
Research Article
Dynamic Analysis and Circuit Design of a Novel Hyperchaotic
System with Fractional-Order Terms

Abir Lassoued and Olfa Boubaker

National Institute of Applied Sciences and Technology (INSAT), Centre Urbain Nord, BP 676, 1080 Tunis Cedex, Tunisia

Correspondence should be addressed to Abir Lassoued; lassoued.abir5@gmail.com

Received 28 June 2017; Revised 19 September 2017; Accepted 1 October 2017; Published 26 October 2017

Academic Editor: Dimitri Volchenkov

Copyright © 2017 Abir Lassoued and Olfa Boubaker. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

A novel hyperchaotic system with fractional-order (FO) terms is designed. Its highly complex dynamics are investigated in terms
of equilibrium points, Lyapunov spectrum, and attractor forms. It will be shown that the proposed system exhibits larger Lyapunov
exponents than related hyperchaotic systems. Finally, to enhance its potential application, a related circuit is designed by using the
MultiSIM Software. Simulation results verify the effectiveness of the suggested circuit.

1. Introduction

Hyperchaos was discovered by Rössler in 1979 [1] and the
first hyperchaotic circuit was implemented by Matsumoto
in 1986 [2]. In these last years, hyperchaotic systems have
gained the interest of the scientific community and new
systems and circuits are proposed [3–8]. This great interest
can be explained by the aptitude of hyperchaotic systems
to generate complex dynamics characterized by more than
one positive Lyapunov exponent and attractors deployed in
multiple directions. In practical applications and particularly
in secure communication, chaotic synchronization has been
explored by using electronic circuits, namely, Duffing circuit
[9], Chua circuit [10], and Rössler circuit [11]. However, for
hyperchaotic circuits, many challenging problems are still
pending due to their complex behaviors.

On the other hand, several researches have attempted
to construct chaotic and hyperchaotic models with simple
algebraic structures highly recommended for circuit design.
The most famous chaotic one is the Jerk system proposed
by sprott, in 1994 [12, 13], which contains simple nonlinear
terms. However, it is well known that most systems contain
conventional nonlinear terms like piecewise linear functions
[14–17], integer order polynomials [8, 18], sine functions [19],
time delayed functions [20], and switching functions [21]. In
this framework, fractional-order polynomials could be used

to build complex chaotic behaviors and, to the best of our
knowledge, they have not been harnessed until now.

The purpose of this paper is to build a novel hyperchaotic
system with more complex dynamics than those proposed
by related works. Expecting that the PWNL function with
FO terms gives us more complex chaotic proprieties than
the piecewise linear one, this PWNL function is constructed
from absolute functions and FO polynomials. To enhance
the potential application of the proposed system, its related
circuit is designed afterwards with MultiSIM Software.

The rest of this paper is structured as follows. In Section 2,
the mathematical model of the hyperchaotic system is pro-
posed and its basic properties are presented. In Section 3,
the dynamic analysis of the novel system is investigated
by pointing out its elementary characteristics such as the
Lyapunov exponents, the attractor forms, and the equilibrium
points. In Section 4, the oscillator circuit of the hyperchaotic
system is designed afterwards.

2. Mathematical Model and Basic Properties

Let consider the mathematical model of the novel hyper-
chaotic system with FO terms expressed by the following
differential equations:𝑥̇ = 𝑦,̇𝑦 = 𝑧,
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Figure 1: Projections of the attractor related to the hyperchaotic system (1) onto the spaces (𝑥, 𝑦, 𝑧), (𝑥, 𝑦), (𝑥, 𝑧), (𝑦, 𝑧), and (𝑤, 𝑦).𝑧̇ = −𝑎𝑧 − 𝑏𝑦 + 𝐺 (𝑥)𝑤̇ = 𝑘𝑦 − ℎ𝑤 + 𝐺 (𝑥) ,
(1)

with 𝐺(𝑥) being a nonlinear function defined as𝐺 (𝑥) = −𝑐𝑥2 + 𝑑 |𝑥| 𝑥 + 𝑚 |𝑥|𝑟 𝑥−1, 1 < 𝑟 < 2, (2)

where (𝑎, 𝑏, 𝑐, 𝑑, ℎ, 𝑘, 𝑚, 𝑟) are the system’s parameters and
(𝑥, 𝑦, 𝑧, 𝑤) are the state variables. 𝑟 is a fractional number
satisfying 1 < 𝑟 < 2. Since 𝑟 ̸= 1, |𝑥|𝑟𝑥−1 will never be
an indeterminate form. The nonlinear function 𝐺(𝑥) can be
written as follows:

𝐺 (𝑥) = {{{{{(−𝑐 − 𝑑) 𝑥
2 − 𝑚 (−𝑥)𝑟−1 , if 𝑥 < 0,0, if 𝑥 = 0,(−𝑐 + 𝑑) 𝑥2 + 𝑚𝑥𝑟−1, if 𝑥 > 0. (3)

System (1) can exhibit chaotic behavior if the general condi-
tion of dissipativity is satisfied such as𝜕𝑥̇𝜕𝑥 + 𝜕 ̇𝑦𝜕𝑦 + 𝜕𝑧̇𝜕𝑧 + 𝜕𝑤̇𝜕𝑤 = −𝑎 − ℎ < 0. (4)

As long as 𝑎 + ℎ > 0, system (1) is dissipative and it converges
to an attractor.Thus,when the parameters (𝑎, 𝑏, 𝑐,𝑑,𝑚, 𝑟, ℎ, 𝑘)
are equal to (0.93, 1.11,−0.11,−0.21, 6.26, 1.32, 0.001, 14) and
the initial condition is equal to (1, 1, 1, 1), system (1) generates
a strange attractor displayed in Figure 1. This attractor has
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Figure 2: Time series and sensitive dependence on initial conditions (1, 1, 1, 1) (blue) and (1.001, 1, 1, 1) (red): (a) and (d) variable 𝑥; (b) and
(c) variable 𝑤.
an asymmetrical form with respect to all the principal axes
characterized by two scrolls of different sizes.

The time series of the state variables 𝑥 and 𝑤 are
described in Figures 2(a) and 2(b). These signals represent
the chaotification rates of each variable. On the other hand,
system (1) is sensitive to initial conditions as shown in Figures
2(c) and 2(d). Note that the variation range of the variable𝑤 is
extended within [−250, 200], unlike the other variables. This
point must be considered in practical applications.

3. Dynamic Analysis

3.1. Equilibrium and Stability. The equilibrium points of
system (1) are obtained by solving these equations:𝑦 = 𝑧 = 𝑤 = 0,−𝑐𝑥2 + 𝑑 |𝑥| 𝑥 + 𝑚 |𝑥|𝑟 𝑥−1 = 0. (5)

Proposition 1. (i) If 𝑥 = 0, then 𝑤 = 0 and the origin 𝐻1 =(0, 0, 0, 0) is the first equilibrium of system (1).
(ii) If 𝑥 > 0, then 𝑤 = 0 and𝐻2 = (((𝑐 − 𝑑)/𝑚)1/𝛼, 0, 0, 0)

is an equilibrium of system (2) where 𝛼 = 𝑟 − 3.

(iii) If 𝑥 < 0, then 𝑤 = 0 and 𝐻3 = ((−(−𝑐 −𝑑)/𝑚)1/𝛼, 0, 0, 0) is an equilibrium of system (2) where 𝛼 =𝑟 − 3.
Proof. Case (i) is obvious.

For case (ii), we should solve the following equation: −𝑐+𝑑+𝑚𝑥𝑟−3 = 0which admits the solution 𝑥𝛼 = (𝑐−𝑑)/𝑚with𝛼 = 𝑟 − 3. The roots of this equation are given by [22]𝑥 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 (𝑐 − 𝑑)𝑚 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨1/𝛼 𝑒(𝑗𝜃1±2𝑛Π)/𝛼 (6)

with 𝑛 ∈ N, 𝜃1 being the phase of 𝑥𝛼, and 𝛼 being a fractional
number. Notice that the term (𝑐 − 𝑑)/𝑚 is positive when 𝑐 =−0.11, 𝑑 = −0.21, and𝑚 = 6.26. Then, 𝜃1 is equal to zero and
we have 𝑥 = ((𝑐 − 𝑑)/𝑚)1/𝛼.

For case (iii), we should solve the following equation:−𝑐−𝑑 − 𝑚(−𝑥)𝑟−3 = 0 which admits the solution (−𝑥)𝛼 = 𝑋𝛼 =(−𝑐−𝑑)/𝑚with 𝛼 = 𝑟−3.The roots of this equation are given
by [22] 𝑋 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 (−𝑐 − 𝑑)𝑚 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨1/𝛼 𝑒(𝑗𝜃2±2𝑛Π)/𝛼 (7)
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Table 1: Stability analysis of system (1).

