethod for model selection.
Naturally, it would be great to develop further asfeour earlier examples, say, the

one from chapter 1 on relating weights and heiglhtale residents of the London
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Borough of Waltham Forest. Unfortunately we do hate any data for our mock
example, so we shall have to use a different examwpich is structurally similar to
our weights/heights e.g. In any case we can usewttights/heights example to

introduce the actual example we shall use.

So, starting with the simplest case, suppose tleateome up with a probabilistic
statistical model for our weights/heights exampld auppose that this model is of a
linear regression type. That is, weights [the respovariable Y] and heights [the
regressor variable X] are linearly related thus=¥axX + b + g, wherea is the
gradient of the lineb is the intercept with the y-axis ands the residual error term
which accounts for the deviations of data from baear model. It is commonly
assumed that the deviations from the line are gnbbtcally independent from one
another [cf. section 1.3], and thatis normally distributed with zero mean and a
constant standard deviatien whereo is estimated from data. We shall go along
with this assumption. Suppose that we wish to beddast squares method of linear
regression. That is, we find the element of ouedinmodel in such a way that the
sum of the vertical distances from this elementhe data points [SOS] is the
smallest among all the elements of our model. Bastlsquares linear regression is
in fact a special case of general maximum likelthestimation. We can thus obtain
the AIC scores with the output of standard regmspackages using this formula:
AIC = nln(6%) + 2K

whereK is the number of estimated regression paramatehsdings 2[in our case
there are three adjustable parametess b ands]; 6° [the estimated variance] is

equal to its maximum likelihood estimat@?/n).

However, our mock example of weights/heights ig/\aatificial. Although it seems

reasonable to think that weights increase with litsigrying to predict weights with

heights seems insufficient. For instance, we mayp alish to include the dietary
preferences [on the thinking that those with peiee to foodstuffs that contain
more energy would be heavier], the weight of thehmoand the weight of the father
reflecting the idea that our males’ weight couldsgbly be related to that of their
parents. There can be many other variables we neyte consider. Now instead of

simple linear regression we have a multiple regoessase: Y =aX; + bX, + cX3 +
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dX,4 + &, where X stands for the height,»% for the preference for particular type of
food [perhaps as measured by the average amourdilaxfalories such food
contains], % and X, — for the weights of the mother and the fathepeesvely.
Now, which variables are relevant for predicting tralue of Y? In the absence of
further knowledge, it seems that we have—21 = 15 possible models to choose

from, assuming that at least one variable is reieva

So, here is a much used example which is commaigrned to as Hald’'s Cement
Hardening Data — several references are cited ogHm and Anderson (2002):99-
103. This example is structurally the same as oultiple regression case above.
The table below represents heat evolved duringhinelening of 13 samples of
Portland cement and four variables that may bee@léo it — the tables are from
Ghosh and Samanta (2001).

Cement hardening data with four regressor variablesx;, x,, X3 and x4 and a
response variabley

X1 X2 X3 X4 Y
7 26 6 60 78.6
1 29 15 52 74.3
11 56 8 20 104.3
11 31 8 47 87.6
7 52 6 33 95.9
11 55 9 22 109.2
3 71 17 6 102.7
31 22 44 72.5
2 54 18 22 93.1
21 47 4 26 115.9
1 40 23 34 83.8
11 66 9 12 113.3
10 68 8 12 109.4

where the regressor variables (in percentage ofwbmght) are:x; = calcium
aluminate (3Ca0.Al203)x, = tricalcium silicate (3Ca0.SiO2); = tetracalcium
alumina ferrite (4Ca0.Al203.Fe203) arg= dicalcium silicate (2Ca0.SiO2); the
response variable is= total calories given off during hardening peaurgrof cement
after 180 days.
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Our purpose is to select a model for predicting ekielution of heat in Portland
cement on the basis of its chemical composition.as&ime no detailed knowledge
of physics or chemistry, and so engage in prolsilulstatistical model selection [as
opposed to theoretic]. Thus we put the 15 possidelels in our choice set [of
course we could also consider models with quadratibic etc. terms, but that
would be unnecessary for our purposes] and cae#anike differences AICA).
That is, the model with AICA) = 0 is deemed AIC-best. In the table below thst fi
column indicates the type of model by showing whiehiables are included in each
model. For example, the model in the first row baky x; andx; in it and thus it has
four adjustable parameterk F 4] — the two parameters that are multiplied g t
variables, the intercept with tlyeaxis and the variance. Another point to note & th
below there is a column for AlCwhich is a version of AIC used when the number
of data points are small [remember that AIC isaapmptoticallyunbiased estimator
of relative expected K-L divergence] relative te tiumber of adjustable parameters
used in the ‘maximal’ model in the choice set —uilze model which has the highest
number of adjustable parameters of all models énctioice set. Sugiura (1978) and
Hurvich and Tsai (1989) found that when the ratithe sample size to the number
of adjustable parameters in the maximal model iallsppome consider that this is
the case when the ratio is below 40 — cf. BurnhathAnderson (2002):66] there is
a small sample bias which requires a [second orderfection. An intuitive
explanation for this bias is that when the raticsisall there are more adjustable
parameters than can be justified with such limdath. So, Al penalises models
that use extra adjustable parameters relative beromodels in the choice set
disproportionately more than does the AIC. Our dangonsists of onlyn = 13
observations, and the maximal model in the choétdnas six adjustable parameters,
so it is more appropriate for us to use Al€@r model selection. All the

methodological points about AIC carry over prettyai verbatim to AlG
AIC, = AIC + 2K+

n—-K-1
In the table below the model which has only vaeallh andx; in it is AlC.-best.
The maximum likelihood (ML) element [i.e., the elem that fits the data most
closely] of this model is:
y = 52.6 + 1.468, + 0.66%,, andd = 2.11 [Burnham and Anderson (2002):103]

Also notice that there are some models that arghabtfar from the AlGbest one.
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In particular, models in rows two, three, four divé all have the AIG differences
below 4. According to the ‘rule of thumb’ that isaed in AIC methodology [which
applies equally to both AIC and AJ[; these models also have some support. The
rule of thumb is that models that are within 2 sirof the AlC-optimal model have
substantial support, those that are between 4 amdt§ away from the AIC-optimal
model have considerably less support, and thogeateamore than 10 units away
have virtually no support at all [Burnham and Arsier (2004):271].

Model K AIC (A) AlCc (A)
12 4 0.45 0
124 5 0 3.13
123 5 0.04 3.16
14 4 3.77 3.32
134 5 0.75 3.88
234 5 5.6 8.73
1234 6 1.97 10.52
34 4 14.88 14.43
23 4 26.06 25.62
4 3 33.88 31.1
3 34.2 31.42
24 4 35.66 35.21
1 3 38.55 35.77
13 4 40.14 39.7
3 3 44.09 41.31

Ghosh and Samanta (2001):1143

3.3 Some Features and Properties of AIC

Here are some properties of the AIC, some of whiely seem self-evident.

« AIC differences between models based on differets sf data cannot be
compared.
* The order of computation of AIC scores is irreleivan

* Models that are not in the choice set are out ®fcttinsideration.
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Probably the most important feature of the AIC mdtlogy is its use of K-L
divergence. However, there are several alternatigasures of discrepancy between
distributions [cf. Konishi and Kitagawa (2008):314.there a justification for using
the K-L divergence rather than any other measuivargence or distance between

distributions?

Burnham and Anderson (2002) assert that ‘the vwelal-L distance is the link
between information theory and the log-likelihoaehdtion that is a critical element
in AIC model selection.” [Burnham and Anderson (2D87] ‘The K-L distance
between models is fandamental quantitin science and information theory ... and
is the logical basis for model selection in conjiort with likelihood inference.’
[Burnham and Anderson (2002):54]

Burnham and Anderson’s (2002) argument for the afsthe K-L discrepancy in
model selection rather than any other measure issiessence nothing over and
above an argument by analogy — roughly, succesoime fields implies success
other fields. Their argument for the special staiti&-L discrepancy is two-fold.
Firstly, this quantity has its natural place inomhation theory [e.g., Shannon
information entropy], which they consider to be undamental advance in 20
century science. Secondly, entropy is of fundameimtgortance in statistical
mechanics. So, the former seems to assert that dttually arises from the
information theory and the latter is an argumentbglogy. They site as important

Bolzmann’s theorem connecting entropy to negatvgatithm of probability.

With regards to the latter argument we agree vaiméds (1957):621:

‘The mere fact that the same mathematical expnes3ipilogp; occurs
both in statistical mechanics and in informatioadty does not in itself
establish any connection between these fields. ddmsbe done only by
finding new viewpoints from which thermodynamic rempy and
information-theory entropy appear as the saorecept

On the matter of asymmetry of K-L discrepancy meafturnham and Anderson
[arguably the authors of the most definitive andtaqolate work on the subject of
AIC —i.e., Burnham and Anderson (2002)] say ohly following: ‘...l (f, @) #1 (g,
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f); nor should they be equal, because the roles ofhtramnd model are not
interchangeable [Burnham and Anderson (2002):56] It is hard &y svhat to make
of this remark. One may try to interpret it in aywhat approximating a model by
truth is not a sensible thing to do because ithes @approximation the other way
around that interests us, hence, calculating thianite makes sense in one direction
only. However, granting to the truth the specialss, it still does not constitute a
reason as to why a distanteit should be any different from the distarfeem it.
This asymmetry seems to a natural interpretatiothémnmodynamics as an increase
in entropy, and it represents the arrow of timegtoback to the previous state
requires more energy than to go from it. Howevemur context of model selection
there is no obvious reason of this sort for thevasgtry of our divergence. So much
for the argument from analogy with thermodynamics!

We find that the most convincing argument for udimg K-L divergence rather than
any other is that the K-L divergence lends itseliy [and some may say naturally]
to approximation by the ML technique, which is weditablished within modern
statistics** Still, the lack of symmetry is worrisome and stibbe born in mind as a

shortcoming.

4 According to Akaike himself, the connection oceartto him in March 1971 when he was standing
on the train from his home to the institute wheee Worked at the time [Findley and Parzen
(1995):111].
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3.4 Philosophical Issues with AIC

Recent philosophical literature contains/identifisgveral issues with the AIC
methodology. Issues considered in this sectiortado with adequacy of AIC as a
model selection methodology, its use and limitamn8@xternal applications of AIC

in broader philosophy of science context are deilt in chapter 5.

3.4.1 The Subfamily Problem

3.4.1.1 Statement of the Problem

The problem that is identified in this sectionatated to the issue as to where we get
the models from to compile the choice set.

The subfamily problem [identified by Forster andb&0(1994)] can be explained in
the following manner. Suppose that a model thapiek for the choice set is an-(
1)th degree polynomial such that it contains amel& which perfectly fits the
data points that we have [i.e., SOS = 0]. Moreotles, particular polynomial is the
only element of the given model [that is, the moztaistitutes a singleton set]. This
‘model’ and its element will be chosen by an infation criterioi® as optimal
whatever the alternatives since it has no adjustphtametersq = 0] and it fits the
data perfectly!

3.4.1.2 The Forster-Sober Solution

Forster and Sober’s (1994) apparent solution & pnoblem is based on what they
call the Error Theorem and the distinction thatytltkaw between statistically
unbiased and epistemically unbiased estimation.

The Error TheoremError[Estimated(Af))] = Residual Fitting Error + Common
Error + Sub-family Errof® Here AF) denotes the predictive accuracy of the family

of curvesF.

4> All information criteria suffer from this problemcf. Forster and Sober (1994):18, fn 27.
8 Forster and Sober (1994):19
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An estimator isstatistically unbiased if and only if its expectation is equalthe
actual value of the parameter that it is used tionase. The idea aépistemidias is
best described by means of an example. Supposed¢hadve a statistically unbiased
estimator. Let us increase its variance arbitranlguch a way that the estimator’s
mean value is unaffected. We still have a statiljicinbiased estimator. But, argue
Sober and Forster, it is epistemically biased stheee is at least one other unbiased
estimator, which has a smaller variance than tleeadbiand. Forster and Sober argue
that thead hocapplication of Akaike’s Theorem to the singletoonduls as described
above is statistically unbiased but epistemicalhsed, and that this is implied by

the Error Theorem. Let us see how.

The Common Error is the same for all the modelsit sancels out. The Residual
Fitting Error is both statistically and epistemlgalinbiased. However, the Sub-

family Error is statistically unbiased but sometswpistemically biased.

Forster and Sober illustrate how this epistemis bigses in the following way.

Suppose we have a very large data set that exisiiodeg linearity. We
wish to estimate the predictive accuraciesL@fIN) and L(POLY-n),
where POLYn is the family ofn-degree polynomials with parameters
free, andL(F) is obtained by using the data to single out thst fitting
curve in family F. We may apply Akaike’s Theorem to (LIN) and
(POLY-n) directly, or we can apply it to the singleton families
containing just_(LIN) and L(POLY-n), respectively. The surprising fact
— that thead hoc Akaike’s estimate folL(POLY-n) and L(LIN) will
always favourL(POLY-n), because it is always closer to the data. In
sum, both the direct and ttael hocmethod of accuracy estimation are
statistically unbiased (as required by Akaike’s diteen), but thead hoc
application of Akaike’s method yields an estimaiattweknow is too
high. Thead hoc application yields an estimate that epistemically
biased [Footnote 31: Although the estimate is known ®tbo high,
given the data at hand, the Akaike estimate optiedictive accuracy of
that same singleton family relative twher data sets generated by the
true ‘curve’ will be too low. On average, of courtlee estimate will be
centred on the true value.]

