
Arch. Math. Logic (2000) 39: 541–568

c© Springer-Verlag 2000

The size ofT̃

Paul Larson�

5100 Randall Lane, Bethesda, MD 20816, USA.
e-mail: larson@kurt.cla.kobe-u.ac.jp

Received: 23 November 1998

Abstract. Given a stationary subsetT of ω1, let T̃ be the set of ordinals
in the interval(ω1, ω2) which are necessarily in the image ofT by any
embedding derived from the nonstationary ideal. We consider the question
of the size ofT̃ , givenT , and use Martin’s Maximum andPmax to give some
answers.

1. Introduction

In the context of elementary embeddings derived from the nonstationary
ideal onω1, a canonical function forβ ∈ (ω1, ω2) is a function fromω1 to
ω1 of the formg(α) = ordertype(f [α]), wheref : ω1 → β is a bijection.
The reason for this terminology is that in any elementary embedding derived
from forcing withP (ω1)/INS (whereINS is the nonstationary ideal), any
suchg representsβ. This idea is implicit in the following definition.

Definition 1.1. ([20]) For T ⊂ ω1, T̃ = {β ∈ (ω1, ω2) | ∃f : ω1 → β,
one-to-one and onto, andC ⊂ ω1, club, s.t.∀α ∈ C, o.t.(f [α]) ∈ T}.

Given a subsetT of ω1, T̃ is the set of ordinals in the interval(ω1, ω2)
which are forced to be in the image ofT after forcing withP /INS and
taking the induced elementary embedding. This follows from the fact that
T̃ is the set ofβ ∈ (ω1, ω2) such that any canonical function forβ maps a
club intoT .

� This material is based in part upon work supported by the North Atlantic Treaty Orga-
nization under a grant awarded in 1998.
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Canonical functions have been extensively studied in [1], [14] and else-
where, but the tilde function seems to have attracted little attention until
recently, when it has found application in [20], [13] and [11].

In this paper, we ask a very simple question about the tilde function:
given a stationary setT ⊂ ω1, what do we know about the size of̃T? For
instance, must it be nonempty, must it be stationary onCof(ω), or must it be
stationary onCof(ω1)? It turns out that the answers to these questions are
very sensitive to which extension of ZFC we are working in. In particular,
we have the following ladder of facts, presented roughly in increasing order
of strength of context.

1. If ✸ holds, then there is a stationary, costationary subsetT of ω1 such
that T̃ and ˜̄T (the tilde of the compliment ofT ) are both empty, and a
clubC ⊂ ω1 such thatC̃ is empty.

2. If the nonstationary ideal is saturated, then for all clubC ⊂ ω1, C̃
contains a club inω2.

3. Assuming AD +V = L(R) (or, assuming the existence of a Woodin
cardinal), there is a two step forcing in whose extension ZFC and the
saturation of the nonstationary ideal hold, along with the existence of a
stationary, costationary subsetT of ω1 such that̃T and ˜̄T are both empty.

4. If SRP(ω2) holds, then for every stationaryT ⊂ ω1, T̃ ∩ Cof(ω1) is
stationary and̃T ∩ Cof(ω) is unbounded inω2.

5. If Γ ⊂ P (R) is a pointclass closed under continuous preimages and

L(Γ,R) |= “AD R +Θ regular”,

then there is a three step forcing overL(Γ,R) which creates a model
of ZFC + Martin’s Maximum++(c) + (∗) (thePmax axiom ) + “for all
costationaryT ⊂ ω1, T̃ is not stationary onCof(ω).”

6. If Martin’s Maximum holds, there is an(ω1,∞)-distributive forcing in
whose extension we have Martin’s Maximum for all forcings which don’t
change the cofinality ofω2 toω, but also that for every costationary subset
T ⊂ ω1, T̃ ∩ Cof(ω) is nonstationary.

7. ([20]) If Martin’s Maximum holds or(∗) + V = L(P (ω1)) holds, and
T ⊂ ω1 is stationary, theñT ∩ Cof(ω) is stationary.

The first two facts listed here are very easy to prove. The third fact
refers to two separate proofs, one using aPmax variation and the other using
Shelah’s forcing to make the nonstationary ideal saturated. The first of these
proofs requires a significant amount ofPmax machinery to prove, and since
a proof is given in detail in [12], we give just a brief discussion of it here.
The second proof is relatively simple if one takes for granted certain facts
about revised countable support.
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The last fact is proved in [20] so we do not reproduce the proof here. The
proof of the fifth is similar to the proof of the sixth, but it follows from the
Pmax analysis. Here(∗) is the statement thatL(R) |= AD andL(P (ω1))
is aPmax extension ofL(R).

Hidden in this list of facts are two results of independent interest. The
last two facts together imply that Martin’s Maximum cannot be decomposed
into the conjunction of a statment aboutL(P (ω1)) and a reflection prin-
ciple intoH(ω2), at least as far as the currently used reflection principles
are concerned. The proof of the fourth fact on the list concerns the question
of whether certain subsets of[ω2]<ω1 are projective stationary. We give a
general lemma (Lemma3.9.) which shows that the saturation of the nonsta-
tionary ideal implies that these sets are projective stationary. From this fact
one gets immediately that SRP(ω2) implies Woodin’s axiomψAC as well as
the fourth fact above forCof(ω1).

Most of this paper is excerpted from the author’s dissertation [10].

2. Preliminaries

2.1. Notation

We use the notationCα
β to denote the set of ordinals less thanβ of cofinality

α. We useΨ to denote the class of partial orders such that forcing with them
does not change the cofinality ofω2 to ω.

2.2. The nonstationary ideal

For an ordinalγ, we say thatA ⊂ γ is club, or closed unbounded, inγ if A
contains all its limit points belowγ and is cofinal inγ.A ⊂ γ is stationary in
γ if it intersects every club subset ofγ. Otherwise,A is called nonstationary.
In this paper,INS is used to denote the collection of nonstationary subsets
of ω1.

Our interest inINS lies primarily in the following operation. SayM is
a model of ZFC, or a strong enough fragment, such as ZFC∗ as defined in
Sect.4.1. Forcing overM with the boolean algebra(P (ω1)/INS)M gives
us anM -ultrafilter onωM1 . Using functions fromM , then, we can construct
an ultrapower embeddingj with domainM . We say thatINS is precipitous
if the range of the derivedj is always well founded. The following two
standard definitions describe stronger properties.

Definition 2.1. INS is presaturated if for anyA ∈ P (ω1)\INS and for any
sequence〈Ai : i < ω〉 of maximal antichains inP (ω1) \ INS there exists
B ⊂ Astationary such that for eachi < ω,{X ∈ Ai | X∩B is stationary}
has cardinality at mostω1.
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The presaturation ofINS implies that for the derivedj, j(ω1) = ω2. The
following property, saturation, is even stronger.

Definition 2.2. INS is saturated if there are no antichains inP (ω1)/INS

of cardinalityω2.

One particularly useful hypothesis is that the nonstationary ideal is pre-
saturated plusδ∼

1
2 = ω2. One example of this is the following standard fact.

Theorem 2.3. Assume thatINS is presaturated andδ∼
1
2 = ω2. Then for

every ordinalα ∈ ω2, the value ofj(α) is independent of the generic, forj
the embedding derived from forcing withP (ω1)/INS .

The following consequence of this hypothesis is shown in [20] and used
in [13] and [11]. The uniform indiscernibles are those ordinals which are
indiscernibles for every real.

Theorem 2.4. ([20]) Assume thatINS is presaturated and thatδ∼
1
2 = ω2.

Then the critical sequence of any iteration of lengthγ by the nonstationary
ideal is the set of the firstγ uniform indiscernibles as computed inV .

2.3.✸

Using a✸ sequence, we can construct subsets ofω1 whose tildes are empty.
We first note some elementary properties of✸ related to the tilde function.
The following definition and lemma are standard.

Definition 2.5. For S ⊂ ω1, ✸(S) is the statement that there exists a se-
quence〈σα | α ∈ S〉 such that for allE ⊂ ω1 {α ∈ S | σα = E ∩ α} is
stationary.

