PROVABILITY IN PREDICATE PRODUCT LOGIC

MICHAEL C. LASKOWSKI AND SHIRIN MALEKPOUR

Abstract

We sharpen Hájek's Completeness Theorem for theories extending predicate product logic, $\Pi \forall$. By relating provability in this system to embedding properties of ordered abelian groups we construct a universal BL-chain \mathbf{L} in the sense that a sentence is provable from $\Pi \forall$ if and only if it is an \mathbf{L}-tautology. As well we characterize the class of lexicographic sums that have this universality property.

1. Introduction

Predicate product logic is a variant of first-order logic wherein sentences are assigned a truth value in the closed interval $[0,1]$. In product logic the truth value of a conjunction $\varphi \& \psi$ of sentences is equal to the product of the truth values of φ and ψ, which is natural in certain applications (e.g., if φ and ψ describe independent events).

In [H] Petr Hájek laid the groundwork for a proof theory for this logic. He defined an axiom system $\Pi \forall$, which consists of a (recursive) list of 'Basic Logic' axioms BL \forall, together with two additional axiom schema:

$$
\begin{gather*}
(\varphi \wedge \neg \varphi) \rightarrow \overline{0} \quad \text { and } \tag{1}\\
\neg \neg \chi \rightarrow((\varphi \& \chi \rightarrow \psi \& \chi) \rightarrow(\varphi \rightarrow \psi)) \tag{2}
\end{gather*}
$$

The basic logic axioms are valid in many different predicate fuzzy logic systems, while the two additional axioms are valid in Product Logic (as well as conventional two-valued logic) but distinguish it from Gödel logic and Lukasiewicz logic.

As for semantics, Hájek defined a BL-chain as a linearly ordered residuated lattice satisfying certain properties. Here, however, we follow the treatment set out in [LS1] and [LS2] and define a BL-chain to be an ordered abelian semigroup $(L,+, \leq, 0,1)$ in which 1 is both the maximal element of the ordering and the identity element of the

[^0]semigroup, 0 is the minimal element of the semigroup, and whenever $a<b$ there is a maximal c such that $b+c=a$. By defining $b \Rightarrow a$ to be 1 whenever $b \leq a$ and the maximal c such that $b+c=a$ otherwise, one readily sees that this definition is equivalent to the definition proposed by Hájek in [H].

Following Hájek, fix a predicate language τ. For a given BL-chain L, an \mathbf{L}-structure \mathbf{M} is a triple $\left\langle M,\left(m_{c}\right)_{c},\left(r_{P}\right)_{P}\right\rangle$, where M is a nonempty set, m_{c} is an element of M for each constant symbol $c \in \tau$, and r_{P} : $M^{n} \rightarrow \mathbf{L}$ is a function for every n-ary predicate symbol $P \in \tau$. Given an \mathbf{L}-structure \mathbf{M}, one recursively defines a function $\|\varphi\|_{\mathbf{M}}$ to every $\tau(M)$-sentence φ by demanding that $\|\varphi \& \psi\|=\|\varphi\|+\|\psi\| ;\|\varphi \rightarrow \psi\|=$ $\|\varphi\| \Rightarrow\|\psi\| ;\|\exists x \varphi(x)\|=\sup \{\|\varphi(a)\|: a \in M\} ;$ and $\|\forall x \varphi(x)\|=$ $\inf \{\|\varphi(a)\|: a \in M\}$. (In the clauses above, and whenever it is clear, we suppress the subscript on $\|\varphi\|$.) In general, there is no reason why the requisite suprema and infima need exist. Again, following Hájek, we call an \mathbf{L}-structure \mathbf{M} safe if in fact all the suprema and infima needed to compute $\|\varphi\|$ do exist for all $\tau(M)$-sentences φ.

A theory T is simply a set of formulas. We say that an \mathbf{L}-structure \mathbf{M} is a model of T if $\|\varphi(\bar{a})\|=1$ for every $\varphi \in T$ and every \bar{a} from M of the requisite length. In [H] Hájek proves the following results that we use freely:

Theorem 1.1 (Deduction Theorem). For any theory T extending $B L \forall$ and sentences $\varphi, \psi, T \cup\{\varphi\} \vdash \psi$ if and only if $T \vdash \varphi^{k} \rightarrow \psi$ for some positive integer k (where φ^{k} denotes the k-fold conjunction $\varphi \& \ldots \& \varphi$).

Theorem 1.2 (Completeness Theorem). $T \vdash \varphi$ if and only if $\|\varphi\|_{\mathrm{M}}=$ 1 for all BL-chains \mathbf{L} and all \mathbf{L}-structures \mathbf{M} that model T.

In this paper we obtain several strengthenings of Hájek's completeness theorem for theories extending $\Pi \forall$, the strongest of which is Theorem 2.9. As is usual in the study of provability, in order to understand the logical consequences of the theory $\Pi \forall$, one must include nonstandard models as well. In this context, this means defining a class of BL-chains that are generated from ordered abelian groups.

Definition 1.3. Let $(G,+, \leq)$ be any ordered abelian group. Let $N(G)$ be the subsemigroup with universe $\{a \in G: a \leq 0\}$. Let $L(G)$ denote the BL-chain with universe $N(G) \cup\{-\infty\}$ in which + and \leq are inherited from G with the additional stipulations that $-\infty$ is the minimal element of $L(G)$ and that $a+(-\infty)=-\infty$ for all $a \in L(G)$. The 'top' element of $L(G)$ is the zero element of G, and the 'bottom' element of $L(G)$ is $-\infty$.

It is readily verified that $L(G)$ is a BL-chain for any ordered abelian group G. (In fact, for any $a<b$ in $L(G)$ there is a unique c such that $b+c=a$.) Furthermore, any $L(G)$-structure is necessarily a model of $\Pi \forall$. In order to describe a converse, we need to specify when two structures can be identified.

Definition 1.4. Fix a predicate language τ. An \mathbf{L}-structure \mathbf{M} and an \mathbf{L}^{\prime}-structure \mathbf{M}^{\prime} are identified if $M=M^{\prime}, m_{c}^{\mathbf{M}}=m_{c}^{\mathbf{M}^{\prime}}$ for all constant symbols $c \in \tau$, and

$$
\|\varphi\|_{\mathrm{M}}=\|\varphi\|_{\mathrm{M}^{\prime}}
$$

for all $\tau(M)$-formulas φ.
In particular, the BL-chains \mathbf{L} and \mathbf{L}^{\prime} have a large intersection. The intuition behind identifying such structures is that 'extra elements' of \mathbf{L} or \mathbf{L}^{\prime} are irrelevant if they never appear in the computation of the truth of any $\tau(M)$-sentence. The following proposition is fundamental to our analysis.

Proposition 1.5. Any L-structure \mathbf{M} that is a model of $\Pi \forall$ can be identified with an $L(G)$-structure \mathbf{M}^{\prime} for some ordered abelian group G.

