Constructing Flexible Scheduling
Systems for Decision Support

Ora Lassila and Stephen F. Smith

Carnegie Mellon University, Pittsburgh, PA 15213, USA

Abstract— Scheduling often involves, in ad-
dition to optimization, continuous decision
making where continuity in the solutions pro-
duced is important. Furthermore, substantial
diversity in the nature of different schedul-
ing problems exists. In this paper we present
a view of scheduling as decision support for
continuous planning, and introduce a system
for rapid delivery of large-scale scheduling
applications.!

. INTRODUCTION

Scheduling can only rarely be treated solely as
an optimization problem. In practical domains
such as manufacturing and logistics, schedul-
ing tools must support a dynamic ongoing dec-
ision-making process. Schedules are typically
developed through an iterative process of spec-
ifying, negotiating and revising various con-
straints and objectives. As execution proceeds
this process continues, as unexpected events
force reconsideration of decisions. Throughout
this process, the “current” schedule provides
an important nominal reference for identify-
ing, specifying and communicating changes
and there is considerable pragmatic value in
an ability to maintain continuity (or localize
change) in the solutions thatare produced over
time. Useful scheduling tools must provide a
basis for properly balancing performance ob-
jectives with solution (and domain) continuity
concerns.

'The research reported in this paper has been sup-
ported in part by the Advanced Research Projects Agency
under contract F30602-90-C-0119 and the CMU Robotics
Institute. The authors are affiliated with the Center for
Integrated Manufacturing Decision Systems of the CMU
Robotics Institute. The authors can be reached through
email at or a@s. cnu. edu.

User support requirements are at odds with the
decision-support capabilities of most contem-
porary scheduling tools, which operate with
respect to simplified models of domain con-
straints, and are often based on inflexible sched-
ule generation procedures. The user is forced
into anindirectand inefficient decision-making
cycle where he must analyze the scheduling
results, hypothesize parameter changes to bias
the procedure toward a desired solution, re-
run the scheduler, and iterate. No support
for maintaining continuity of consecutive solu-
tions is typically provided. Furthermore, these
tools are often configured to support specific
user tasks at the expense of others. For exam-
ple, simulation-based tools support feasibility
analysis tasks (“given these resources, when
can | complete all tasks™) but are of little use
in addressing resource requirements analysis
tasks (“how many resources do | need to com-
plete all tasks on time”)? [11]. Though plan-
ning leverage and efficiency could be gained
from an ability to address these tasks in an in-
tegrated fashion, users are forced to consider
these decisions sequentially in isolation.

Progress has been made toward the develop-
ment of more accurate and flexible knowledge-
based tools for practical scheduling environ-
ments [13]. Theadvantage of heuristic schedul-
ing procedures directly based on knowledge-
rich models has been demonstrated in several
domains. Development of techniques for in-
cremental schedule revision [12, 19] has pro-
vided scheduling functionality closely paral-
leling the inherently reactive nature of schedul-
ing in complex domains.

2What is essentially required is the ability to “run a
simulation backwards”, which is difficult.

Despite many promising results, the overall
impact of knowledge-based scheduling tech-
niquesin operational settings remains low. The
source of strength of knowledge-based schedul-
ing (the incorporation of knowledge specific
to the constraints and objectives of the tar-
get domain) also complicates system devel-
opment. There is substantial diversity in the
nature of different scheduling problems. No
doubt, common elements can be found in solu-
tion generation and decision-support require-
ments, but variation exists in the structure of
manufacturing systems, the dominating con-
straints and the scheduling objectives. The
utility of scheduling technology will directly
depend on the fidelity of the underlying model
of the operating constraints and conditions of
the target environment. We can also expect
that the heuristics and solution procedures re-
quired for effective decision-support will vary
from oneapplication toanother. Since different
scheduling domains and application require-
ments invariably present different challenges
and complexities, efforts to apply knowledge-
based scheduling technology operationally lar-
gely remain time-consuming, ad hoc design
and development projects.

To summarize, current scheduling techniques
and tools exhibit inflexibility on two levels:

1. Inflexibility on the user level results in in-
sufficient decision support capabilities and
unwieldy, unintuitive tools.