Forster and Sober (1994):21

Forster and Sober say that the Error Theorem fiadina ‘meta-theorem’ — it is
a theorem about the ‘meaning’ of Akaike's Theorénfihey state that this

" bid.
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result is closely related to the one in Sakamett@l (1986):77. So, let us
consider it

-1L,AIC(K) = (mean expected log likelihood) + (common error)

(individual error)

Let us analyse this result. The common error dagsdepend on the number of
adjustable parameterk, in a given model, s& does not have a bearing on the
model selection. The individual error is a sum wb texpressions. Let individual
error = (C + DY. C’s variance is equal t&, and C increases d§ increases.
However, D decreases with increas&KinNow, due to the subfamily problend, =

0. Hence the individual error does not have a bgash the model selection either.
But the mean expected log likelihood I(fPOLY-n) is higher than that df(LIN).
Thus, the AICIL(POLY-n)) is smaller than AIQ((LIN)). So the AIC methodological
rule prescribes the choice af(POLY-n). Therefore, we conclude that using
Sakamoto’s result does not solve the subfamily lerabHence, it appears to be the
case that the closely related Error Theorem doéssolwe it eithef’ There is a
reason to think that thad hocapplication of Akaike’s Theorem is epistemically
biased, viz., our perception thafPOLY-n) picks up too many errors by fitting the
data too closely. But we argue that the epistemas 5 not implied by the Error
Theorem. So, we are seemingly back where we stdrtad — the subfamily
problem. We thus conclude that Forster and Sob@P4()l do not succeed in
resolving the subfamily problem by using their Erfidheorem and the distinction

between the statistical and epistemic bias.

3.4.1.3 Replies from Kukla and Kieseppa

Kukla (1995) starts off with noting that: ‘(1) ...tleeare infinitely many equally
good candidate-curves relative to any given setath, and (2) ... these best
candidates include curves with indefinitely manymims.” [Kukla (1995):248]
Presumably by ‘equally good candidate-curves’ Kukksans models that fit the data
equally well, but differ in their predictions oftfue data.

“8 This part follows Sakamotet al (1986): 76-81.

“9 For the full mathematical rigor dbid.

Y Indeed, Kieseppa [(1997): 40] aptly remarks ors #higument from Error Theorem: ‘This is a
clever argument, but the unrigorous way in whiclhas been presented makes it very difficult to
evaluate whether it really solves the subfamilylbybem.’
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So, the first problem is: just SOS fitting with-{)th degree polynomial allows for
any prediction whatsoever; the second problemalimelationships would never be
used contrary to common scientific practice. Kuktates that Forster and Sober

(1994) ignore the first problem and concentrat¢hensecond.

Kukla raises the following issue. Take familiesmbdels which contain as their
elements polynomials, say, afi-1)th degree such that they havel( adjustable
parameters [i.e., one of the parameters is fixed]the best fitting element in each
such family has the SOS equal to that of the b#sig element of the family that
contains polynomials oh{2)nd degree withn1) adjustable parameters. AIC would
give these two models an equal score. Importahtth models have the same Sub-
family Error [as per Forster and Sober — cf. secB801.1.2], but the elements in the
former have an arbitrary number of bumps. So, segimiwe do not have an
epistemic criterion for showing that a polynomifbodegree lower than another and

the same SOS is epistemically preferable/predilgtiveore accurate.

As an example, consider linear and quadratic fonsti Pick a quadratic function
with one fixed parameter [thus the number of adjpist parameters that are left is
two] and adjust the remaining adjustable paramebersuch a way that the
expression has the same SOS as the linear fundtame are in fact infinitely many
expressions of this sort [we can repeat the praeedith polynomials of higher and

higher order].

Forster (1995a) says that there is nothing wrorth Wwaving infinitely many curves
with the same predictive accuracy. The problemeariwhen the criteria consider
curves predictively equally accurate whereas theyirafact not [In footnote 2 page
349 he says that a bumpier curve could be closeutio if the truth were bumpy, but
on average would not be.]: *...Kukla appeals to titeition that very bumpy curves
are not expected to have equal predictive accuracponcede that Kukla’s intuition

is correct.” [p. 349] Forstér addresses the second problem raised by Kukla by

> In what follows Best(PAR) stands for the actuathr L(PAR) — best fitting member of the model
of all parabolas; L(LIN) — best fitting element e model of all linear curves; Qi — a model 8t 2
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devising a geometric example and showing thatrt loa interpreted interpretation
within the Akaikean framework in the case of cufitttng, on

the key assumption ... that the location of L(PAR)g®verned by a
Gaussian (i.e. Normal) distribution centred at B®AR) with a variance
inversely proportional to the number of data. Aseault L(PAR) will
stray less from Best(PAR) as data accumulate. ...eNb@t this
‘normality’ assumption does not require that thésaan the data itself is
Gaussian. [Footnote 8: ‘Kukla’s presentation isepailly misleading in
that he talks as if the sum of square deviatio®S)Sis always the
appropriate measure of fit, but this is only theecéor Gaussian errors.
AIC uses the general measure of log-likelihood teasure fit, as we
made clear in Forster and Sober [1994]."] The agdiom is about the
effectof noise in parameter space... The significancéisf ‘hormality’
assumption is that it licenses a geometrical imetghion of hypothesis
space.

Forster(1995b):353-354

Forster’s interpretation of the geometric exampgieves that a randomly selected
L(Qi) will do worse [in the sense of being on axgrdess predictively accurate] than
L(LIN). Going through the mathematical details & Aheorem, Forster states that
‘[a] remarkable feature of this result is that #neerage advantage of LIN over Qi
does not depend on the amount that curves in PAR&yable of performing better
than anything in LIN.” [Forster(1995b):356]

Forster proposes a modification of the AIC in ordercorrect for the problem
introduced by Kukla’'s way of choosing families ofodels for the choice set.
According to him, the AIC score for the polynomsdlould be increased \K/n,
whereAK is the increase in the number of adjustable paiensmi@andN is the number
of data points. In his subsequent papers on theékAkaethodology [and information
criteria in general[, however, Forster does notude the proposed correction of
AIC*®, This seems to indicate that correcting AIC meadwy quantityAK/n has to
be used when among the models that one conside®iae set step are those of the
Qi type. Moreover, in order for the reply to Kukia work, one has teandomly

select a model Qi among the models of its typeetadnsidered the choice set.

degree polynomials with one fixed parameter; LQthe best-fitting element of Qi, which is equal in
simplicity and fit to L(LIN).
2 Nor is it generally used by statisticians.
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Even if we accept Forster's answer as a partialiteol to Kukla's challenge,
Kieseppa (1997):39-40 poses a problem to whichté&dssgeometrical construction
has no answer. Kieseppa considers a situation winerdiappens to include a model
of Qi type in the family of models for consideratiprior to observing data. Then
Forster’s solution does not apply, but arbitrarines the choice of models for the
choice set remains. Would Forster call this arramggad ho® Kieseppa states that
to choose the hierarchy, we seem to require thewlatlye about what good
scientific hypotheses look like, which does notrsfeom mathematical theorising.

3.4.1.4 Our Own Dissolution of the Problem

Interestingly, we have not come across the subjamibblem anywhere in the
extensive literature aimed at statisticians, wieiaterested in foundational issues as
well as in application of the statistical techniguBerhaps this is due to this issue not
being seen as a serious problem. We think thatnbt a serious problem, although
as we argue in sections 3.4.1.2 and consider itoge8.4.1.3 it has evaded proper
resolution hitherto. In fact we go as far to arghet this is not a problem for model

selection — we dissolve it.

Firstly, suppose that we put in the choice set alehavhich contains all linear
functions as its elements and a model which onttaios a single element, e.g.5

23 +3x — 5. Why would we want to include the latter m&d€here are two potential
reasons — either we have had a preliminary anatysisita and found out that this is
the best fitting parabola out of the model of @tgbolas or we have good reasons to
think that this is a good model on the basis ofrentty accepted theories, our
experience in the field, etc. If we do it for thesf reason, then we suggest that a
‘counterfactual’ move could be made in order tgostioe subfamily problem from
appearing. That is, one should not check the datiafthe models should be chosen
for the choice set on the basis of the backgroummivedge that we have prior to
observing/considering the data set that we areggusinmodel selection. And if one
is already quite familiar with the data, one shotddget’ that one is familiar with it.
Arguably, even if we already have collected ouadsmple, we should not attempt
to reflect the sample in the hypotheses in our ahset. Even if we have strong

familiarity with the data, we should ‘delete’ it Gorget it' when considering which
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models to include in our choice set. For instam@eare quite surprised that Howson
and Urbach (2006) do not adopt this stance on didamily problem rather than
calling it ‘...this rather devastating objection.’ ¢i¥son and Urbach (2006):294] On
the contrary, this argument is analogous to, andstance is very much consistent
with the one adopted by them with regards to thek EMidence Problem in Bayesian
Confirmation theory’. Here is a brief rendition of the Old Evidence litem [for
more details see Howson and Urbach (2006):297-8)1an overview of other
attempts to solve the old evidence problem cf. Barn1992):chapter 5]. It is
commonly thought in the philosophy of science tifiatou build a hypothesis to
entail known data, that hypothesis cannot drawsapport for itself from that data.
Only new data can confer confirmation onto a hypsithi Sometimes, however, new
theories are not purpose-built to fit old data, larice they are developed
independentlyof the already known data, on occasion it is pastum found that
they do fit old data. It is commonly thought thatsuch a case the old data supports
the new hypothesis. However, in Bayesian confiramatheory [which, very briefly,
Is the idea that data E confer evidential suppaoitb ca hypothesis H when the
posterior probability of the hypothesis H in thghli of data E is greater than its prior
probability] the probability of data that has abigdeen observed [called it E] is
P(Esg)=1 and also the likelihood ofk is P(Eg/H)=1. Hence using the Bayes
Theorem, P(H|&ky)=P(H), so the old evidence does not confirm theofiyesis,
contrary to our intuition. Howson and Urbach praoas counterfactual move to
remove the evidence implied by the hypothesis ftoebackground information, on
which all the propositions in Bayesian theory asaditional. Then the old evidence
can provide support to the hypothesis H.

A closely related idea is the use-novelty accountsupport of hypotheses by
evidence [cf. Worrall (2002)].

‘A fact will be considered novel with respect tagi@en hypothesis if it did
not belong to the problem-situation which govermtieel constitution of the
hypothesis.’

Zahar (1973):103

%3 We think it would be fair to say that Howson andbath (2006) do not consider the Old Evidence
Problem to be a problem at all, and find it inchéelito see that so much effort has been expended on
trying to resolve it. Again, we find ourselves in analogous position with regards to the Subfamily
Problem.
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Under this account only novel facts in this senswipge support to hypothesis. So
on this idea using the singleton hypothasis 2¢ +3x — 5 would be fine as long as
the given sample of data has not been used in d@odeonstruct this hypothesis
[irrespective of the period of time in which sucts@ample was collected]. If this
element of the parabolic model then would provideeafect fit, that would be

absolutely fine.

Secondly, we have good prior reasons for choodmegp@articular values for the
parameters only if we already have a good ideaoashe functional form of the
relationship between variables. In other wordsiethe hardly any model uncertainty.
Since the problem of model selection is essentidlg problem of model
uncertainty, there is no place for model selectimrd hence for model selection
criteria’s use in such a case. So, this defeats/éing purpose of model selection.
Employing this procedure is akin to doing the fallog. Instead of carefully
selecting a small number of competing hypothesead®mgrounds of our background
knowledge and theoretical research and then olmggthie data, we are now going to
have a thorough trawl through the data and findons fitting model of an arbitrary
dimension. Then we shall form a model consistinghed singleton model and retro
check whether it obtains the highest AIC score agnany other possible models.
And then — low and behold — we will find out thatlbes! The question then arises
as to the purpose of such an exercise — we knoadwance that such a procedure
would give us the top AIC score, whatever the dataare going to observe. Of
course this emphasises the logical point of théasaity problem, but in the process
it defeats the very purpose of model selection,ctvhis to choose the optimal
mathematical structure of a model for predictiverpoges because there is
uncertainty as to what this structure should bej aome prima facie viable

alternatives available.

Finally, even if one might find the ‘counterfactualove unappealing, we think that
for the purposes of model selection in the casenwtie ‘artificial’ fixing of
singleton hypotheses within the choice set takaseplthe sense in whidf is the
number ofadjustableparameters should be that “capable of being astjust some

point in time”, rather than just “free to be adpginow”. Hence, a model containing
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y = 2¢ +3x — 5 as its sole element would still have traejeistable parameters in the
relevant sense. This is because it is an elemettieomodel with three adjustable
parameters. From this point of view, in section.B3l L(Qi) would have more
adjustable parameters than L(LIN), since we detitedy fixed (importantly, at a

non-zero value) an adjustable parameter in L(QQbem dissolved.
3.4.2 The Problem of Language Variance
3.4.2.1 Grue Problem

De Vito (1997):392 makes a two-fold claim: ‘Theoplem with using Akaike’s
theorem for hypothesis choice is that the numbepashmeters associated with a
given hypothesis is a matter @afnvention In addition, for any hypothesis there is no

a priori way to generate thigght family of curves to which the hypothesis belongs.’

De Vito demonstrates the former claim by applyihg information criteria (he
focuses on AIC, but the argument, if correct, woalso apply to BIC and other

information criteria) to Goodman’s New Riddle oflirction.

