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Abstract. Given a stationary subsét of wy, let T be the set of ordinals

in the interval(w;, wy) wWhich are necessarily in the image 6fby any
embedding derived from the nonstationary ideal. We consider the question
of the size ofT, givenT’, and use Martin’s Maximum ari#},, .. to give some
answers.

1. Introduction

In the context of elementary embeddings derived from the nonstationary
ideal onwy, a canonical function fof € (w1, w2) is a function fromw; to

wy of the formg(«) = ordertype(f|a]), wheref : w1 — [ is a bijection.

The reason for this terminology is that in any elementary embedding derived
from forcing with="(w; ) /Ins (Wherelyg is the nonstationary ideal), any
suchg representg. This idea is implicit in the following definition.

Definition 1.1. ([20]) For T' C wy, T = {fB € (w1,we) | f : w1 — S,
one-to-one and onto, and C wy, club, s.tVa € C, o.t.(fla]) € T'}.

Given a subset of wy, T is the set of ordinals in the intervéby, wo)
which are forced to be in the image @f after forcing with="/Iygs and
taking the induced elementary embedding. This follows from the fact that
T is the set of3 € (wy,ws) such that any canonical function férmaps a
clubintoT.

* This material is based in part upon work supported by the North Atlantic Treaty Orga-
nization under a grant awarded in 1998.
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Canonical functions have been extensively studied in [1], [14] and else-
where, but the tilde function seems to have attracted little attention until
recently, when it has found application in [20], [13] and [11].

In this paper, we ask a very simple question about the tilde function:
given a stationary sef C wy, what do we know about the size B For
instance, must it be nonempty, must it be stationar¢'ofi(w), or mustit be
stationary orCof(w1)? It turns out that the answers to these questions are
very sensitive to which extension of ZFC we are working in. In particular,
we have the following ladder of facts, presented roughly in increasing order
of strength of context.

1. If & holds, then there is a stationary, costationary subseftw, such
that7 andT (the tilde of the compliment of’) are both empty, and a
clubC C wy such thatC' is empty. 3

2. If the nonstationary ideal is saturated, then for all cfibC w, C
contains a club ims.

3. Assuming AD +V = L(R) (or, assuming the existence of a Woodin
cardinal), there is a two step forcing in whose extension ZFC and the
saturation of the nonstationary ideal hold, along with the existence of a

stationary, costationary subgebf w; such thaf’ andT are both empty.
4. If SRRws) holds, then for every stationaf) C wi, T'N Cof(w1) is
stationary and” N Cof(w) is unbounded is.
5. If I ¢ &”(R) is a pointclass closed under continuous preimages and

L(I'R) = “ADR + © regular’,

then there is a three step forcing ovefl’, R) which creates a model
of ZFC + Martin’s Maximunt ™ (c) + (x) (theP,,,, axiom) + “for all
costationany” C wy, T is not stationary oo f (w).”

6. If Martin’s Maximum holds, there is afw, oo)-distributive forcing in
whose extension we have Martin’s Maximum for all forcings which don’t
change the cofinality af, tow, but also that for every costationary subset
T C wy, TN Cof (w) is nonstationary.

7. ([20]) If Martin’s Maximum holds of(x) + V' = L(#”(w;)) holds, and
T C w is stationary, thefi’ N Cof (w) is stationary.

The first two facts listed here are very easy to prove. The third fact
refers to two separate proofs, one usii),a .. variation and the other using
Shelah’s forcing to make the nonstationary ideal saturated. The first of these
proofs requires a significant amountl®yf,,,, machinery to prove, and since
a proof is given in detail in [12], we give just a brief discussion of it here.
The second proof is relatively simple if one takes for granted certain facts
about revised countable support.
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The last fact is proved in [20] so we do not reproduce the proof here. The
proof of the fifth is similar to the proof of the sixth, but it follows from the
Ppq. analysis. Heréx) is the statement thdt(R) = AD and L(=°(w1))
iSs a4, extension ofL(R).

Hidden in this list of facts are two results of independent interest. The
last two facts together imply that Martin’s Maximum cannot be decomposed
into the conjunction of a statment abaut~’(w)) and a reflection prin-
ciple into H (w2), at least as far as the currently used reflection principles
are concerned. The proof of the fourth fact on the list concerns the question
of whether certain subsets pf;|<“* are projective stationary. We give a
general lemma (Lemnt&a9.) which shows that the saturation of the nonsta-
tionary ideal implies that these sets are projective stationary. From this fact
one gets immediately that SREB{ implies Woodin's axiom) 4 as well as
the fourth fact above fo€'o f (wy).

Most of this paper is excerpted from the author’s dissertation [10].

2. Preliminaries
2.1. Notation

We use the notatio'q to denote the set of ordinals less thaaf cofinality
«. We use’ to denote the class of partial orders such that forcing with them
does not change the cofinality ©f to w.

2.2. The nonstationary ideal

For an ordinaly, we say thatd C ~ is club, or closed unbounded, inif A
contains all its limit points below and is cofinal iny. A C ~ is stationary in
~ifitintersects every club subsetof Otherwise A is called nonstationary.
In this paper/ygs is used to denote the collection of nonstationary subsets
of wy.

Our interest inly g lies primarily in the following operation. Say! is
a model of ZFC, or a strong enough fragment, such as*Zefined in
Sect.4.1. Forcing overM with the boolean algebra?’(w;)/Ins)M gives
us anM -ultrafilter onwi” . Using functions from/, then, we can construct
an ultrapower embeddingwith domain)M . We say thaf g is precipitous
if the range of the derived is always well founded. The following two
standard definitions describe stronger properties.

Definition 2.1. Iyg is presaturated if foranyl € &(w1)\ Iy and forany
sequencéA; : ¢ < w) of maximal antichains iv’(w1) \ Ing there exists
B C Astationary suchthatforeadh< w,{X € A; | XNB is stationary}
has cardinality at mosb; .
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The presaturation dfys implies that for the derived, j(w1) = wa. The
following property, saturation, is even stronger.

Definition 2.2. Iyg is saturated if there are no antichains i (w1)/Ins
of cardinalityws.

One particularly useful hypothesis is that the nonstationary ideal is pre-
saturated plugi = w,. One example of this is the following standard fact.

Theorem 2.3. Assume thafl g is presaturated anaj% = wsy. Then for
every ordinale € wo, the value ofj(«) is independent of the generic, for
the embedding derived from forcing with (w1 )/Ins.

The following consequence of this hypothesis is shown in [20] and used
in [13] and [11]. The uniform indiscernibles are those ordinals which are
indiscernibles for every real.