2. Inflexibility on the developer level results
in time-consuming, complicated develop-
ment projects, rendering knowledge-based
scheduling technology difficult to employ
in practice.

In this paper we describe research aimed at
addressing both of the aforementioned man-
ifestations of inflexibility. The specific focus
in our research has been in the development of
interactive tools for military crisis-action trans-
portation scheduling. However, the results
from these projectsare broadly applicable, since
the requirements for effective decision support
in transportation scheduling are not unlike the

requirements of any complex, large scale sched-
uling domain (e.g., production planning).

Il. IMPROVING THE FLEXIBILITY OF
DECISION SUPPORT

Constraint-based frameworks provide a model
well-suited to the reactive decision-making re-
guirements of practical scheduling domains.
In its broadest generality, this model defines
an organization for problem solving that dis-
tinguishes two components:

¢ a decision-making component is responsi-
ble for making choices among alternative
scheduling decisions and retracting those
that have since proved undesirable, and

¢ aconstraintmanagementcomponent, whose
role is to propagate the consequences of
decisions and to incrementally maintain a
representation of the current set of feasible
solutions (detecting inconsistent solution
states when they arise).

A model of user/system interaction that fol-
lows rather naturally from the earlier obser-
vations and the implied need for flexible, in-
cremental solution change capabilities is akin
to the model promoted in current spreadsheet
programs: The user directly manipulates spe-
cific decisions and problem constraints and the
system incrementally responds with the con-
sequences or effects of each change. In the ex-
treme case the user has total decision-making
responsibility, with the system providing de-
ductive constraint management functionality.
Schedule construction, revision, and improve-
ment proceed iteratively within a basic decide
and commit cycle. This model is fairly unin-
teresting from a mixed-initiative point of view
(there is no mixed initiative).® It is also an in-
feasible model in any substantial scheduling
domain. In large-scale crisis-action planning
or plant-wide manufacturing management, for
example, it is unreasonable to expect planners

®Most project management tools and several interac-
tive scheduling systems [1, 10] are direct implementa-
tions of this model, with the user as the decision-making
component.

to comprehend schedules — and meaningfully
interact with a scheduling system —at the level
of the system solution model; there are far too
many decisions and details, most of which are
unimportant from the standpoint of user tasks
and goals, and the complexity of decision-mak-
ing at this level is overwhelming. Users must
necessarily operate at higher, task-oriented lev-
els, while the decision-support tool must bridge
the gap between user and system models of
schedules and decision-making, and “manage
the details” in accordance with user goals and
intentions.

The “spreadsheet” style of interaction provides
a natural framework for “what-if”” experimen-
tation and iterative solution development. De-
spite the mismatch between user and system
models of schedules and decision-making, the
spreadsheet analogy remains relevant. An ex-
tension of the basic model that preserves the
“direct manipulation” style of interaction re-
casts user manipulation of solutions and prob-
lem constraints as a process of formulating
and executing actions relative to aggregate so-
lution structures; action formulation is con-
cerned with isolating a particular subproblem,
action execution results in a solution of this
subproblem. The user, who interacts with sys-
tem processes by formulating actions, exam-
ines and manipulates solutions in higher-level
and more comprehensible task-oriented terms.
The system responds with revised solutions
and provides, from the user’s perspective, an
amplification of deductive constraint manage-
ment functionality, a more sophisticated and
typically heuristic “propagation of effects”. In
other wordes, this is a user-driven model char-
acterized by two basic principles:

1. The user visualizes, analyzes and manip-
ulates schedules and problem constraints
from aggregate perspectives.

2. Thesystem “managesthe details” inaman-
ner consistent with the user’s high-level
goals and expectations.

In the simplest case, there is a direct mapping
between user-specifiable actions and system

solution procedures, in which case the user
holds complete responsibility for action for-
mulation. The CoMmPASs interactive schedul-
ing framework [2], for example, and most so-
called Leitstand systems [9], are organized in
this fashion. In our view, however, the user
should be able to operate in terms of more ill-
structured action specifications.4 This, more
flexible viewpoint implies that the system must
participate actively in structuring the appro-
priate subproblem to solve (e.g., in determin-
ing the appropriate scope of change, in trans-
lating objectives and preferences into appro-
priate heuristic revision procedures), and that
subproblem solution may require coordinated
execution of several solution procedures.

