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Abstract This paper proves that certain supertasks constitute counterexamples to

countable additivity even in the frame of an objective (not subjective, à la de

Finetti) conception of probability. The argument requires taking conditional prob-

ability as a primitive notion.
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1 A first approach

Let us consider a random experiment consisting in tossing a coin (one not tampered

with in any way) in the air. Let H be the ‘‘heads’’ event and T the ‘‘tails’’ event. We

know that the probability P(H) = � = P(T). Let us suppose that we toss the coin an

infinite numerable amount of times: in the instants tn = 1/n with n = 1, 2, 3,

4, ……. In other words, we follow the rule:

R: coin tossing will take place at the instants tn = 1/n (with n positive integer)

and only at these instants.

Let Hn be the ‘‘heads in the instant tn = 1/n’’ event and Tn the ‘‘tails in the instant

tn = 1/n’’ event. Now let us move on to the Tn & Hn?1 & Hn?2 & Hn?3 &… event.

The common intuition that its probability is null may be rigorously justified. Given

that, in a general manner, P(A&B) = P(A) � P(B/A) when P(A) = 0, we have

successively:
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P Tn & Hnþ1 & Hnþ2 & Hnþ3 &. . .. . .ð Þ ¼ P Tnð Þ � P Hnþ1 & Hnþ2 & Hnþ3 &. . .. . .=Tnð Þ
ð1Þ

P Tn & Hnþ1 & Hnþ2 & Hnþ3 & . . .. . .ð Þ ¼ P Tn & Hnþ1ð Þ � P
�
Hnþ2 & Hnþ3 & Hnþ4 & . . .. . .=Tn &

Hnþ1

�

ð2Þ

P Tn & Hnþ1 & Hnþ2 & Hnþ3 & . . .. . .ð Þ ¼ P Tn & Hnþ1 & Hnþ2 & . . . & Hnþmð Þ � P
�
Hnþmþ1 &

Hnþmþ2 & . . .. . .=Tn & Hnþ1 & Hnþ2 & . . . & Hnþm

�
; with m� 1;

ð3Þ

as

P Tnð Þ ¼ 1=2 6¼ 0; ð4aÞ
P Hnð Þ ¼ 1=2; ð4bÞ

and, furthermore:

P Tn & Hnþ1ð Þ ¼ 1=4 ¼ 1=21þ1 6¼ 0 ð5Þ

P Tn & Hnþ1 & Hnþ2 & . . . & Hnþmð Þ ¼ 1=21þm 6¼ 0; whatever m� 1 may be:

ð6Þ

But all the conditional probabilities P(B/A) mentioned above are certainly such that

P(B/A) B 1, which means that

P Tn & Hnþ1 & Hnþ2 & Hnþ3 &. . .. . .ð Þ� 1=21þm; for all m� 1:

As, given an arbitrary event A, P(A) C 0, it follows that:

P Tn & Hnþ1 & Hnþ2 & Hnþ3 &. . .. . .ð Þ ¼ 0; with n ¼ 1; 2; 3; 4; . . .. . .:

By En I refer to the event Tn & Hn?1 & Hn?2 & Hn?3 &……, so that P(En) = 0.

By using E0 to refer to the event H1 & H2 & H3 &……, reasoning in all ways like

the one above proves that P(E0) = 0 also.

2 The argument

Finally, and crucially, let us consider that the random experiment is conducted by

tossing the coin at random in the instants tn = 1/n but only until tails comes up,

when the coin tossing stops (if tails does not come up in any instant tn = 1/n the

coin will be tossed for the last time in any case in t1 = 1/1 = 1). We shall see below

that the previous conclusions P(En) = 0 and P(E0) = 0 are maintained but now

P(E0 _ E1 _ E2 _ E3 _…) = 1, thus violating countable additivity.
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The procedure for ensuring that the tossing of a coin leads to the violation of numerable

additivity may be made more precise by making use of the following explicit rule:

R*: coin tossing will only take place at the instants tn = 1/n (with n positive

integer) and, furthermore, for any positive integer n, the coin is tossed at

tn = 1/n if and only if no positive integer m [ n exists such that the coin has

been tossed at tm = 1/m and has come up tails.

From R* it follows immediately that:

(A1) If, in a given tossing of the coin, tails comes up, the coin shall not be tossed

again. In particular, it is not possible for two tossings of the coin to give tails as a

result. If at tn?1 = 1/(n ? 1) the coin is tossed and comes up heads the coin will

be tossed again at tn = 1/n.

(A2) The coin cannot be tossed only a finite number of times (zero included).