Theorem 2.4. ([20]) Assume thafl y s is presaturated and that} = ws.
Then the critical sequence of any iteration of lengthy the nonstationary
ideal is the set of the first uniform indiscernibles as computedlif

23.¢

Using a< sequence, we can construct subsets,ofrhose tildes are empty.
We first note some elementary propertiesCofelated to the tilde function.
The following definition and lemma are standard.

Definition 2.5. For S C wy, ©(S) is the statement that there exists a se-
quence(o,, | @ € S) such thatforallE C wy {a € S| o, =FEnNalis
stationary.

Lemma 2.6. Say<>(.S) holds, forS C wy. Then there is a partition
(Sp | B <wr)
of S into stationary sets such that for eagh<(S3) holds.

Proof. Let (x5 | § < wi) enumerate the reals and let, : o € S) be a
&(S5)-sequence. Far C wy, let

a"={y<w |w+vyE€a}l.

Let S = {a | 0o Nw = 23}, and lete® = (o7 | o € Sp). Theno?
witnesses>(Sg). O

The following is the first fact from the list in the introduction.
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Lemma 2.7. If & holds then there exists a stationary, costation&rng. w,
such thatl', T are empty. Also, there exists a clGbc w; such thatC' = .

Proof.Let Sy, S; be disjoint subsets &f such thak>(Sy), <(.S1) hold. Fix
a bijectionh betweenu; x w; andw; and note that for any wellordering
of w1, h[A N X x A] is a subset of for a club set of\. Define a function
f:SoUS1 — wy such that ifo,, a € Sy, is on ourd(Sy)-sequence and
h~1[o,] is a wellordering ofx of ordertype3 > «, thenf(a) > 3 (and
similarly for S;). LetC' C w; be club such that forah € C, a < 1 =
f(a) < n.ThenC = 0, since for anyy < wy, if g, : w1 — « is a bijection,
then by (Sp), for stationarily manys < wy o.t.(g4[3]) € C. LetT be
stationary, costationary such thatife C N Sy, then(~,~v")NT = (, and
if v € C'N Sy, then(y,~T) NT = 0, wherey™ is the next element of’

abovey. ThenT', T are empty, for the same reasan.

Almostthe same argumentreproduces the well-known fact that a strength-
ening of & known as&* is inconsistent with the presaturation of the non-
stationary ideal.

Definition 2.8. <* is the statement that there exists a sequence
(Aq € X (a) ra < wry)
such that for allA C wy, the se{a < w1 | ANa € A,} contains a club.

Lemma 2.9. If &* holds, then there is a club sét C w; such thatC' =
(w1,w2), and so the nonstationary ideal is not presaturated.

Proof. This is basically the same argument as for Lenia. Fix the se-
quence(A, : a < wy) and letC' C w; be a club set such that if € C,

a < B,ando € A, codes a well ordering af, then the ordertype of this
wellordering is less thaf. Then for anyy € (w1, ws), if E is a wellorder-
ing of wy of ordertypey, then a set coding’'|« is in A, for club manya,
showing thaty € C. Since ifj an elementary embeddingC) must be club
in j(w1), it can't be then thaj(w;) = w9, and so the nonstationary ideal
isn't presaturatedl

Note that the following theorem shows thatis consistent with the
presaturation of the nonstationary ideal.

Theorem 2.10. ([20]) Suppose thaf is a Woodin cardinal and that
G C Coll(wy, < 0)

is V-generic. Then iV[G], Iy is presaturated.
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The proof of the following fact is a simple catch-up argument, using the
fact that if the nonstationary ideal is saturated, arislname for an ordinal
less thanwsy, then there is some < w9 such thatll-m < ¢.

Lemma 2.11. Saylyg is saturated. Then ' C w is club, therC contains
a club inws.

3. Semi-proper forcing and the tilde function
3.1. SRP

Definition 3.1. ([18]) The strong reflection principle (SRP) is the following:
Suppose thak > wy, Z C #,, (\) and that)M is a transitive set such that
M* c M. Then there exists a continuous, increasighain

(Xo =M :a<w)

of elements o¥,, (M ) such thatfor allv < wy, ifthere existsX € &, (M)
such that

1. X, CX,

2. X < M,

3. XNw =X,Nwy
4. XNXeZ,

thenX, N\ e Z.

SRP was formulated by Todmevi¢ in [18]. It follows from MM and is
equivalent to the simpler formulation below. The following defintion is a
variation of the one in [6]

Definition 3.2. ([6]) Let A be asetsuchthat; C A. SayX C [A]“. Then
X is projective stationary if for all stationarg C w1, the projection ofX
to S,

{reX|znw €8},

denotedX S, is stationary.

Definition 3.3. ([6]) Projective Stationary Reflection (PSR) is the statement
that for every\ > w, every projective stationary subset éf(\)]“ contains
a continuous increasing lengthy, €-chain.

Theorem 3.4. ([6]) SRP< PSR.

All of the known applications of SRP actually follow from the statement
that for any\ > w and any projective stationar§ C [A\]<“* and any
Y C ) of cardinalityw, S contains a continuous increasing sequence of
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lengthw; whose union containg. This statement is an immediate conse-
qguence of SRP, but it is not known whether the two statements are actually
equivalent. We denote by SRB(the statement that any projective station-
ary subset ofH (\)]“ contains an increasing length €-chain. SRR(2) is
a straightforward consequence of MiI(It is shown in [18] that SRR()
implies the saturation of the nonstationary ideal, and in [20] that it implies
c=J3 = wo.

This section analyzes the tilde function in the context of SRR (We
note first that sequences given by SRP are the natural witnesses to the exis-
tence of elements df.

Theorem 3.5. Say thatl’ C wy, andj € [ws,ws) is such that the set
A={z e [B]~“" |o.t.(x) €T}

is projective stationary. Lék be the forcing whose conditions are countable
continuous increasing sequences framThen forcing withP preserves
stationary subsets af;. Further, any sequence of length whose initial
segments are all elements®fefines a witness faF + 0.

Proof. ThatlP preserves stationary subsets.gffollows from the fact that
A is projective stationary, since X < H(\) for sufficiently large\ with
X N g e A, then anyX-generic forP is a condition.

For the second part, le&f = (z, : @ < w;) be such a sequence. Let
E =J S, andforeach € E, lety, = o.t.(ENn). We claimo.t.(E) € T.
Let f : w1 — F be a bijection such that if appears in an earlier, than
', then f=1(n) < f~1(»'). Then the functiory : w; — o.t.(E) such
thatg(a) = vf(o) Witnesses that.t.(E) € T, since for everyx such that
fla] = x4 (club many)e.t.(gla]) = o.t.(x) € T, by the definition ofA.
O

Therefore, to keep elements out Bfin a model of MM+ (¢), there
need to be protecting sets.