To test our ideas about decision support we
have developed DiToPs, a prototype tool for
the generation, analysis and revision of large-
scale transportation schedules [14, 15]. It em-
ploys reusable object-oriented techniques to
integrate a hierarchical modeling framework
and a reactive, incremental, constraint-based
scheduling methodology with graphical sched-
ule visualization and manipulation capabili-
ties.

Interaction between a user and DITOPS occurs
through a direct manipulation interface which
emphasizes visualization and manipulation of
schedules in terms of resource capacity utiliza-
tion over time (see Figure 1). Based on a hi-
erarchical resource model, the user can create
resource capacity views at various levels of ag-
gregation. The user can select temporal inter-
vals by “boxing” the area of interest with the
mouse. Any querying and manipulation of
schedules and solution constraints is based on
these time selections. For example, if the re-
source is an individual craft asset the transport
activities supported by scheduled trips are ac-
cessible. At aggregate resource levels, graph-
ical displays of various properties of the solu-
tion can be retrieved. This provides a basis for

“Here is an example from the military transportation
domain: “Relax lift capacity constraints and reschedule
late movements while minimizing additional lift asset
requirements, resolve the conflicts introduced into the
schedule by the loss of capacity at AIRPORT-1."

identification of solution deficiencies.

User manipulation of problem constraints and
schedules also centers around a selected re-
source profile interval. A resource can be made
unavailable over a selected interval, causing
any resulting inconsistencies in the schedule
to be highlighted. Conversely, resource ca-
pacity of a given group of resources can be
increased for a specified interval by moving
to the appropriate aggregate resource display
(this translates to adding craft to a fleet). De-
fault rescheduling biases are adjustable through
a “slider” display which represents the rela-
tive importance to be attributed to each sys-
tem known preference. In imposing any given
change to the current schedule, there is no obli-
gation to the user to provide additional revi-
sion constraints and guidance; in general, user
decisions along these lines are considered to be
defaults until they are changed.

DiTops thus provides a flexible decision-supp-
ort environment that closely matches the char-
acteristics and requirements of complex sched-
uling applications. It handles the details of
the user’s higher-level actions by applying ap-
propriate rescheduling procedures at each step
to impose the changes specified by the user,
and provides localized consequences of each
change. Look-ahead analysis and scheduling
techniques enable identification of principal
causes of observed solution deficiencies, analy-
sis of decision-making options and assessment
of solution sensitivity to various events. More
details about the decision support capabilities
of DiToPs can be found in [15].

I1l. IMPROVING THE FLEXIBILITY OF
APPLICATION CONSTRUCTION

Currentdifficulties in constructing high-perfor-
mance scheduling applications suggest that a
considerable simplification of the application
building process is required. Despite the need
for potentially highly specialized solution pro-
cedures and heuristics to achieve sufficient per-
formance in any given decision-support con-
text, our claim is that the solution structures

required in various applications can be seen as
more or less similar if they are viewed com-
positionally, and exploitation of this fact is the
key to achieving broad applicability. It is pos-
sible to transform application building into a
differential and incremental process, empha-
sizing customization and reuse of component
functionality. This leads to the notion of a re-
configurable scheduling system: An application
building environment combining a “toolbox”
of basic modeling and scheduling primitives
with explicit protocols for assembling, aggre-
gating and specializing these primitives to con-
figure the decision support services. New ser-
vices, as they are composed, are encapsulated
as additional tools and are available for subse-
quent reuse.

Our approach to rapid development of flexi-
ble scheduling systems derives from previous
work with the Opis scheduler [12, 16]. OrIs
implemented a framework for incremental, re-
active scheduling based on the use of a set
of solution procedures with differential opti-
mization and conflict resolution capabilities;
the solution procedures are dynamically se-
lected and applied to best respond to current
(re)scheduling needs and opportunities. Ret-
rospectively we can identify some design defi-
ciencies in the Opis scheduler from the stand-
point of flexibility and reconfigurability:

¢ Insufficient flexibility of the constraint man-
agement infra-structure
¢ Overcommitmentin the control architecture.