If the coin is first tossed at tn* = 1/n* (or even if the coin is not tossed at all for times

t B 1/n*) then the coin is not tossed at tn*?m = 1/(n* ? m), with m any positive integer.

But then no positive integer k [ n* ? 1 exists such that the coin has been tossed at

tk = 1/k and, in particular, no positive integer k [ n* ? 1 exists such that the coin has

been tossed at tk = 1/k and has come up tails. Therefore, by R* it follows that the coin

has been tossed at tn*?1 = 1/(n* ? 1), which contradicts the previous statement that the

coin has not been tossed at tn*?m = 1/(n* ? m), with m any positive integer.

(A3) For any positive integer n, if the coin is not tossed at tn?1 = 1/(n ? 1) then

it will not be tossed at tn = 1/n either.

If the coin is not tossed at tn?1 = 1/(n ? 1), by R* some positive integer

m [ n ? 1 exists such that the coin has been tossed at tm = 1/m and has turned up

tails. But then, obviously, some positive integer m [ n exists such that the coin has

been tossed at tm = 1/m and has come up tails. Therefore, once again by R*, it

follows that the coin is not tossed at tn = 1/n.

From (A1), (A2) and (A3) it is immediately clear that the event E0 _ E1 _ E2 _
E3 _… is sure and, therefore, has probability 1. Indeed, (A1) guarantees that if tails

comes up, the coin shall not be tossed again (tails will not come up more than once),

(A2) guarantees that there will be infinite coin tosses and, together with (A3),

guarantees that a single positive integer N exists such that the coin is tossed at all the

instants tn = 1/n with n C N and only at the instants tn = 1/n with n C N (as, by

R*, coin tossing will only take place at the instants tn = 1/n, with n positive

integer). Having proved that P(E0 _ E1 _ E2 _ E3 _…) = 1, all that remains is to

see that, under rule R*, the conclusions P(En) = 0 and P(E0) = 0 can still be

justified. The proof requires taking conditional probability as a primitive notion (it is

possible to develop conditional probability first and then to define non-conditional

probability in terms of it1) and is based on the following two premises (besides the

common assumption that, given an arbitrary event A, 1 C P(A) C 0):

1 And remember that conditional probabilities may be defined for non-null events of zero probability.

See, for example, Vickers (1988).
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(I) Popper’s axiom for primitive conditional probabilities

P A&B=Cð Þ ¼ P A=B&Cð Þ � P B=Cð Þ
(II) For every n, the probability of the coin landing heads/tails at tn = 1/n

(provided that the coin lands heads at tm = 1/m for all m [ n) is 1/2. More

formally: for every n,

P Tn=Hnþ1 & Hnþ2 & Hnþ3 &. . .. . .ð Þ ¼ P Hn=Hnþ1 & Hnþ2 & Hnþ3 &. . .. . .:ð Þ ¼ 1=2

The argument is similar to the one given under rule R but, instead of

P(A&B) = P(A) � P(B/A) when P(A) = 0, we use P(A&B) = P(A/B) � P(B) with-

out the condition that P(B) = 0, which follows from (I) by taking the sure event as

C (see Footnote 1).

Instead of (1), (2) and (3) we have respectively:

P Tn & Hnþ1 & Hnþ2 & Hnþ3 &. . .. . .ð Þ ¼ P Tn=Hnþ1 & Hnþ2 & Hnþ3 &. . .. . .ð Þ
� P Hnþ1 & Hnþ2 & Hnþ3 &. . .. . .ð Þ ð1�Þ

P Tn & Hnþ1 & Hnþ2 & Hnþ3 & . . .. . .ð Þ ¼ P Tn & Hnþ1=Hnþ2 & Hnþ3 & Hnþ4&. . .. . .ð Þ
� P Hnþ2 & Hnþ3 & Hnþ4 & . . .. . .ð Þ

ð2�Þ

P Tn &Hnþ1 &Hnþ2 &Hnþ3 &.. .. . .ð Þ ¼ P
�
Tn &Hnþ1 & Hnþ2 &.. .&Hnþm=Hnþmþ1 &

Hnþmþ2 &.. .. . .Þ � P Hnþmþ1 &Hnþmþ2 &. . .. . .
�
; with m�1

�

ð3�Þ

And instead of (4a), (4b), (5), (6):

P Tn=Hnþ1 & Hnþ2 & Hnþ3 &. . .. . .ð Þ ¼ 1=2 6¼ 0; ð4�aÞ
P Hn=Hnþ1 & Hnþ2 & Hnþ3 &. . .. . .:ð Þ ¼ 1=2; ð4�bÞ