Lemma 2.6. Say✸(S) holds, forS ⊂ ω1. Then there is a partition

〈Sβ | β < ω1〉
of S into stationary sets such that for eachβ,✸(Sβ) holds.

Proof. Let 〈xβ | β < ω1〉 enumerate the reals and let〈σα : α ∈ S〉 be a
✸(S)-sequence. Fora ⊂ ω1, let

a∗ = {γ < ω1 | ω + γ ∈ a}.
Let Sβ = {α | σα ∩ ω = xβ}, and letσβ = 〈σ∗

α | α ∈ Sβ〉. Thenσβ

witnesses✸(Sβ). ✷

The following is the first fact from the list in the introduction.
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Lemma 2.7. If ✸ holds then there exists a stationary, costationaryT ⊂ ω1

such thatT̃ , ˜̄T are empty. Also, there exists a clubC ⊂ ω1 such thatC̃ = ∅.
Proof.LetS0, S1 be disjoint subsets ofS such that✸(S0),✸(S1) hold. Fix
a bijectionh betweenω1 × ω1 andω1 and note that for any wellorderingA
of ω1, h[A ∩ λ × λ] is a subset ofλ for a club set ofλ. Define a function
f : S0 ∪ S1 → ω1 such that ifσα, α ∈ S0, is on our✸(S0)-sequence and
h−1[σα] is a wellordering ofα of ordertypeβ > α, thenf(α) > β (and
similarly for S1). Let C ⊂ ω1 be club such that for allη ∈ C, α < η ⇒
f(α) < η. ThenC̃ = ∅, since for anyα < ω2, if gα : ω1 → α is a bijection,
then by✸(S0), for stationarily manyβ < ω1 o.t.(gα[β]) �∈ C. Let T be
stationary, costationary such that ifγ ∈ C ∩ S0, then(γ, γ+) ∩ T = ∅, and
if γ ∈ C ∩ S1, then(γ, γ+) ∩ T̄ = ∅, whereγ+ is the next element ofC

aboveγ. ThenT̃ , ˜̄T are empty, for the same reason.✷

Almost the same argument reproduces the well-known fact that a strength-
ening of✸ known as✸∗ is inconsistent with the presaturation of the non-
stationary ideal.

Definition 2.8. ✸∗ is the statement that there exists a sequence

〈Aα ∈ Pω1(α) : α < ω1〉
such that for allA ⊂ ω1, the set{α < ω1 | A ∩ α ∈ Aα} contains a club.

Lemma 2.9. If ✸∗ holds, then there is a club setC ⊂ ω1 such that˜̄C =
(ω1, ω2), and so the nonstationary ideal is not presaturated.

Proof.This is basically the same argument as for Lemma2.7.. Fix the se-
quence〈Aα : α < ω1〉 and letC ⊂ ω1 be a club set such that ifβ ∈ C,
α < β, andσ ∈ Aα codes a well ordering ofα, then the ordertype of this
wellordering is less thanβ. Then for anyγ ∈ (ω1, ω2), if E is a wellorder-
ing of ω1 of ordertypeγ, then a set codingE�α is inAα for club manyα,
showing thatγ ∈ ˜̄C. Since ifj an elementary embeddingj(C) must be club
in j(ω1), it can’t be then thatj(ω1) = ω2, and so the nonstationary ideal
isn’t presaturated.✷

Note that the following theorem shows that✸ is consistent with the
presaturation of the nonstationary ideal.

Theorem 2.10. ([20]) Suppose thatδ is a Woodin cardinal and that

G ⊂ Coll(ω1, < δ)

is V -generic. Then inV [G], INS is presaturated.
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The proof of the following fact is a simple catch-up argument, using the
fact that if the nonstationary ideal is saturated, andτ is name for an ordinal
less thanω2, then there is someα < ω2 such that1�τ < α̌.

Lemma 2.11. SayINS is saturated. Then ifC ⊂ ω1 is club, thenC̃ contains
a club inω2.

3. Semi-proper forcing and the tilde function

3.1. SRP

Definition 3.1. ([18]) Thestrong reflectionprinciple (SRP) is the following:
Suppose thatλ ≥ ω2, Z ⊂ Pω1(λ) and thatM is a transitive set such that
Mλ ⊂M . Then there exists a continuous, increasing∈-chain

〈Xα ≺M : α < ω1〉
of elements ofPω1(M) such that for allα < ω1, if there existsX ∈ Pω1(M)
such that

1. Xα ⊂ X,
2. X ≺M ,
3. X ∩ ω1 = Xα ∩ ω1
4. X ∩ λ ∈ Z,
thenXα ∩ λ ∈ Z.

SRP was formulated by Todorčevíc in [18]. It follows from MM and is
equivalent to the simpler formulation below. The following defintion is a
variation of the one in [6]

Definition 3.2. ([6]) Let A be a set such thatω1 ⊂ A. SayX ⊂ [A]ω. Then
X is projective stationary if for all stationaryS ⊂ ω1, the projection ofX
to S,

{x ∈ X | x ∩ ω1 ∈ S},
denotedX ↘ S, is stationary.

Definition 3.3. ([6]) ProjectiveStationaryReflection (PSR) is the statement
that for everyλ ≥ ω2 every projective stationary subset of[H(λ)]ω contains
a continuous increasing lengthω1 ∈-chain.
Theorem 3.4. ([6]) SRP⇔ PSR.

All of the known applications of SRP actually follow from the statement
that for anyλ ≥ ω2 and any projective stationaryS ⊂ [λ]<ω1 and any
Y ⊂ λ of cardinalityω1, S contains a continuous increasing sequence of



The size ofT̃ 547

lengthω1 whose union containsY . This statement is an immediate conse-
quence of SRP, but it is not known whether the two statements are actually
equivalent. We denote by SRP(λ) the statement that any projective station-
ary subset of[H(λ)]ω contains an increasing lengthω1 ∈-chain. SRP(ω2) is
a straightforward consequence of MM(c). It is shown in [18] that SRP(ω2)
implies the saturation of the nonstationary ideal, and in [20] that it implies
c = δ∼

1
2 = ω2.

This section analyzes the tilde function in the context of SRP(ω2). We
note first that sequences given by SRP are the natural witnesses to the exis-
tence of elements of̃T .

Theorem 3.5. Say thatT ⊂ ω1, andβ ∈ [ω2, ω3) is such that the set

A = {x ∈ [β]<ω1 | o.t.(x) ∈ T}
is projective stationary. LetP be the forcing whose conditions are countable
continuous increasing sequences fromA. Then forcing withP preserves
stationary subsets ofω1. Further, any sequence of lengthω1 whose initial
segments are all elements ofP defines a witness for̃T �= ∅.
Proof.ThatP preserves stationary subsets ofω1 follows from the fact that
A is projective stationary, since ifX ≺ H(λ) for sufficiently largeλ with
X ∩ β ∈ A, then anyX-generic forP is a condition.

For the second part, letS = 〈xα : α < ω1〉 be such a sequence. Let
E =

⋃
S, and for eachη ∈ E, letγη = o.t.(E∩η). We claimo.t.(E) ∈ T̃ .

Let f : ω1 → E be a bijection such that ifη appears in an earlierxα than
η′, thenf−1(η) < f−1(η′). Then the functiong : ω1 → o.t.(E) such
thatg(α) = γf(α) witnesses thato.t.(E) ∈ T̃ , since for everyα such that
f [α] = xα (club many),o.t.(g[α]) = o.t.(xα) ∈ T , by the definition ofA.
✷

Therefore, to keep elements out ofT̃ in a model of MM++(c), there
need to be protecting sets.

Definition 3.6. C ⊂ [β]<ω1 , club, is a protecting set for(T, β) if there
existsS ⊂ ω1 stationary, such that for allx ∈ C,

x ∩ ω1 ∈ S ⇒ o.t.(x) �∈ T
We will need the following absoluteness lemma.