The original design of the constraint manage-
ment subsystem [7] traded off generality in the
types of constraints that could be represented
and managed, to achieve sufficient efficiency
for the manipulation of full-scale production
schedules. Although this functionality was
quite satisfactory for most production schedul-
ing applications, more recent work in adapt-
ing the scheduler to crisis-action deployment
scheduling necessitated significant extensions
to the constraint management infra-structure.

Reactive scheduling was based on matching

current rescheduling needs and opportunities
to the differential capabilities of constituent re-
vision procedures and heuristics. In provid-
ing a structure for specifying and coordinating
reactive scheduling strategies, the supporting
control architecture made several specific as-
sumptions as to the mechanics of this process.
Many aspects of this architecture reflect the
original system design orientation toward pro-
viding incremental, reactive response to unex-
pected executional circumstances. These ar-
chitectural commitments are much too strong,
however, when viewed from a larger perspec-
tive of responding to ill-structured actions for-
mulated by users.

The identified shortcomings of Opis highlight
the need for stronger emphasis on configura-
bility and extensibility in scheduling system
design. Specializing component functionality
(such as constraint propagation) is not a bad
idea per se — it is often crucial to achieving
efficiency — but the real problem lies in orga-
nizing system functionality so that component
services appropriate to a given domain can be
easily substituted and configured (for example,
the work described in [8] achieves something
to this effect). It is very difficult to anticipate
all future needs for system extension; instead, a
technique must be used that allows specializa-
tion, modification and extension of any com-
ponent of the system. Within OPis, frame-based
representation techniques were used to pro-
vide both a repository of primitives for mod-
eling domain constraints and a framework for
specifying strategic control knowledge. These
representational formalisms provide the struc-
ture to define flexible and expressive schedul-
ing models, but no explicit mechanisms for en-
capsulation and information hiding. Pragmat-
ically, this greatly complicates specification of,
and adherence to, a layered model semantics,
which is essential to the development of recon-
figurable and extensible software systems.®> As
has been previously observed [3, 5, 6], modern
object-oriented programming technologies pro-

SIn particular, if all the slots of a frame are accessible,
no encapsulation is achieved; this results in fragile imple-
mentations that are difficult to modify and maintain.

vide a more direct and effective approach to
specifying model semantics, through explicitly
defined protocols for interaction with model
components.

To simplify knowledge-based scheduler con-
struction we rely on object-oriented program-
ming techniques and software reuse. This al-
lows the application construction process to be
differential and incremental in nature, primar-
ily focusing on the differences between exist-
ing software and the system being constructed.
Object-oriented programming techniques po-
tentially provide high reusability of software,
but only if the system design project places spe-
cial emphasis on the design of reusable com-
ponents (e.g., [18]). The design of these com-
ponents must be carried out with generality
and extensibility in mind. Our reconfigurable
framework introduces a general scheduling on-
tology which serves as the starting point for a
more detailed analysis of the target domain.
The framework offers the scheduling system
designer a class library of general scheduling
concepts, such as activities, resources, products
and orders. In addition to a classification of
concepts, the library provides functionality for
these concepts, effectively defining their oper-
ational semantics. Constructing a scheduler
using our approach consists of the following:

¢ Selecting suitable classes from the library,
matching features of the target system with
those of the library.

¢ Combining the selected classes into more
complex services, using both conceptual
— multiple inheritance — and structural —
aggregation and delegation — techniques.

¢ Extending the existing classes for domain-
specific functionality when necessary, typ-
ically by specializing or overriding meth-
ods provided by the library.

The core library provides a general scheduling
ontology. This ontology is specialized for spe-
cific domains. To give an example, we have
built a transportation domain ontology for the
construction of transportation-related applica-
tions. The general and the domain-specific on-

tologies are used to build organization-specific
ontologies and actual scheduling applications.
Our system focuses only on scheduling and
planning, yet in the context of manufacturing
organizations this approach is in many ways
similar to that of the CIM-OSA -architecture
[4] (c.f. its Generic Level, Partial Models and
Particular Models).