Definition 3.6. C' C [3]<“1, club, is a protecting set fofT’, 3) if there
existsS C wy stationary, such that for alt € C,

rNwy € S=ot.(x)¢T
We will need the following absoluteness lemma.

Lemma 3.7. SayM is an inner or transitive set model of Zk, < ( are
ordinals less thanu, ~ is an ordinal inM, and F : [y]<¥ — v is a
function inM such that

M = Vo € [)? closed undef, o.t.(c Nw;) # a
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Then
Vo € []? closed undef, o.t.(c Nwil) # «

Proof. We construct inM a tree of heightv such that any path through
the tree would be a counterexample to the statemésiatisfies, and such
that any counterexample would define a path. Then, siddeas no paths
through the tree, id/ there is a ranking function for the tree, which means
that the absence of a path, and therefore a counterexample, is absolute.
Letr : w — Sbe 1-1andonto, andlet: w — [w]<* be an enumeration
of the finite sequences from such that for all € w, range(v(n)) C n.
The tree is the tree of attempts to buitde [y]° closed under with
o.t.(cNwi) = a. Anode is of the form{no, no, ....n;, n;), where the ordinal
ordering of (no..n;) must match the ordinal ordering af0)..7 (i), n; <
w1 < 7(j) < «foreachj < i, and for eachy < i, if n; < i and
v(j) = (ko..kr), thenn,, = F(n,..nx, ). The order is by extension. Then
for any path through the tree, the $et : i € w} has the right ordertypes by
its agreement withr, and is closed undefr by the conditions on the;’s.
Our assumption o/ means that the tree is well founded M and thus
has a ranking function, which means it is absolutely well founded.

By the next theorem, if any forcing preserving stationary subsets of
can put an element into the tilde of a set, the forcing from Thedréncan.

Theorem 3.8. SayT’ C wq, and thatT is empty. Lefd > ws be such that
the set{z € [5]<“! | o.t.(z) € T'} is not projective stationary. Then there
is no outer model preserving stationary subsetsoin whichg € T.

Proof.Let A = {z € [3]<“" | o.t.(z) € T'}, and letB C w; be stationary
suchthaf{z € A | z Nwy € B} is nonstationary. Lef" : [§]<“ — ( be
a function such that for any € [5]<“* closed unde#, if c Nw; € B
theno.t.(o) ¢ T. Let f : w; — B, C C w; club form a witness in any
outer model that € T. Then there must be somec C N B such that
ot.(fla]) € T,a = flajNw; andf|a] is closed undeF. Then by Lemma
3.7. we have a contradictiomn)

The following lemma shows that if the nonstationary ideal is presaturated
andT’is a stationary subsetof , then there are no protecting sets(fdrw,).

Lemma 3.9. If the nonstationary ideal is presaturated, then it cannot be
that there existS, T' stationary subsets af;, andC' C [wa]<“* club such
that

VeeCzNw € S=ot.(x) ¢T.

Proof.Suppose the contrary. L&t : [ws]<“ — w9 be such that all countable
subsets af; closed undef’ are elements af'. Force with the nonstationary
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ideal, getting a generiG with S € G, and ovelV[G] with the nonstationary
ideal of j(V'), getting generid? with j;(T) € H. Then
in(ia(V)) | Yo € [wo]** closed undeyy (ja(F)), ot.(0) Nwy # w |

sincew!” € ju(jc(S)) andwy € ju(jc(T)) (by presaturation). However,
o = jg’jc"wy is closed undefy (ja(F)), o N w{H(JG(V)) = w} and
o.t.(o) = wY, contradicting Lemma.7.. O

Another use of the tilde function, or a similar concept, is to give definable
well-orderings of=’(w;). The following statement is the key means for
proving AC in extensions b¥,,.... variations.

Definition 3.10. ([20]) v a¢ is the assertion : Supposé C w; and B C
wy are stationary, costationary sets. Then there exisk ws, bijection
7 w1 — «, and a club seC C w; such that{n < w; | ordertypén(n]) €
B}nC=AnCcC.

Lemma 3.11. ([20]) Suppose that) 4 holds. Then
2% = 2% = (o,
The following corollary of Lemma.9. was pointed out by Hugh Woodin.
Theorem 3.12. If SRP(-2) theny sc.
It is an instance of following corollary of Lemn$a9..

Theorem 3.13. (SRP{»)) Lety < wy. Let(A, : a < ) be a collection
of stationary subsets of;, and let(B,, : a < ) be a maximal disjoint
antichain in=’(w1) \ Ins. Then{n € C&! | Va < v BulFn € j(Aa)} is
stationary.

Proof. Fix E C ws club.{z € [wa]<“* | sup(z) € E} is a club set. Since
the intersection of a club set and a projective stationary set is projective
stationary, by applying SRR§) we will be done if we see that

D ={z € [w]" |Va<yrNuws € By = ot.(x) € Ay}

iS projective stationary. Let C w; be stationary. Then for some < ~,
B, N S'is stationary, and by Lemna9.,

{z € W]~ |zNwi € BaNSAot(z) € Ay} C D\ S
is stationaryd
The following lemma shows that ifyg is presaturated, is the w-th

uniform indiscernible and% = wsy, then for no stationarg, T C w1 is S a
protecting set fo(7, ¢).
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Lemma 3.14. 1 Say that the nonstationary ideal is presaturated dhd=
wa, and let. be thew-th uniform indiscernible. Le$, 7" C w; be stationary.
Then there is n@' C [¢]<“* club, such that

VeeCzxNw € S=ot.(x)¢T.

Proof. Suppose the contrary. Lét : [¢]<“ — . be such that any countable
subset of closed undeF is in C. Forcew + 1 times to get an iteration df

of lengthw + 1 by the nonstationary ideal, lettingbe in the generic at the
first stage, and be in the generic at the last stage. lidte the embedding
induced by this iteration. We have then thgt € j(S) and. € j(T), since
by Lemmaz2.4., ¢ is the critical point of the last step of the embedding.
Further,c = ;7. is closed undej(F'), contradicting Lemma.7.. O

These give us the following facts.

Theorem 3.15. Assume SRREY). LetT C wq be stationary. Then:

1. T N C! is stationary;
2. T'NC% is unbounded imvs.

Proof. Note that SRR{,) implies §1 = ws and Iy¢ saturated (by [20],
[18]). Then the first conclusion is an instance of TheoBem. (withy = 1,
Ap = T and By = wy). For the second, Theore5. and Lemma3.14.
show thatl" N Cy, is nonempty. But given any stationafy C w; and any
v < wy, We can find stationary” C T such thatl” N~ is empty: let
h : w; — - be a bijection and Iet” C T be such that for a club ¢f < w,
T' N (3, 0.t.(h[3])) is empty. Then sinc&” is nonempty,I” must have an
element above. O

3.2. MM

Definition 3.16. ([7]) Martin’s Maximum (MM) is the following statement:
SayP is a forcing which preserves stationary subsetsgfand

(Dg a0 < w)

is a collection of dense subsetdfofThen there exists afiltéF C P meeting
all the D, ’s.