Proof. Let $B=\{\|\varphi\|: \varphi \in \tau(M)\}$. It is readily checked that the substructure $(B,+, \leq, 0,1)$ is itself a BL-chain. We will show that it is isomorphic to $N(G)$ for some ordered abelian group G. To see this, first note that by $\min \{a, a \Rightarrow 0\}=0$ for all $a \in B$. It follows from this that

$$
\begin{equation*}
a+b \neq 0 \quad \text { for all } a, b \in B \backslash\{0\} \tag{3}
\end{equation*}
$$

To see this, choose any $a, b \in B \backslash\{0\}$. If $a+b=0$, then $a \Rightarrow 0$, which is the largest c such that $a+c=0$ would be at least b, contradicting the note above.

Because of this, $\|\neg \neg \chi\|=1$ for all $\tau(M)$-sentences χ, so long as $\|\chi\| \neq 0$. Thus, Axiom 2 implies that

$$
\begin{equation*}
[(a+c) \Rightarrow(b+c)] \Rightarrow(a \Rightarrow b) \quad \text { for all } a, b, c, \in B \backslash\{0\} \tag{4}
\end{equation*}
$$

As a special case of this, if $a, b, c \in B \backslash\{0\}$ satisfy $a+c \leq b+c$, then $a \leq b$. By symmetry, this implies that $B \backslash\{0\}$ is cancellative, i.e., if $a+c=b+c$, then $a=b$.

Let $S=B \backslash\{0,1\}$. Then S is a cancellative, ordered abelian semigroup. Furthermore, since for any $a \in S, 1$ is the unique element c of $B \backslash\{0\}$ such that $a+c=a$, it follows that $a+b<a$ for all $a, b \in S$. But now, Lemma 2.3 of [LS1] (which is similar to Lemma 1.6.9 of [H]) says that $(S,+, \leq)$ is itself isomorphic to the set of negative elements
of an ordered abelian group G. It follows that B is isomorphic to $N(G)$ for this group G.

It follows immediately from Proposition 1.5 that Hájek's completeness theorem can be improved: A formula φ is provable from $\Pi \forall$ if and only if φ is an $L(G)$-tautology for every ordered abelian group G. With our eye on improving this result further, we describe a certain class of ordered abelian groups.

Definition 1.6. For $(J,<)$ any linear order, the lexicographic sum $\left(\mathbb{R}^{J},+, \leq\right)$ is the ordered abelian group whose elements consist of all functions $f: J \rightarrow \mathbb{R}$ whose support is well-ordered (i.e., $\{j \in J: f(j) \neq$ $0\}$ is a well-ordered subset of J). Addition is defined componentwise and the ordering on \mathbb{R}^{J} is lexicographic.

The Hahn embedding theorem states that every ordered abelian group naturally embeds into a lexicographic sum. Moreover, Clifford's proof of this result (see [C]) shows that the embedding can be chosen in a very desirable fashion, which we describe below.

Definition 1.7. Let G be any ordered abelian group. For $a, b \in G$, we say a and b are equivalent, written $a \sim b$, if $a=b=0$, or $a, b>0$ and there is a positive integer n such that $n a \geq b$ and $n b \geq a$, or $a, b<0$ and there is a positive integer n such that $n a \leq b$ and $n b \leq a$ (the notation $n a$ is shorthand for adding a to itself n times.) For $a, b \in N(G)$ we write $a \ll b$ when $a<n b$ for all $n \in \omega$.

It is easily checked that \sim is an equivalence relation on G and that the equivalence classes are convex subsets of G. The \sim-classes are called the archimedean classes of G. Since G is a group, the behavior of \sim on the set of negative elements determines the behavior of \sim on all of G. Our notation is slightly nonstandard, as here the elements a and $-a$ are in different archimedean classes whenever $a \neq 0$. Note that \ll defines a strict linear order on the archimedean classes of $N(G)$.

It is easily checked that if $f: G \rightarrow H$ is a strict order-preserving homomorphism of ordered abelian groups, then $a \sim b$ if and only if $f(a) \sim f(b)$ for all $a, b \in G$. However, if we want our embedding to preserve suprema and infima, we require an additional property. Specifically, call a strict, order-preserving homomorphism $f: G \rightarrow H$ an archimedean surjection if for every $b \in H$ there is $a \in G$ such that $f(a) \sim b$. Our interest in this notion is given by the following two results.

Lemma 1.8. If $f: G \rightarrow H$ is an archimedean surjection, $X \subset G$, and $a, b \in G$ satisfy $a=\sup (X), b=\inf (X)$, then $f(a)=\sup (f(X))$ and
$f(b)=\inf (f(X))$. Moreover, if X is a cofinal (coinitial) subset of G, then $f(X)$ is a cofinal (coinitial) subset of H.

Proof. By symmetry, inversion, and translation, it suffices to show that if X is a set of positive elements from G and $\inf (X)=0_{G}$, then $\inf (f(X))=0_{H}$. So fix such a set $X \subseteq G$. Since f is strictly orderpreserving every element of $f(X)$ is positive, so 0_{H} is a lower bound. Now choose $r \in H, r>0_{H}$. It suffices to find some $a \in X$ such that $f(a)<r$. Before demonstrating this, we establish the following claim:

Claim. For every positive $b \in G$ there is $a \in X$ such that $2 a<b$.
Proof. Fix $b>0$. Choose any $c \in X$ such that $c<b$ and let $d=b-c$. There are now two cases. First, if $2 d \leq b$ then take a to be any element of X less than d. Second, if $b<2 d$, then let $e=b-d$ and choose $a \in X$ with $a<e$. Then $2 a<2 e=2 b-2 d \leq b$ and the claim is proved.

Since f is an archimedean surjection we can choose $b \in G$ such that $f(b) \sim r$. Fix a positive integer n so that $f(b) \leq n r$. By iterating the Claim several times we can find an $a \in X$ such that $n a<b$. Hence $n f(a)=f(n a)<f(b) \leq n r$, so $f(a)<r$ as required. The 'moreover' clause is proved similarly.

Proposition 1.9. If $f: G \rightarrow H$ is an archimedean surjection and \mathbf{M} is any $L(G)$-structure, then there is a (unique) $L(H)$-structure \mathbf{M}^{\prime} with the same universe as \mathbf{M} that satisfies

$$
f\left(\|\varphi\|_{\mathrm{M}}\right)=\|\varphi\|_{\mathrm{M}^{\prime}}
$$

for all $\tau(M)$-sentences φ.
Proof. Take \mathbf{M}^{\prime} to have universe M and let $m_{c}^{\mathbf{M}^{\prime}}=m_{c}^{\mathbf{M}}$ for all constants $c \in \tau$. For every predicate symbol P, let $r_{P}^{\mathbf{M}^{\prime}}=f\left(r_{P}^{\mathbf{M}}\right)$. One recursively checks that

$$
f\left(\|\varphi\|_{\mathbf{M}}\right)=\|\varphi\|_{\mathbf{M}^{\prime}}
$$

for all $\tau(M)$-sentences φ, using the previous Lemma to show that quantifiers are well behaved.