Here is the argument. Suppose that we hypothesise the colour of emeralds over
time. Let us define a predicate Grue such thag'dhyjis grue at time if and only if

X is green at timé andt < 2100, ox is blue at timea andt > 2100.’ [Forster (1999):
92] Hence, we have two hypotheses regarding theepties of emeralds:

Green Hypothesis: ‘All emeralds are green (atimlés).’

Grue hypothesis: ‘All emeralds are grue (at alleti)n’

These hypotheses fit the current data equally vizit, De Vito argues the Grue
hypothesis contains one adjustable parameter [yiahereas Green hypothesis has
none, so AIC would lead us to favour Green hypath&sow, define predicate Bleen
such that ‘objeck is bleen at time if and only ifx is blue at timé andt < 2100, orx

iIs green at time andt > 2100’. [Forster (1999):94] Note that in the langean
which the predicates Grue and Bleen are taken twdieary, an ‘...objeck is green

at timet if and only ifx is grue at timé andt < 2100, orx is bleen at timé andt >
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2100." [Forster (1999):94] Hence, Green hypothésisomes: ‘All emeraldg are
such that, it < 2100 therx is grue at time and ift > 2100 then x is bleen at time
[Forster (1999):94] whereas the Grue hypothesigis language is still the same:
‘All emeralds are grue (at all times).” Now, inghmew language both hypotheses fit
the data equally well, but now the Green hypothbais more parameters than the
Grue one. So, by application of AIC, in this langeaone should favour the Grue
hypothesis. The number of adjustable parametetsnbdels have depends on the
particular conceptualisation of the world. Hena&pimation criteria suffer from

language variance.

Forster (1999) replies to this argument by agreeiitly De Vito that the application
of AIC does not solve Goodman’s New Riddle of Initut and that this problem is
a curve-fitting one. Forster argues, however, that Vito draws from this an
incorrect conclusion. The correct conclusion id thEC does not apply to all curve-

fitting problems.

Forster argues that De Vito misconstrues the naifaadjustable parameter. In fact,
neither the Green nor the Grue hypothesis contaynaajustable parameters in the
sense that this notion is used in Akaike’s methoghpl A model contains adjustable
parameters just in case a change in these parawdatepick out a different element
in the model. In the case discussed by De Vitoctirapeting models are singleton
sets [containing exactly one element respectivatgnce all the parameters are
adjusted. Exactly the same applies to the hypotheben they are described in the
‘Grue’ language. So, in either case AIC is unalbedistinguish between the
hypotheses. Another problematic aspect of posiagtbblem the way that De Vito
does is that AIC applies only to probabilistic hifpeses: ‘The concept of fit in
Akaike’s theorem is derived from the Kullback-Labldiscrepancy, which requires
that the competing hypotheses are probabilistictied the likelihoods are well-
defined.)” [Forster (1999):93] We could turn Greand Grue hypotheses into
probabilistic ones by assuming that the observatioars are probabilistic. Even if
we do so, AIC will not give us any reason to prejae hypothesis over the other,
which is contrary to our intuitions that Green hiypsis should be preferable to

Grue hypothesis.
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Forster modifies De Vito’'s example in such a waat tBrue hypothesis does contain
an adjustable parameter —instead of fixing timeupeter at value of 2100, it is now
t = 6. Now, does AIC tell us to pick Green hypothesibeathan Grue? No, it does
not, because ‘...Akaike’s notion of simplicity aintsdquantify the sampling error in
the parameter estimates. But in this example, tisestill no samplingerror in the
estimation of the grue parameter...[T]he grue model is unidentifiable in the sense
that there is no unique value ®that maximizes the fit with the seen data. There is
no over fitting or under fitting in the relevaninse.’ [Forster (1999):96] Intuitively,
AIC helps us when we have to predict future datadnysidering the observed data
and stipulating that the future data comes fromstme distribution. In this case,
however, no such assumption can be made — we havdea how (if at all) the
distribution ofé is connected to the distribution of the observathd

3.4.2.2 Reparametrisation under Transformation

De Vito poses a more general argument than thatidered in the previous sub-
section. He gives an example in virtue of whichemal certain transformation of the
coordinate system a family of parabolic functioAR) becomes a linear one
(LIN), and a linear family becomes parabolic. Oa #ssumption that the SOS of the
perspective best fitting elements of both is theesaDe Vito argues that the AIC
will recommend different curve in each situatiore Wito concludes that in virtue of
his results a realist solution to the curve fittimgpblem is not warranted since the

closeness to truth cannot be relative to a padratdnceptualisation of the world.

Forster replies to this charge as well. ‘The maiobfem is that transformations do
not map a single member of PAR into a unique menobd?AR’, so there is no
sense in which the transformed families arpiivalentrepresentations of the old
families.” [Forster (1999):95] The argument is lthem the assumption, which is
used in the derivation of Akaike’s Theorem. Thatifi$- is a subfamily of G that F
cannot be more complex than G and this subsetaelet preserved under any one-
to-one transformation. So, if F is a subset of étR’ is a subset of G’ and so is less

than or equally complex.
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As a part of his argumentation, Forster ratherrmfaly goes through the first part
of a proof of Akaike’s Theorem. An intermediatepsie the proof is an estimation of
the discrepancy between the curve that fits besbbserved data and the true curve
[A(6)] by Taylor-expanding this discrepancy arouhdn terms ofA(¢'), [whered"

is presumably the best fitting element of a giveodel (Forster (1999) does not
define what he take§ to be)] and showing that Taylor expansion is leue
invariant. Having gone through the theorem, Forster conclutas ‘...[K] is not
simply the number of adjustable parameters, butriimaber of parameterthat
contribute to the expected discrepancy in a certaaty. Given the fact that Taylor
expansion is language invariant, and expected sate language invariant, there is
no way in which this number can change by any mgegn of the families of the
curves. ... It is convenient to descrilkeas equal to the number of adjustable
parameters only because the equality holds in cessts. ... [L]Janguage invariance
is built in at the very beginning.” [Forster (199800]

Kieseppa (2001b) comments that one has to fix #peesentation in which one
makes decisions. In Bayesian context, if one hadixed a particular representation
then one cannot use the difference in the vismaplkstity of curve in order to fix the

priors — lower for more ‘complicated’ curves angher for ‘simpler’ ones, because
different polynomials can have identical mathenadtiqroperties under a
transformation. [Kieseppa (2001b):784]
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4. Bayesian Statistics and the Bayes Information @erion Methodology

In the previous chapter we considered the AIC maedtction methodology and
defended it against various objections broughtearhbn the literature. The purpose
of this chapter is to see how Bayesian statistsr@aches the issue of model
selection, to consider the Bayes Information Cote{BIC] methodology which is
placed within Bayesian statistics, to defend th€ Bhethodology against various
objections, and finally to compare and contrastAl@ and BIC methodologies.

4.1 Bayesian Statistics

4.1.1 Bayes Theorem

Bayesian statistics is a unified methodology ofistiaal inference that is based on

Bayes Theorem [cf. section 1.3.1]. Recall the Tapsor

P(A|B) = P(B|A)XxP(A)/P(B) where P(B) > 0

Let us replace proposition A with proposition H,iglhstands for ‘the hypothesis is
true’, and proposition B with proposition E — ‘ata@n amount of evidence has been

observed’. Hence:

P(H|E) = P(E|H)xP(H)/P(E) where P(E) > 0

P(H|E) is called the posterior probability of Htime light of evidence E [in other
words, the probability that H is true after datas leen observed], P(E|H) is the
likelihood of observing the evidence E conditional the truth of the hypothesis H
[often simply referred to as the likelihood], P(id)the prior probability of H being
true [or the probability of H being true before aldias been observed] and P(E) is
the probability of observing data mentioned in mspon E. The prior probabilities
in Bayesian statistics are always conditional oe Hackground knowledge. So
properly speaking we should write P(H|backgroundwdedge) instead of simply
P(H). However, we omit the background knowledgsimnaplify the notation.
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In Bayesian statistics, the Bayes theorem is ugealbressed as

P(HIE)x P(E|H)XP(H)

That is, the posterior is proportional to likelillbtmes the prior. The constant of

proportionality is 1/P(E).

The process by which we draw inference in Bayestatistics is the following. We
first have a prior probability P(H) of the hypotigebeing true in the first place. Then
we observe data and work out what the likelihoodtas. Then we update our
probability of the hypothesis H in the light of ddE through the Bayes Theorem.
The prior does not have to be purely a priori.sltin fact conditional on all the
available information before we observe the neva dited in proposition E [or the
data that we are not aware of as yé&tje important point to note about Bayesian
statistics is that once the posterior distributjon posterior probability density in
case of continuous variables] is generated by meatise Bayes Theorem, further
inference in it [such as the determination of tighlst density region — Bayesian
equivalent of the confidence intervals] is solegéd on this posterior, that is, on the
probability distribution in the light of the curreabservations. Let us now consider
in detail the formation of prior probabilities. Vgball not impart similar attention to
likelihoods since their calculation is uncontrovats

4.1.2 Priors

4.1.2.1 Objectivity and the Principle of Indiffen

Let us begin by considering the origins of a ppoobability distribution. As we
already mentioned, the prior distribution [as, iedie any other probability
distribution in Bayesian statistics] reflects thibjective degree of belief of a given
researcher about, for instance, distribution ofbptlities associated with different
values of a parameter. The use of prior distrimgis considered by many to be the
major weakness of the Bayesian approach [indegddhilles heel]. The charge is
that since it is possible for different researchtercome up with widely divergent
priors, their posteriors would be quite differestwaell, thus making the science of
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statistics a thoroughly subjective enterprise. Tikisan unpalatable conclusion if
objectivity is something that science should strfiee There have been several
proposals over the years [indeed over a couplewpfucies] as the possible ways in
which the priors can be made more ‘objective’. By the most popular idea has
been the Principle of Indifference [POf|The POI states that every basic event in
the outcome space should be assigned equal pritpalid illustrate, in our die-
throwing example we have two basic events - oddenssh number on the face of
the die. So, by the POI, prior probability of odahmber and prior probability of even
number should be 0.5 respectively. Unfortunately BOI runs into trouble. If we
transform the continuous parameter space in a ineafl way [say, if we have
parameterv, we transform it into something likevl/ then what was a uniform
distribution overv [uniform distribution is the result of applicatiahthe POl in case

of continuous parameters] becomes a non-uniformidaee is a nice example:

‘Suppose we have a mixture of wine and water andkmgev that at most
there is 3 times as much of one as of the othdrnbthing more about the
mixture. We have 1/3 wine/water< 3 and by the Principle of Indifference,
the ratio of wine and water has a uniform probgabiiensity in the interval
[1/3, 3]. Therefore P(wine/watet 2) = (2-1/3)/(3-1/3) = 5/8. But also 1£3
water/wine< 3 and by the Principle of Indifference, the raifovater to wine
has a uniform probability density in the interval/d, 3]. Therefore
P(water/wine> 1/2) = (3-1/2)/(3-1/3) = 15/16. But the eventsr@/water<

2’ and ‘and water/wine Y2’ are the same, and the Principle of Indifference
has given them different probabilities.’

Gillies (2000):38

There are other approaches to the ‘objective’ prisuch as the use of entropy
priors®. However, in the limit this prior is uniform, afnce does suffer from the
POI paradoxes as well as the original POI itself [dowson and Urbach
(2006):section 9.a.3].

Subjective Bayesians respond with two argumentstl¥i said subjectivity of priors
is not a weakness of the method, but its stren§trondly, there are various
technical results that can crudely be called ‘waghout theorems’ that show that

under quite general conditions [the most importdntvhich is that the prior assigns

>4 Here we use terminology introduced by Keynes (}921
*® ¢f. Williamson (2007) and (2010)
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a non-infinitesimal probability in the region ofkdéilihood], as the number of
observations accumulates, the likelihood rapidlyngadisproportionately larger
weight than the prior, and the posteriors obtaingti different priors in the limit

converge onto the same valtféWe shall say more about priors in the next section

4.1.2.2 Conjugate Priors

Suppose that we have managed to bring ourselvée toappy with the idea that
there is no such thing as objective priors [foroa of people this happiness is
unreachable]. How are we to build our prior disitibn then? Let us use the
example of throwing the die and noting the even @l numbers. Theoretically our
prior can be of any shape [naturally subject thestraints given by the probability
axioms]. However, if the prior comes from a diffieréamily of distributions to that
of the posterior, our calculations would be rattiificult. So quite often in practical
applications so-called conjugate priors are usduht TS, conjugate priors are such
that they come for the same family of distributi@ssthe posterior. Naturally, one
would not want to sacrifice the ability of expreswme’s beliefs for sheer
mathematical convenience. Very often, however, wgate priors are flexible

enough to allow one to express one’s prior degoéeslief sufficiently well.

So, back to rolling the die. As was the case in gbetion of classical statistics,
suppose that we are happy that we have the Bin@eialp. A conjugate prior for a

Binomial is a Beta distribution.

A random variable X has a Beta distribution ifptdl.f. is:

XY (1%)"YB(a,b), 0 <x < 1,

where B@,b): B(a,b)=**(1-x)*dx (integrated from 0 to 1)

The mean and variance of X: E(XeXa+b), Var(X) =ab/(a+b)*(a+b+1)

Below are some diagrams showing some examples taf dstribution plots, where

‘First’ stands for the parametarand ‘Second’ - fob>".