Lemma 3.7. SayM is an inner or transitive set model of ZF,α < β are
ordinals less thanωM1 , γ is an ordinal inM , andF : [γ]<ω → γ is a
function inM such that

M |= ∀σ ∈ [γ]β closed underF, o.t.(σ ∩ ω1) �= α
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Then
∀σ ∈ [γ]β closed underF, o.t.(σ ∩ ωM1 ) �= α

Proof.We construct inM a tree of heightω such that any path through
the tree would be a counterexample to the statementM satisfies, and such
that any counterexample would define a path. Then, sinceM has no paths
through the tree, inM there is a ranking function for the tree, which means
that the absence of a path, and therefore a counterexample, is absolute.

Letπ : ω → β be 1-1 and onto, and letν : ω → [ω]<ω be an enumeration
of the finite sequences fromω such that for alln ∈ ω, range(ν(n)) ⊂ n.
The tree is the tree of attempts to buildσ ∈ [γ]β closed underF with
o.t.(σ∩ω1) = α. A node is of the form〈η0, n0, ....ηi, ni〉, where the ordinal
ordering of〈η0..ηi〉 must match the ordinal ordering ofπ(0)..π(i), ηj <
ω1 ⇔ π(j) < α for eachj ≤ i, and for eachj ≤ i, if nj ≤ i and
ν(j) = 〈k0..kr〉, thenηnj = F (ηk0 ..ηkr). The order is by extension. Then
for any path through the tree, the set{ηi : i ∈ ω} has the right ordertypes by
its agreement withπ, and is closed underF by the conditions on theni’s.
Our assumption onM means that the tree is well founded inM and thus
has a ranking function, which means it is absolutely well founded.✷

By the next theorem, if any forcing preserving stationary subsets ofω1
can put an element into the tilde of a set, the forcing from Theorem3.5. can.

Theorem 3.8. SayT ⊂ ω1, and thatT̃ is empty. Letβ ≥ ω2 be such that
the set{x ∈ [β]<ω1 | o.t.(x) ∈ T} is not projective stationary. Then there
is no outer model preserving stationary subsets ofω1 in whichβ ∈ T̃ .
Proof.LetA = {x ∈ [β]<ω1 | o.t.(x) ∈ T}, and letB ⊂ ω1 be stationary
such that{x ∈ A | x ∩ ω1 ∈ B} is nonstationary. LetF : [β]<ω → β be
a function such that for anyσ ∈ [β]<ω1 closed underF , if σ ∩ ω1 ∈ B
theno.t.(σ) �∈ T . Let f : ω1 → β, C ⊂ ω1 club form a witness in any
outer model thatβ ∈ T̃ . Then there must be someα ∈ C ∩ B such that
o.t.(f [α]) ∈ T ,α = f [α]∩ω1 andf [α] is closed underF . Then by Lemma
3.7. we have a contradiction.✷

The following lemma shows that if the nonstationary ideal is presaturated
andT is a stationary subset ofω1, then there are no protecting sets for(T, ω2).

Lemma 3.9. If the nonstationary ideal is presaturated, then it cannot be
that there existS, T stationary subsets ofω1, andC ⊂ [ω2]<ω1 club such
that

∀x ∈ C x ∩ ω1 ∈ S ⇒ o.t.(x) �∈ T.
Proof.Suppose the contrary. LetF : [ω2]<ω → ω2 be such that all countable
subsets ofω2 closed underF are elements ofC. Force with the nonstationary
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ideal, getting a genericGwith S ∈ G, and overV [G] with the nonstationary
ideal ofjG(V ), getting genericH with jG(T ) ∈ H. Then

jH(jG(V )) |= ∀σ ∈ [ω2]ω
V
2 closed underjH(jG(F )), o.t.(σ) ∩ ω1 �= ωV1 ,

sinceωV1 ∈ jH(jG(S)) andωV2 ∈ jH(jG(T )) (by presaturation). However,

σ = jH”jG”ωV2 is closed underjH(jG(F )), σ ∩ ωjH(jG(V ))
1 = ωV1 and

o.t.(σ) = ωV2 , contradicting Lemma3.7.. ✷

Another use of the tilde function, or a similar concept, is to give definable
well-orderings ofP (ω1). The following statement is the key means for
proving AC in extensions byPmax variations.

Definition 3.10. ([20]) ψAC is the assertion : SupposeA ⊂ ω1 andB ⊂
ω1 are stationary, costationary sets. Then there existα < ω2, bijection
π : ω1 → α, and a club setC ⊂ ω1 such that{η < ω1 | ordertype(π[η]) ∈
B} ∩ C = A ∩ C.
Lemma 3.11. ([20]) Suppose thatψAC holds. Then

2ω = 2ω1 = ω2.

The following corollary of Lemma3.9.was pointed out by Hugh Woodin.

Theorem 3.12. If SRP(ω2) thenψAC .

It is an instance of following corollary of Lemma3.9..

Theorem 3.13. (SRP(ω2)) Let γ ≤ ω1. Let 〈Aα : α < γ〉 be a collection
of stationary subsets ofω1, and let〈Bα : α < γ〉 be a maximal disjoint
antichain inP (ω1) \ INS . Then{η ∈ Cω1

ω2
| ∀α < γ Bα�η ∈ j(Aα)} is

stationary.

Proof.Fix E ⊂ ω2 club.{x ∈ [ω2]<ω1 | sup(x) ∈ E} is a club set. Since
the intersection of a club set and a projective stationary set is projective
stationary, by applying SRP(ω2) we will be done if we see that

D = {x ∈ [ω2]<ω1 | ∀α < γ x ∩ ω1 ∈ Bα ⇒ o.t.(x) ∈ Aα}
is projective stationary. LetS ⊂ ω1 be stationary. Then for someα < γ,
Bα ∩ S is stationary, and by Lemma3.9.,

{x ∈ [ω2]<ω1 | x ∩ ω1 ∈ Bα ∩ S ∧ o.t.(x) ∈ Aα} ⊂ D ↘ S

is stationary.✷

The following lemma shows that ifINS is presaturated,ι is theω-th
uniform indiscernible andδ∼

1
2 = ω2, then for no stationaryS, T ⊂ ω1 is S a

protecting set for(T, ι).
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Lemma 3.14. 1 Say that the nonstationary ideal is presaturated andδ∼
1
2 =

ω2, and letι be theω-th uniform indiscernible. LetS, T ⊂ ω1 be stationary.
Then there is noC ⊂ [ι]<ω1 club, such that

∀x ∈ C x ∩ ω1 ∈ S ⇒ o.t.(x) �∈ T.
Proof.Suppose the contrary. LetF : [ι]<ω → ι be such that any countable
subset ofι closed underF is inC. Forceω+1 times to get an iteration ofV
of lengthω+ 1 by the nonstationary ideal, lettingS be in the generic at the
first stage, andT be in the generic at the last stage. Letj be the embedding
induced by this iteration. We have then thatωV1 ∈ j(S) andι ∈ j(T ), since
by Lemma2.4., ι is the critical point of the last step of the embedding.
Further,σ = j”ι is closed underj(F ), contradicting Lemma3.7.. ✷

These give us the following facts.

Theorem 3.15.Assume SRP(ω2). LetT ⊂ ω1 be stationary. Then:

1. T̃ ∩ Cω1
ω2
is stationary;

2. T̃ ∩ Cω
ω2
is unbounded inω2.

Proof. Note that SRP(ω2) implies δ∼
1
2 = ω2 and INS saturated (by [20],

[18]). Then the first conclusion is an instance of Theorem3.13. (with γ = 1,
A0 = T andB0 = ω1). For the second, Theorem3.5. and Lemma3.14.
show thatT̃ ∩ Cω

ω2
is nonempty. But given any stationaryT ⊂ ω1 and any

γ < ω2, we can find stationaryT ′ ⊂ T such thatT̃ ′ ∩ γ is empty: let
h : ω1 → γ be a bijection and letT ′ ⊂ T be such that for a club ofβ < ω1,
T ′ ∩ (β, o.t.(h[β])) is empty. Then sincẽT ′ is nonempty,T̃ must have an
element aboveγ. ✷

3.2. MM

Definition 3.16. ([7]) Martin’s Maximum (MM) is the following statement:
SayP is a forcing which preserves stationary subsets ofω1, and

〈Dα : α < ω〉
is a collection of dense subsets ofP. Then there exists a filterG ⊂ Pmeeting
all theDα’s.