Equilibrium point Jacobian matrix Corresponding eigenvalues Stability analysis

𝐻1 (0 1 0 00 0 1 00 −𝑏 −𝑎 00 𝑘 0 −ℎ)
𝜆1 = 0𝜆2 = −0.001𝜆3 = −0.465 + 0.945𝑖𝜆4 = −0.465 − 0.945𝑖 Stable point

𝐻2 ( 0 1 0 00 0 1 0Δ 1 −𝑏 −𝑎 0Δ 1 𝑘 0 −ℎ)
𝜆1 = −0.001𝜆2 = −1.273𝜆3 = 0.171 + 1.232𝑖𝜆4 = 0.171 − 1.232𝑖 Unstable point

Δ 1 = 2𝑑𝑥 − 2𝑐𝑥 + (𝑟 − 1)𝑚𝑥𝑟−2
𝐻3 ( 0 1 0 00 0 1 0Δ 2 −𝑏 −𝑎 0Δ 2 𝑘 0 −ℎ)

𝜆1 = −0.001𝜆2 = −2.297𝜆3 = 0.683 + 1.945𝑖𝜆4 = 0.683 − 1.945𝑖 Unstable point

Δ 2 = −2𝑑𝑥 − 2𝑐𝑥 − (𝑟 − 1)𝑚𝑥𝑟−2
with 𝑛 ∈ N, 𝜃2 being the phase of 𝑥𝛼, and 𝛼 being a fractional
number. Notice that the term (−𝑐 − 𝑑)/𝑚 is positive when𝑐 = −0.11, 𝑑 = −0.21, and𝑚 = 6.26. Then, 𝜃2 is equal to zero
and we have 𝑥 = (−(−𝑐 − 𝑑)/𝑚)1/𝛼.

When the parameters (𝑎, 𝑏, 𝑐, 𝑑, 𝑚, 𝑟, ℎ, 𝑘) are equal
to (0.93, 1.11, −0.11, −0.21, 6.26, 1.32, 0.001, 14), system
(1) admits three equilibrium points: 𝐻1 = (0, 0, 0, 0), 𝐻2 =(11.73, 0, 0, 0), and 𝐻3 = (−5.87, 0, 0, 0). For the stabil-
ity analysis, Table 1 gives the Jacobian matrix 𝐽 and its corre-
sponding eigenvalues calculated for each equilibrium point.

3.2. Lyapunov Exponents Analysis. System (1) exhibits four
Lyapunov exponents (LEs).These LEs are esteemed using the
Wolf algorithm [23], as shown in Figure 3 as

LE1 = 0.232,
LE2 = 0.020,
LE3 = 0,
LE4 = −1.169. (8)

Since the LE spectrum has two positive Lyapunov exponents;
thus system (1) is hyperchaotic. 𝜆1 is the largest positive one.
This exponent increases the expansion degree of the attractor
in the phase space.

In addition, the correspondingKaplan-Yorke dimension is𝐷𝐿 = 3 + (𝜆1 + 𝜆2 + 𝜆3)󵄨󵄨󵄨󵄨𝜆4󵄨󵄨󵄨󵄨 = 3.19. (9)

3.3. Routes to Chaos. System (1) can display periodic orbits,
chaos, and hyperchaos attractors under different conditions.
In fact, when the parameter 𝑚 varies and the parameters (𝑎,𝑏, 𝑐, 𝑑, 𝑟, ℎ, 𝑘) are fixed, two Hopf bifurcations are detected
as shown in Figure 4. These bifurcations are denoted H in
the bifurcation diagram and they appear when𝑚 = 0.99 and𝑚 = 2.11, respectively. Each Hopf point is characterized by a
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Figure 3: The Lyapunov exponent spectrum of the hyperchaotic
system (1).

first Lyapunov coefficient (FLC). A positive FLC indicates the
existence of a supercritical Hopf bifurcation, whereas a nega-
tive one indicates a subcritical Hopf bifurcation. In system (1),
the two points obtained are supercritical Hopf bifurcations.
This type of bifurcation indicates that the evolution to chaotic
behavior is possible.

In addition, as the parameter of bifurcation 𝑚 increases,
system (1) undergoes the following routes:

(i) If −1 ≤ 𝑚 ≤ 0.3, then system (1) exhibits periodic
orbit. Figure 5(a) shows this regular attractor with𝑚 = −0.5.

(ii) If 0.3 < 𝑚 ≤ 2.1, then system (1) converges to a fixed
point as shown in Figure 5(b).
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Table 2: The LEs of some typical attractors of system (1).𝑚 LE1 LE2 LE3 LE4 Attractor3.6 0 0 −0.42 0.8 Periodic orbit3.8 0.05 0 −0.01 −0.92 Chaotic attractor6 0.18 0.007 0 −1.10 Hyperchaotic attractor6.5 0.17 0.01 0 −1.16 Hyperchaotic attractor

Table 3: Comparative analysis with related hyperchaotic systems.