The following theorem can be read off from the main result in [C].
Theorem 1.10 (Clifford's proof of the Hahn embedding theorem). Let G be any ordered abelian group and let J consist of the archimedean classes of the negative elements of G with the induced ordering. Then there is an archimedean surjection $f: G \rightarrow \mathbb{R}^{J}$.

One special case is worth noting. If $G=(0)$ is the trivial group, then $J=\emptyset$ and \mathbb{R}^{\emptyset} is trivial as well. In this case $L\left(\mathbb{R}^{\emptyset}\right)=\{0,1\}$, hence $L\left(\mathbb{R}^{\emptyset}\right)$-structures are classical two-valued structures.

In order to connect the results in this section we introduce the notion of isomorphism of structures in the same predicate language τ. The novelty is that a structure has two distinct sorts (its universe and the associated BL-chain) so an isomorphism itself should be a two-sorted object. Specifically, we say that an \mathbf{L}-structure \mathbf{M} is isomorphic to an \mathbf{L}^{\prime}-structure \mathbf{M}^{\prime} if there is a BL-chain isomorphism $g: \mathbf{L} \rightarrow \mathbf{L}^{\prime}$ and a bijection $f: M \rightarrow M^{\prime}$ such that $\|f(\varphi)\|_{\mathbf{M}^{\prime}}=g\left(\|\varphi\|_{\mathbf{M}}\right)$ for all $\tau(M)$ sentences φ. That said, the Corollary below follows immediately from our previous results.
Corollary 1.11. Every model of $\Pi \forall$ is identified with a structure that is isomorphic to an $L\left(\mathbb{R}^{J}\right)$-structure for some (possibly empty) linear order $(J,<)$.
Corollary 1.12. A formula φ is provable from $\Pi \forall$ if and only if φ is an $L\left(\mathbb{R}^{J}\right)$-tautology for every linear order $(J,<)$.

2. Closed models and lexicographic sums

Together with Hájek's Completeness Theorem, Corollary 1.11tells us that if we want to semantically determine whether a formula is provable from a theory T extending $\Pi \forall$ it suffices to look at structures whose associated BL-chain arise from lexicographic sums. In this section we analyze the sets of tautologies for each of the lexicographic sums \mathbb{R}^{J}. In order to compare these sets of tautologies we need a suitable notion of embedding between lexicographic sums. Archimedean surjections are very nice, but unfortunately an archimedean surjection between lexicographic sums \mathbb{R}^{J} and \mathbb{R}^{K} exists only when the linear orders $(J,<$ $)$ and $(K,<)$ are isomorphic. Thus, we both weaken our notion of embedding and strengthen our requirements on the class of 'suitable' structures.
Definition 2.1. A BL-chain embedding is a strict, order-preserving homomorphism $f: \mathbf{L} \rightarrow \mathbf{L}^{\prime}$ of the BL-chains \mathbf{L} and \mathbf{L}^{\prime}. Such an embedding respects 0 if, moreover, for every subset $X \subseteq \mathbf{L}$, if $\inf (X)=$ $0_{\mathbf{L}}$ then $\inf (f(X))=0_{\mathbf{L}^{\prime}}$. If \mathbf{M} is an \mathbf{L}-structure and $f: \mathbf{L} \rightarrow \mathbf{L}^{\prime}$ is a BL-chain embedding, then $f(\mathbf{M})$ is the \mathbf{L}^{\prime}-structure \mathbf{M}^{\prime} with universe $M, m_{c}^{\mathbf{M}^{\prime}}=m_{c}^{\mathbf{M}}$, and $r_{P}^{\mathbf{M}^{\prime}}=f\left(r_{P}^{\mathbf{M}}\right)$.

The reader is cautioned that without extra conditions being placed on either the embedding or the structure, it is possible that the image of a safe L-structure under a BL-chain embedding need not be safe.

If $f: G \rightarrow H$ is a strict, order preserving homomorphism of ordered abelian groups, then f extends naturally to a BL-chain embedding (also called f) from $L(G)$ to $L(H)$ by positing that $f(-\infty)=-\infty$. It is easily checked that this induced embedding will respect 0 if and only if the mapping of ordered abelian groups was coinitiality preserving.

Definition 2.2. Fix a BL-chain \mathbf{L} and a predicate language τ.
(1) An L-structure \mathbf{M} is strongly closed if for all $\tau(M)$-formulas $\varphi(x)$ with one free variable, there are $a, b \in M$ such that $\|\varphi(a)\|=\|\exists x \varphi(x)\|$ and $\|\varphi(b)\|=\|\forall x \varphi(x)\|$.
(2) An \mathbf{L}-structure \mathbf{M} is closed if for all $\tau(M)$-formulas $\varphi(x)$ with one free variable, there are $a, b \in M$ such that $\|\varphi(a)\|=$ $\|\exists x \varphi(x)\|$ and either $\|\varphi(b)\|=\|\forall x \varphi(x)\|$ or $\|\forall x \varphi(x)=0\|$.

Note that if \mathbf{M} is strongly closed then it is closed, and if it is closed then it is safe. The following Lemma is proved by an easy induction on the complexity of φ ($c f$. Proposition 1.9).

Lemma 2.3. If \mathbf{M} is a closed \mathbf{L}-structure and $f: \mathbf{L} \rightarrow \mathbf{L}^{\prime}$ respects 0, then $\|\varphi\|_{f(\mathbf{M})}=f\left(\|\varphi\|_{\mathbf{M}}\right)$ for all $\tau(M)$-sentences φ. In particular, \mathbf{M} models T if and only if $f(\mathbf{M})$ models T for any theory T.

Similarly, if \mathbf{M} is a strongly closed \mathbf{L}-structure, then the conclusions of Lemma 2.3 apply for any BL-chain embedding. This observation yields a slight strengthening of Corollary 1.11. At the end of this section we will achieve a far stronger result.

Lemma 2.4. If T extends $\Pi \forall$ and $T \nvdash \sigma$, then there is a nonempty ordering $(J,<)$ and an $L\left(\mathbb{R}^{J}\right)$-structure \mathbf{M} that models T, yet $\|\sigma\|_{\mathbf{M}}<$ 1. In particular, any such \mathbb{R}^{J} is infinite and divisible.

Proof. In light of Corollary 1.11 we need only consider what happens if there is an $L\left(\mathbb{R}^{\emptyset}\right)$-structure \mathbf{M} that models T with $\|\sigma\|_{\mathbf{M}}<1$ (hence equal to 0). Then (trivially) \mathbf{M} is strongly closed. Thus, if $(J,<)$ is arbitrary and $f: L\left(\mathbb{R}^{\emptyset}\right) \rightarrow L\left(\mathbb{R}^{J}\right)$ is any BL-chain embedding (i.e., $f(0)=0$ and $f(1)=1$) then $f(\mathbf{M})$ models T and $\|\sigma\|_{f(\mathbf{M})}<1$.