(we cannot assume that P(Tn) = P(Hn) = � since there is no guarantee the coin

will be flipped at tn) and, furthermore:

P Tn & Hnþ1=Hnþ2 & Hnþ3 & Hnþ4 & . . .. . .ð Þ ¼ 1=4 ¼ 1=21þ1 6¼ 0 ð5�Þ

P Tn & Hnþ1 & Hnþ2 & . . . & Hnþm=Hnþmþ1 & Hnþmþ2 & . . .. . .ð Þ ¼ 1=21þm 6¼ 0;

ð6�Þ

whatever m C 1 may be.2

2 This result may be deduced easily from (4*a) and (4*b) by using Popper’s axiom

P A & B=Cð Þ ¼ P A=B & Cð Þ � P B=Cð Þ

For instance, (5*) (which is (6*) with m = 1) is obtained thus:
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But all the non-conditional probabilities P(B) mentioned in the right members of

(1*), (2*) and (3*) are certainly such that P(B) B 1, which means that

P Tn & Hnþ1 & Hnþ2 & Hnþ3 &. . .. . .ð Þ� 1=21þm; for all m� 1:

As, given an arbitrary event A, P(A) C 0, it follows that:

P Tn & Hnþ1 & Hnþ2 & Hnþ3 &. . .. . .ð Þ ¼ 0; with n ¼ 1; 2; 3; 4; . . .. . .:

so that P(En) = 0. And reasoning in all ways as above proves that P(E0) = 0 also.

The classic argument against countable additivity involves drawing a positive

integer at random:

…for if the probability of selecting, e.g., 1 is 0, then due to uniformity, the

probability of choosing any other natural number is also 0. Thus sigma-

[countable] additivity leads to a contradiction because the probability of

choosing a natural number is 1 and not 0. On the other hand, if the probability

of choosing 1 is positive then sigma-[countable] additivity leads again to a

contradiction (the probability of the certain event would be infinite) (Székely

1986, p. 177).

However, Howson and Urbach (1993, p. 81) say about this:

it is not at all clear what selecting an integer at random could possibly amount

to: any actual process would inevitably be biased toward the ‘‘front end’’ of

the sequence of positive integers.

Bartha (2004, pp. 311–312) puts it quite clearly:

If, so far as all knowledge that could influence our assessment of likelihood

goes, there is no basis for distinguishing between two sets of outcomes……,

then we are inclined to regard them as equiprobable……… Obviously, we are

appealing here to a version of the Principle of Indifference

In view of what has been said until now, the advantages of my proof of the failure of

countable additivity are clear. To begin with, it is an example of physical chance

and not of subjective probability, which helps to attenuate any discrepancy

concerning the initial assignation of probabilities. Furthermore it does not depend

on any selection made at random from an infinite population whose probability is

founded on the principle of indifference. Evidently, an event is selected randomly

from the numerable infinite set of events {E0, E1, E2, E3,…},3 but, rather than being

based on any principle of indifference, the equiprobability of these is based on the

actual calculation of probabilities, as we have seen above. We may consider the

Footnote 2 continued
P Tn & Hnþ1=Hnþ2 & Hnþ3 & Hnþ4 &. . .. . .ð Þ ¼ P Tn=Hnþ1 & Hnþ2 & Hnþ3 & Hnþ4 &. . .. . .ð Þ

� P Hnþ1=Hnþ2 & Hnþ3 & Hnþ4 &. . .. . .ð Þ
¼ 1=2ð Þ � 1=2ð Þ ¼ 1=4:

3 This clearly implies selecting a non-negative integer at random and therefore provides God with a

procedure to perform His lottery (see McCall and Armstrong, 1989).
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assumed values P(H) = � = P(T) as being based in turn on a prior available

experience and, in any case, it is clear that my argument works just as well for any

non-null values of P(H) and P(T) (0 \ P(H) \ 1, 0 \ P(T) \ 1, P(H) ? P(T) = 1).

The player who decides to toss the coin in the instants tn = 1/n (n = 1, 2, 3,

4,…….) with the condition of stopping tossing the coin the moment tails comes up

may bet safely on obtaining an infinite, uninterrupted sequence of heads. He will

win the bet despite that fact that P(H) = � and that, of course, every single tossing

of the coin is independent from the others.4

My argument against countable additivity works only as a consequence of a

supertask, but not any supertask will lead to my result. The random experiment

consisting in tossing the coin randomly a numerable infinite amount of times in the

instants tn = 1/n with n = 1, 2, 3, 4,……. (following rule R enunciated above) does

not imply any violation whatsoever of countable additivity if no additional

conditions are imposed.