1 Woodin presents a similar argument in Sect. 10.3 of [20], but without the assumption
thatδ∼

1
2 = ω2. The point is that one needs to know in advanceω + 1 many members of the

critical sequence. Here we have used the uniform indiscernibles, but this can be done by
cardinality considerations as well.
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Martin’s Maximum+ (MM+) is MM with the added stipulation that ifτ
is aP-name for a stationary subset ofω1, then

{α ∈ ω1 | ∃p ∈ G p�α̌ ∈ τ}
is stationary.MM++ allows for anω1-sequence of names for stationary sets.
MM(c), MM+(c) and MM++(c) are the restrictions of MM, MM+ and

MM++ to the case|P| ≤ c.
MM and its consequences are presented in detail in [7]. In that paper

a forcing construction is presented which when applied to a model with a
supercompact cardinal creates a model of MM++. Currently, this is the only
known way of achieving MM. The relationship between MM and(∗) is one
of the main open questions in the study ofPmax. It is shown in [20] that
MM++(c) and(∗) are independent, and that each implies thatδ∼

1
2 = ω2. It

is shown in [11], by an application of the tilde function, that MM+ does not
imply (∗).

Theorem 3.17. ([20]) Assume Martin’s Maximum. SupposeS ⊂ ω1 is
stationary. Then

{α | α ∈ S̃ ∩ Cω
ω2

}
is stationary inω2.

We will contrast the above theorem with a couple of facts showing that its
conclusion does not follow from MM(Ψ) (i.e., MM for the class of partial
orderings which preserve stationary subsets ofω1 and do not change the
cofinality ofω2 to ω). We use a strengthening of SRP which follows from
MM(Ψ).

Lemma 3.18. Assume MM(Ψ). Letλ ≥ ω2 andS ⊂ [λ]<ω1 be projective
stationary. LetP ∈ H(λ) be a forcing such that for any countableX ≺
H(λ), ifX∩λ ∈ S, then anyX-generic forP can be extended to a condition
in P. Then for any seta ∈ H(λ) there exist a continuous increasing∈-chain
〈Xα ≺ H(λ) : α < ω1〉 such thata ∈ X0 and eachXα ∩ λ ∈ S, and
a sequence〈pα ∈ P : α < ω1〉 such that for allα < β < ω1 pβ < pα,
pα ∈ Xα+1, andXα ∩ {q ∈ P : q ≥ pα} is anXα-generic filter forP.

Proof.We just need to see that the forcing to create such a pair of sequences
preserves stationary subsets ofω1. To do this, letτ be a name for a club
subset ofω1 under this forcing, and letE ⊂ ω1 be any stationary set. Then
pickX ≺ H(λ) with τ,P ∈ X, andX ∩ λ ∈ S ↘ E. Let β = X ∩ ω1.
We then note that anyX-generic〈(Xα, pα) : α < β〉 for our forcing can
be extended to the condition〈(Xα, pα) : α < β + 1〉 whereXβ = X
andp is a condition inP extending theX-generic filter forP generated by
the sequence ofpα’s. That this filter is generic follows from the fact that
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each predense subset ofP inX is in someXα, and by the fact that eachpα
generates anXα-generic.✷

Theorem 3.19.Assume MM(Ψ). Then forcing to shoot anω-club though a
stationary subset ofCω

ω2
adds no subsets toω1 and preserves MM(Ψ).

Proof.Let D denote the forcing to shoot anω-club through a stationary set
A ⊂ Cω

ω2
. To see thatD adds no subsets ofω1, we apply Lemma3.18.. That

is, given aD-nameσ for a subset ofω1, we can find a continuous increasing
∈-chain〈Xα : α < ω1〉 of elementary submodels of some sufficiently large
H(λ) with σ ∈ X0 and such that for eachα, sup(Xα ∩ ω2) ∈ A, plus a
sequence of generics for eachXα extending one another. The union of this
sequence will be a condition inD deciding all ofσ.

Let τ be aD-name for a forcing which preserves stationary subsets ofω1
and doesn’t change the cofinality ofω2 to ω. We may assume that forcing
with D ∗ τ makesω2 have cofinalityω1, since if necessary we can tack
Coll(ω1, ω2) ontoτ . Then given names〈ρα : α < ω1〉 for dense sets inτ ,
we can find a filter inD ∗ τ which meets all theρα (suitably generalized).
Further, we can guarantee that the restriction of this filter toD has cofinality
ω1, since the forcing makes the cofinality ofω2 equalω1. Therefore, the
union of the restriction of the filter toD is a condition inD forcing the
existence of the appropriate filter witnessing the desired instance of MM(Ψ)
in theD-extension.✷

We have the following corollary. Qi Feng’s Cofinal Branch Principle [4]
is an immediate consequence ofMM(Ψ ).

Corollary 3.20. Let φ be a statement which is preserved by(ω1,∞)-
distributive forcing. Then if ZFC + MM +φ is consistent, then so is ZFC +
MM(Ψ ) + φ + ¬MM.

The forcing for which MM fails in this extension is Namba forcing fol-
lowed by the forcing to put the oldω2 into the tilde of the set the stationarity
of whose tilde onCof(ω) we have just killed. It seems unlikely that MM
holds for Namba forcing itself in this extension, but this is not known.

The following forcing is designed to kill the stationarity ofT̃ ∩Cω
ω2

for
every costationaryT ⊂ ω1.

Definition 3.21. C is the set of(c, A) such that

1. c ⊂ ω2 is closed and bounded,
2. A is a set of costationary subsets ofω1,
3. |A| ≤ ω1.
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The order onC is as follows:

(c, A) ≤ (d,B) ⇔ B ⊂ A, c end-extendsd, and
∀S ∈ B S̃ ∩ (c \ d) ∩ Cω

ω2
= ∅.

The following theorems show that we can strengthen Theorem3.19.
using MM. The proof of the first part of the first theorem is just like the
proof of Theorem3.19. The proof of the second part is straight from the
definition ofC.

Theorem 3.22.AssumeMMand thatC adds no subsets ofω1. Then forcing
with C preserves MM(Ψ) and forces that for all costationaryT ⊂ ω1,
T̃ ∩ Cω

ω2
is nonstationary.

Theorem 3.23.Assume Martin’s Maximum. Then the forcingC does not
add anyω1-sequences of ordinals.

Proof.Fix τ , aC-name for anωV1 -sequence of ordinals. The theorem follows
from the following claim.
Suppose that MM holds and that〈Tβ : β < ω2〉 is an enumeration of

the costationary subsets ofω1. Then there exist stationarily manyβ ∈ Cω
ω2

such that for allβ′ < β, β �∈ T̃β′ .
Given this claim, we have that the set

{X ≺ H(ω2) | for all costationaryT ∈ P (ω1) sup(X ∩ ω2) �∈ T̃}
is projective stationary. Applying Lemma3.18., let 〈Xα : α < ω1〉 be a
continuous increasing∈-chain contained in this set, withτ ∈ X0, and let
g ∈ C such that for allα < ω1, g�Xα (abusing notation) isXα-generic for
C. g then decides all ofτ .

We now prove the claim. Let〈Tβ : β < ω2〉 be as in the statement
of the claim, and let〈Sα : α < ω1〉 be a disjoint maximal antichain in
P (ω1) \ INS .

We use the fact, shown in [20], that ifS is a stationary subset ofω1 and
T is a costationary subset ofω1, both inV , then after Namba forcing, the
set

{x ∈ [ωV2 ]<ω1 | x ∩ ω1 ∈ S ando.t.(x) �∈ T}
is stationary.