The general philosophy of constructing appli-
cations isto use the techniques described above
to build increasingly complex and specialized
services, ultimately resulting in an application.
The classes designed and specialized in this
process can be reused in subsequent applica-
tions. An application designer may accumu-
late a library of specialized classes, making his
task easier as the library grows.

The implementation of DITOPs is based on the
framework described above. The DiToPs soft-
ware architecture uses a flexible and general
model of scheduling as an iterative, constraint-
directed process. Through the use of the frame-
work, it provides an extensible modeling and
constraint management framework which en-
ables straightforward incorporation of the dom-
inant constraints of a given scheduling appli-
cation, a basic set of constraint analysis prim-
itives, a set of incremental scheduling meth-
ods that provide differential optimization and
conflict resolution capabilities, and an explicit
set of protocols for integrating their use in dif-
ferent decision-support contexts. In addition
to its use within DITOPSs to provide functional-
ity for the development and reactive manage-
ment of large scale deployment schedules, the
framework has been used to construct other lo-
gistics decision-support functionality, includ-
ing resource capacity analysis for higher level
course of action (COA) planning, and interac-
tive COA plan feasibility checking and conflict
diagnosis.

The object-oriented framework for scheduling
applications, and the approach taken in its de-
sign to allow reuse through extensibility, is de-
scribed in detail in [14].

IV. CONCLUSIONS

In this paper, we have described an approach to
solving some of the problems with insufficient
flexibility in current scheduling techniquesand
tools. The division of the problem solving ar-
chitecture into decision making and constraint
management components supports the view
of a scheduler as a decision support system
rather than a fully automatic “black box” (in a
production management system, for example).
The “spreadsheet model” of interaction, where
the user directly manipulates specific decisions
and problem constraints and the system incre-
mentally responds with the consequences of
each change, is another step towards flexible
decision support. The user must, however, be
able to work with more aggregate concepts;
this requirement gives raise to the idea of the
user manipulating decisions and constraints
on an aggregate level while the decision sup-
port system “manages the details.”

The concept of a reconfigurable scheduling sys-
tem was advocated as a means of simplify-
ing the application building process in differ-
ent scheduling domains. A constraint-based
scheduling model was adopted as a basis for
future scheduling systems to provide a struc-
ture for reconfiguration. Object-oriented tech-
nigues are an enabling technology for reconfig-
urability and allow “design for reuse” which
in the long run makes it possible to rapidly
deliver reliable decision-support applications.

REFERENCES

[1] P. Elleby, H.E. Fargher, and T.R. Ad-

dis, “Reactive Constraint-Based Job-Shop

Scheduling”, Expert Systems and Intelligent

Manufacturing, M.D. OIiff (ed.), North-

Holland, 1988.

B. Fox, “Compass 2.0 User’s Guide”, Plan-

ning and Scheduling Group, McDonnell

Douglas Space Systems Co., 1992.

[3] Juha Hynynen and Ora Lassila, “On the
Use of Object-Oriented Paradigm in a Dis-
tributed Problem Solver”, Al Communica-
tions 2(3) 142-151, 1989.

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

H.R. Jorysz and F. Vernadat, “Defining
CIM Enterprise Requirements using CIM-
OSA”, in Computer Applications in Pro-
duction and Engineering: Integration As-
pects (CAPE’91), (eds. G. Doumeingts, J.
Browne and M. Tomljanovich), Elsevier
Science Publishers B.V. (North-Holland),
1991.

Ora Lassila, “Frames or Objects, or
Both?”, Workshop Notes from the 8th Na-
tional Conference on Artificial Intelligence
(AAAI-90): Object-Oriented Programming
in Al. Boston (MA), July, 1990. [Report
HTKK-TKO-B67, Department of Com-
puter Science, Helsinki University of
Technology, Otaniemi (Finland)].