*% Howson and Urbach (2006):chapter 9
" The diagrams have been generated with the Mingbétware.
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Distribution Plot
Beta, First=1, Second=1
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Diagram 2

Distribution Plot

Beta, First=0.6, Second=0.8
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Diagram 3
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Distribution Plot
Beta, First=4, Second=2
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Diagram 4

Distribution Plot
Beta, First=0.1, Second=0.7
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Diagram 5
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Distribution Plot
Beta, First=2, Second=5
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Diagram 6

Distribution Plot
Beta, First=5, Second=5
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The diagrams allow visual appreciation of a higlgrde of flexibility with which
one’s prior probability distribution can be expmessising the Beta distribution. In
particular, whera = b, the corresponding p.d.f. is symmetric [diagram & special
case of the uniform distribution [when=b = 1] and diagram 7 looks similar to the
Normal distribution witha = b = 5; generally whea = b = constant, as the constant
grows larger, the distribution concentrates arouh@ middle values with
increasingly smaller variance]. When bathand b are smaller than 1 then the
distribution is almost bi-valued, that is, mosttloé probability density is distributed
in the extremes of the distribution, rather thathie centre [see diagrams 3 and 5]. In
particular, whera < b, there is more density on the left hand side,thedyreater the
difference betweem andb, the more density there is on the left hand side
opposite holds wheh > a. Finally, on diagrams 4 and 6, bathandb are greater
than 1. On the diagramad> b, hence the distribution is skewed to the righterelas
whenb > a the opposite holds [see diagram 6]. The sevefith® skew depends on

the magnitude of the difference betweeandb.

The prior distribution i**(1-p)>*

The likelihood i'(1-p)™", wherep is the probability of successijs the number of
successes out afobservations.

So, the posterior probability is proportionalpf™*(1-p)>*™*

The posterior distribution ig*"(1-p)> ™" Y/B(a+r,b+n-r), 0<p<1

So, for instance, if we have a uniform prior, ia&s b = 1, the posterior distribution
isp'(1-p)""/B(r+1,n-r+1)

4.1.3 Model Selection Based on Bayes Factors

Suppose that we have two point hypothddgandH; [just as in chapter 2] that we
would like to compare in the light of observed ddtathe Bayesian approach it is
done on the basis of the Bayes factor. The easesto define the Bayes factor is in
terms of the odds ratio. Posterior odds is the ratiposteriomo probability ofHy to
the posterior probability; of H; — that is,po/p:. Prior odds is the ratio of prior
probability cy of Hy to the prior probability; of H; — co/ci. So, Bayes factoB) in

favour ofHy againstH; is the ratio of the Posterior odds:
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B = (po/ppa)/(Co/C1)

Good (1950) proposed an interpretationBosuch that 0 B < 1 means thatl; is
favoured in comparison tly, 1 <B < 10 means thdt, is moderately favoured to
Hi, 10 <B < 100 — thaHy is strongly favoured téi;.

Let us apply this reasoning to an example that s&slun the subsection on Neyman-
Pearson methodology. There we had a die-rollingipetuch that we set out to roll
the die 120 times in order to test two hypothegmsnst one another, viz., that the
probability of obtaining even outcomes is 0.55 otenit asHo] or 2/3 [denote it as
Hi]. Suppose, as we did, that we observe 70 even aexsaut of 120 rolls of the die.

What inference would we draw within the Bayesiarthndology?

In the previous subsection it was noted that tkeliliood in this set up ig'(1-p)"",

so here it i9’%1-p)*°. Let us use the conjugate prior in the form ofaBdistribution.
Hence our prior i9*Y(1-p)>*, where we should determine the value of parameters
andb. Suppose that we opt for a uniform préor b = 1. The posterior probability is

1 so in our case it ip’°(1-p)*>°. Let us calculate the

proportional top*"*(1-p)
Bayes factoB: B = 0.55%0.45%0.66 °x0.34° = 4.6608 (4 d. p.) Now suppose that
we had a different prior, say wheae= 3 andb = 2. Let us calculate the Bayes factor
for this eventualityB = 0.55%0.45%0.660.34* = 4.2826 (4 d. p.) The Bayes
factors are very similar. On the basis of I. J. Gsanterpretation of Bayes factors,
this implies thatH, is moderately favoured ovét;. Note that on the basis of this
guite moderately sized set of data, the Bayes ifastoot that sensitive with respect

to the priors — it is dominated by the likelihoods.
4.1.4 Point Estimation and Bayesian Confidencervale

Very often Bayesian point estimates are biasechénGlassical sense [cf. section
2.4.1] and are different to the Classical estingtbor example, in the Binomial case
the Bayesian point estimate for the probabilitysatcess is:a&tr)/(atb+r). If the
prior is uniform, this corresponds ta+Q)/(n+2). In fact, the only prior that

corresponds to the Classical estimate/ois whena=b = 0.
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Bayesian confidence intervals are often [but nebsk] the same as those derived in
Classical statistics, but their interpretation iste different. That is, unlike their
classical counterparts [cf. section 2.5] the Bamsconfidence intervals are
interpreted directly in terms of probabilities. $o,say that a parameter lies within a
certain interval with 95 % confidence is to saytthl®e parameter has a 95 %

probability of lying within said interval.

4.2 Bayes Information Criterion

In fact the name ‘Bayes Information Criterion’ isnsewhat misleading since what
has come to be widely known as BIC neither hashamgtto do with Shannon’s
Information Theory [cf. Shannon and Weaver (1948yr is itthe one and only
Bayesian Information Criterion. Indeed, there @ethora of model selection criteria
within Bayesian framework — cf. Spiegelhalter (2)0Konishi and Kitagawa
[(2008):chapter 9]. However, we will concentrate BIC in particular, for three
reasons. Firstly, even though BIC and other Bayesréeria differ in details, they
remain based within the same methodology, so tilesaphical points by and large
apply to them all. Secondly, BIC has received palar attention in the
philosophical literature. Thirdly, like AIC, BIC ithe most widely used Bayesian

model selection criterion in statistical practice.

BIC is due to Schwarz (1978). That is why it is stimes referred to the SIC
[Schwarz Information Criterion] or the Schwarz €ribn or Schwarz’'s Bayesian
Information Criterion. However, we shall continwefarring to it as BIC following

the most common usage in the literature.

To get started, recall the discussion in sectidn @ne of the features of Bayesian
statistics that we looked at there were the Bagetwfs. Bayes factors are used to see
which model from a given range is favoured by thengle data at hand. Bayes

factors are the basis of model selection in Bayesiatistics.

Recall that if we suppose that we have two modsds, H; and H,, and for
simplicity of exposition assuming thai; and H, are mutually exclusive and

exhaustive, so that our data E arose from onessktimodels, the following holds:
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pr(H,|E) _ pr(EIH,) , pr(H,)
pr(H,[E) pr(E|H,) pr(H,)

That is, Posterior odds = Bayes factor x Prior odidghe priors on our models are
equal, as it is assumed in BIC, then the Postedds = Bayes factor. Supposing that

we are using continuous random variables, firea a probability density. Then:

_ pr(E[H,) _ [Pr(EIGH)mE,|H,)d6,
pr(EIH,) [ pr(E|6,H,)m(6, |H,)d6,

B,

whered, is aK-dimensional vector of parameters of the mddielandz(6;|H;) is the
prior probability of the vector of parametefis given the modeH; — so called
parameter prior. In order to obtain the full Bag@ssolution the Bayes factor has to

be combined with the model priors. Thus there aregrior distributions involved.

The integrals involved in the above expression Bgr are often mathematically
intractable, and have to be estimated by numenwgathods such as Laplace
approximation [cf. Kass and Raftery (1995): 777-7@8d Konishi and Kitagawa
(2008): 231-236]. Bayes Information Criterion isse@stially an easy-to-calculate

approximation to the natural logarithm of the Bafggor.
In a large sample with independent identically ridbstted data points the following

holds [for a full formal proof cf. Schwarz (197&avanaugh and Neath (1999) or
Burnham and Anderson (2002)]:

~2In pr(E[H,) =-2In{[ pr(E|6,H,)7(6 | H,)d6 } = BIC

whereBIC; = —2In(E|é,Hi) +K;Inn, and@i is the maximum likelihood estimator
of theKi—dimensional parameter vectrof the model H In the notation of chapter
2, BIC =— 2In(L(8 | data, g)) + KIn(n)
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Notice that —2'512 ~ BIC; —BIC,

The BIC methodological rule is the same as for W€ — that is, to choose the
model which has the smallest BIC score.

The following table shows how the differences itCBicores between two mutually
exclusive exhaustive models correspond to the reiffees in Bayes factors and
posterior probabilities [on the assumption of equabdel priors]. This table

resembles a similar ‘rule of thumb’ used in the Ah@thodology [cf. section 3.2.2].

Grades of evidence corresponding to Values of theaBes Factor for H against
H,, the BIC Difference and the Posterior Probabilityof H;

BIC Difference Bayes Factor pr (H1|E) Evidence
0-2 1-3 0.5-0.75 Weak
2-6 3-20 0.75-0.95 Positive
6—10 20 — 150 0.95-0.99 Strong
>10 > 150 >0.99 Very Strong

From Raftery (1995):138, notation modified to firaisage

We shall provide an example of use of the BIC ictisa 4.5.2. In fact it shall be the

same Hald’'s Cement Hardening Data example thatmoyed in section 3.2.2.
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4.3 Philosophical Issues with BIC

4.3.1 Nesting

Let us return to models LIN and PAR that we useexasnples to introduce the AIC
in chapter 3. LIN is a model which has all lineguations as its elementg=a +
bx. PAR is a model which has all parabolic equatiassts elementsy = a + bx +
cX. As things stand, LIN is a proper subset of PAR, ievery element of LIN is an
element of PAR, and PAR has more elements than LIN.is said to benestedin
PAR. Hence according to probability calcujugLIN) < pr(PAR) [Popper (1968)].
Probability of LIN equals to probability of PAR jus case all the elements of PAR
in which ¢ # 0 have probability zero. The same inequality asplio the posterior
probabilities of LIN and PAR. That is, for any d&gathe following holdspr(LIN|E)

< pr(PARE). So the posterior probability of PAR is at leastlarge as that of LIN
whatever evidence we observe. Hence the posteriadds o ratio
[pr(LIN|E)/pr(PARE)] < 1, so in Bayesian methodology LIN would not befemed
to PAR on any evidence at all. However, on thesatithe BIC methodology it is
possible to prefer LIN to PAR. That is, it can bee tcase that [BIC(LIN) —
BIC(PAR)] < 0. This leads Forster (2000):214 taoadusion that ‘Bayes’ method is
one thing and BIC is another. The latter is notaglsvan approximation of the
former.’ Let us see where the difference betweeyeBamethod and BIC lies in this

case.

Recall from section 4.2 of this chapter that theCBiethod provides an
approximation to the Bayes FactBi,. The Bayes factor is essentially a ratio of
integrated likelihoods of the data, which is anrage of the likelihoods assigned to
the data by each element of the model weightedhéyptior probability distribution
over all the elements of the model given that tloelehis correct. Even though LIN
is nested in PAR, their Bayes factor is not rewtdcto any particular interval of
values. That is, the Bayes factor of LIN againsRPB.n par) Can be greater than 1.
Intuitively this is because the prior probabilitiswibution over the parameters in
PAR is spread more ‘thinly’ over the three paramsetather than over the two, as it
is the case in LIN. If the data exhibits considé&dmearity then the likelihoods of
the elements in LIN are weighted higher by theironsr within the integrated
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likelihood than their linear counterparts in PARI. [Kuha (2004):213] Hence the
possibility of Bunpar > 1. In general, for any model;Hhat is nested in another
model H the following holds. If H contains an element which is ‘true’ (we shall
spend more time on the topic as to what is a ‘trnedel in the next subsection) and
thus H contains the true element as well, then as thebeurof observations tends
to infinity, B1, also tends to infinity. This is the case for alnasy distribution of
prior probabilities to the parameters given thepeetive models [cf. Dawid and
Senn (2011):19].

Recall, however, that fully Bayesian model selattis based on posterior odds,
where Posterior odds = Bayes factor x Prior odidsvel base our model selection
solely on Bayes factors, our model selection isafifgcted by the issue of nesting of
models, but our methodology is semi Bayesian, sxawe only use the priors over
the parameters given the correctness of respettodels, but do not employ priors
over models themselves. Once we combine a Bayas faith prior odds we obtain
the result that the posterior odds of LIN againsRRare never greater than one. The
BIC method provides an approximation of Bayes factm it also provides an
approximation to the posterior odds just in casephors over models themselves
are equal, i.e., the prior distribution of the migdis uniform — the Prior odds are
then equal to 1. So the fully Bayesian model seladiased on nested models would
never favour a model with fewer adjustable pararseti® an alternative with more
adjustable parameters. As we discussed in the miegirof chapter 3, this is not a

desirable feature of a model selection methodology.