! Woodin presents a similar argument in Sect. 10.3 of [20], but without the assumption
thatd3 = w». The point is that one needs to know in advaace 1 many members of the
critical sequence. Here we have used the uniform indiscernibles, but this can be done by
cardinality considerations as well.
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Martin’'s Maximunt (MM™) is MM with the added stipulation that if
is alP-name for a stationary subset ©f, then

{acw |IpeGpracer}

is stationary. MM allows for anw; -sequence of names for stationary sets.
MM(c), MM™(c) and MM**(c) are the restrictions of MM, MM and
MM* to the caséP| < c.

MM and its consequences are presented in detail in [7]. In that paper
a forcing construction is presented which when applied to a model with a
supercompact cardinal creates a model of MMCurrently, this is the only
known way of achieving MM. The relationship between MM drdlis one
of the main open questions in the studyRj,.. It is shown in [20] that
MM *+(c) and (%) are independent, and that each implies fat w. It
is shown in [11], by an application of the tilde function, that MMoes not

imply (x).

Theorem 3.17. ([20]) Assume Martin’'s Maximum. Suppos$e C w; is
stationary. Then .
{alaceSNC}

is stationary inws.

We will contrast the above theorem with a couple of facts showing that its
conclusion does not follow from M) (i.e., MM for the class of partial
orderings which preserve stationary subsets-ofand do not change the
cofinality of w, to w). We use a strengthening of SRP which follows from
MM (7).

Lemma 3.18. Assume MNW). Let A > wy and S C [A\]<“! be projective
stationary. LetP € H(\) be a forcing such that for any countablé <
H()\),if XN\ € S, thenanyX-generic forP can be extended to a condition
inP. Then for any set € H(\) there exist a continuous increasiggchain
(Xo < H(N\) : @ < wy) such thate € X, and eachX, N A € S, and
a sequencep, € P : a < wy) such that for alle < 8 < w1 pg < pa,
Pa € Xat1,andX, N{q € P:q > p,}is anX,-generic filter forP.

Proof.We just need to see that the forcing to create such a pair of sequences
preserves stationary subsetsugf To do this, letr be a name for a club
subset ofu; under this forcing, and le C w; be any stationary set. Then
pick X < HA) with7,P e X,andXNAe S\, E. Letg =X Nuw.

We then note that any(-generic((X,,po) : @ < ) for our forcing can

be extended to the conditiofiX,,p.) : @ < §+ 1) whereXg = X

andp is a condition inP extending theX -generic filter forP generated by

the sequence gf,’s. That this filter is generic follows from the fact that
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each predense subsetlbin X is in someX,, and by the fact that eagh,
generates aX,-generic.0

Theorem 3.19. Assume MNW). Then forcing to shoot an-club though a
stationary subset af;), adds no subsets to, and preserves M ).

Proof. Let D denote the forcing to shoot anclub through a stationary set
A C C¢,. To see thad adds no subsets of;, we apply Lemma.18.. That

is, given aD-nameo for a subset ofy1, we can find a continuous increasing
e-chain(X, : a < wy) of elementary submodels of some sufficiently large
H(X\) with o € X and such that for each, sup(X, Nwa) € A, plus a
sequence of generics for eagh, extending one another. The union of this
sequence will be a condition i deciding all ofc.

Let r be aD-name for a forcing which preserves stationary subsets of
and doesn’t change the cofinality ©f to w. We may assume that forcing
with D * 7 makesw, have cofinalityw,, since if necessary we can tack
Coll(wi,w2) ontor. Then given name&,, : o < w;) for dense sets im,
we can find a filter ifD x 7 which meets all the,, (suitably generalized).
Further, we can guarantee that the restriction of this filt&r bas cofinality
w1, since the forcing makes the cofinality ©f equalw;. Therefore, the
union of the restriction of the filter t® is a condition inD forcing the
existence of the appropriate filter witnessing the desired instance ¢fiMM
in theD-extensiond

We have the following corollary. Qi Feng’s Cofinal Branch Principle [4]
is an immediate consequencedf) (7).

Corollary 3.20. Let ¢ be a statement which is preserved fay;, c)-
distributive forcing. Then if ZFC + MM + is consistent, then so is ZFC +
MM(¥) + ¢ + —-MM.

The forcing for which MM fails in this extension is Namba forcing fol-
lowed by the forcing to put the old, into the tilde of the set the stationarity
of whose tilde onCof(w) we have just killed. It seems unlikely that MM
holds for Namba forcing itself in this extension, but this is not known.

The following forcing is designed to kill the stationarity BN Cg, for
every costationary’ C w.

Definition 3.21. C is the set of ¢, A) such that

1. ¢ C wy is closed and bounded,
2. Ais a set of costationary subsets.af,
3. ‘A‘ S w1i.
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The order ornC is as follows:

(¢,A) < (d,B) & B C A, cend-extendd, and
vSeBSN(c\d)nCe =0.

The following theorems show that we can strengthen Thed@dfh
using MM. The proof of the first part of the first theorem is just like the
proof of TheorenmB.19. The proof of the second part is straight from the
definition of C.

Theorem 3.22. Assume MM and th&f adds no subsets of . Then forcing
with C preserves MNW) and forces that for all costationar§” C wy,
T N Cg, is nonstationary.

Theorem 3.23. Assume Martin’'s Maximum. Then the forciigdoes not
add anyw, -sequences of ordinals.

Proof.Fix 7, aC-name for anw -sequence of ordinals. The theorem follows
from the following claim.

Suppose that MM holds and théis : 3 < ws) is an enumeration of
the costationary subsets of. Then there exist stationarily mamyec C,
such that for allg’ < 3, 8 & Ty

Given this claim, we have that the set

{X < H(ws) | for all costationaryl’ € (w;) sup(X Nws) & T}

is projective stationary. Applying Lemnal8., let (X, : @ < wy) be a
continuous increasing-chain contained in this set, with € X, and let
g € C such that for albh < wy, g} X, (abusing notation) i ,-generic for
C. g then decides all of.

We now prove the claim. LetTs : § < wq) be as in the statement
of the claim, and letS, : a« < wi) be a disjoint maximal antichain in
Hf(wl) \INS-

We use the fact, shown in [20], that$fis a stationary subset af; and
T is a costationary subset af;, both inV/, then after Namba forcing, the
set

{z €Wy | zNw € Sando.t.(z) ¢ T}

is stationary.