Hyperchaotic system Lyapunov exponents Kaplan-Yorke dimension

Proposed hyperchaotic system

LE1 = 0.231 𝐷KY = 3.19LE2 = 0.020
LE3 = 0

LE4 = −1.169
Piecewise linear hyperchaotic circuit [25]

LE1 = 0.064 𝐷KY = 3.089LE2 = 0.033
LE3 = 0

LE4 = −1.098
Hyperchaotic hyperjerk system [26]

LE1 = 0.142 𝐷KY = 3.134LE2 = 0.046
LE3 = 0

LE4 = −1.396
H 
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Figure 4: Hopf bifurcations.

(iii) If 2.1 < 𝑚 ≤ 3.8, then another periodic orbit is
obtained as shown in Figure 5(c) with𝑚 = 1.

(iv) If 3.8 < 𝑚 ≤ 5.5, system (1) exhibits chaotic attractor.
Figure 5(d) shows this strange attractor with𝑚 = 4.5.

(v) If 5.5 < 𝑚 < 7, then system (1) exhibits hyperchaotic
attractor. Figure 5(e) shows this strange attractor with𝑚 = 6.

Some typical attractors are tabulated in Table 2 according
to the parameter𝑚.

3.4. Comparative Analysis. Referring to the survey paper
[24], the first Lyapunov exponent can be one of the compara-
tive criteria between hyperchaotic systems. Table 3 presents

a comparative analysis between system (1) and two related
ones, recently proposed in literature. Such a choice is based
on the fact that, identical to system (1), the first comparative
example contains linear piecewise functions whereas the
second one is based on the jerk equation. Based on Table 3, it
is clear that system (1) exhibitsmore complex dynamics.Thus,
this confirms the highlight potential applications of noninte-
ger order terms with respect to classical nonlinear terms.

4. Circuit Design

It is obvious that hardware implementation of chaotic systems
is an interesting task in engineering applications, namely,
for secure communications and random bits generation.
Therefore, the aim of this section is to design an analog circuit
that can build hyperchaotic behaviors according to system (1).

4.1. Design of the Analog Circuit with MultiSIM. For the
circuit implementation, we choose the particular case study
when the system parameter 𝑟 is fixed to 1.5. Thus, the
proposed system will be defined by the following model:𝑥̇ = 𝑦,̇𝑦 = 𝑧,𝑧̇ = −𝑎𝑧 − 𝑏𝑦 − 𝑐𝑥2 + 𝑑 |𝑥| 𝑥 + 𝑚√|𝑥|sgn (𝑥)𝑤̇ = 𝑘𝑦 − ℎ𝑤 − 𝑐𝑥2 + 𝑑 |𝑥| 𝑥 + 𝑚√|𝑥|sgn (𝑥) , (10)

where the system parameters (𝑎, 𝑏, 𝑐, 𝑑, 𝑚, ℎ, 𝑘) are equal to
(1, 1, −0.11, −0.21, 5, 0.01, 14). System (10) exhibits four LEs
such as

LE1 = 0.18,
LE2 = 0.04,
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Figure 5: Different attractors forms exhibited by system (1) when parameter𝑚 varies.

LE3 = 0,
LE4 = −1.2.

(11)

Despite the observation of the obtained phase portraits of
system (10), we deduce that the maximum value of the signal𝑤 can reach the level of 250. Thus, 250V is a sufficiently high
voltage for the common components used in the proposed
circuit. Therefore, a linear transformation for system (10) is
necessary to decrease the amplitude of the state variables.
Letting 𝑢 = 𝑥/2, V = 𝑦/2, 𝑔 = 𝑧/2, and 𝑓 = 𝑤/160 and
then setting the original state variables 𝑥, 𝑦, 𝑧, and 𝑤 instead
of the variable 𝑢, V, 𝑔, and𝑓, the adjusted system becomes the
following one:𝑥̇ = 𝑦,̇𝑦 = 𝑧,𝑧̇ = 𝑎𝑧 − 𝑏𝑦 − 2𝑐𝑥2 + 2𝑑 |𝑥| 𝑥 + 𝑚√2√|𝑥|sgn (𝑥)𝑤̇ = 𝑘𝑦 − 80ℎ𝑤 − 2𝑐𝑥2 + 2𝑑 |𝑥| 𝑥 + 𝑚√2√|𝑥|sgn (𝑥) .