Ora Lassila, “The Design and Implemen-
tation of a Frame System”, Master’s The-
sis, Faculty of Technical Physics, Helsinki
University of Technology, Otaniemi (Fin-
land), 1992.

Claude LePape and Stephen F. Smith,
“Management of Temporal Constraints
for Factory Scheduling”, in Proceedings
IFIP TC 8/WG 8.1 Working Conference on
on Temporal Aspects of Information Systems
(TAIS 87), 1987.

Claude Le Pape, “Using Object-Oriented
Constraint Programming Tools to Imple-
ment Flexible ‘Easy to Use’ Scheduling
Systems”, in Proceedings NSF Workshop on
Intelligent Dynamic Scheduling for Manufac-
turing Systems, Cocoa Beach (FL), 1993.
Wolfgang Mai und Gunter Schmidt, “Was
Leitstandsysteme heute leisten”. CIM
Management, 3/92.

C.C. Meng and M.Sullivan, “LOGOS: a
Constraint-Directed Reasoning Shell for
Operations Management”, IEEE Expert,
6(1), 1991.

J. Schank, M. Mattock, G. Sumner, |I.
Greenberg, J. Rothenberg and J.P Stucker,
“A Review of Strategic Mobility Models
and Analysis”, Rand Corp. Report Num-
ber R-3926-JS, 1991.

Stephen F. Smith, P.S. Ow, N. Muscettola,
J.Y. Potvin, and D. Matthys, “An Inte-
grated Framework for Generating and Re-
vising Factory Schedules”, Journal of the

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Operational Research Society, 41(6), 1990.
Stephen F. Smith, “Knowledge-Based Pro-
duction Management: Approaches, Re-
sults, and Prospects”, Production Planning
and Control, 3(4), pp. 350-380, 1992.
Stephen F. Smith and Ora Lassila, “Con-
figurable Systems for Reactive Production
Management”, Knowledge-Based Reactive
Scheduling, IFIP Transactions B-15, North-
Holland, Amsterdam (The Netherlands),
1994,

Stephen F. Smith and Ora Lassila, “To-
ward the Development of Flexible Mixed-
Initiative Scheduling Tools”. Proceedings
of the ARPA/Rome Labs Planning Workshop
‘94, Tucson (AZ), February, 1994.

Smith, S.F, “OPIS: A Methodology and
Architecture for Reactive Scheduling”, in
Intelligent Scheduling, (eds. M. Fox and M.
Zweben), Morgan Kaufmann Publishers,
1993.

Stephen F. Smith and Katia P. Sycara, “A
Constraint-Based Framework for Multi-
Level Transportation Scheduling”, CMU
Robotics Institute Technical Report, 1993.
Rebecca Wirfs-Brock, Brian Wilkerson
and Lauren Wiener, “Designing Object-
Oriented Software”, Prentice Hall, Engle-
wood Cliffs (NJ), 1990.

Monte Zweben, Eugene Davis and
Michael Deale, *“Iterative Repair for
Scheduling and Rescheduling”, Techni-
cal Report, NASA Ames Research Center,
Moffett Field (CA), 1991.

— DITOP3 L

File View Schedule DITOPS Hesources

DITOPS Scheduler ! hutomatic scheduling ti
ie Mdlan "15n 10
fiegie I Alyays use RSO

o) 199s CMILCIMDE
21 Aluays react with B0

21 Notify upon conpletion

Frecision Level [raft (nmived leve]ld s] Copacity View Size SMRLL &]

Status: idle

FEB:T {
FEB:E {
FEBS5 {
FEB=S {
FEB:S {
i FEB:2 {
... = | e
MININIZE eRbEE e {
e FERSH:S {
FEnSHY {
FERSH:E {
FEnsH2 {
FERSHL {
TRONSEON LA FlEET R
FRORD:S {
FRORD=Y {
FRORD:E {
TRONSEH-POL SHIE FLEET FRORDSG i
FRORD:T {
FSERRD {
FSERBL {
RONGEH CORGE-SHIP-FLEE —
FesEsn {
FesEst {

FREFER-ERRL ¥ FINISH

|

Figure 1: The DITOPS User Interface