Now consider the forcindg® which is composed of first forcing with
Namba forcing, and then, given a bijectibn w; — wy added by Namba
forcing, shooting a continuous increasing-sequence through the set

{z €wy ™ |zNw € Sy = o.t.(z) & Tha)}-

Since each stationatly C w; from V' has stationary intersection with some
S., this product preserves stationary subsets;of
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Now for any club subsdD C ws, pick dense sets i so that for any filter
contained inP meeting all of our dense sets, the name/fas realized as
a bijection between; and some5 € D of cofinality w, and the continous
increasingw; sequence through the above set (as a subsgt|of!) is
defined. Then, given such a filter, the indugeis as desired

Note that this result requires MM and not just M#). This can be seen
by noting that the proof of Theoref19. also allows us to shoot an-club
through the tilde of some stationary set, preserving (W Forcing with
C over this extension collapses.

3.3. Additional remarks

By contrast with the above remarks on Martin’s Maximum and SRP, we
should note that the Proper Forcing Axiom does notimplyfhainonempty

for each stationar{” C w;. To see this, note that if C w; is added by
forcing with initial segments, then for all ordinads > w1, the set{x €
[a]<“t | o.t.(a) € T} is stationary, and s@ = (). Therefore, given a
supercompact cardinal, one can first force the existence of stichien
properly force PFA, leaving all these sets stationary, andThespty.

Further, given a Woodin cardinal, if one forces by initial segments to
createl’ C w; and then does Shelah’s forcing [16] to make the nonstationary
ideal saturated]’ remains empty in the final extension. This follows from
the fact that Shelah’s forcing is homogeneous and definable from an ordinal
parameter (the Woodin cardinal), and the following lemma.

Lemma 3.24. Let T be the forcing which adds a subsétof w; by initial
segments, and let be aT-name for a homogeneous forcing which is de-
finable inV[T] by the formulagp from a parameterX in V. Then in the
extension o¥/[T'] by 7, T = 0.

Proof. Let o be an ordinal and € T be a condition such that
tI-“the forcing defined by with parametetX putsa into 7.

LetT} beV-generic extending and letly = (T \ sup(t)) Ut. Note thatl}
andT; are bothV/-generic forT, that both extend, and thatl/[T1] = V[T3].
Sincer is a name for the set defined frak by ¢, 7, = 77,. But then

V[T1] = 77, putsainto T N Ty,

which is impossible sinc&; N T, is bounded, and s@; N T, must be
empty.O
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The same proof shows thatbe will empty in this extension also. Along
with the last section of this paper, then, we see that models of ZFC in which
Ins is saturated and there exists a stationary, costatiofiaty w; with

T, T both empty can be created wih, . or by semi-proper forcing.

4. Prax

In this section we present tvi), ... variations which reproduce results from
the previous section. The first shows that MMc) + (x) is consistent with
the statement that for all costationdfyC ws, TN Cg, is nonstationary.
The second shows that ZFCct+= wy + “Iy is saturated” is consistent
with the existence of a stationary, costation@ry" w; such thatl’, T are
both empty.

4.1. Iterable structures

The following weakening of ZFC is used in the definitioryf,,., though in
the context of AD¥(®) ZFC could be used instead. We include the definition
for the sake of completeness.

Definition 4.1. ([20]) A transitive setV/ models ZFCif the following hold.

1. M is closed under the @lel operations.
2. If R c M=~ is nonempty and definable i with parameters from
M such that for allf € Randa < dom(f) fla € R, then there exist
a < w and a function
fira—=M

such that

(@) feM\R,

(b) forall g < a fI8 € R,

(c)ifa=~v+1,g€ R,andf]y C g,thenf|y =g.

If M models ZFC, then the appropriate version‘ad$’ Theorem holds
and the embedding derived from forcing with the nonstationary ideal over
M is elementary.

The following is the definition of iterability for sequences of models, the
form which theP,,... variations in this paper take.

Definition 4.2. ([20]) Suppos€ N, : k < w) is a countable sequence such
that for eachk, IV, is a countable transitive model of ZE@nd such that
forall k, Ny, € N1 andw{v’“ = wivk“. An iteration of( Ny : k < w)isa
sequence
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(NP k <w),Gayjap:a<B<7)
such that for all < 8 < ~ the following hold.

1. jag:U{Ng |k <w} — U{N,f | k < w} is a commuting family oFy
elementary embeddings.

2. Porallk <w,GgnN N,f IS anN,f—normal ultrafilter on(?])(wl))sz.

3. If3+1 < ~ thenN/ "' is theU{N} | k < w}-ultrapower of N} by
Ggandjg gy - U{N,f |k <w}— LJ{N,fJr1 | k < w} is the induced
Yo elementary embedding.

4. For eachg < « if gis a limit ordinal then for every: < w, N,f is the

direct limit of { N | o < 5} and for alla < £, j,. g is the induced
elementary embedding.

If v is a limit ordinal theny is the length of the iteration, otherwise the
length of the iteration i$ whered + 1 = ~.

A sequenceN; : k < w) is an iterate of IV, : k < w) ifitoccurs in an
iteration of (N}, : k < w).

The sequencéN; : k < w) is iterable if every iterate of it is well
founded.

If B C R, then(Ny, : k < w) is B-iterable if it is iterable, and if for
every iterate(V; : k < w) of (N}, : k < w), j(BN Ny) = BN N, where
j is the induced embedding andB N Ny) is defined to beJ{j(a) : a €
Ny anda C B}.

The following lemma is the main tool for verifying that the sequences
as above are iterable.

Lemma 4.3. ([20]) Suppose
(Ni : k < w)

is a countable sequence such that for e&achV;, is a countable transitive
model of ZFC and such that for alk,

Ni € Niy1

and
(W)™ = (wy)Mern,

Suppose that for alt < w

() if C € Nyisclosedand unboundedddvf’,thenthere exist®) € Niyq
such thatD c C, D is closed and unbounded (i, and

D e Lix]

for somer € RN Ny, 1.
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(ii) forall 2 € RN Ny, 27 € Nip1.
(iii) forall k£ < w,

[N |Vt = o,
Then the sequendéVy, : k < w) is iterable.

We quote a lemma from [20] showing that under certain circumstances
the ultrafilter needed to iterate a given sequence exists.

Lemma 4.4. ([20]) Suppose that
<Nk k< w>

is a sequence of countable transitive sets such that fok all w, N, €
Niy1,
Ny | ZFC*,

and
NN (INs)N"'+1 = Nk+l N (INS)N"'+2.

Suppose that € w and that

a € (P(w1)\ (Ins)™M .
Then there exists

G c U{(Z(w)Vi i < w}

such thatz € G and such that for all < w, G N N; is a uniformN;-normal
ultrafilter.