Finally, it is interesting to note the parallels between the situation considered in

my supertask (which violates numerable additivity) and the one that appears in the

St. Petersburg Paradox: in both cases the random experiment is conducted by

tossing the coin at random in the instants tn (with n = 1, 2, 3, 4,…….) but only until

tails comes up. The difference lies solely in the ordinal type of the set of instants tn.

In my case it is an infinite ordinal type x* (as tn = 1/n) while in the St Petersburg

Paradox it is an infinite ordinal type x (for example, tn = -1/n). Thus, the situation

studied in the St. Petersburg Paradox can be obtained by following a rule R** that

comes directly from R* simply by changing n for -n and m for -m in all its

mathematical expressions. Indeed:

R**: coin tossing will only take place at the instants tn = -1/n (with n

positive integer) and, furthermore, for any positive integer n, the coin is tossed

at tn = -1/n if and only if no positive integer m exists, with -m [ -n, such

that the coin has been tossed at tm = -1/m and has come up tails.

In other words, bearing in mind that -m [ -n if and only if m \ n:

R**: coin tossing will only take place at the instants tn = -1/n (with n

positive integer) and, furthermore, for any positive integer n, the coin is tossed

at tn = -1/n if and only if no positive integer m \ n exists such that the coin

has been tossed at tm = -1/m and has come up tails.

There are parallels too with the Benardete Paradox of the Gods and its variants

(Benardete 1964), of which it may be considered a probabilistic version (although I

shall not develop the point here, see below). This network of relations with

problems well known in the philosophical literature today is, in my view at least, an

additional argument in favour of the intrinsic interest of the supertask argument

against countable additivity.

4 This surprising result has a certain ‘‘family likeness’’ to the one presented in Bacon (2011). Both use

crucially the peculiarities of x* ordinal-type supertasks but Bacon’s example is compatible with

countable additivity.
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3 Replies to possible criticisms

(1) Someone might say that, although following the rule R* is not logically

impossible, it is probabilistically impossible because it implies an event occurring

(some infinite and uninterrupted sequence of heads) that has probability 0, i.e.

that it is probabilistically impossible. But this is not a good argument. Let us

imagine that, instead of rule R*, rule R is used. Following R also implies the

occurrence of an event (some infinite and uninterrupted sequence of heads and/or

tails) which has probability 0, i.e. that it is probabilistically impossible. But from

here nobody would deduce that following R is probabilistically impossible.5

(2) A second criticism might state that following R* is logically impossible

because such a procedure makes certain the appearance of an event belonging to

an infinite numerable set of events, each with null probability a priori. But this is

tantamount to saying that following R* is logically impossible because it violates

numerable additivity. This is clearly a circular argument in that it seeks to defend

numerable additivity by assuming to begin with that numerable additivity is true.

(3) A third criticism would involve transferring to the supertask argument against

countable additivity some of the standard criticisms made of Benardete’s Paradox

of the Gods, in which each godn of a numerable infinity of gods controls with a

barrier a point xn (where xm \ xn if and only if m [ n) such that godn will

immobilize a man at xn if and only if no godm (with m [ n) does so before at xm

and the man arrives at xn (see more details in Benardete (1964)). The criticism

would be founded on the parallel, mentioned above, between my argument and

the paradox referred to. Talking of the latter, Yablo (2000, p. 151) for instance

says:

If there’s a paradox here, it lies in the difficulty of combining individually

operational subsystems into an operational system. But is this any more

puzzling than the fact that although I can pick a number larger than whatever

number you pick, and vice versa, we can’t be combined into a system

producing two numbers each larger than the other?

To see how this diagnosis would apply to our case, let us rewrite rule R* supposing

that if the coin is tossed at tn = 1/n it will be tossed by godn:

R*: coin tossing will only take place at the instants tn = 1/n (with n positive

integer) and, furthermore, for any positive integer n, the coin is tossed by godn

at tn = 1/n if and only if no positive integer m [ n exists such that the coin

has been tossed by godm at tm = 1/m and has come up tails.

The difficulty Yablo mentions would now run thus: although a godn may follow the

‘‘individually operational subsystem’’ consisting in ‘‘tossing the coin at tn = 1/n if

5 One might attempt to justify that R is even logically impossible by arguing that the x*-type supertask

on which it is based is too. In this paper I assume from the beginning the logical possibility of x*-type

supertasks: my intention here is not to discuss the status of supertasks as such but rather to explore some

of their consequences.
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and only if no positive integer m [ n exists such that the coin has been tossed by

godm at tm = 1/m and has come up tails’’, the gods cannot combine such subsystems

in the ‘‘operational system’’ defined by rule R*. But what reasons have we for

saying that R* cannot be followed? In the Benardete Paradox, if the gods perform

their plan then a force F (not exerted by any barrier) should immobilize the man.