Now consider the forcingP which is composed of first forcing with
Namba forcing, and then, given a bijectionh : ω1 → ωV2 added by Namba
forcing, shooting a continuous increasingω1-sequence through the set

{x ∈ [ωV2 ]<ω1 | x ∩ ω1 ∈ Sα ⇒ o.t.(x) �∈ Th(α)}.
Since each stationaryS ⊂ ω1 fromV has stationary intersection with some
Sα, this product preserves stationary subsets ofω1.
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Now for any club subsetD ⊂ ω2, pick dense sets inP so that for any filter
contained inP meeting all of our dense sets, the name forh is realized as
a bijection betweenω1 and someβ ∈ D of cofinalityω, and the continous
increasingω1 sequence through the above set (as a subset of[β]<ω1) is
defined. Then, given such a filter, the inducedβ is as desired.✷

Note that this result requires MM and not just MM(Ψ). This can be seen
by noting that the proof of Theorem3.19. also allows us to shoot anω-club
through the tilde of some stationary set, preserving MM(Ψ). Forcing with
C over this extension collapsesω2.

3.3. Additional remarks

By contrast with the above remarks on Martin’s Maximum and SRP, we
should note that the Proper Forcing Axiom does not imply thatT̃ is nonempty
for each stationaryT ⊂ ω1. To see this, note that ifT ⊂ ω1 is added by
forcing with initial segments, then for all ordinalsα ≥ ω1, the set{x ∈
[α]<ω1 | o.t.(α) �∈ T} is stationary, and sõT = ∅. Therefore, given a
supercompact cardinal, one can first force the existence of such aT , then
properly force PFA, leaving all these sets stationary, and thusT̃ empty.

Further, given a Woodin cardinal, if one forces by initial segments to
createT ⊂ ω1 and then does Shelah’s forcing [16] to make the nonstationary
ideal saturated,̃T remains empty in the final extension. This follows from
the fact that Shelah’s forcing is homogeneous and definable from an ordinal
parameter (the Woodin cardinal), and the following lemma.

Lemma 3.24. LetT be the forcing which adds a subsetT of ω1 by initial
segments, and letτ be aT-name for a homogeneous forcing which is de-
finable inV [T ] by the formulaφ from a parameterX in V . Then in the
extension ofV [T ] by τT , T̃ = ∅.
Proof.Let α be an ordinal andt ∈ T be a condition such that

t�“the forcing defined byφ with parameterX putsα into T̃”.

LetT1 beV -generic extendingt, and letT2 = (T̄1\sup(t))∪t. Note thatT1
andT2 are bothV -generic forT, that both extendt, and thatV [T1] = V [T2].
Sinceτ is a name for the set defined fromX by φ, τT1 = τT2 . But then

V [T1] |= τT1 putsα into T̃1 ∩ T̃2,

which is impossible sinceT1 ∩ T2 is bounded, and sõT1 ∩ T̃2 must be
empty.✷
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The same proof shows that˜̄T be will empty in this extension also. Along
with the last section of this paper, then, we see that models of ZFC in which
INS is saturated and there exists a stationary, costationaryT ⊂ ω1 with
T̃ , ˜̄T both empty can be created withPmax or by semi-proper forcing.

4. Pmax

In this section we present twoPmax variations which reproduce results from
the previous section. The first shows that MM++(c)+(∗) is consistent with
the statement that for all costationaryT ⊂ ω1, T̃ ∩ Cω

ω2
is nonstationary.

The second shows that ZFC +c = ω2 + “INS is saturated” is consistent
with the existence of a stationary, costationaryT ⊂ ω1 such thatT̃ , ˜̄T are
both empty.

4.1. Iterable structures

The following weakening of ZFC is used in the definition ofPmax, though in
the context of ADL(R) ZFC could be used instead. We include the definition
for the sake of completeness.

Definition 4.1. ([20]) A transitive setM models ZFC∗ if the following hold.

1. M is closed under the G̈odel operations.
2. If R ⊂ M<ωM

1 is nonempty and definable inM with parameters from
M such that for allf ∈ R andα < dom(f) f�α ∈ R, then there exist
α ≤ ωM1 and a function

f : α → M

such that
(a) f ∈M \R,
(b) for all β < α f�β ∈ R,
(c) if α = γ + 1, g ∈ R, andf�γ ⊂ g, thenf�γ = g.

If M models ZFC∗, then the appropriate version of L´ os’ Theorem holds
and the embedding derived from forcing with the nonstationary ideal over
M is elementary.

The following is the definition of iterability for sequences of models, the
form which thePmax variations in this paper take.

Definition 4.2. ([20]) Suppose〈Nk : k < ω〉 is a countable sequence such
that for eachk, Nk is a countable transitive model of ZFC∗ and such that
for all k,Nk ∈ Nk+1 andω

Nk
1 = ω

Nk+1
1 . An iteration of〈Nk : k < ω〉 is a

sequence
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〈〈Nβ
k : k < ω〉, Gα, jα,β : α < β < γ〉

such that for allα < β < γ the following hold.

1. jα,β : ∪{Nα
k | k < ω} → ∪{Nβ

k | k < ω} is a commuting family ofΣ0
elementary embeddings.

2. For all k < ω,Gβ ∩Nβ
k is anN

β
k -normal ultrafilter on(P (ω1))N

β
k .

3. If β + 1 < γ thenNβ+1
k is the∪{Nβ

k | k < ω}-ultrapower ofNβ
k by

Gβ andjβ,β+1 : ∪{Nβ
k | k < ω} → ∪{Nβ+1

k | k < ω} is the induced
Σ0 elementary embedding.

4. For eachβ < γ if β is a limit ordinal then for everyk < ω, Nβ
k is the

direct limit of{Nα
k | α < β} and for allα < β, jα,β is the inducedΣ0

elementary embedding.

If γ is a limit ordinal thenγ is the length of the iteration, otherwise the
length of the iteration isδ whereδ + 1 = γ.
A sequence〈N∗

k : k < ω〉 is an iterate of〈Nk : k < ω〉 if it occurs in an
iteration of〈Nk : k < ω〉.
The sequence〈Nk : k < ω〉 is iterable if every iterate of it is well

founded.
If B ⊂ R, then〈Nk : k < ω〉 is B-iterable if it is iterable, and if for

every iterate〈N∗
k : k < ω〉 of 〈Nk : k < ω〉, j(B ∩N0) = B ∩N∗

0 , where
j is the induced embedding andj(B ∩ N0) is defined to be∪{j(a) : a ∈
N0 anda ⊂ B}.

The following lemma is the main tool for verifying that the sequences
as above are iterable.

Lemma 4.3. ([20]) Suppose

〈Nk : k < ω〉
is a countable sequence such that for eachk, Nk is a countable transitive
model of ZFC∗ and such that for allk,

Nk ∈ Nk+1

and
(ω1)Nk = (ω1)Nk+1 .

Suppose that for allk < ω

(i) if C ∈ Nk is closedandunbounded inω
N0
1 , then thereexistsD ∈ Nk+1

such thatD ⊂ C,D is closed and unbounded inC, and
D ∈ L[x]

for somex ∈ R ∩Nk+1.
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(ii) for all x ∈ R ∩Nk, x# ∈ Nk+1.
(iii) for all k < ω,

|Nk|Nk+1 = ωN0
1 .

Then the sequence〈Nk : k < ω〉 is iterable.
We quote a lemma from [20] showing that under certain circumstances

the ultrafilter needed to iterate a given sequence exists.

Lemma 4.4. ([20]) Suppose that

〈Nk : k < ω〉

is a sequence of countable transitive sets such that for allk < ω, Nk ∈
Nk+1,

Nk |= ZFC∗,

and

Nk ∩ (INS)Nk+1 = Nk+1 ∩ (INS)Nk+2 .

Suppose thatk ∈ ω and that

a ∈ (P (ω1))Nk \ (INS)Nk+1 .

Then there exists

G ⊂ ∪{(P (ω1))Ni | i < ω}
such thata ∈ G and such that for alli < ω,G∩Ni is a uniformNi-normal
ultrafilter.

The sequences of models inPmax variations satisfy a variation ofψAC .

Definition 4.5. ([20]) ψ∗
AC : Suppose that〈Sα : α < ω1〉 and 〈Tα : α <

ω1〉 are each sequences of stationary, costationary sets. Then there exists a
sequence〈δα : α < ω1〉 of ordinals less thanω2 such that for eachα < ω1
there exists a bijection

π : ω1 → δα,

and a closed unbounded setC ⊂ ω1 such that

{η < ω1 | o.t.(π[η]) ∈ Tα} ∩ C = Sα ∩ C.