The sequences of modelslhy,,.. variations satisfy a variation af 4¢.

Definition 4.5. ([20]) % : Suppose thatS, : a < wq) and (T, : a <

w1) are each sequences of stationary, costationary sets. Then there exists a
sequenced,, : o < wi) of ordinals less thaw, such that for eaclwy < w;

there exists a bijection

T:wl — Oa,

and a closed unbounded g€tC w; such that
{n<wi| ot(nn]) eTy}NC=S,NC.

The reason for this variation is that our conditions are sequences of
models, and iterates of sequences modelfifjg modely? . This isn’t so
for wAC-
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4.2. TheP!

max

extension of (I, R)

In this section, we prove the following theorem, wh&e, . is a reformu-
lation of P,,,,,. andC is the forcing defined in Definitio.21..

Theorem 4.6. Suppose that” ¢ &°(R) is a pointclass closed under con-
tinuous preimages such that

L(I''R) = ADR + “© is regular”
SupposeG C P*... is L(I',R)-generic. Supposé’ c CLIRIG g

max

L(I',R)[G]-generic. Suppose
H C Coll(ws, H(ws)) I RICIF]
is L(I',R)[G][F]-generic. Then
L(ILR)[G][F|[H] = ZFC + MM ™t (c) + (%).

Furthermore, inL(I", R)[G][F]|[H], for every costationary” C wy, Tﬂ05j2
is nonstationary.

Recall that axiontx) is the statement thdt(R) = AD andL(=(w)) is
alP,,q, extension ofL.(R). Itis shown in [20] that if(x) + V' = L(°(w1))
holds, then for every stationafly C wy, T'N C{, is stationary. A corollary
of the arguments in this section is that(if) + V' = L(&’(w;)) holds,
then the forcingC adds no subsets af;. We note that the assumption
V = L(#’(w1)) is essential, since it is possible to have modelé«)fin
which there exists a stationary subsetsgfwhose tilde contains an-club
(just force such a club over a model @) + V = L(Z°(w1))).

The following is established in [20].

Theorem 4.7. ([20]) Supposel” ¢ «’(R) is a pointclass closed under
continuous preimages such that

L(I''R) = ADg + “©is regular”

Supposé&r C P .. is L(I',R)-generic. Then

L(I,R)[G] & wa-DC + MM () + (x).

What remains to be shown is that forcing withover L(I",R)[G] as
above adds no new;-sequences, preserves-DC and MM+ (c), and
destroys the stationarity &fn Cy, forevery costationary” C w;. However,
forcing always preservess-DC, andC clearly destroys stationarities as
desired, provided that is doesn't collapsge so our task is even easier.

We need the following theorem.
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Theorem 4.8. ([14]) If « is a successor cardinal andl is a partial order
preservings™, then for all generiaz C P,

VIG] |= cof(|r]) = cof (k).

Therefore, no forcing of cardinality, preservingw; can change the
cofinality of wy to w. This gives us the following fact. The proof is just like
the proof of Theoren3.19., with an extra step to account for the names for
stationary subsets.

Theorem 4.9. Assume tha€ adds no subsets af;. Then forcing withC
preserves MM (c).

Proof. Note first that MM (c) implies thatc = |°(w1)| = ws. Let T be
aC-name for a forcing of cardinality- or less which preserves stationary
subsets ofv;. We may assume that forcing with « 7 makesw, have
cofinality wy, since by Theorem.8. it cannot make it have cofinality,
and since if necessary we can tackl!(w;, w2) ontor. Then given names
(pa : @ < wy) for dense sets im andC-names(o, : a < wy) for 7-names
for stationary subsets of;, we can find by MM (¢) afilterG c C * 7
which meets all the,, (generalized to subsets &@fx 7) and realizes each
o, @s a stationary set. Further, we can guarantee that the restrictiotoof
C has cofinalityw;, since the forcing makes the cofinality ©f equalw; .
SinceC is wy-closed, the union of the restriction 6f to C is a condition
in C forcing the existence of the appropriate filter (the restrictio& o6 )
witnessing the desired instance of MNI(c) in the C-extensiond

What is left, then, is to show that forcing with over L(I',R)[G] as
above adds n@;-sequences. Showing this requires some analy$4,0f .

Definition 4.10. ([20]) P},,.. is the set of pairg(M; : k < w),a) such

max

that the following hold.

a € My,a C wM, andw = w1 for somexr € R N M.
EachM;, is a countable transitive model of ZFC

M € M]H_l,wiwk = w{vj}ﬂ'l.

(INs)Mk+1 N My = (INS)M’“+2 N M.

U{Mj : k < w} | ¢

(M, | k < w) is iterable.

X € My such thatX ¢ 2°(w;)Mo \ IV, such thatMy = “|X| =

w1,” and such that for alld, B € X, if A # BthenAN B € I3

Nogsw DR

The ordering o’ is as follows.

max

((Ng 1 k <w),b) < (Mg : k <w),a)
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if (M, : k <w) € No, (M, : k < w) is hereditarily countable inV, and
there exists an iteration

Ji Mgk <w)— (M k<w)

such that:
1. j(a) =0,
2. (M} -k <w) e Npandj € Ny,

3. J(InE) N My = (Ing)™ 0 M forall k < w,

The following lemma follows from the fact th&’, ... conditions model
Y% - The analogous lemma holds in the otligy,, variations whose con-
ditions are sequences of models.

Lemma 4.11. ([20]) Suppose that(M}, | k < w),a) € P}, ... Suppose
that

g1 My | B <w) = (M} k< w)
and

Jo o (My | b < w) = (M7 | k < w)
are well founded iterations such that(a) = j2(a).

Then
(M} |k <w)y=(M?|k<w)

andji = jo.

Since the order of”}, ... is determined by the existence of elementary
embeddings, each conditiqQM}, : £ < w),a) in the generic is iterated
w1 times through the conditions below it in the generic. In fact, by Lemma
4.11., each((M}, : k < w),a) in the generic is uniquely iterated into the
extension to a structur@V/; : k < w),ag), where

ag = U{a | I((My : k < w),a) € G},

for genericG. The following definitions (all but the last from [20]) apply to
all P,,,.. variations.

Definition 4.12. A filter G C PP}, is semi-generic if for albe < w; there
exists a conditior{M}, : k < w) € G such thai < w{™.

Ac =U{a | I((M : k < w),a) € G}.
P(w)a = J{Z@)™ | (Mg k <w),a) € G},
and .
Ig =U{Iyi N Mg | ((My : k <w),a) € G},
where for((My, : k < w),a) € G, (M : k < w) is the iterate of M;, :
k < w) by the unique iteration of M}, : k < w) that sends: to Ag.