Forster’s conclusion cited above is correct indase of nested models — if we wish
to do fully Bayesian model selection properly waraat work with nested models. A
natural solution to this issue seems to preseetf.it©nce we remove all linear
elements from PAR and thus define PAR*: a + bx + o where ¢ 0, then LIN is
no longer nested in PAR*, and there are no longgrrastrictions on what values
both prior and posterior odds can take. Moreoverlyg it is more fruitful to select
among incompatible models rather than between gemeodels and their special
cases [cf. Howson and Urbach (2006):289].
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Nonetheless, there are further arguments that tlwwemfrom, in Forster’s
terminology, truly nested models (like LIN and PAR)quasi-nested models (like
LIN and PAR*) makes the Bayesian model selectiomedwow inferior to the other
methods which do not have this issue: ‘This manewgceeds in restoring
consistency to [Bayesian] claims. Neverthelesdpés not resolve the puzzle about
why thereshouldbe any difference between truly nested and questied models. In
the other methods of model selection, such as AlGhere is no difference between
these two cases.’ [Forster(2000):214]

Curiously we have not come across the followingstgrations being made explicit
in the extensive literature on model selection. letinvestigate as to why the AIC
methodology works equally well with both nested and-nested models. Let us use
models LIN and PAR again. To calculate the AIC ssare find an element of each
model which has the maximum likelihood within tlespective model. Within LIN
that would obviously be a particular line. What abthe element which has the
maximum likelihood within PAR? It would almost imiably be a parabola with£

0 [unless all the data points lie on a straighe,lim which case the element with the
maximum likelihood will be the same in both LIN amAR. In the realm of
probabilistic statistical modelling that we are cemed with we would expect this
eventuality to be extremely rare.]. A parabolicvauhas three adjustable parameters
rather than two as it is the case for a linear eunence allowing the former to fit the
data better, and thus to have a higher maximuntiiided. So, even though LIN is
nested within PAR, as far as using AIC for moddeaton is concerned, PAR
would almost always be represented by a parabadapamalised for using three
adjustable parameters. The fact that LIN is nestellAR is therefore irrelevant —
LIN and PAR* would always yield exactly the sameCAscores as their nested
counterparts [bar the case of complete linearitgata]. AIC-based model selection
would have exactly the same outcome whether theetadd the choice set are
nested or not. This result generalises to nestetbla@f any mathematical structure.
By using only incompatible models in our choice wetcan use both AIC and BIC

at the same time and compare their results.

In our view the puzzle as to why the move fromytmésted to quasi-nested models

in the choice set should make a difference is aredveather simply in the light of
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the discussion in this section. It makes a diffeeem the case when we wish to use
BIC methodology in the fully Bayesian way. We thirtkat ‘quasi-nested’
terminology makes the move from LIN and PAR to ldNd PAR* in the choice set
sound insubstantial whereas it is a rather impomaove. After all, by taking LIN
out of PAR, we remove an uncountably infinite silhsePAR, which is not that
trivial. Another important move, once the non-negtof the models in the choice set
Is established, is the assumption of a uniformrpwicer the models in order for the
differences in BIC scores to directly approximdte posterior odds on models. We

shall look further into this assumption in sectiba.1.

4.3.2 Truth

There are two closely related issues that have igesrified with regards to the BIC

methodology and truth.

Firstly, it is often argued [for example, Spiegdibiaet al. (2002)] that in order for
the BIC to perform properly as a model selectiatedon it is necessary to have a
“true” model in the choice set. In this contextthg “true” model it is usually meant
something along these lines: “a modalecisely representing the full reality
underlying the phenomena in question”. Within thi€ Anethodology a true model
is such that its Kullback-Leibler divergence frohetputative “truth” is zero. It
seems rather unlikely that every time that we chausdels to constitute the choice
set we manage to include a true one in it. So iatveine no doubt numerous cases
when there are no true models in the choice setagdication of the BIC

methodology seems meaningless and inappropriate.

Secondly, it is said [for example, Forster and $q894):22] that AIC and BIC
were designed for different purposes. Namely, Al@swdesigned to maximise
predictive accuracy and BIC to maximise the prolitgtof a model to be true. So,

they are best for the respective jobs they wergyded for, and no more.

Indeed, the original derivation of the BIC due toh@artz (1978) contains an
assumption that the true model is within the chaiee However, since then the BIC

has been derived in a more general way without eyngd the true model
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assumption — cf. Cavanaugh and Neath (1999). Ghisna question naturally arises
as to what we are to make of model probabilitiethiwithe BIC methodology. There
is a mathematical theorem which states that foepeddent identically distributed
sampling as the number of observatiortends to infinity one of the models within
the choice set tends to 1 and the rest tend tg@oipability [Burnham and Anderson
(2004):276]. What are we to make of this result?atMiioespr (Hi|E) = 1 mean in

the case when no model in the choice set is true?

We can say that a model guasttrue if it is the closest model to truth in the
Kullback-Leibler sense in the choice set. The adgtipconvergence in probability
to 1 of one of the models within the choice set msehat this model is quasi-true in
the sense indicated [Burnham and Anderson (2004)$. curious to see the K-L
divergence emerging in the Bayesian context of&t@ methodology. Nevertheless
here it is. There is actually another interestiraywhis connection works via scoring

rules.

Scoring rues are designed to measure predictiierpgnce against observations of
probabilistic models [both theoretical and stataitias per distinction introduced in
chapter 1] or of probability judgements expressgdhbividuals. Here, as in the rest
of thesis, we shall concern ourselves with prolstitl predictions derived from

models. As usual, it is perhaps most illuminatiogexplain the concept by means of
an example. [For a rigorous overview of scoringesutf. Gneiting and Raftery

(2007).] Suppose that we have two moddisandH, which provide probabilistic

predictions of whether it will rain on a given deuppose that we would like to
have a comparison of their predictive performangenkans of using a mathematical
rule which quantifies a discrepancy between thdabdities that the models yield of
it raining next day and the actual observationghef events. In the table below
[which is a stylised version of the table in Ba¥@008):120] in the top row denoted
‘Event occurred?’ ‘Yes’ stands for the observatibat it rained the next day after
the models provided probabilistic forecasts, and’ ‘dtands for the event that it did
not rain. In each column there are probabilitiesitofaining on the given day

provided by each of the two models respectively.
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Event Yes | No| No| Yes| Yes| Logarithmic Quadratic
occurred Total Score| Total Score
?

Probability

of event

occurring

given by:

H, 09 |01 04 08| 03 -2.14866 0.71

H, 08 |0 |03 09| 01 -2.98776 0.95

Now that we have data what formal expression shautduse to measure the
predictive performance? One of the popular scorirgs is the quadratic rule. It
works the following way. Let us take the first ‘Ye®lumn in the table above as an
example. There model ;Hpredicted rain with probability 0.9 and mode} with
probability 0.8. Since it did actually rain we taltes ‘true’ probability of it raining
on that day to have been 1. [As we mentioned irptelal when introducing the
elementary probability theory, it is not an aintlos thesis to delve into the issue of
interpreting probabilities.] In the quadratic rule square the discrepancy between
the ‘true’ probability and the predicted probaliligo, for the day in the first column
the discrepancy for model;ts (1 — 0.95 = 0.01; for model 2: (1 — 0.8¥ 0.04. The
total quadratic score is provided by adding alhef discrepancies together thus:

Quadratic Total Score for modek ¥ (1 — 0.9 + (0 — 0.1§ + (0 — 0.4 + (1 — 0.8§
+(1-0.3§=0.71

Quadratic Total Score for modebH (1 — 0.8 + (0 — Of + (0 — 0.3 + (1 — 0.9 +
(1-0.1¥=0.95

The model with the lowest quadratic total scorecamsidered to be the most
predictively successful for a given sample of datae minimum achievable total
quadratic score is zero. In fact within the theofgcoring rules the quadratic rule is

identified as astrictly properrule. Informally [for the formal definition cf. Giteng
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and Raftery (2007):359], strictly proper rules areh that there is no strategy of
assigning probabilities to events in order to inwerthe total score (in the quadratic
rule’s case that would mean to lower the total esp@xcept than to stick to the
probabilities that a given model issues. Thathsré is no way to ‘beat the system’,
in a manner of speaking. Strictly proper scorinigsibear a certain similarity to the
exclusion of gambling systems in the context of lgmy. A gambling system is a
set of instructions specifying when and how muctbéd when playing a game of
chance [for example, roulette] with the aim of imyng monetary gain — ‘beating
the odds’ [for an in depth consideration of the laiwexcluded gambling systems cf.
Gillies (2000):chapter 5]. Baron (2008):121 givesexample of an improper scoring

rule.

Another example of a strictly proper rule, whichinsfact pertinent to our topic of
the BIC methodology is the logarithmic scoring ruteworks in the following way.
If a model predicts the occurrence of an event witbbability p and the event
subsequently occurs, then the score ig)In(If the event does not occur, then the
score is In(1 -p). So, for the day in the first column the logamikb score for the
model H; is In(0.9) = -0.10536; foH,: In(0.8) = -0.22314. The total logarithmic

score is provided by the sum of the individual ssoHence:

Logarithmic Total Score for Modéfl; = In(0.9) + In(1-0.1) + In(1-0.4) + In(0.8) +
In(0.3) =In(0.9x0.9x0.6x0.8x0.3) = -2.14866

Logarithmic Total Score for ModdH, = In(0.8) + In(1-0) + In(1-0.3) + In(0.9) +
In(0.1) = In(0.8x1x0.7x0.9x0.1) = -2.98776

The model with the highest logarithmic total scaseconsidered to be the most
predictively successful for a given sample of ddtae maximum achievable total

logarithmic score is zero.
Good (1952) points to the following result:

In(BF12) = total logarithmic score of model 1 — total lagfamic score of model 2,

which with simple algebraic manipulations is appnoxted by -0.5x(BI¢— BIC,).
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So there is a way to interpret BIC scores as piogich measure of predictive
success, on par with the AIC methodology. Anothieiking result is that the
mathematical expectation of a logarithmic scoreegsial to the Kullback-Leibler
divergence [Ehm and Gneiting (2009, Addendum 2@10):

Recall that the AIC methodology aims to provide @ambiasedestimate of the
expected relative K-L divergence to ‘truth’. Thenseems surprising that even
though the BIC methodology also has a link to thé Hivergence, the numerical
expressions of the AIC and BIC criteria are différén a nutshell, the difference lies
firstly in the use of maximum likelihoods in the @Qlas opposed to the integrated
likelihoods in BIC and secondly in the fact thae thenalty term R appears as a
correction of a bias [in the sense that this noisoexplained in chapter 1] in the AIC
whereaKIn(n) in the BIC appears during approximation of thiegnated likelihood.

The connection between AIC and BIC is exploredhfeirin section 4.4.

4.4 Connection between BIC and AIC

Perhaps it does not come as a huge surprise titaaAdl BIC are connected. After
all, the only difference in the formal expressidetween AIC and BIC is that the
penalty ternK [i.e., the number of adjustable parameters] istiplidd by 2 in AIC
and by Inf) in BIC. There are two ways in which we shall explthis connection.
Both of these shall show what would be requiredrafer to yield the AIC from the
Bayesian perspective of BIC. This is the easiest twaexhibit the link between AIC
and BIC, since Bayesian methodology allows us ldraHlility of priors. Recall that
in order to use BIC as an approximation to theyfBldyesian way, two sets of priors
are determined — the priors over parameters gikennodels, and the priors over
models themselves. In two subsections below wel sixglore the kind of priors
required to yield AIC from BIC. In section 4.4.1 shall look at the type of model
prior required [while using the same parameterrpa® in BIC] in order to derive
AIC. In section 4.4.2 we shall look at the typepaframeters prior required [while

using the same uniform prior over models as in BiGjrder to derive AIC.
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4.4.1 Connection via Model Priors

Burnham and Anderson (2004) show that if we usddh@wing model prior instead
of a uniform one, we derive the AIC rather than BIC

q = exp(%l(i In(n)-K;)
' YR, expGKy In()- Ky)

This prior is an increasing function of both of thige of data sample and of the
number of adjustable parameters. That is, for argivumber of observations in the
sample, models with relatively larger number ofuathble parameters have higher
probabilities than models that have relatively fewember of adjustable parameters.
Also an increase in the sample size brings abouneamase in the difference in

probability of models with different numbers of asljable parameters. This can be
seen in the simple example in the table below, whes performed calculations of

such prior probabilities of two models with two atitee adjustable parameters
respectively with samples consisting of 10 and &b8ervations respectively. The
two models are assumed to be exhaustive and mytalusive.

n=10 n=100
K=2 0.4626 0.2137
K= 0.5374 0.7863

Burnham and Anderson call the model prior whicletalds from the BIC to the AIC
a ‘savvy’ prior and argue that this prior is moensible than the uniform prior used
in BIC. In fact they go as far as to state thatwbey use of the uniform model prior
implies that the model selection is done in ordefinid the true model rather than in
order to maximise the predictive performance. Unifoately they do not offer any
argument as to why this should be the case. Wemisawith their position. In our
view any model prior whatsoever expresses the pibtyaassignment to each
model in the choice set that it is (Quasi-)trueegithe background knowledge in the
domain of inquiry. The model prior does not andnmrby itself express our belief
[or lack thereof] that the choice set contains we tmodel. For any model prior

whatsoever we can represent the posterior oddfieaslifference in logarithmic
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predictive scores. Moreover, there is another wayshow that Burnham and
Anderson’s claim with regards to the “meaning” obdel priors is incorrect. We

shall consider it in the next section.

There is a way, however, to argue for Burnham ande#son’s contention that the
savvy model prior is more sensible than the unifane. In fact Popper (1968,
Appendix viii) provides a version of such an argaméopper argues that simpler
hypotheses ['simpler’ in the precise sense thay tieve relatively fewer adjustable
parameters] have relatively lower probabilitieshla view simpler hypotheses have
more empirical content, which is measured by thgrek of their testability. Simpler

hypotheses are more testable in the sense thag¢ ftlsea greater variety of
observations that would falsify them. That is inpper's view there is a larger
number of possible data points that would be incatibjfe with a simpler

hypothesis, and so more possibilities for the semplypothesis to be wrong relative

to a more complex hypothesis.