(12)

The amplitude of the state variables of system (10) has
decreased as shown in Figure 6. Moreover, the two systems
(10) and (12) are equivalent since the linear transformation
does not change the physical properties of nonlinear systems.

To design the hyperchaotic circuit of system (12), only
common electronic components are used such as resistors,
capacitors, diodes, multipliers, and operational amplifiers. In
fact, the nonlinear terms of system (12) should be designed
first, namely, the quadratic term, the absolute function, the
sign function, and the square root function. The quadratic
term is implemented with the analog multiplier. The square
root element is designed with two operational amplifiers as
only active elements [27].The analog circuit of the square root
element is provided in Figure 7.

For the theoretical study and based on [27], the second
voltage source in Figure 7 should be fixed to 2.878V.
However, in experimentation applications, we have obtained
the root square function by using a stabilized voltage equal to2.9V as shown in Figure 8.This figure describes two voltages;
the first one is a positive source signal and the second one is
the output signal of the square root circuit. Based on these
results, the observed maximum voltages are equal to 720mV
and 900mV (≃ √0.72 = 0.88), respectively. Thus, the square
root function is correctly obtained with 2.9V. In addition,
based on MultiSIM results and experimental simulations, if
the source voltage is included in [2.7V, 3V] then system
(12) generates strange attractors. To avoid making this paper
more cumbersome, details on experiments and experimental
results will be soon presented in future works, confirming the
MultiSIM results.
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Figure 8: Experimental results of the square root function.
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The corresponding circuit equation of the hyperchaotic
system can be described as𝑥̇ = 1𝑅1𝐶1𝑦,̇𝑦 = 1𝑅2𝐶2 𝑧,𝑧̇ = − 1𝑅3𝐶3 𝑧 − 1𝑅4𝐶3𝑦 + 1𝑅5𝐶3 𝑥2 − 1𝑅6𝐶3 |𝑥| 𝑥+ 1𝑅7𝐶3√|𝑥|sgn (𝑥)𝑤̇ = − 1𝑅8𝐶4𝑦 − 1𝑅9𝐶4𝑤 + 1𝑅5𝐶4 𝑥2 − 1𝑅6𝐶4 |𝑥| 𝑥+ 1𝑅7𝐶4√|𝑥|sgn (𝑥) .

(13)

According to system (12) and (13) and design considera-
tions, we fixed the values of the resistances and the capacitors
as 𝐶1 = 𝐶2 = 𝐶3 = 1 nF,𝐶4 = 0.1 nF,

𝑅1 = 𝑅2 = 100 kΩ,𝑅3 = 𝑅4 = 10 kΩ,𝑅5 = 4.554 kΩ,𝑅6 = 2.5 kΩ,𝑅7 = 0.2 kΩ,𝑅8 = 7 kΩ,𝑅9 = 1.25 kΩ.
(14)

Finally, the obtained circuit diagram, designed with Multi-
SIM Software, is provided in Figure 9 where the multiplier is
AD633 and the operator amplifier is UA741.

4.2. Simulation Results. For the oscillator circuit, all active
devices (UA741 and AD633) are powered by ±15V. Several
design considerations were taken into account to prevent
degrading the hyperchaotic behavior such as the adjustment
of the resistors and the capacitors for the integration opera-
tions.

The oscilloscope traces of the proposed circuit are shown
in Figure 10. Comparing the different hyperchaotic attractors
shown in Figures 6 and 10, a good qualitative agreement
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Figure 10: Simulation results of the hyperchaotic system with
MultiSIM Software.

between the numerical simulations with Matlab and the
electrical simulations with MultiSIM Software is observed.
In fact, for MultiSIM Software, we have obtained the same
attractors forms as those obtained by Matlab simulations.
However, in these last attractors, some saturation effects are
detected due to the operational amplifiers responses. To avoid
making this papermore cumbersome, details on experiments
and experimental results will be presented in future works,
where saturation effects of amplifiers will be deeply analyzed.

5. Conclusions
In this paper, a novel hyperchaotic system is proposed
by considering fractional-order polynomials. Analytical and
numerical results show that this system exhibits more com-
plex behaviors than those proposed by related works. More-
over, its analog circuit is designed and simulated with Mul-
tiSIM Software. In future works, experimental realization of

the hyperchaotic circuit will be proposed and the saturation
effects induced by the operational amplifiers will be analyzed.
Thereafter, the proposed circuit will be considered for secure
image encryption and decryption applications.
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