The reason for this variation is that our conditions are sequences of
models, and iterates of sequences modelingψ∗

AC modelψ∗
AC . This isn’t so

for ψAC .
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4.2. TheP∗
max extension ofL(Γ,R)

In this section, we prove the following theorem, whereP
∗
max is a reformu-

lation of Pmax andC is the forcing defined in Definition3.21..

Theorem 4.6. Suppose thatΓ ⊂ P (R) is a pointclass closed under con-
tinuous preimages such that

L(Γ,R) |= ADR + “Θ is regular.”

SupposeG ⊂ P
∗
max is L(Γ,R)-generic. SupposeF ⊂ C

L(Γ,R)[G] is
L(Γ,R)[G]-generic. Suppose

H ⊂ Coll(ω3, H(ω3))L(Γ,R)[G][F ]

isL(Γ,R)[G][F ]-generic. Then

L(Γ,R)[G][F ][H] |= ZFC +MM++(c) + (∗).

Furthermore, inL(Γ,R)[G][F ][H], for every costationaryT ⊂ ω1, T̃ ∩Cω
ω2

is nonstationary.

Recall that axiom(∗) is the statement thatL(R) |= AD andL(P (ω1)) is
aPmax extension ofL(R). It is shown in [20] that if(∗) + V = L(P (ω1))
holds, then for every stationaryT ⊂ ω1, T̃ ∩ Cω

ω2
is stationary. A corollary

of the arguments in this section is that if(∗) + V = L(P (ω1)) holds,
then the forcingC adds no subsets ofω1. We note that the assumption
V = L(P (ω1)) is essential, since it is possible to have models of(∗) in
which there exists a stationary subset ofω1 whose tilde contains anω-club
(just force such a club over a model of(∗) + V = L(P (ω1))).

The following is established in [20].

Theorem 4.7. ([20]) SupposeΓ ⊂ P (R) is a pointclass closed under
continuous preimages such that

L(Γ,R) |= ADR + “Θ is regular.”

SupposeG ⊂ P
∗
max isL(Γ,R)-generic. Then

L(Γ,R)[G] |= ω2-DC + MM
++(c) + (∗).

What remains to be shown is that forcing withC overL(Γ,R)[G] as
above adds no newω1-sequences, preservesω2-DC and MM++(c), and
destroys the stationarity of̃T∩Cω

ω2
for every costationaryT ⊂ ω1. However,

forcing always preservesω2-DC, andC clearly destroys stationarities as
desired, provided that is doesn’t collapseω2, so our task is even easier.

We need the following theorem.
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Theorem 4.8. ([14]) If κ is a successor cardinal andP is a partial order
preservingκ+, then for all genericG ⊂ P,

V [G] |= cof(|κ|) = cof(κ).

Therefore, no forcing of cardinalityω2 preservingω1 can change the
cofinality ofω2 toω. This gives us the following fact. The proof is just like
the proof of Theorem3.19., with an extra step to account for the names for
stationary subsets.

Theorem 4.9. Assume thatC adds no subsets ofω1. Then forcing withC
preserves MM++(c).

Proof.Note first that MM++(c) implies thatc = |P (ω1)| = ω2. Let τ be
a C-name for a forcing of cardinalityω2 or less which preserves stationary
subsets ofω1. We may assume that forcing withC ∗ τ makesω2 have
cofinality ω1, since by Theorem4.8. it cannot make it have cofinalityω,
and since if necessary we can tackColl(ω1, ω2) ontoτ . Then given names
〈ρα : α < ω1〉 for dense sets inτ andC-names〈σα : α < ω1〉 for τ -names
for stationary subsets ofω1, we can find by MM++(c) a filterG ⊂ C ∗ τ
which meets all theρα (generalized to subsets ofC ∗ τ ) and realizes each
σα as a stationary set. Further, we can guarantee that the restriction ofG to
C has cofinalityω1, since the forcing makes the cofinality ofω2 equalω1.
SinceC is ω1-closed, the union of the restriction ofG to C is a condition
in C forcing the existence of the appropriate filter (the restriction ofG to τ )
witnessing the desired instance of MM++(c) in theC-extension.✷

What is left, then, is to show that forcing withC overL(Γ,R)[G] as
above adds noω1-sequences. Showing this requires some analysis ofP

∗
max.

Definition 4.10. ([20]) P
∗
max is the set of pairs(〈Mk : k < ω〉, a) such

that the following hold.

1. a ∈M0, a ⊂ ωM0
1 , andωM0

1 = ωL[a,x]
1 for somex ∈ R ∩M0.

2. EachMk is a countable transitive model of ZFC∗.
3. Mk ∈Mk+1, ω

Mk
1 = ωMk+1

1 .
4. (INS)Mk+1 ∩Mk = (INS)Mk+2 ∩Mk.
5. ∪{Mk : k < ω} |= ψ∗

AC .
6. 〈Mk | k < ω〉 is iterable.
7. ∃X ∈ M0 such thatX ⊂ P (ω1)M0 \ IM1

NS , such thatM0 |= “|X| =
ω1, ” and such that for allA,B ∈ X, if A �= B thenA ∩B ∈ IM0

NS .

The ordering onP∗
max is as follows.

(〈Nk : k < ω〉, b) < (〈Mk : k < ω〉, a)
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if 〈Mk : k < ω〉 ∈ N0, 〈Mk : k < ω〉 is hereditarily countable inN0 and
there exists an iteration

j : 〈Mk : k < ω〉 → 〈M∗
k : k < ω〉

such that:

1. j(a) = b,
2. 〈M∗

k : k < ω〉 ∈ N0 andj ∈ N0,

3. j(IMk+1
NS ) ∩M∗

k = (INS)N1 ∩M∗
k for all k < ω,

The following lemma follows from the fact thatP
∗
max conditions model

ψ∗
AC . The analogous lemma holds in the otherPmax variations whose con-

ditions are sequences of models.

Lemma 4.11. ([20]) Suppose that(〈Mk | k < ω〉, a) ∈ P
∗
max. Suppose

that
j1 : 〈Mk | k < ω〉 → 〈M1

k | k < ω〉
and

j2 : 〈Mk | k < ω〉 → 〈M2
k | k < ω〉

are well founded iterations such thatj1(a) = j2(a).
Then

〈M1
k | k < ω〉 = 〈M2

k | k < ω〉
andj1 = j2.

Since the order onP∗
max is determined by the existence of elementary

embeddings, each condition(〈Mk : k < ω〉, a) in the generic is iterated
ω1 times through the conditions below it in the generic. In fact, by Lemma
4.11., each(〈Mk : k < ω〉, a) in the generic is uniquely iterated into the
extension to a structure〈〈M∗

k : k < ω〉, aG〉, where

aG = ∪{a | ∃(〈Mk : k < ω〉, a) ∈ G},
for genericG. The following definitions (all but the last from [20]) apply to
all Pmax variations.

Definition 4.12. A filterG ⊂ P
∗
max is semi-generic if for allα < ω1 there

exists a condition〈Mk : k < ω1〉 ∈ G such thatα < ωM0
1 .

AG = ∪{a | ∃(〈Mk : k < ω〉, a) ∈ G}.
P (ω1)G =

⋃
{P (ω1)M

∗
0 | (〈Mk : k < ω〉, a) ∈ G},

and
IG = ∪{IM∗

1
NS ∩M∗

0 | (〈Mk : k < ω〉, a) ∈ G},
where for(〈Mk : k < ω〉, a) ∈ G, 〈M∗

k : k < ω〉 is the iterate of〈Mk :
k < ω〉 by the unique iteration of〈Mk : k < ω〉 that sendsa toAG.
Also, for(〈Mk : k < ω〉, a) ∈ P

∗
max andx ∈ Mk, x∗ is the image ofx

under the unique iteration of〈Mk : k < ω〉 sendinga toAG.
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We will need to use another form of determinacy, AD+. AD+ implies
AD trivially, but the reverse implication is open. The only fact about AD+

that we will be using is that it follows from ADR.