Also, for((Mj, : k < w),a) € P}, andz € My, =* is the image of
under the unique iteration dfM/y, : k£ < w) sendinga to Ag.
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We will need to use another form of determinacy, ADAD ™ implies
AD trivially, but the reverse implication is open. The only fact about’AD
that we will be using is that it follows from AR.

Definition 4.13. ([20]) Supposed C R. The setd is *°-Borel if there exists
a setS of ordinals and a¥; formula¢(z, z1) such that

A={yeR| L[S,y & ¢[S,y]}.

Definition 4.14. ([20]) (ZF + DCg) AD™ abbreviates the following as-
sumptions.

1. Supposel C R. ThenA is *°-Borel.
2. Suppose < 6 and
T AY = WY
is a continuous function. Then for eaghcC R, the setr—![A] is deter-
mined.

The following theorem gives the basic analysi®gf,.. in the presence
of AD™.

Theorem 4.15. ([20]) Supposel” C &°(R) is a pointclass which is closed
under continuous preimages such that

L(IR) = AD".

ThenP}, ... is w-closed and homogeneous.
Suppose&r C Py . is L(R)-generic. ThenirL(I,R)[G]:

max

:?(wl)g = 9])((4)1);

Z(w1) € LR)[G];

I is the nonstationary ideal,

I is a normal saturated ideal;

foreveryA € I', B € ”(R) N L(A,R) the set

arwdE

{X < (H(wq, A, €) | Mx is B-iterable andX is countable}
contains a club, wherd/x is the transitive collapse oX.

Note that the set

{(({(Mg : k <w),a),0) | Jc € My ((My, : k < w),a)lFog
= (¢ (Z(w)M0)")},

is dense iP?, . * C, wherec* and(°(w1)*0)* as usual are the images of
c and”(w;)Mo under the embeddings through the generic. That this set is
dense follows from the fact that’(w; ) = #°(w1) in theP}, .. extension,

max
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and the fact tha€ is closed under expansion of the second coordinates of
its conditions.

First we will show that?;;, ... * C is w-closed on this set and so adds no
reals. Then we will show that all subsetswof added byP;, . * C are in
fact added byP}, ... Then we will be done.

The following theorem is implicit in [20].

Theorem 4.16. ([20])Assume AD holds in L(I',R), where" ¢ &(R)
is a pointclass closed under continuous preimages. SupposeR and
B € L(I',R). Then there exists &, ... condition

(M : k <w),a)
such that the following hold.

Forall k < w, In5+ N My, = Ik,
Forallk < w, BN M, € M,

Forall k < w, (H(w1)Mk, €, BN M) < (H(w1), €, B).
(M, : k < w) is B-iterable.

PN

The following lemma shows that we can appropriately itePgte, con-
ditions.

Lemma 4.17. (ZFC*) Say((M}, : k < w),a) is aP},,, condition. Then

there exists an iterateM}’ : k < w) of (M}, : k < w) such that
1. wi\/lg = wi,
2. Vk < w, Iy 0 M; = Ing 0 Mg,
3. Vk < w, VT € 2(wi)Mi \ (Ins)Mi+1 U{M} 1k <w}nOrd ¢ T.
Proof. Build an iteration
(M : b <w),Gas o | @ < B < wr),

with (M} : k < w) = (M" : k < w). The first condition is satisfied by the
length of the iteration. The second condition is routine: we take a partition
(Sq @ a < wy) of wy into w; Many stationary sets, and while we build the

L . B 5 s
iteration we tag each set in some’(w; )Mk \ (Iys)++ to someS, ,,

and from that point on construct so thadvifm € Sa,. thenjs (A) € G,
For the last condition, we use the fact (see [20], [13]) that for any iteration
of alP}, .. condition, for allg + 1 < a,

MPTE . MP
w0 = japii(w] ) =U{MNOrd| k < w}.

Then we can assure the last condition by doing the same argument as for
the second condition, just at successor stages. That is, for&atBome
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.ﬁ//’(wl)Mff\(INS)Mfﬂ, construct so thafz, 1 (A) € G4 for stationarily
many~. Let f : wy — U{M} : k < w} N Ord be a bijection such that on
aclub ofa < wy, flo] = jaw [U{M : k < w} N Ord]. Then the third
condition will be satisfied, since for affyin any 7 (w; )i \ (Ing) M+,
o.t.(f[a]) € T for stationarily manyx. O

First we show thaP* _ x C is w-closed, and so adds no reals.

max

Theorem 4.18. Assume AD holds in L(I,R), whereI" C &°(R) is a
pointclass closed under continuous images. THgp, * C is w-closed on
the setD =

{({({My, : k < w),a),0) | Jc € My (M, : k < w),a)lFog
= (¢, (Z(w)M0)")}.

Proof. Suppose that
(M- k< w),a?),0) | i < w)

is a descending sequencefify,.. *+ CN D. Letz be a real which codes the
sequence ' .
(M k< w),a),e) | i < w),
wherec; witnesses that((M} : k < w),a’),0;) € D.
Then let((M; : i < w),b) be aP}, .. condition withz € M), as given

by Theoremt.16..

We work in M.

There are embeddings;1 witnessing the descent of our sequence of
P ... conditions. Letj,,, denote the embedding o8/} : k < w) into the
direct limit of this system, and consider the structure

((Ng : k < w),a)

whereN;, = jr., (M}) anda = Ujo,, (a?).
By Lemmad4.3., this sequence is iterable, and tHyd/y, : k < w), a) is
aPy, .. condition. By iterating it by an embeddingas in Lemmat.17. we

see that

(M 2 i <w), j(a)),0)
is a lower bound inD for our descending sequence, whelis the closure
of U{j(Jkw(ck)) : k € w}, ando is alP},,.-name such that

max

((M; i <w),j(a)kog = (¢ (L(w1)")")).

Lastly, we show that adds no subsets of over the thé?;, . extension
in question.
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Theorem 4.19. Assume AD holds in L(I,R), whereI" ¢ &(R) is a
pointclass closed under continuous images. Gett P}, . be L(I,R)-

generic, and letF’ ¢ CLUI'RIG] be (I, R)[G]-generic. Then ifA C w;
and A € L(I',R)[G][F], thenA € L(I.R)[G).

Proof. Again, letD =

{(({(Mg : k <w),a),0) | Jc € My (M : k < w),a)lFog
= (", (2 (w1)")")}-

LetT be aD-nameinL(I",R) for a subset of; added byC, and, noting
that conditions inD can be coded by reals, |8 be a set of reals coding
Then let((M; : i < w),b) be aB-iterableP;, ... condition as in Theorem
4.16..

We work in Mj.