‘Simple statements, if knowledge is our object @rde prized more highly
than less simple ondsecause they tell us more; because their empirical
content is greater; and because their better tdstab

Popper (1968):142, original italics

Jeffreys (1961) holds the opposite view to Poppertte issue of probability of
relatively simpler hypotheses. In his opinion tire@er the hypothesis is, the higher
its prior probability, ceteris paribus. This helsdahe Simplicity Postulate. He gives
two reasons for this postulate. Firstly, simplepdijpeses are more likely to be
predictively successful [Jeffreys (1961):4]. Sedgnthe Simplicity Postulate fits
well the common scientific practice, at least irygibs. That is, Jeffreys argues that
physicists behave as if they consider simpler hygsgs more likely to be true by
always considering a linear hypothesis first, anly then a quadratic one, and so on
[Jeffreys (1961):47 and Jeffreys (1973):63].

Starting with the second of Jeffreys’ reasons, view is that it is perfectly
compatible with physicist’'s behaviour to think tisite considers simpler hypotheses
first for ease of calculations and in an explonatway, rather than necessarily due to

believing that the simpler hypotheses are true. ®hser in which a scientist
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considers hypotheses does not necessarily implyarticular order of probabilities.
Indeed, as we just have seen, Popper reached thasitg conclusion, and his

approach fits this scientific behaviour as weltlzet of Jeffreys.

The first reason for adopting the Simplicity Poatal[that simplicity is the guide to
predictive success] requires an independent argufoeit. As it stands, it is just an
assertion. Prima facie, it would be equally reabtmto state that complexity is the
guide to predictive success. It is true that sioipli has for a long time been
considered to be one of the attributes of a goaehsfic theory [cf. for instance
Kuhn (1977)]. However, we do not think that adogtihe Simplicity Postulate as
the constraint on setting the model priors is asi@ strategy. Scientists should be
free to set the model priors in the way that thegrd appropriate given the particular
background knowledge and the domain of inquiry.eNibat even though Jeffreys’
Simplicity Postulate implies that the prior prodabiover the models in the choice
set is a decreasing function of the model compfex®t measured by the number of
adjustable parameters that the model containsjrstiis own examples he uses the
uniform prior over models — “for calculation”. Weal consider Popper’'s argument
that the simplicity of a hypothesis varies in tipposite direction to its probability in

detail in chapter 5.

Notice, incidentally, that we have so far managedavoid talk of simplicity,
parsimony and such-like notions. In our view, thieipretation of the penalty terms
in both AIC and BIC as ‘simplicity in action’ is aecessary. In both AIC and BIC
the penalty for complexity arises from the formaligself — in the AIC the penalty
term for the number of parameters arises as theaan term for the asymptotic
bias, and in the BIC it arises during the procdsapproximation to the integrated
likelihood. The notion of simplicity was not inputto either of these methods — it
emerged from the formalism as a by-product. Thusdeenot concentrate our
attention on this feature, for we get no epistemicchase on it over and above the

model selection criteria themselves.

For us there is no full proof formal way to preberhow model priors should be set.
Each particular case demands deliberation on $kisei Every purely formal rule for

setting priors i®d hoc
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4.4.2 Connection via Parameter Priors

We mentioned in the beginning of this section thate are two ways of deriving the
AIC result from the BIC methodology. The first wayas to keep the parameter
priors the same as in the BIC and to derive a mpdet which would take us to the
AIC result. This is what we did in the previous temt. Now we shall keep the
uniform model prior fixed, and show that there iparameter prior which again
takes us to the AIC result from the BIC setting.

This section closely follows Kieseppa (2001a). ldigproach is to consider how
informative any given probability distribution iSrom chapter 1 recall that it is often
possible to fully determine a probability distritmrt by two numbers [depending on
the distribution] — by its mean and its varianceiqtis the case for the normal
distribution — cf. section 1.3.2]. The variancehis measure of dispersion of a given
distribution. That is it measures how spread ow fossible values that the
parameter can take given the structure of theilligion. The higher the variance the
more spread out the distribution is around its mesne. So the variance is said to
measure the informativeness of a given distributiothe sense that the higher the
variance the less informative the distributionirece there are more possible values
that the parameter can take. In the multiple regpaescase the variance is substituted
by the covariance matrix, but the idea is the salhas also noted that the
informativeness of a probability distribution isoportionate to the number of
observations. That is the more observations it &sed on, the higher its
informativeness. It is then possible to rank déferprobability distributions by their
informativeness in terms of the number of obseovatiexpected to be required in
order to obtain given variance. [For formal treattmef this topic cf. Kieseppa
(2001a).] Here is the formula for a general Bayesmodel selection criterion

without assuming any particular parameter prior:

— 2In(L(@ | data, g)) + KIn(n/ng)
whereng is the measure of informativeness in terms of neany observations the

information in the parameter prior is based on.skppa applies this idea to the AIC
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and BIC results and shows that the informativenafs8IC parameter prior is

equivalent to a sample with one observation [wigh= 1] whereas the parameter
prior required in order to obtain the AIC resulshhe informativeness equivalent to
e’n observations. Hence the BIC parameter prior hasstaat informativeness

independent of the number of observations contaimedgiven sample, whereas the
AIC result is equivalent to the Bayesian resulthwihe parameter prior which is
more informative and its informativeness grows with number of observations in

the sample.

In fact there are infinitely many Bayesian modeadtestion criteria — it all depends
what value ofny one finds appropriate. Kieseppa (2001a) argues ttha is a
potential weakness of the Bayesian approach, bedassems to lose any normative
character to the conclusions of model selectionoun view this flexibility is a
positive attribute of Bayesian model selection mdtiogy allowing one to reflect
one’s ideas about the way the parameters distdbwithin each individual model

selection problem.

Finally, regarding Burnham and Anderson’s contaniio the previous section that
imposition of a uniform model prior in BIC someh@ammits us to the search for
truth whereas their savvy model priors that leadAlG do no such thing. In this
section all of our results assume the uniform pdistribution over models. We have

derived AIC under this assumption. Hence, theit@otion is incorrect.

4.5 Comparison between BIC and AIC

4.5.1 Statistical Consistency

Numerous sources [e.g., Keuzenkamp and McAleer1(@Gfate that AIC is not a

statistically consistent estimate. However, the BlGtatistically consistent.

Different questions can be asked about consistehgyC.
1 “.[W]hether AIC is a consistent method wfaximizingpredictive accuracy in
the sense of converging on the hypothesis witlgthatest predictive accuracy

in the large sample limit.
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2 ...[W]hether AIC is consistent estimator of predietimccuracy, which is a
subtly different question from the first.
3 ...[W]hether AIC converges to the smallest trnedelin a nested hierarchy
of models.
The answer to the first two questions will be yesyhile the answer to the third is
no, AIC is not consistent in this sense, but tlast fdoes not limit its ability to
achieve its goal.’ [Forster (2001):113]

The AIC was designed as an estimator of predid@n@iracy, so the charge should
be that AIC fails to be consistent with respecestimating the predictive accuracy.
Forster shows that this is not the case. ‘Akaikevgn criterion minimizes the
quantity —2(lod.(6'k) — K), which estimates -#2(6'). But note that this is a strange
thing to estimate, since it depends on the numbeseen datan.” [Forster
(1999):113] ‘The correct response to the ‘problesto divide the estimator and
target byn, so that the target does not depend on the sasmpe ... AIC does
provide a consistent estimate of predictive acounaben it is properly defined.’
[Forster (1999):114] It seems that Forster asdbds the AIC as it is commonly

defined (see Introduction) is inconsistent withpess to predictive accuracy.

However, Kieseppé also discusses the question distency of AIC and reaches
similar conclusions to Forster, but still uses tinginal form of AIC. So, it seems
that either Forster is incorrect in saying thatphaper definition of AIC score is the
one divided by the number of data points in the@amor Kieseppa is correct in
using the original AIC.

Bandyopadhayay and Boik (1999) note that ‘[Forstefaim] is true in the special
case of regression models whefds a known constant. In addition, if one is wigfin
to assume that the approximating family is iderttoathe true family of models,
then AIC is a consistent estimator of predictiveumacy. Forster’s claim, however,
is not true in general. If the approximating fammtysspecifies the true family, then
AIC no longer is consistent.” [Bandyopadhayay amikB1999):S400]

Now, Forster turns to the charge that AIC is inistesit with respect to estimating

K. Forster considers the case of nested modelsdiatidguishes two cases. In the
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first case, ‘...the true hypothesis will first appé&aa model of dimensiok*, and in
every model higher in the hierarchy.’ [Forster (2D014] Now the question arises
of the desirability of estimating as close as possible K¥. Forster notes that in
cases where data is drawn from quite a narrow ramgesupposing that we are
choosing between LIN and PAR, ‘...for even quite éavglues oh, it may be best
to select LIN over PAR, and better than any otlanify of polynomials higher in
the hierarchy. Philosophically speaking, this is thteresting case in which a false
model is better than a true model. However, fofigehtly high values oi, this
will change, and PAR will be the better choice finese the problem of over fitting is
then far smaller]. Again, this is an example in e¥hiasymptotic results are
potentially misleading because they do not extemdntermediate data sizes.’
[Forster (2001):114]

‘In the second case the true hypothesis does aa@nywhere in the hierarchy of
models. In this case the model bias will keep desirgy as we move up the
hierarchy, and there will never be a point at whicstops decreasing. ...There is no
universally valid theorem that shows that BIC does better than A[Edrster
(2001):115] ‘In both cases, the optimum model mowgs the hierarchy a®
increasesln the first case, it reaches maximum value K*, #meh stopsThe crucial
point is that in all cases, the error of AIC (asemtimate of predictive accuracy)
converges to zero astends to infinity.” [Forster (2001):115, italicslded] Forster
says that other information criteria are also cstesit and he urges that it is most

important what happens in the intermediate casenahah the limit.

It is rather difficult to see what exactly Forstdaims at the end of the day. At the
beginning of the section on consistency he seemasgiee that AIC is not consistent
with respect to estimatinigand that this is of no consequence since thigtsvhat
AIC was designed to estimate anyhow, whereas tldeoérthis section seems to
suggest that AIC is actually consistent with respged {for example, ‘After all,

AIC does successfully converge on the true hypaghig¢Borster (2001):115]}.

Kieseppa (2003) sheds clearer light on the issustéyng the result that ‘...when
the sample size is large and the true curve isaligta horizontal straight line, the

probability with which AIC will correctly recommenthe model which contains
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only horizontal straight lines is approximately 9586d the probability that it will
recommend the larger model which contains alsothal other straight lines is
approximately 5%.’ [page 18] Unfortunately, Kiesegmd to omit the proof of this
result due to the limitations of space. This resgltin line with Forster’s
argumentation that AIC serves the purpose of pgkimypotheses that are
predictively accurate rather than that of findirgfeerging upon the true model with
the minimum number of dimensions: ‘...it [AIC’s recamandation] will with a very
great probability be an acceptable choice, if tiee af the researcher is to find a
curve which is “predictively accurate”, althoughwitll be a bad choice if her aim is

to find out whether the true curve is a horizotited or not.” [page 19]

4.5.2 Relative Performance

When the number of observations in a sample excédis., when Inf) > 2], BIC

starts to give progressively greater weight to ligpses with fewer adjustable
parameters relative to AIC. Studies indicate th#tpther things being equal, BIC
performs better in set-ups where there are very vaviables with strong effects
whereas AIC performs best in contexts when theee samveral variables with

moderate effects.

Let us return to the example that we used in chaptéo show how the AIC
methodology works, and add the BIC to it. We reptsd table it here for

convenience.

Cement hardening data with four regressor variablesx;, x», X3 and x4 and a
response variabley

X1 Xo X3 X4 y

7 26 6 60 78.6
1 29 15 52 74.3
11 56 8 20 104.3
11 31 8 47 87.6
7 52 6 33 95.9
11 55 9 22 109.2
3 71 17 6 102.7
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1 31 22 44 72.5
2 54 18 22 93.1
21 47 4 26 115.9
1 40 23 34 83.8
11 66 9 12 113.3
10 68 8 12 109.4

Where the regressor variables (in percentage ofwéight) are: x1 = calcium
aluminate (3Ca0.AlI203), x2 = tricalcium silicateC@0.Si02), x3 = tetracalcium
alumina ferrite (4Ca0O.AlI203.Fe203) and x4 = diaadcisilicate (2Ca0.Si02); the
response variable is y = total calories given offfirly hardening per gram of cement
after 180 days.

Model K BIC (A) AIC (A) AlCc (A)
12 4 0 0.45 0
124 5 2.73 0 3.13
123 5 2.65 0.04 3.16
14 4 3.46 3.77 3.32
134 5 3.4 0.75 3.88
234 5 8.31 5.6 8.73
1234 6 5.06 1.97 10.52
34 4 14.8 14.88 14.43
23 4 26.82 26.06 25.62
4 3 29.6 33.88 31.1
3 29.78 34.2 31.42
24 4 34.42 35.66 35.21
1 3 32.18 38.55 35.77
13 4 36.84 40.14 39.7
3 3 37.9 44.09 41.31

Ghosh and Samanta (2001):1143

As we can see, in this case BIC and Al€sults broadly agree with one another.
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5. Model Selection Methods and Scientific Realism

5.1 Introduction

In the previous chapters we surveyed the clasaimlsome most recently developed
approaches to model selection. We have seen thatethods have their strengths
and weaknesses. We reviewed the objections to étleants and argued that none of
them were devastating so long as one is awareeaf filundations. In this chapter
we explore what consequences, if any, the methbdsodel selection that we have
considered have for some wider issues in the piplog of science. In particular,

what bearing these methods have on the debatee@tigntific realism/anti-realism.