Definition 4.13. ([20]) SupposeA ⊂ R. The setA is∞-Borel if there exists
a setS of ordinals and aΣ1 formulaφ(x0, x1) such that

A = {y ∈ R | L[S, y] |= φ[S, y]}.
Definition 4.14. ([20]) (ZF + DCR) AD+ abbreviates the following as-
sumptions.

1. SupposeA ⊂ R. ThenA is∞-Borel.
2. Supposeλ < Θ and

π : λω → ωω

is a continuous function. Then for eachA ⊂ R, the setπ−1[A] is deter-
mined.

The following theorem gives the basic analysis ofP
∗
max in the presence

of AD+.

Theorem 4.15. ([20]) SupposeΓ ⊂ P (R) is a pointclass which is closed
under continuous preimages such that

L(Γ,R) |= AD+.

ThenP∗
max is ω-closed and homogeneous.

SupposeG ⊂ P
∗
max isL(R)-generic. Then inL(Γ,R)[G]:

1. P (ω1)G = P (ω1);
2. P (ω1) ⊂ L(R)[G];
3. IG is the nonstationary ideal;
4. IG is a normal saturated ideal;
5. for everyA ∈ Γ ,B ∈ P (R) ∩ L(A,R) the set

{X ≺ 〈H(ω2, A,∈〉 |MX isB-iterable andX is countable}
contains a club, whereMX is the transitive collapse ofX.

Note that the set

{((〈Mk : k < ω〉, a), σ) | ∃c ∈M0 (〈Mk : k < ω〉, a)�σG
= (c∗, (P (ω1)M0)∗)},

is dense inP∗
max ∗ C, wherec∗ and(P (ω1)M0)∗ as usual are the images of

c andP (ω1)M0 under the embeddings through the generic. That this set is
dense follows from the fact thatP (ω1)G = P (ω1) in theP

∗
max extension,
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and the fact thatC is closed under expansion of the second coordinates of
its conditions.

First we will show thatP∗
max ∗ C is ω-closed on this set and so adds no

reals. Then we will show that all subsets ofω1 added byP∗
max ∗ C are in

fact added byP∗
max. Then we will be done.

The following theorem is implicit in [20].

Theorem 4.16. ([20])Assume AD+ holds inL(Γ,R), whereΓ ⊂ P (R)
is a pointclass closed under continuous preimages. SupposeB ⊂ R and
B ∈ L(Γ,R). Then there exists aP∗

max condition

(〈Mk : k < ω〉, a)
such that the following hold.

1. For all k < ω, IMk+1
NS ∩Mk = IMk

NS .
2. For all k < ω,B ∩Mk ∈Mk

3. For all k < ω, 〈H(ω1)Mk ,∈, B ∩Mk〉 ≺ 〈H(ω1),∈, B〉.
4. 〈Mk : k < ω〉 isB-iterable.

The following lemma shows that we can appropriately iterateP
∗
max con-

ditions.

Lemma 4.17. (ZFC∗) Say〈〈Mk : k < ω〉, a〉 is a P
∗
max condition. Then

there exists an iterate〈M∗
k : k < ω〉 of 〈Mk : k < ω〉 such that

1. ω
M∗

0
1 = ω1,

2. ∀k < ω, IM
∗
k+1

NS ∩M∗
k = INS ∩M∗

k ,

3. ∀k < ω, ∀T ∈ P (ω1)M
∗
k \ (INS)M

∗
k+1 ∪{M∗

k : k < ω} ∩Ord �∈ ˜̄T .

Proof.Build an iteration

〈〈Mβ
k : k < ω〉, Gα, jα,β | α < β ≤ ω1〉,

with 〈M∗
k : k < ω〉 = 〈Mω1

k : k < ω〉. The first condition is satisfied by the
length of the iteration. The second condition is routine: we take a partition
〈Sα : α < ω1〉 of ω1 into ω1 many stationary sets, and while we build the

iteration we tag each setA in someP (ω1)M
β
k \ (INS)M

β
k+1 to someSαA ,

and from that point on construct so that ifω
Mγ

0
1 ∈ SαA , thenjβ,γ(A) ∈ Gγ .

For the last condition, we use the fact (see [20], [13]) that for any iteration
of a P

∗
max condition, for allβ + 1 < α,

ω
Mβ+1

0
1 = jβ,β+1(ω

Mβ
0

1 ) = ∪{Mβ
k ∩ Ord | k < ω}.

Then we can assure the last condition by doing the same argument as for
the second condition, just at successor stages. That is, for eachA in some
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P (ω1)M
β
k \(INS)M

β
k+1 , construct so thatjβγ+1(A) ∈ Gγ+1 for stationarily

manyγ. Let f : ω1 → ∪{M∗
k : k < ω} ∩ Ord be a bijection such that on

a club ofα < ω1, f [α] = jα,ω1 [∪{Mα
k : k < ω} ∩ Ord]. Then the third

condition will be satisfied, since for anyT in anyP (ω1)M
∗
k \ (INS)M

∗
k+1 ,

o.t.(f [α]) �∈ T̄ for stationarily manyα. ✷

First we show thatP∗
max ∗ C is ω-closed, and so adds no reals.

Theorem 4.18.Assume AD+ holds inL(Γ,R), whereΓ ⊂ P (R) is a
pointclass closed under continuous images. ThenP

∗
max ∗ C is ω-closed on

the setD =

{((〈Mk : k < ω〉, a), σ) | ∃c ∈M0 (〈Mk : k < ω〉, a)�σG
= (c∗, (P (ω1)M0)∗)}.

Proof.Suppose that

〈((〈M i
k : k < ω〉, ai), σi) | i < ω〉

is a descending sequence inP
∗
max ∗ C ∩D. Letx be a real which codes the

sequence
〈((〈M i

k : k < ω〉, ai), ci)〉 | i < ω〉,
whereci witnesses that((〈M i

k : k < ω〉, ai), σi) ∈ D.
Then let(〈Mi : i < ω〉, b) be aP

∗
max condition withx ∈ M0, as given

by Theorem4.16..
We work inM0.
There are embeddingsji,i+1 witnessing the descent of our sequence of

P
∗
max conditions. Letjiω denote the embedding of〈M i

k : k < ω〉 into the
direct limit of this system, and consider the structure

(〈Nk : k < ω〉, a)
whereNk = jkω(Mk) anda = ∪j0ω(a0).

By Lemma4.3., this sequence is iterable, and thus(〈Nk : k < ω〉, a) is
a P

∗
max condition. By iterating it by an embeddingj as in Lemma4.17. we

see that
((〈Mi : i < ω〉, j(a)), σ)

is a lower bound inD for our descending sequence, wherec is the closure
of ∪{j(jkω(ck)) : k ∈ ω}, andσ is aP

∗
max-name such that

(〈Mi : i < ω〉, j(a))�σG = (c∗, (P (ω1)M0)∗)).

✷

Lastly, we show thatC adds no subsets ofω1 over the theP∗
max extension

in question.
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Theorem 4.19.Assume AD+ holds inL(Γ,R), whereΓ ⊂ P (R) is a
pointclass closed under continuous images. LetG ⊂ P

∗
max beL(Γ,R)-

generic, and letF ⊂ C
L(Γ,R)[G] beL(Γ,R)[G]-generic. Then ifA ⊂ ω1

andA ∈ L(Γ,R)[G][F ], thenA ∈ L(Γ,R)[G].

Proof.Again, letD =

{((〈Mk : k < ω〉, a), σ) | ∃c ∈M0 (〈Mk : k < ω〉, a)�σG
= (c∗, (P (ω1)M0)∗)}.

Let τ be aD-name inL(Γ,R) for a subset ofω1 added byC, and, noting
that conditions inD can be coded by reals, letB be a set of reals codingτ .
Then let(〈Mi : i < ω〉, b) be aB-iterableP

∗
max condition as in Theorem

4.16..
We work inM0.
Using theω-closure proved above as well as the fact that

〈H(ω1)M0 ,∈, B ∩M0〉 ≺ 〈H(ω1),∈, B〉,

we can build a descendingω1 sequenceS = 〈(pα, σα) : α < ω1〉 fromD
of lengthω1 such that for everyα < ω1 (of M0) there exists a(p, σ) ∈ S
such that(p, σ) decides “̌α ∈ τ .”