At first blush it seems like the notion of being strongly closed is more natural than that of being closed, but the example below, which exploits the fact that \rightarrow is discontinuous at $(0,0)$, indicates that one cannot prove Theorem [2.6] for such structures.

Example 2.5. Take σ to be $(\forall x R \rightarrow S) \rightarrow(\exists x(R \rightarrow S))$ where R and S are unary predicate symbols. Then there are closed structures \mathbf{M} in which $\|\sigma\|_{\mathbf{M}}=1$, yet $\|\sigma\|_{\mathbf{M}}=1$ for every strongly closed structure \mathbf{M}.

Theorem 2.6. Let T be any theory extending $\Pi \forall$ and let σ be any sentence. If $T \nvdash \sigma$ then there is a closed model \mathbf{M} of T such that $\|\sigma\|_{\mathbf{M}}<1$. Furthermore, if the language is countable then \mathbf{M} can be chosen to be countable as well.

Before proving Theorem [2.6] we state and prove two proof-theoretic lemmas about the axiom system $\Pi \forall$. In keeping with the spirit of the paper, our proofs of these facts will be model theoretic in nature. However, in [M] the second author proves these lemmas directly from the axiom system.

Lemma 2.7. Suppose that T is a theory extending $\Pi \forall, \sigma$ is a sentence, c is a constant symbol that does not appear in either T or σ, and $T \cup$ $\{\exists x \varphi(x) \rightarrow \varphi(c)\} \vdash \sigma$. Then $T \vdash \sigma$.

Proof. Let τ denote the language of $T \cup\{\sigma\}$ and let $\tau_{c}=\tau \cup\{c\}$. Let \mathbf{M} be an $L\left(\mathbb{R}^{J}\right)$-structure in the language of τ that models T in which $J \neq \emptyset$. In particular, \mathbb{R}^{J} is infinite and divisible as an abelian group.

Because of Lemma [2.4, in order to show that $T \vdash \sigma$ it suffices to show that $\|\sigma\|_{\mathrm{M}}=1$. Since $L\left(\mathbb{R}^{J}\right)$ is infinite and divisible, it suffices to prove that $\|\sigma\|_{\mathbf{M}} \geq \epsilon$ for every $\left.\epsilon \in L\left(\mathbb{R}^{J}\right)\right), \epsilon<1$.

For each $a \in M$, let \mathbf{M}_{a} denote the expansion of \mathbf{M} to a structure in the language τ_{c} formed by setting $m_{c}^{\mathbf{M}_{a}}=a$. As notation, let $\theta(y)$ abbreviate $\exists x \varphi(x) \rightarrow \varphi(y)$. Since $T \cup \theta(c) \vdash \sigma$, it follows from the Deduction theorem that we can fix a positive integer k such that $T \vdash$ $\theta(c)^{k} \rightarrow \sigma$. Since \mathbf{M} is a model of T, each \mathbf{M}_{a} is a model of T, hence $\left\|\theta(c)^{k} \rightarrow \sigma\right\|_{\mathbf{M}_{a}}=1$ for all $a \in M$. Reflecting back to M, this implies $\left\|\theta(a)^{k} \rightarrow \sigma\right\|_{\mathbf{M}}$ for all $a \in M$, hence

$$
k\|\theta(a)\|_{\mathbf{M}} \leq\|\sigma\|_{\mathbf{M}} \quad \text { for all } a \in M
$$

Now fix an $\epsilon<1$. From our comments above, it suffices to show that $k\|\theta(a)\|_{\mathbf{M}} \geq \epsilon$ for some $a \in M$.

But $\|\exists x \varphi(x)\|_{\mathbf{M}}=\sup \left\{\|\varphi(a)\|_{\mathbf{M}}: a \in M\right\}$, so there is some $a \in M$ so that $\|\varphi(a)\|_{\mathbf{M}} \geq\|\exists x \varphi(x)\|_{\mathbf{M}}+\epsilon / k$ (this makes sense since \mathbb{R}^{J} is divisible). It follows that $k\|\theta(a)\|_{\mathbf{M}} \geq \epsilon$ and the lemma is proved.

Lemma 2.8. Suppose that T is a theory extending $\Pi \forall$, σ is a sentence, c is a constant symbol that does not appear in either T or σ, and both $T \cup\{\forall x \varphi(x) \rightarrow 0\} \vdash \sigma$ and $T \cup\{\varphi(c) \rightarrow \forall x \varphi(x)\} \vdash \sigma$. Then $T \vdash \sigma$.

Proof. Fix τ, τ_{c} and \mathbf{M} as in the proof of the Lemma 2.7 As before, it suffices to prove that $\|\sigma\|_{\mathbf{M}}=1$. First, if $\|\forall x \varphi(x)\|_{\mathbf{M}}=0$, then \mathbf{M} would be a model of $T \cup\{\forall x \varphi(x) \rightarrow 0\} \vdash \sigma$ and $\|\sigma\|_{\mathbf{M}}=1$ by
our hypothesis. So we assume that $\|\forall x \varphi(x)\|_{\mathbf{M}} \neq 0$. As notation, let $\psi(y)$ abbreviate $\varphi(y) \rightarrow \forall x \varphi(x)$ and, for each $a \in M$, let \mathbf{M}_{a} denote the expansion of \mathbf{M} satisfying $m_{c}^{\mathbf{M}_{a}}=a$. As in the proof of Lemma 2.7 choose k so that $T \vdash \psi(c)^{k} \rightarrow \sigma$. As in that argument, by considering each of the \mathbf{M}_{a} 's and reflecting back to \mathbf{M}, we obtain that

$$
k\|\psi(a)\|_{\mathbf{M}} \leq\|\sigma\|_{\mathbf{M}} \quad \text { for all } a \in M
$$

Now fix an $\epsilon<1$. $k\|\theta(a)\|_{\mathbf{M}} \geq \epsilon$ for some $a \in M$.
Since $\|\forall x \varphi(x)\|_{\mathbf{M}}=\inf \{\|\varphi(a)\|: a \in M\}$ and $\|\forall x \varphi(x)\|_{\mathbf{M}} \neq 0$, there is some $a \in M$ so that $\|\forall x \varphi(x)\|_{\mathbf{M}} \geq\|\varphi(a)\|+\epsilon / k$ (again \mathbb{R}^{J} is divisible). As before, this implies that $k\|\psi(a)\|_{\mathbf{M}} \geq \epsilon$. Since $\|\sigma\|_{\mathbf{M}} \geq$ $\|\psi(a)\|_{\mathbf{M}}$ and $\epsilon<1$ was arbitrary, it follows that $\|\sigma\|_{\mathbf{M}}=1$.