There are several versions of scientific realis@lable out there. However, we find

that the following three theses capture the featofescientific realism well.

‘Scientific Realism is a philosophical view aboutience that consists in three

theses.The Metaphysical Thesishe world has a definite and mind-independent
structure.The Semantic Thesiscientific theories should be taken at face value
They are truth-conditioned descriptions of theitended domain, both observable
and unobservableThe Epistemic Thesismature and predictively successful

scientific theories are well-confirmed and approaiety true of the world.’

[Psillos (2007):226]

First, our focus is going to be the Epistemic Thedt presupposes both the
metaphysical and the semantic theses. We will labkhe epistemic thesis in its
simplified form. That is, as the notion that prediely successful scientific theories
are approximately true. There are numerous argwsmaoth pro and con scientific
realism in general and the epistemic thesis iniqdar. Arguably, among many
arguments about scientific realism, the two mosirpnent ones so far are the no-
miracles argument [some, including ourselves, darsit an intuition — cf. Worrall

(1994)] and the argument from pessimistic meta-atida.

The no-miracles argument [NMA - this formulation dsie to Putnam (1975)]

purports to establish that predictive success aénsific theories licences the
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inference to their [approximate] truth. That is, ywielse would a theory be
predictively successful? It would be a ‘miracle’ af theory were predictively

successful but false.

In counterbalance to the NMA there is the argunfiemh pessimistic meta-induction

[cf. Laudan (1981)]. It has been noticed that tHexee been some very predictively
successful theories in the history of science dévantually turned out to be, strictly
speaking, false. The paradigm example is Newtomagchanics, which was

superseded by Einstein’s theories of relativity. slich predictively successful

theories like Newton’s can be shown to be falsepaly well be the case that other
predictively successful theories that are curreatitertained may eventually turn out
to be false too.

Second, we shall look at an argument against tipelpoidea within the scientific

realism field that science aims to find true thesri

5.2 Sober’s Counterexamples

Model selection methods that we have been consglen this thesis attempt to
capture predictive success, so it is natural todeomvhether these methods have any
bearing on the issue of scientific realism. In fadtiot Sober (1999, 2002) takes up
the challenge to show, firstly, contrary to thedig@mic Thesis of Scientific Realism,
that there are false scientific theories [in ousecarobabilistic hypotheses] that are
predictively successful. In fact Sober does notegput it this way himself, but his
argument clearly goes against the epistemic theégesconsider this counterexample
in section 5.2.1. The second counterexample pwporshow that seeking truth and
maximising predictive accuracy do not always goetbgr. We consider this

counterexample in section 5.2.2.
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5.2.1 On the Epistemic Thesis of Scientific Realism

Let us consider Sober’'s example with differencemean heights of corn plants in
two different fields. Suppose that there are tw@aeeht fields in which corn grows,
and suppose that we are interested in testing dbewing hypotheses about the
average heights of wheat plants in both populatidve are doing so in the Neyman-
Pearson way:

Ho: [ua —po| =0

Hi: Jua—po| # 0

Sober argues that the null hypothesis is obviotake — surely the two population
means cannot bexactlyequal to several decimal places. Hengestbbviously true.
Scientists, however, routinely test such false tiypses against true hypotheses.
Assuming that scientists are rational and thatpteglictive accuracy is their only
goal, Sober urges us to conclude that false hypethean be maximally predictively
accurate — that is, sometimes even more predigtaveturate than true hypotheses.
Unless scientists believe thag I8 more predictively successful than, khey would
not bother testing such obviously false hypothesgainst obviously true ones.
Scientists seem to be willing to accept a falseokiygsis as long as it is predictively
successful. This argument, he contends, lends mceddo methodological
instrumentalism — ‘the idea that theories are umsgnts for making predictions,
[and] that predictive accuracy is tloaly consideration that matters [in science]
[Sober (1999): 4, 5].

There are counter arguments that deny that thegealeof scientists is the accuracy
of prediction. However, we have a different angled are willing to grant predictive

accuracy as the goal in this particular examplenfsiatistics. Indeed in this thesis
we have been looking at model selection exclusivetypredictive purposes. We

shall concentrate on the part of the argumentgbas against the simplified version
of the epistemic thesis of scientific realism. Thigument against the epistemic
thesis seems to be the following. The epistemisishasserts that predictively
successful hypotheses are approximately true. Werestensibly have an example
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of a hypothesis which is predictively successfule[@ssume so] but which is

obviously false.

Recall from chapter 2 a feature of the NP hypothe=sting methodology is that it is
important which hypothesis isptdnd which is KL The method is more conservative
towards H, so [depending on #it can take quite a substantial difference betwee
w1 andp, to reject H in favour of H [the actual testing for this difference is done
using respective sample meahsandéd,]. We contend that rather than thinking that
a false hypothesis is more predictively accuraterists in this case use

Ho: Jus — uo| = 0 as a place-holder foroHthe difference between; and p; is
sufficiently small for us to disregard for our pages’. What is ‘sufficiently small’
or statistically insignificant in the NP methodojoig defined by the range of values
of the parameter which is not the critical regiaf. [section 2.2]. However, we
briefly considered the notion of practical sigréfince in section 2.1.2. We believe
that our interpretation of what scientists takgtél stand for is consistent with this
notion. There is also a notion gslibstantivesignificance [cf. Mayo and Spanos
(2006) and references contained therein] thatgalie the meta-statistical principle
of severityof a statistical test. Unlike practical significan the severity of a test and
hence its substantive significance has a precisantgative expression. It is
calculated on the basis of observed data. The isgwdra test is analogous to the
concept of severe testing used by Popper (1968)e—ore severe a test that a
scientific theory survives, the more corroboratedsi Here the greater degree of
severity confers more evidential support to a stigal hypothesis. Hence the
concept of severity of a statistical test moves yawieom the behavioural
interpretation of NP tests towards evidential suppae. There is a lively debate on
this subject of severity testing — cf. Achinste2®@3), Howson (1995, 1997), Mayo
(1996, 2003, 2005). Here we shall no pursue ttpgctturther, but note that it may
constitute a fruitful avenue for further researohgeneral, and in connection with

Sober’s views in particular.

Returning to the case that Sober discusses,ntpsitant to note that in this case the
testing of K against H at, say, the 5% level of significance is equivaterfinding a
95% confidence interval fop ] — po| [cf. section 2.5]. In fact Sober seems to have

found just such an interval by means of simulatigi$ie] simulations closely agree
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with the analytic solution that Branden Fitelsortaiteed, according to which pH
will be more predictively accurate (in expectatitmn [H] precisely when
| — o | < 1.34898&/Vn.” Sober (1999):21, footnote 7

Sober and Fitelson in fact found a confidence vrlefor i — pg|! Once we
reinterpret this case in such a way that rathen thaing a deliberately false
hypothesis for greater predictive accuracy, thergists implicitly check whether the
differences in means fall within the confidenceemal, i.e., they implicitly check
whether |u; — 2 | < 1.3489&/n , it is no longer obvious at all that the i false.
We contend that scientists who use such point gecsumposite hypothesis tests
simply do not spell out in detail what they inteledachieve by such testing, for it is
often makes little practical difference for thenthkre is an insignificant deviation
from zero. On this basis we argue that the putatorenection between the falsity of
a hypothesis and its predictive accuracy disapp&migntists may be just a bit fast
and loose with regards to describing the hypothdseghe NP framework allows

them to do so.

‘If scientists interpret the [i] as saying that the means are no more than 2
inches apart, then they shouldt reject the [H] when they find that); and

0, differ by 1 inch in a large sample. However, tiiprecisely what they do.
This argument generalizes to any setting,darge or small. The behaviour
of scientists shows that they interpreg]kterally.’

Sober (1999):28, notation modified to fit our usage

In our confidence interval fory, — i, | abovee = 1.34898c/\n. That is,¢ is the
critical value beyond which {His rejected. Asn increases, the critical value
becomes smaller. In the limit agends to infinityg tends to zero. Hence, if this was
the way that the NP method was used, in a largagingample more or lessy
deviation in the difference between sample mearadd, from zero would lead to
rejection of H. We contend that in the quote above Sober’'s atcolstatistical
practice is inaccurate. The users of NP tests aféeluce the critical region [or,
equivalently in our case of the confidence intemgdrpretation, they would increase
the level of confidence beyond 95%] to accountth@ over-sensitivity of the test
with large n to the tiniest differences in values — cf. ourcdssion of Lindley
Paradox in section 2.2. The behaviour of sciensstsve know it is consistent with

our interpretation that they do not takelkerally.
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So, if Sober’s attempt to show thag 14 obviously false does not succeed, is there a
way to reformulate his counterexample? We think tinere is, but it does not
succeed either. Let us start with considerationtleé notion of hypothesis

‘acceptance’ that Sober employs.

‘In formulating the question as one about “accepgdnl leave open whether
“acceptance” meanselieving that the hypothesis is troebelieving that it
will be predictively accurate[footnote: Although I'll formulate the problem
in terms of the concept of “acceptance”, this imatter of convenience; the
dichotomous concept of acceptance could be replacdgdthe concept of
degree of belief. Formulated in the latter way, destion would be whether
the goal of science is to say how probable it & trarious hypotheses are
true, or to say how predictively accurate one sth@xipect those hypotheses
to be.]’

Sober (1999):14

As it is usually understood, to accept a hypothestkin the NP framework means
to behave as if it is true [cf. sections 2.2 an8 far elaboration]. Thus in the
example with corn plants accepting fvhen the difference between sample means
falls within the confidence interval] involves beireg as if H is true, and not
behaving as if it was false, as Sober suggestthdmuote above Sober would be
happy to replace this dichotomous concept of aaregt by talking of probability of
hypotheses. As we know, there is no place for ditibias of hypotheses in the NP
methodology. We would need to move to the Bayedramework to use this

concept sensibly. Let us try to recast the courtample in a Bayesian way.

In a Bayesian rendition of the corn plant example $cientists would have to be
explicit about what range of values they would expgbe differences in the mean
values of the two populations of plants to lie iret us then take the de facto
confidence interval of a kind that Sober and Fielyielded in the NP example
above as our null hypothesis and the interval datsihe confidence interval as our
alternative — thus null and alternative are exhaestnd mutually exclusive. For the
sake of an argument let us suppose a8 so that our hypotheses are:

Ho: (11 —w2) € [-3, 3]

Hi: (11 —po2) € (-0, -3) U (3, )
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We need to assign prior probabilities to these tygges. Sober could argue thiat
should be assigned much lower probability thkhnpossibly on the grounds that the
interval of possible values that is suggestetHpys much shorter than that Bf. So

in this context rather than arguing that the nyjbdthesis is obviously false but is
nonetheless deemed by the scientists predictivelgessful [as before], Sober could
argue that the null has much lower probability einlg true [prior to observing the
difference in sample means], but it is still deem®ale predictively successful than
the alternative which has a higher probability. sSTergument sounds Popperian —
recall our discussion of model priors in sectiof. 4. It could be argued in the spirit
of Popper thatH, has a much higher empirical content théyn— that is, there are
many more possible observations that are incompatitih Hy rather than withHs.

If this were the case then we would assign muctetqwior probability tadHp than to

H, — in proportion to their respective empirical cnts.

Unfortunately this argument does not work eithdroiCe of the interval [-3, 3] may
suggest that the scientists have an expectatidm 6f u2) to lie within this interval,
presumably on the basis of their background knogded his suggests that at the
very least there is no reason to set the priothemull much lower than that of the

alternative.

5.2.2 Truth and Predictive Accuracy

In philosophy of science it is commonly thoughtttimaaddition to the three theses
cited in section 5.1, scientific realist is committto seeking truth as the aim of
science. How does it connect with the aim of gk accuracy, which we have
been assuming in this thesis? The two aims seeptdar together — we would
expect true theories to be most predictively adeuraf. Nagel (1979):139].
However, Sober (1999) uses the following examplshow that seeking truth and
maximising predictive accuracy do not always caleci

‘Suppose that one of the buses numbered 1-10 yakesght to Fred’s door,
while the other nine take you very far away; on ttieer hand, all of the
buses numbered 11-20 go very near Fred’s houseglhaone of them goes
right to his door. ... If your goal is to get as @aass possible to Fred’s house,
you should take a bus numbered 11-20. The potihisseven if a bus with a
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low number is the one that goes closest to Freolsé, it doesn’t follow that
the best way to get close to Fred’s house is te talow-numbered bus. ...
This suggests that there may be inference problameéhich trying to find

the truth and trying to maximise predictive accyrdead to different
decisions. The bus example suggests that this magobsible even if no
hypothesis is more predictively accurate than thint

Sober (1999):13

Here finding the truth maximises predictive accyrdmut the probability of picking
the true hypothesis is low whereas the alternasvi® pick a hypothesis which is

very close to truth with certainty.

We agree with Sober that in his bus to Fred’s h@xsanple trying to find the truth
and trying to maximise predictive accuracy leaddlifferent decisions, and that we
would also take a bus numbered 11-20. However,rgeeathat if we refine the goal
of finding the truth in a quite natural way, thee westore the connection between
truth and predictive accuracy.