Using thew-closure proved above as well as the fact that

(H(w)Mo e, BN My) < (H(w1), €, B),

we can build a descending sequence = ((pa,0q) : @ < wi) from D
of lengthw; such that for everyw < w; (of My) there exists dp,o) € S
such thap, o) decides & € 7.”

By a bookkeeping argument as in Lemrha7. to ensure that the sta-
tionary sets in each,, are mapped to stationary setslifi (using the sef’
from the definition ofP* ), we can construct this sequence so that each

(pa7aa) > ((<Ml ti < w>7a)>0)
in D, for some fixed, o, ¢ € My such that
((M; i <w),a)lFog = (¢, (#(w1)"0)")).

Here, if we letj,, be the embedding witnessipg > ((M; : i < w),a) and
let ¢, be the set such that, forces that the first coordinate of,; will be
¢, thene = U{ja(ca) : a < wifo},

Furthermore, by theB-iterability of our condition (working now in
L(I\R)), if ((M; : i < w),j(ap)) € G, then the value of is deter-
mined bysS, A andog, contradicting that fact thatis a name for a subset
of w; added byC. O
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4.3. P4, Variations forT = ()

In [10], two PP, Variations are presented in whose extensions the nonsta-
tionary ideal is saturated and there exists a stationary, costationary $ubset
of w; such thafl” andT are both empty. The first of these variations, called

P7qz, Will be presented in detail in [12]. The relevant theorem regarding
PY, .. for this context is a follows.

Theorem 4.20. Assume AD +V = L(R). Then there is a forcin@?, ..
such that in the extension IBf,.. followed by adding a subset af by
initial segments the following hold.

1. ZFC +c = §} = ws.

2. Iyg is saturated.

3. There exists a stationary, costationdafyC w; such that for all finite
setsa C wo there exist stationary subsets, S; C w; such that

SolFa N §(T) = and SylFa N §(T) = ()
whereS; and S; are considered as conditions #(w1)/Ins andj is
the embedding derived from this forcing.

So, not only ard” andT empty in the statement of this theorem, But
witnesses a failure afp 4 also.

Leaving the discussion @), to [12], in this section we briefly present
aP,... variation which tries to maximizé&l, sentences for the structure

<H(WQ), SK INS)

relative to the existence of a stationary, costationary/set w; such that
T, T are empty. This is a straightforward variation®yf,,.

Definition 4.21. T? is the set of sequences

(M : k <w), T, X)
such that the following hold.

EachM;, is a countable transitive model of ZFEC
M, € Mk+1, wi\/[k = wi\/[k+1.
(Ing)Met1 0 My, = (Ing)™Me+2 N My,
(M | k < w) is iterable.

For eachk < w,

arwd R

M, |= “T C w is stationary, costationaryi’ = 0, andT = 0.”

6. 3Y € Mpsuchthal” C &°(w;)Mo\ IV, suchthatVly = “|V| = wy,”
and such that for alld, B € Y, if A # BthenAn B € I3,
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7. X € MyandX isaset, possibly empty, of pall§ Ny, : k < w), S, Z), j)
such that the following hold:
a) (Nj : k < w) is countable inMy;
b) ((Ng:k <w)S,Z) €T 1ui

C) j: (Np:k<w)— (NJ:k<w)isan iteration such that
JUNE) NN = (Ivs)™ 0N
forall £ < w;
d) j(2) C X;
e)j(s) =T,
f) if ((Ng:k<w),S,Z),5") € Xthenj = j'.
Suppose
(N} k <w), T, X), ((Ny : k < w), S, 2)

are conditions ifT®. . Then

(N} k<w), T, X) < {(Ny: k <w),S,7Z)
if there exists an iteration
J:(Ng:k<w)— (Nf:k<w)
such that( ((Ny : k < w), S, Z),j) € X.

The basic analysis df? . is roughly the same as that Bf,... The
basic properties of the extension are given below. Note that we do not know
whetherT?,  is homogeneous. As we discuss below, the issue of homo-
geneity is related to the question of whether g, extension is indeed
11, maximal relative to the existence of a stationary subset,ofvhose
tilde is empty. The additional forcing over tfi, extension is required to
obtain AC, since we also don't knowif 4 holds after forcing witHr?

max*

Definition 4.22. For p = ((Mj, : k < w), T, X) € T .., T, = T. For
g C TY, .. afilter, T, is the union of 7, | p € g}.

Theorem 4.23. Assume AB®), ThenT? is w-closed.

max

Suppose G- T?, .. is L(R)-generic. Then
L(R)[G] = w1 — DC
and inL(R)[G]:
1. ;Qf(wl)g = S (w1).

2. Te, Ti; are empty.
3. I is the nonstationary ideal.
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Further, say thaff is L(R)[G]-generic for adding a subseto$ by the initial
segment forcing. Then ib(R)[G][H] the nonstationary ideal is saturated.

The key point in the basic analysis 8f, . is showing that anyT

condition can be iterated in a way that preserves the emptiness of the tilde
of its T (andT’). More precisely, it is the following lemma.

Lemma 4.24. (¢) Say((My, : k < w), T, X) isaT? .. condition.
Then there is an iteration by the nonstationary ideat, (M : k£ <
w) — (M} : k < w), such that (forj(T") = P) the following hold.
1. wi\/lg = wi.
2. Forallk € w, Iys N M = (Ing)Mi+1 0 M.

3. P, P are both empty.

Proof. We construct amw; -length iteration, using the usual trick to ensure
thatIns N M} = (INS)M5+1 N M. That is, we take a partition af; into
stationary set§S,, : @ < wi) and, enumerating the stationary subsets which
appear during the iteration, we make sure each such set is in the generic at
all stages in som§,,.

To get P, P empty, we use the same construction as in Lenaria

The key idea is that sincé/ = T,T = 0, if at some stage o of our <
sequence codes a well ordering)obf ordertypey > A, we can extend the
iteration to keepy out of P or to put it in P as desiredd

The key issue here is whether the assumptions on this lemma can be
improved to “there exists a stationary, costationary$et w; such that

S, S are empty,” instead of. In the terminology of [17], we are asking if
there exists an optimal iteration lemma for this statement. If there does, then
TY .. maximizesII, sentences i (w-) relative to this sentence. If there

doesn't, then there should be incompatiblgsentences relative to this one,
and therefore no such maximal model.

5. Questions

The following issues remain unresolved.

1. Does MM(Namba forcing) hold in the forcing extension in Corollary
3.20.?

2. Does Shelah’s forcing to make the nonstationary ideal saturated from
a Woodin cardinal ever put an ordinalinto 7" if in the ground model
{x € [a]<*' | o.t.(z) € T} is stationary?

3. Is there an optimal iteration lemma for “There exists a stationary, costa-
tionaryT C w; such thafl” andT are empty”?
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