Proof of Theorem [2.6. We follow the proof of Hájek's Completeness Theorem (Theorem 5.2.9 of [H]). Therein, given T and σ in the language τ, he first augments τ by adding one new constant symbol for each formula in the original language. Then, in Lemma 5.2.7 he iteratively constructs an extension T^{\prime} of T in this expanded language that is complete (i.e., for every pair (φ, ψ) of sentences, either $T \vdash(\varphi \rightarrow \psi)$ or $T \vdash(\psi \rightarrow \varphi))$ and Henkin (i.e., for every formula $\varphi(x)$ with one free variable if $T \not \forall \forall x \varphi(x)$ then there is a constant symbol c such that $T \nvdash \varphi(c))$ while still preserving that $T^{\prime} \nvdash \sigma$. In our context, we do precisely the same thing, but by iteratively using Lemmas 2.7 and 2.8 to handle each formula $\varphi(x)$ we additionally require that T^{\prime} satisfy two additional requirements:

- For all $\varphi(x)$ in the expanded language there is a constant symbol c such that $T^{\prime} \vdash \exists x \varphi(x) \rightarrow \varphi(c)$ and
- For all $\varphi(x)$ in the expanded language either $T^{\prime} \vdash \forall x \varphi(x) \rightarrow \overline{0}$ or there is a constant symbol c such that $T^{\prime} \vdash \varphi(c) \rightarrow \forall x \varphi(x)$.

Then, just as in Hájek, one can canonically construct a structure M whose universe consists of the constant symbols of the expanded language. In his context \mathbf{M} was safe, \mathbf{M} model of T^{\prime} (hence the reduct to the original language is a model of T) and $\|\sigma\|_{\mathbf{M}}<1$. It is easy to see that with the addition of the two extra properties noted above, \mathbf{M} is closed.

We close this section by indicating a general construction and then an application of it which asserts the existence of a 'universal' BL-chain in the context of predicate product logic.

Fix a language τ. Given any BL-chain \mathbf{L} and any \mathbf{L}-structure $\mathbf{M}=$ $\left(M, m_{c}, r_{P}\right)$, we form a first-order, two-valued structure that encodes
all of this data. Specifically, let

$$
\mathfrak{M}=\left(M, L,+, \leq, 0,1, m_{c}, r_{P}\right)
$$

be the two-sorted structure in which $\{+, \leq, 0,1\}$ refer to the BL-chain, each m_{c} points to an element in the M-sort, and $r_{P}: M^{n} \rightarrow L$ is the map described by \mathbf{M} for each n-ary $P \in \tau$.

Many of the notions discussed in this paper are first-order in this language. If $\mathfrak{M}^{\prime}=\left(M^{\prime}, L^{\prime}, \ldots\right)$ is elementarily equivalent to the structure \mathfrak{M} defined above, then $\mathbf{L}^{\prime}=\left(L^{\prime},+, \leq, 0,1\right)$ is a BL-chain and \mathfrak{M}^{\prime} describes a \mathbf{L}^{\prime}-structure \mathbf{M}^{\prime} with universe M^{\prime}. One can check that \mathbf{M} is safe (resp. closed) if and only if \mathbf{M}^{\prime} is safe (closed). Using the algebraic characterization of such semigroups in Proposition 1.5 the BL-chain \mathbf{L} is equal to $L(G)$ for some ordered abelian group if and only if $\mathbf{L}^{\prime}=L\left(G^{\prime}\right)$ for some group G^{\prime}. Furthermore, if \mathfrak{M} is an elementary substructure of \mathfrak{M}^{\prime} (in the usual first-order sense) one can inductively argue that $\|\varphi\|_{\mathbf{M}}=\|\varphi\|_{\mathbf{M}^{\prime}}$ for all $\tau(M)$-sentences φ.

Theorem 2.9. If τ is countable, $T \supseteq \Pi \forall$ and $T \nvdash \sigma$, then there is a countable, closed $L\left(\mathbb{R}^{\mathbb{Q}}\right)$-structure \mathbf{M} that models T but does not model σ. In particular, a sentence σ is an $L\left(\mathbb{R}^{\mathbb{Q}}\right)$-tautology if and only if σ is provable from $\Pi \forall$.

Proof. Fix τ, T, and σ as in the hypotheses. By Lemma 2.4 there is a nonempty $(J,<)$ and a closed $L\left(\mathbb{R}^{J}\right)$-structure \mathbf{M} that models T, but $\|\sigma\|_{\mathbf{M}}<1$. Form the first-order structure $\mathfrak{M}=\left(M, L\left(\mathbb{R}^{J}\right), \ldots\right)$ described above. Let \mathfrak{M}_{0} be any countable elementary substructure of \mathfrak{M}. Note that by elementarity the BL-chain associated to \mathfrak{M}_{0} is equal to $L(G)$ for some infinite ordered abelian group G.

We now form an increasing elementary chain of countable (firstorder) structures $\mathfrak{M}_{0} \preceq \mathfrak{M}_{1} \preceq \ldots$ as follows: Given \mathfrak{M}_{k} consider the type $p(x)$ stating that x is in the L-sort, $x>0$, but for any element c in the L-sort of $\mathfrak{M}_{k}, x<n c$ for all positive integers $n . p$ is clearly consistent since the L-sort of \mathfrak{M}_{k} has the form $L\left(G_{k}\right)$ for some infinite ordered abelian group G_{k}. So choose \mathfrak{M}_{k+1} to be any countable elementary extension of \mathfrak{M}_{k} that realizes p.

Let $\mathfrak{M}^{*}=\left(M^{*}, L^{*}, \ldots\right)$ be the union of the chain, let $\mathbf{L}^{*}=\left(L^{*},+, \leq\right.$ $, 0,1$), and let \mathbf{M}^{*} be the \mathbf{L}^{*}-structure coded by \mathfrak{M}^{*}. Since $\mathfrak{M}_{0} \preceq \mathfrak{M}^{*}$, \mathbf{M}^{*} is a closed model of T with $\|\sigma\|_{\mathbf{M}^{*}}<1$. Also, $\mathbf{L}^{*}=L\left(G^{*}\right)$ for some ordered abelian group G^{*}. As well, our construction guarantees that there is no smallest archimedean class of the negative elements of G^{*}. By Theorem 1.10 we can choose $(J,<)$ and an archimedean surjection $f: G^{*} \rightarrow \mathbb{R}^{J}$. It follows from Proposition 1.9 that $f\left(\mathbf{M}^{*}\right)$ is closed, is a model of T, and $\|\sigma\|_{f\left(\mathbf{M}^{*}\right)}<1$. Since G^{*} is countable,
J is countable. Furthermore, J has no smallest element. Thus, there is an order-preserving coinitial map $g: J \rightarrow \mathbb{Q}$. This map induces a BL-chain embedding $g^{\prime}: L\left(\mathbb{R}^{J}\right) \rightarrow L\left(\mathbb{R}^{\mathbb{Q}}\right)$. Since $f\left(\mathbf{M}^{*}\right)$ is a closed $L\left(\mathbb{R}^{J}\right)$-structure, it follows from our construction and Lemma 2.3 that $g^{\prime}\left(f\left(\mathbf{M}^{*}\right)\right)$ is a closed $L\left(\mathbb{R}^{\mathbb{Q}}\right)$-structure that models T with $\|\sigma\|<1$.