Yablo (and other authors, including, for instance, Shackel (2005)) consider that such

a force is physically impossible under the conditions of the situation and from there

deduce that it is impossible for the gods to be able to perform their plan. In our case,

similarly, Yablo’s strategy would mean denying the possibility of following rule R*

on the basis of considering (in some sense) the violation of numerable additivity

impossible (at least in the form in which R* proposes to do so). However, in the

absence of an argument that provides some support to this basis there would seem to

be no alternative than to reject R* on the grounds of the rejection of its supposed

violation of numerable additivity, which leads us to a criticism similar to the one

already dealt with in my reply (2).

(4) Another criticism could arise from considering the actual process of tossing

the coin. It would seem that, as, in particular, the infinite sequences of coin

tossings coming up tails infinite times are excluded, there should be some type of

strange influence that assures such an exclusion. The response is that no such

influence is required: following R* is, as we saw above, sufficient to guarantee

that there will be no more than one tails. There is no way of guaranteeing this

with a sequence of coin tossings of ordinal type x (and the present criticism is

based on this intuition) but it may be done with a sequence of ordinal type x*: by

operating in accordance with R*, sequences with more than one tails are

impossible. In my view, infinite numerable sequences of events with ordinal type

x* are a new and interesting area of application of probability theory, the area of

the supertask argument against countable additivity.

(5) When specifically considering the physical characteristics of the process of

tossing the coin, someone might object that the coin must move increasingly

quickly (without limit) as the tossings come closer to t = 0, with the consequence

of inevitable discontinuities in both its position and its velocity. This observation

is true, but we may avoid it, if we wish, by considering a numerable infinity of

coins M1, M2, M3, … (of a size sufficiently decreasing with n) such that the coin

tossed at tn = 1/n (should it be required, in accordance with R*) is Mn.

(6) One last criticism could take the following form. Let us assume that the coin I

use to follow R* is such that (without me knowing this beforehand) both sides are

tails. From (A1) and (A2) it follows that complying with R* is logically

impossible in such a case and that therefore I will fail in my attempt to comply

with it. Likewise I would fail (the critic would say) when I attempt to observe R*

with a normal coin. But the fact that compliance with R* is impossible with a

coin with tails on both sides does not imply that it must be impossible with a

normal coin (with heads and tails). By way of example, let us consider that I have

available a box containing a normal coin. The idea is that every time I take the

coin out of the box I shall place it immediately, in principle voluntarily, either

with the heads side up or with the tails side up (before returning it to the box). We
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also assume that if I take the coin at tn?1 = 1/(n ? 1) (with n a positive integer) I

put it back in the box before tn = 1/n. Let it be that I decide to observe the

following rule:

R^: the coin will only be taken out of the box at the instants tn = 1/n (with n a

positive integer) and, furthermore, for any positive integer n, the coin is taken

out of the box at tn = 1/n if and only if no positive integer m [ n exists such

that the coin has been taken out of the box at tm = 1/m and has been

immediately placed tails up.

Analogously to what we have seen with regard to R* in the previous section, it is

evident from R^ that:

(A1^) If after a given extraction of the coin from the box it has immediately been

placed tails up, the coin will not be taken out of the box again. In particular, the

coin could not have been taken out of the box twice, where immediately after

each extraction it has been placed tails up. If at tn?1 = 1/(n ? 1) the coin has

been taken out of the box and has immediately been placed heads up then it will

be taken out again at tn = 1/n.

(A2^) There cannot only be a finite number (zero included) of extractions of the

coin.

(A3^) For any positive integer n, if the coin is not taken out at tn?1 = 1/(n ? 1)

then it is not taken out at tn = 1/n either.

Let us now suppose that the coin I use to follow R^ is such that (without me

knowing beforehand) both sides are tails. From (A1^) and (A2^) it follows that

complying with R^ is logically impossible in such a case and that therefore I will

fail in my attempt to comply with it. But the fact that complying with R^ is

impossible with a coin that has two sides showing tails does not imply that it must

also be impossible with a normal coin (with heads and tails). Indeed it is evident that

it is not: I could, for instance, take the coin out of the box at all instants tn = 1/n

(with n a positive integer) and, in each case, place the coin heads up immediately.
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