In this example there is uncertainty as to howdaagiven bus would take us from
Fred’s house. We suggest that this uncertaintybsahandled probabilistically. In
this case we can substitute the goal of seekingrtitie by the goal of minimising the
expectation [in the statistical sense of a prolitghweighted average — cf. chapter 1]
of the divergence from truth. Then trying to mingmithe expectation of the
divergence from truth and trying to maximise préde accuracy lead to the same
decision — choosing a higher numbered bus. In gtstef uncertainty of the kind
that is there in the bus to Fred’'s house exam@eientific realist should refine her
aim from seeking truth to minimising expected dgece from truth. Indeed, it is
not accidental that scientific realists use thecept of approximatetruth in the
epistemic thesis of scientific realism. Likewise tam of approximate truth is more
realistic than that of trutlsimpliciter. Minimising expected divergence from truth

can be thought of as operationalising the concegpproximate truth.

Using the bus to Fred’s house example Sober a@geaast the principle that:

(*) If you want to maximize A and T maximizes Agtinthe best way to maximize A
IS to try to maximize T. [Sober (1999):12]
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We think that once we refine our goal in the waggmsted, the bus to Fred’s house
example provides support to the principle (*). e example we are urged to choose
a bus 11-20, because such a choice would minirheeéistance to the Fred’'s house
[which is the proxy for actual truth in the exanjpl&rguably such minimisation of
distance to truth can be thought of as maximisaiotmuth. Indeed, this is the very
idea behind the AIC framework, which aims to mirsmithe K-L divergence to
‘truth’. In this example the expected distance ted= house in each case is a
probability-weighted average of minimum Euclideastahces within Fred’'s house
that each bus from No. 1 to 10 and from No. 11Qaespectively brings one. For
instance, using the Principle of Indifference as gextion 4.1.2.1 the probability of
picking the bus to ‘truth’ is 0.1. It is obviousaththe expected average distance
would be shorter if one were to choose a bus fromm N to 20. This does not
violate the idea that the search for the minimurmpeexed divergence [in this case

Euclidean distance] from truth and search for mtacgly accuracy go hand in hand.

5.3 AIC, BIC and the Epistemic Thesis of ScientiRealism

In section 5.2.1 we argued contra Sober that whepeply understood the Neyman-
Pearson methodology was logically consistent withgimplified epistemic thesis of
scientific realism [that predictively successfulestific theories are approximately
true]. There we attempted to give Sober’s corntslaxample a Bayesian twist, but

conclude that it was not successful either.

Let us now see what relation if any the AIC and Bh€thods have to the epistemic

thesis of scientific realism.

In section 3.2.2 we saw that the AIC was derivedhasasymptotically unbiased
estimator of relative expected Kullback-Leiber dgence from the putative ‘truth’.

In section 4.3.2 we saw that the BIC can also beadht as estimating the Kullback-
Leibler divergence from the ‘truth’, but in a Baj@s way and on the assumption
that the predictive performance of models in theiad set is properly judged by the
logarithmic scoring rule. There we referred to A€ or BIC-best model as quasi-
true in the precise sense that such a model isvallaK-L closer to the ‘truth’ than

any other model within the choice set, although dhasi-true model can still be
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arbitrarily far away from such ‘truth’ — we have mea about the absolute rather
than relative divergence. In section 4.4 we shotkedconnection between AIC and
BIC within the Bayesian setting. Therefore, thédaing deliberations apply to both

AIC and BIC methods, although for ease of presemtate will be mentioning AIC

only.

So in the AIC model selection we set out to finguasi-true model within the range
of models that we think may be relevant to the [gwbat hand. Suppose that the
AIC-best model that we have found actually turnstoube predictively successful.
Does it then mean that this model is approximatielg? Unfortunately the answer
has got to be — not necessarily. Just becauselengthod was explicitly set up to
approximate the relative K-L divergence from trutha given set of models in order
to maximise predictive accuracy, and the AIC-besideh is then found to be
predictively successful, this is no argument foccass in approximating the truth.
We simply do not know whether we succeeded inghdeavour — to re-iterate, it is
still possible for the AIC-best model to be arbilsafar away from the truth, nothing
in the AIC method precludes this. The person inkbihg to Fred’s house example [let
us call her Daisy] in section 5.2.2 potentially hapistemic access to how
approximately true her selected hypothesis turristmipe. All she has to do is to
bring a tape measure [or some device that utilisesGlobal Positioning System —
we are going to take it for granted that thereoie reliable method of measuring
the distance that Daisy can use] with her and meabie actual distance from the
bus stop at which she eventually gets off to Fréabgse. Notice that this measure
simultaneously serves as a measure of the preglisticcess of the hypothesis that
Daisy selected and as a measure of its approxitnate [or divergence from truth,
which we use interchangeably]. In our case we hbee epistemic access to how
predictively successful our AlC-best model has édrout to be, but crucially we do
not have the luxury of epistemic access to theahaivergence between our AIC-
best model and truth. Hence the AIC model seleatiethodology does not yield an
argument against the epistemic thesis of scientfidism either. That is, there is no
way to argue that, despite our best efforts toctiv@rary, our predictively successful
AIC-best model is in fact further away from thetkrihan all the other models
within the choice set. In other words there is naywo show by means of an

argument that our predictively successful modet ict quasi-false.
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Of course it is tempting to argue that it is highiylikely that the predictive success
of our AIC-best model is attributable to anythingeeexcept for its relative closeness
to truth. However, that puts us back on the famijeounds of the No-Miracles
Argument, which in its turn familiarly counted by tgpe of pessimistic meta-
induction [which we contend is more accurately mefé to as ‘the pessimistic
induction from the history of science’ — cf. God#i#®mith (2003):177]. There are
instances of model selection not leading to predibt successful models or
yielding models that are predictively successful dowhile, and then cease to be
such, particularly in a field such as economicsnefseiccessful predictive modelling

IS notoriously elusive.

We thus conclude that the model selection methgiedoconsidered in this thesis
are neutral with respect to the arguments regartiagepistemic thesis of scientific
realism. They do, however, serve the purpose afstewy the familiar arguments in
the new light, which can be illuminating.

There is a further worry that our neutrality corsitun could play into the hands of
the antirealists since being a scientific reakshot required in order to understand
the model selection methods considered in thisigh@his worry seems to stem
from an argument that antirealists such as vansBeaa(1980) put forward, viz., the
argument that scientific realism is unnecessarifiationist. That is, the statement
that predictively successful scientific theoriege @pproximately] true is logically
stronger than the statement that predictively ssgfoé scientific theories are
empirically adequate. One can maintain the lattey yan Fraassen does] while
remaining agnostic about the former, and not loggheng scientifically important

in the process.

We think that there is no onus on someone who fthdsNo-Miracles Argument
plausible, and accepts the philosophical positibrsaentific realism, to provide
further justification of theirphilosophical stance by having to demonstrate what
useful purpose their commitment to scientific realiserves in a particular field of
science. Naturally, it is superb when one’s phipgscal views lead to advances in

the empirical realm, but it would in our view beotstrong a requirement for
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judgement of viability of such views. In this waitkere is nothing to undermine the
plausibility intuitions behind the No-Miracles Angent. We venture that our
neutrality conclusiomeally is neutralwith regards to the debate between scientific
realists and antirealists.

Finally, one may wonder, as indeed some have dwhether the model selection
methodologies that we consider in this thesis @uoded to rationally reconstruct the
key moments of model choice in history of scierfe@. example, Forster and Sober
(1994):14-15 argue that the AIC methodology proside reason for choice of
Copernicus’s astronomy as compared to Ptolemyeratny. Kieseppa (1997):37-
39 points out that the AIC framework has not beeovgd to apply to periodic
functions [in fact there are examples of failuréswch applications] and that neither
of the astronomical systems are in the form ofidteal hypotheses specifying
different probability distributions for the obsebla quantities. On these grounds we
agree with Kieseppéa [ibid.] that reconstructingsticase in terms of AIC model
selection is implausible. We struggle to come ughvanother case in history of
science which could be reconstructed in the mod&tcion fashion with some
plausibility. Does this affect our analysis of tieéation between the model selection
criteria and the issue of scientific realism? Wdieve that it does not. It does,
however, remind us of exactly which types of modbks model selection methods

are applicable to.

117



6. Conclusion

In this thesis we have considered the classicatogghbes such as those due to
Ronald Fisher and to Jerzy Neyman and Egon Peaesonyell as more recent
approaches of Akaike Information Criterion and Bayeformation Criterion to the
problem of model selection for predictive purposé&e find that the Fisherian
approach can be thought of as an approach to tideon of model selection only in
a rather Pickwickian sense, the Neyman-Pearsonadétha limited but nonetheless
viable sense, and the AIC and BIC methods in tlig-blown sense of aiming to
choose a model with the optimal mathematical simect We then move onto
considering the numerous objections that have besmeed in the recent
philosophical literature to the AIC and BIC metho@ief among these objections
is the Subfamily Problem [about rendering the methiefunct by fixing of
adjustable parameters within models in the choatarsthe light of the sample of
data at hand] that we look into within the AIC segt and the issues with the nesting
of models and the ostensible requirement for inctusf the ‘true’ model within the
choice set for the BIC method. Upon careful consitien of the foundations of the
AIC and BIC and of the arguments involved, we artha at the very least none of
these issues are devastating for the two methomslag model selection. We then
show that there are ways to connect AIC and BlQiwithe setting of the Bayesian
theory of statistics and argysace Burnham and Anderson (2004) that the way in
which one sets model priors does not imply anyi@agr attitude towards the aim
of using the BIC method. We also show that witlhie Bayesian setting there are in
fact infinitely many model selection criteria thedve similar form to AIC and BIC.
Namely, they penalise the maximum likelihood of thest-fitting element of the
given model by a function of the variance of theapaeter prior multiplied by the
number of adjustable parameters that the modehomtWe argue that this state of
affairs is favourable for the scientists who cawage the prior according to their
ideas and the background knowledge about the probkehand — the diagrams in
section 4.1.2.2 exhibit the amazing flexibilitymiors. We then provide an overview
of the circumstances under which the AIC and BI€ said to perform better than

one another.
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Then we consider two counterexamples that are duElliott Sober (1999 and
2002). The counterexamples were against the siegliform of the Epistemic
Thesis of Scientific Realism [that predictively sassful theories are approximately
true] and against the idea popular among sciengfdists that the aim of science is
to search for theories that are true. In the forommterexample Sober argues that
the way that scientists put the Neyman-Pearson adetbgy to in every day use
indicates that they expect to be predictively aataihypotheses that are obviously
false. Assuming that the scientists are rationalbe$ concludes that scientists’
behaviour implies that they are methodological rimsentalists. Sober states that
methodological instrumentalism commits one to ushmgpries as tools for making
predictions, and to having predictive accuracyh@sdne and only goal of scientific
endeavour. We go along with Sober's assumption tablo®i goal of predictive
accuracy, but argue that he misconstrues the way shientists use the NP
methodology. Contrary to Sober, we argue that tegniNan-Pearson methodology is
logically consistent with the epistemic thesis ofestific realism. We attempt to
give Sober’'s counterexample Bayesian renditiongisiome ideas in the spirit of

Karl Popper, but conclude that his argument doésueceed this way either.

Sober’s second counterexample attempts to showsdaathes for theories that are
true and for the theories that are predictivelycsgsful do not always coincide.
Sober thus argues that the popular idea in thetsfogerealist camp that the goal of
scientific enterprise is to find theories that @aree can go against maximising
predictive accuracy, the latter arguably being airdble feature of any scientific
theory. We argue that his counterexample doesutaegd in demonstrating that the

link between [at least approximate] truth and prdé accuracy is bogus.

However, we go on to argue that the AIC and BIChoés are actually neutral with
regards to the debate about the epistemic thesssientific realism. That is, these
methods neither lend support to nor go againsteffistemic thesis. On the other
hand, we think that AIC and BIC do provide a di#ier angle from which to view

the familiar arguments within scientific realisngmely, the No-Miracles Argument
and the Pessimistic Meta-Induction. Our view ig tih& conclusion of neutrality of

our formal methods of model selection with resgectome issues within scientific

realism is indicative of the general idea thatsitektremely rare for purely formal

119



methods to settle philosophical disputes. Nonesiselm trying to do so one at the

very least gains additional valuable insights.

It is important for us to emphasise that notwithdtag the fact that in the domain of
the AIC and BIC methods the talk of simplicity arm$ predictive accuracy
maximising virtue has been pervasive, in this thaegnplicity is hardly mentioned,
and when it is mentioned, it is only as short h&ord‘relatively fewer number of
adjustable parameters’. The reason for not payomgdyge to simplicity in the AIC
and BIC context is this. The AIC was designed tovjate unbiased estimates of
relative expected Kullback-Leibler divergence franset of models to the ‘truth’,
where the penalty for complexity in the form of thember of adjustable parameters
arose as a by-product in order to correct the agyepbias. In the BIC the penalty
for complexity arose as a by-product of approximgtioften computationally
intractable integrated likelihoods. So in neithéthese frameworks was simplicity
built-in as an important consideration. Moreover Wnd that we do not lose
anything by ignoring simplicity and treating it as epiphenomenon.

Finally we suggest that the best handle on thel@nolof model selection is to be
gained by applying different approaches to the seswe with full awareness of the
foundational and philosophical issues involved. $ifeerely hope to have at least

partially served this purpose in this thesis.
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