3. Initially dense linear orderings

In this section we obtain a dichotomy among the sets of $L\left(\mathbb{R}^{J}\right)$ tautologies that is related to the order type of $(J,<)$.

Definition 3.1. A linear ordering $(J,<)$ is initially dense if there is a coinitiality preserving embedding $f:(\mathbb{Q},<) \rightarrow(J,<)$.

It is readily checked that if $(J,<)$ is countable, then J is not initially dense if and only if there is some $a \in J$ such that $\{b \in J: b \leq a\}$ is scattered. The following theorem indicate that the BL-chain $L\left(\mathbb{R}^{J}\right)$ is universal in a strong sense whenever J is initially dense.

Theorem 3.2. Suppose that $(J,<)$ is initially dense. If σ is any sentence and $T \supseteq \Pi \forall$ is any theory that has a model that does not model σ, then there is a closed $L\left(\mathbb{R}^{J}\right)$-model of T that does not model σ. In particular, a sentence σ is an $L\left(\mathbb{R}^{J}\right)$-tautology if and only if σ is provable from $\Pi \forall$.

Proof. Fix T and σ as in the hypothesis. By Theorem 2.9 there is a closed $L\left(\mathbb{R}^{\mathbb{Q}}\right)$-structure \mathbf{M} that models T but does not model σ. Fix a coinitiality preserving embedding of $(\mathbb{Q},<)$ into $(J,<)$. This embedding naturally induces a coinitiality preserving ordered group homomorphism $f: \mathbb{R}^{\mathbb{Q}} \rightarrow \mathbb{R}^{J}$ of lexicographic sums, which in turn yields a BL-chain embedding $f: L\left(\mathbb{R}^{\mathbb{Q}}\right) \rightarrow L\left(\mathbb{R}^{J}\right)$ that respects 0 . Since \mathbf{M} is closed, Lemma 2.3 implies that $f(\mathbf{M})$ is the desired structure.

By contrast, Montagna (M0] proves that the set of tautologies of $L\left(\mathbb{R}^{1}\right)$ is not arithmetical. Here we extend his method to show that the set of $L\left(\mathbb{R}^{J}\right)$-tautologies are not arithmetical whenever J is countable but not initially dense. We begin our analysis with a construction that appears in MO.

Let τ be a finite, relational vocabulary (for simplicity we do not allow τ to have any constant symbols in this discussion) containing a distinguished binary relation E. For any τ-formula φ, let φ° denote the τ-formula in which every relation symbol $R \in \tau$ is replaced by $\neg \neg R$. Note that if \mathbf{M} is any model of $\Pi \forall$ then $\left\|R^{\circ}\left(a_{1}, \ldots, a_{n}\right)\right\|^{\mathbf{M}} \in\{0,1\}$ for any $a_{1}, \ldots a_{n}$ from M and $\left\|R^{\circ}\left(a_{1}, \ldots, a_{n}\right)\right\|_{\mathrm{M}}=1$ if and only if $\left\|R\left(a_{1}, \ldots, a_{n}\right)\right\|_{\mathbf{M}}>0$. It follows by induction on the complexity
of φ that $\|\varphi(\bar{a})\|_{\mathbf{M}} \in\{0,1\}$ for any τ-formula φ and any tuple \bar{a} from M. Moreover, the interpretation of quantifiers is 'standard' i.e., $\left\|\forall \varphi^{\circ}(x, \bar{a})\right\|_{\mathrm{M}}=1$ if and only if $\left\|\varphi^{\circ}(b, \bar{a})\right\|_{\mathbf{M}}=1$ for all $b \in M$.

Let $Q u o t(\tau)$ denote the conjunction of (finitely many) axioms asserting that E° is an equivalence relation and that
$\forall x_{1}, \ldots, x_{n} \forall y_{1} \ldots, y_{n}\left(\bigwedge_{i} E^{\circ}\left(x_{1}, y_{i}\right) \wedge R^{\circ}\left(x_{1}, \ldots, x_{n}\right) \rightarrow R^{\circ}\left(y_{1}, \ldots, y_{n}\right)\right)$
for each relation symbol $R \in \tau$. Note that $\|\sigma\|_{\mathbf{M}} \in\{0,1\}$ for each $\sigma \in \operatorname{Quot}(\tau)$ and any model \mathbf{M} of $\Pi \forall$. We call a model \mathbf{M} of $\Pi \forall \tau$ quotientable if $\|\sigma\|_{\mathrm{M}}=1$ for all $\sigma \in \operatorname{Quot}(\tau)$. As the name suggests, it is easily checked that if \mathbf{M} is τ-quotientable, then E° is an equivalence relation on M. As notation, for each $a \in M$, let $[a]=\{b \in M$: $\left.\left\|E^{\circ}(a, b)\right\|_{\mathbf{M}}=1\right\}$ and let $M^{\circ}=\{[a]: a \in M\}$. Furthermore, we can define an $L(\{0,1\})$-structure \mathbf{M}° with universe M° by positing that $R^{\mathbf{M}^{\circ}}\left(\left[a_{1}\right], \ldots,\left[a_{n}\right]\right)$ holds if and only if $\left\|R^{\circ}\left(a_{1}, \ldots, a_{n}\right)\right\|_{\mathbf{M}}=1$. (The axioms of $\operatorname{Quot}(\tau)$ guarantee that this is well-defined.) It follows by induction on the complexity of φ that

$$
\mathbf{M}^{\circ} \models \varphi\left(\left[a_{1}\right], \ldots,\left[a_{n}\right]\right) \quad \text { if and only if } \quad\left\|\varphi^{\circ}\left(a_{1} \ldots, a_{n}\right)\right\|_{\mathbf{M}}=1
$$

for any choice of representatives for $\left[a_{1}\right], \ldots,\left[a_{n}\right]$.
Let $\tau_{a}=\{E, L, S, Z, A, P\}$ denote the (relational) language of arithmetic. The relations E, L, S are binary and their intended interpretations are equality, strict less than, and the graph of the successor function. Z is unary and is intended to denote the class of zero elements, while A and P are ternary and are intended to represent the graphs of addition and multiplication. Let \mathfrak{N} denote the standard $\{0,1\}$-model of arithmetic in the vocabulary τ_{a}, i.e., the universe of \mathfrak{N} is ω and each of the relations are given their intended interpretations.