By a bookkeeping argument as in Lemma4.17. to ensure that the sta-
tionary sets in eachpα are mapped to stationary sets inM1 (using the setX
from the definition ofP∗

max), we can construct this sequence so that each

(pα, σα) > ((〈Mi : i < ω〉, a), σ)

in D, for some fixeda, σ, c ∈M0 such that

(〈Mi : i < ω〉, a)�σG = (c∗, (P (ω1)M0)∗)).

Here, if we letjα be the embedding witnessingpα > (〈Mi : i < ω〉, a) and
let cα be the set such thatpα forces that the first coordinate ofσαG will be
c∗α, thenc = ∪{jα(cα) : α < ωM0

1 }.
Furthermore, by theB-iterability of our condition (working now in

L(Γ,R)), if (〈Mi : i < ω〉, j(a0)) ∈ G, then the value ofτ is deter-
mined byS,AG andσG, contradicting that fact thatτ is a name for a subset
of ω1 added byC. ✷
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4.3.Pmax variations forT̃ = ∅
In [10], two Pmax variations are presented in whose extensions the nonsta-
tionary ideal is saturated and there exists a stationary, costationary subsetT

of ω1 such thatT̃ and ˜̄T are both empty. The first of these variations, called
P
g
max, will be presented in detail in [12]. The relevant theorem regarding

P
g
max for this context is a follows.

Theorem 4.20.Assume AD +V = L(R). Then there is a forcingPg
max

such that in the extension byPg
max followed by adding a subset ofω2 by

initial segments the following hold.

1. ZFC + c = δ∼
1
2 = ω2.

2. INS is saturated.
3. There exists a stationary, costationaryT ⊂ ω1 such that for all finite
setsa ⊂ ω2 there exist stationary subsetsS0, S1 ⊂ ω1 such that

S0�a ∩ j(T ) = ∅ andS1�a ∩ j(T̄ ) = ∅
whereS0 andS1 are considered as conditions inP (ω1)/INS andj is
the embedding derived from this forcing.

So, not only arẽT and ˜̄T empty in the statement of this theorem, butT
witnesses a failure ofψAC also.

Leaving the discussion ofPg
max to [12], in this section we briefly present

a Pmax variation which tries to maximizeΠ2 sentences for the structure

〈H(ω2),∈, INS〉
relative to the existence of a stationary, costationary setT ⊂ ω1 such that
T̃ , ˜̄T are empty. This is a straightforward variation ofP

∗
max.

Definition 4.21. T
0
max is the set of sequences

〈〈Mk : k < ω〉, T,X〉
such that the following hold.

1. EachMk is a countable transitive model of ZFC∗.
2. Mk ∈Mk+1, ω

Mk
1 = ωMk+1

1 .
3. (INS)Mk+1 ∩Mk = (INS)Mk+2 ∩Mk

4. 〈Mk | k < ω〉 is iterable.
5. For eachk < ω,

Mk |= “T ⊂ ω1 is stationary, costationary,̃T = ∅, and ˜̄T = ∅.”
6. ∃Y ∈M0 such thatY ⊂ P (ω1)M0\IM1

NS , such thatM0 |= “|Y | = ω1, ”
and such that for allA,B ∈ Y , if A �= B thenA ∩B ∈ IM0

NS .
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7. X ∈M0 andX is aset, possiblyempty,ofpairs(〈〈Nk : k < ω〉, S, Z〉, j)
such that the following hold:
a) 〈Nk : k < ω〉 is countable inM0;
b) 〈〈(Nk : k < ω〉S,Z〉 ∈ T

0
max;

c) j : 〈Nk : k < ω〉 → 〈N∗
k : k < ω〉 is an iteration such that

j(INk+1
NS ) ∩N∗

k = (INS)M1 ∩N∗
k

for all k < ω;
d) j(Z) ⊂ X;
e) j(S) = T ;
f) if (〈〈Nk : k < ω〉, S, Z〉, j′) ∈ X thenj = j′.

Suppose

〈〈N ′
k : k < ω〉, T,X〉, 〈〈Nk : k < ω〉, S, Z〉

are conditions inT0
max. Then

〈〈N ′
k : k < ω〉, T,X〉 < 〈〈Nk : k < ω〉, S, Z〉

if there exists an iteration

j : 〈Nk : k < ω〉 → 〈N∗
k : k < ω〉

such that(〈〈Nk : k < ω〉, S, Z〉, j) ∈ X.
The basic analysis ofT0

max is roughly the same as that ofPmax. The
basic properties of the extension are given below. Note that we do not know
whetherT0

max is homogeneous. As we discuss below, the issue of homo-
geneity is related to the question of whether theT

0
max extension is indeed

Π2 maximal relative to the existence of a stationary subset ofω1 whose
tilde is empty. The additional forcing over theT

0
max extension is required to

obtain AC, since we also don’t know ifψAC holds after forcing withT0
max.

Definition 4.22. For p = 〈〈Mk : k < ω〉, T,X〉 ∈ T
0
max, Tp = T . For

g ⊂ T
0
max a filter,Tg is the union of{Tp | p ∈ g}.

Theorem 4.23.Assume ADL(R). ThenT0
max is ω-closed.

Suppose G⊂ T
0
max isL(R)-generic. Then

L(R)[G] |= ω1 − DC
and inL(R)[G]:

1. P (ω1)G = P (ω1).
2. T̃G, ˜̄TG are empty.
3. IG is the nonstationary ideal.
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Further, say thatH isL(R)[G]-generic foraddingasubsetofω2 by the initial
segment forcing. Then inL(R)[G][H] the nonstationary ideal is saturated.

The key point in the basic analysis ofT
0
max is showing that anyT0

max

condition can be iterated in a way that preserves the emptiness of the tilde
of its T (andT̄ ). More precisely, it is the following lemma.

Lemma 4.24. (✸) Say〈〈Mk : k < ω〉, T,X〉 is aT
0
max condition.

Then there is an iteration by the nonstationary ideal,j : 〈Mk : k <
ω〉 → 〈M∗

k : k < ω〉, such that (forj(T ) = P ) the following hold.

1. ω
M∗

0
1 = ω1.

2. For all k ∈ ω, INS ∩M∗
k = (INS)M

∗
k+1 ∩M∗

k .

3. P̃ , ˜̄P are both empty.

Proof.We construct anω1-length iteration, using the usual trick to ensure
thatINS ∩M∗

k = (INS)M
∗
k+1 ∩M∗

k . That is, we take a partition ofω1 into
stationary sets〈Sα : α < ω1〉 and, enumerating the stationary subsets which
appear during the iteration, we make sure each such set is in the generic at
all stages in someSα.

To get P̃ , ˜̄P empty, we use the same construction as in Lemma2.7..
The key idea is that sinceM |= T̃ , ˜̄T = ∅, if at some stageλ σλ of our ✸

sequence codes a well ordering ofλ of ordertypeγ > λ, we can extend the
iteration to keepγ out ofP or to put it inP as desired.✷

The key issue here is whether the assumptions on this lemma can be
improved to “there exists a stationary, costationary setS ⊂ ω1 such that
S̃, ˜̄S are empty,” instead of✸. In the terminology of [17], we are asking if
there exists an optimal iteration lemma for this statement. If there does, then
T

0
max maximizesΠ2 sentences inH(ω2) relative to this sentence. If there

doesn’t, then there should be incompatibleΠ2 sentences relative to this one,
and therefore no such maximal model.

5. Questions

The following issues remain unresolved.

1. Does MM(Namba forcing) hold in the forcing extension in Corollary
3.20.?

2. Does Shelah’s forcing to make the nonstationary ideal saturated from
a Woodin cardinal ever put an ordinalα into T̃ if in the ground model
{x ∈ [α]<ω1 | o.t.(x) ∈ T̄} is stationary?

3. Is there an optimal iteration lemma for “There exists a stationary, costa-
tionaryT ⊂ ω1 such thatT̃ and ˜̄T are empty”?
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