Next, let Q^{*} be the finite set of τ_{a}-sentences $\operatorname{Quot}\left(\tau_{a}\right)$, together with modified versions of each axiom of Robinson's Q. The modifications are two-fold. First, they need to be written in our relational language τ_{a}. Second, we replace each relation symbol R by R°. So, for example, the axiom $\forall x(x<S(x))$ becomes $\forall x \forall y\left(S^{\circ}(x, y) \rightarrow L^{\circ}(x, y)\right)$.

It is easily checked that if \mathbf{M} is any model of Q^{*} then the two-valued structure \mathbf{M}° (which is well-defined since \mathbf{M} is quotientable) is a model of Robinson's Q. Note that Robinson's Q is strong enough to determine the 'standard part' of any two-valued model of Q. In particular, if $\mathbf{M}^{\circ} \models Q$ is 'standard', i.e., every class is an iterated successor of the zero class, then \mathbf{M}° is τ_{a}-isomorphic to \mathfrak{N}.

Let $\tau_{U}=\tau_{a} \cup\{U\}$, where U is a unary predicate. We will be interested in structures \mathbf{M} in the vocabulary τ_{U} and their reducts to τ_{a}.

Definition 3.3. A structure \mathbf{M} modelling $\Pi \forall$ in the vocabulary τ_{U} has a standard arithmetical part if $\|\sigma\|_{\mathbf{M}}=1$ for all $\sigma \in Q^{*}$ and the associated two-valued structure \mathbf{M}° is τ_{a}-isomorphic to \mathfrak{N}.

Let Ψ denote τ_{U}-sentence that is the conjunction of Q^{*} with the following five sentences:

- $\psi_{1}:=\forall x \neg \neg U(x)$;
- $\psi_{2}:=\neg \forall x U(x)$;
- $\psi_{3}:=\forall x \forall y\left(E^{\circ}(x, y) \wedge U(x) \rightarrow U(y)\right)$;
- $\psi_{4}:=\forall x \forall y\left(L^{\circ}(x, y) \wedge U(x) \rightarrow U(y)\right)$;
- $\psi_{5}:=\forall x \forall y\left(S^{\circ}(x, y) \wedge U(y) \rightarrow(U(x) \wedge U(x) \wedge U(x))\right)$.

Lemma 3.4. If $(J,<)$ is countable then there is an $L\left(\mathbb{R}^{J}\right)$-model of Ψ.
Proof. Fix any countable J. Since \mathbb{R}^{J} has countable coinitiality, we can choose elements $\left\langle b_{n}: n \in \omega\right\rangle$ from \mathbb{R}^{J} such that $\left\{b_{n}: n \in \omega\right\}$ are coinitial and such that $b_{n+1}<3 b_{n}$ for each $n \in \omega$. Let \mathbf{M} be the structure in the vocabulary τ_{U} with universe ω in which each of the relations in L_{a} is given its 'standard' interpretation and $\|U(n)\|_{\mathbf{M}}=b_{n}$ for each $n \in \omega$.

Proposition 3.5. Suppose that $(J,<)$ is countable but not initially dense and \mathbf{M} is any $L_{U}\left(\mathbb{R}^{J}\right)$-model of $\Pi \forall$ such that $\|\Psi\|_{\mathbf{M}}>0$. Then \mathbf{M} has a standard arithmetical part.

Proof. Fix such a $(J,<)$ and M. To ease notation, we write $\|\cdot\|$ in place of $\|\cdot\|_{M}$ throughout the proof of this lemma. Let $\|\Psi\|=\gamma$. Since $\gamma \neq 0, \gamma \in N\left(\mathbb{R}^{J}\right)$. Since $\|\sigma\| \in\{0,1\}$ for each $\sigma \in Q^{*}$, it follows that $\|\sigma\|=1$ for each $\sigma \in Q^{*}$. Thus, the reduct of \mathbf{M} is τ_{a}-quotientable. As well, since $\left\|\psi_{1}\right\|>0\|U(a)\| \neq 0$, hence $\|U(a)\| \in N\left(\mathbb{R}^{J}\right)$ for all $a \in M$. Since $\left\|\psi_{2}\right\| \neq 0,\{\|U(a)\|: a \in M\}$ is coinitial in $N\left(\mathbb{R}^{J}\right)$. Since $\left\|\psi_{i}\right\| \geq \gamma$ for $i \in\{3,4,5\},\|U(b)\| \leq\|U(a)\|-\gamma$ whenever either $E^{\circ}(a, b)$ or $L^{\circ}(a, b)$ hold, and

$$
\begin{equation*}
\|U(b)\| \leq 3\|U(a)\|-\gamma \tag{5}
\end{equation*}
$$

whenever $S^{\circ}(a, b)$ holds. (Recall that γ is a negative element of \mathbb{R}^{J}.) Fix an element $c \in M$ such that $\|U(c)\| \leq 2 \gamma$. It follows from (5) that

$$
\begin{equation*}
\|U(b)\| \leq 2\|U(a)\| \tag{6}
\end{equation*}
$$

whenever $L^{\circ}(c, a)$ and $S^{\circ}(a, b)$ hold.

Now assume by way of contradiction that $\mathbf{M}^{\circ} \not \neq \mathfrak{N}$. Thus $\mathbf{M}^{\circ} \models Q$, but has nonstandard elements. By iterating (6),

$$
\begin{equation*}
\|U(b)\| \ll\|U(a)\| \tag{7}
\end{equation*}
$$

whenever $L^{\circ}(c, a)$ and $L^{\circ}(a, b)$ hold, and $[b]-[a]$ is nonstandard. That is, $\|U(b)\|$ is in a strictly smaller archimedean class than $\|U(a)\|$. This fact, together with the fact that $\{\|U(a)\|: a \in M\}$ is coinitial in \mathbb{R}^{J} imply that \mathbb{R}^{J} has no smallest archimedean class, i.e., J has no least element.

Fix $c^{*} \in M$ such that $L^{\circ}\left(c, c^{*}\right)$ and $\left\|U\left(c^{*}\right)\right\| \ll \gamma$. Since $\beta+\gamma \sim \beta$ whenever $\beta \ll \gamma,\left\|\psi_{3}\right\| \geq \gamma$ implies $\|U(a)\| \sim\left\|U\left(a^{\prime}\right)\right\|$ whenever $L^{\circ}\left(c^{*}, a\right), L^{\circ}\left(c^{*}, a^{\prime}\right)$ and $E^{\circ}\left(a, a^{\prime}\right)$. That is, the archimedean class of $\|U(a)\|$ depends only on $[a]$. As well, suppose that $L^{\circ}\left(c^{*}, a\right), L^{\circ}(a, b)$, and $[b]-[a]$ is a nonstandard element of \mathbf{M}°. Let d be any element in the E°-class of $\left([a]+[b] / 2\right.$ (which exists since $\left.\mathbf{M}^{\circ} \models Q\right)$. Then $[b]-[d]$ and $[d]-[a]$ are nonstandard elements and (7) yields

$$
\begin{equation*}
\|U(b)\| \ll\|U(d)\| \ll\|U(a)\| \tag{8}
\end{equation*}
$$

We will obtain a contradiction by constructing a coinitiality preserving embedding $f: \mathbb{Q} \rightarrow J$. Let $D=\left\{n / 2^{m}: n \in \omega \backslash\{0\}, m \in \omega\right\}$ denote the positive dyadics. We will construct an embedding $g: D \rightarrow M$ such that $L^{\circ}\left(c^{*}, f(d)\right)$ and $\left\|U\left(d^{\prime}\right)\right\| \ll\|U(d)\|$ for all $d<d^{\prime}$ from D and $\{\|U(d)\|: d \in D\}$ is coinitial in \mathbb{R}^{J}. Once we have such a g, then f can be obtained by composing an isomorphism between $(\mathbb{Q},<)$ and $(D,<)$ with g. Since \mathbf{M}° is nonstandard and $(J,<)$ is countable with no minimal element we can find $\left\{a_{n}: n \in \omega\right\}$ from M such that $L^{\circ}\left(c^{*}, a_{0}\right), L^{\circ}\left(a_{n}, a_{n+1}\right), \| U\left(a_{n+1}\|\ll\| U\left(a_{n}\right) \|\right.$ for all n and $\left\{\left\|U\left(a_{n}\right)\right\|: n \in \omega\right\}$ is coinitial in \mathbb{R}^{J}. We begin our construction of g by letting $g(n)=a_{n}$. Now suppose $\left\{g\left(n / 2_{l}\right): n \in \omega, l \leq m\right\}$ have been defined. Fix an odd $n \in \omega$, say $n=2 k-1$. Let d_{k} be any element of the E°-class of $\left(\left[g\left(k / 2^{m}\right)\right]+\left[g\left((k+1) / 2^{m}\right)\right]\right) / 2$. It follows from (8) that $\left\|U\left(g\left((k+1) / 2^{m}\right)\right)\right\| \ll\left\|U\left(d_{k}\right)\right\| \ll\left\|g\left(k / 2^{m}\right)\right\|$, so let $g\left(n / 2^{m+1}\right)=d_{k}$.

Definition 3.6. For σ any sentence in τ_{a}, let σ^{*} denote the τ_{U}-sentence $\Psi \rightarrow \sigma^{\circ}$.

Theorem 3.7. If $(J,<)$ is countable but not initially dense, then the set of $L\left(\mathbb{R}^{J}\right)$-tautologies in the vocabulary τ_{U} is not arithmetical.

Proof. Fix any countable $(J,<)$ that is not initially dense. We argue that for any τ_{a}-sentence σ, σ^{*} is an $L\left(\mathbb{R}^{J}\right)$-tautology if and only
if $\mathfrak{N} \models \sigma$ (in the usual two-valued sense). The Theorem follows immediately from this by Tarski's Theorem and the recursiveness of the map $\sigma \mapsto \sigma^{*}$.

First, suppose that σ^{*} is an $L\left(\mathbb{R}^{J}\right)$-tautology. By Lemma 3.4 we can choose \mathbf{M} such that $\|\Psi\|_{\mathbf{M}}>0$. By Proposition 3.5 \mathbf{M} is $\tau_{a^{-}}$ quotientable and $\mathbf{M}^{\circ} \cong \mathfrak{N}$. Since σ^{*} is an $L\left(\mathbb{R}^{J}\right)$-tautology and $\|\Psi\|_{\mathbf{M}}>$ $0,\left\|\sigma^{\circ}\right\|_{\mathbf{M}}>0$. But, as noted earlier, this implies $\left\|\sigma^{\circ}\right\|_{\mathbf{M}}=1$, hence $\mathbf{M}^{\circ} \models \sigma^{\circ}$. Since $\neg \neg \varphi$ is equivalent to φ in the class of two-valued structures and $\mathbf{M}^{\circ} \cong \mathfrak{N}, \mathfrak{N} \models \sigma$.

Conversely, suppose $\mathfrak{N} \models \sigma$. Let \mathbf{M} be any $L\left(\mathbb{R}^{J}\right)$-structure with vocabulary τ_{U}. We argue that $\left\|\sigma^{*}\right\|_{\mathbf{M}}=1$. This is immediate if $\|\Psi\|_{\mathbf{M}}=0$, so assume $\|\Psi\|_{\mathbf{M}}>0$. Then, again by Proposition 3.5, \mathbf{M} is τ_{a}-quotientable and $\mathbf{M}^{\circ} \cong \mathfrak{N}$. Thus, $\mathbf{M}^{\circ} \models \sigma^{\circ}$, so $\left\|\sigma^{\circ}\right\|_{\mathbf{M}}=1$, which implies $\left\|\sigma^{*}\right\|_{\mathbf{M}}=1$.

Remark 3.8. Note that the proofs of both Proposition 3.5 and Theorem 3.7 only require that $(J,<)$ have countable coinitiality (and not initially dense).
Corollary 3.9. The following are equivalent for a countable linear or$\operatorname{der}(J,<)$.
(1) For all countable vocabularies τ, a sentence σ is an $L\left(\mathbb{R}^{J}\right)$ tautology if and only if σ is provable from $\Pi \forall$;
(2) For all finite vocabularies τ, the set of $L\left(\mathbb{R}^{J}\right)$-tautologies is arithmetic;
(3) $(J,<)$ is initially dense.

Proof. Immediate by Theorems 3.2 and 3.7
Corollary 3.10. Let σ be any τ_{a}-sentence such that $\mathfrak{N} \models \sigma$, but $Q \nvdash \sigma$ (in the usual proof theory of first-order logic). Let $(J,<)$ be a countable linear order. Then σ^{*} is an $L\left(\mathbb{R}^{J}\right)$-tautology if and only if $(J,<)$ is not initially dense.

References

[C] A. H. Clifford, A note on Hahn's theorem on ordered abelian groups, Proc. $A M S 5(1954)$ 860-863.
[H] P. Hájek, Metamathematics of Fuzzy Logic, Kluwer Academic Publishers, Boston, 1998.
[LS1] M.C. Laskowski, and Y.V. Shashoua, A classification of BL-algebras, Fuzzy Sets and Systems, 131(2002), no. 3, 271-282.
[LS2] M.C. Laskowski, and Y.V. Shashoua, Generalized ordinal sums and the decidability of BL-chains, Algebra Universalis, 52(2004), 137-153.
[M] S. Malekpour, PhD thesis, University of Maryland, 2004.
[Mo] F. Montagna, Three complexity problems in quantified fuzzy logic, Studia Logica 68(2001) 143-152.

Department of Mathematics, University of Maryland, College Park, MD 20742

E-mail address: mcl@math.umd.edu
Department of Mathematics, University of Wisconsin, Madison, MadiSON, WI 53706

E-mail address: malekpou@math.wisc.edu

[^0]: Partially supported by NSF grant DMS-0300080.
 Portions of this material appears in Malekpour's doctoral dissertation.

