PROVABILITY IN PREDICATE PRODUCT LOGIC
MICHAEL C. LASKOWSKI AND SHIRIN MALEKPOUR

ABSTRACT. We sharpen Héjek’s Completeness Theorem for theo-
ries extending predicate product logic, IIV. By relating provability
in this system to embedding properties of ordered abelian groups
we construct a universal BL-chain L in the sense that a sentence
is provable from IIV if and only if it is an L-tautology. As well we
characterize the class of lexicographic sums that have this univer-
sality property.

1. INTRODUCTION

Predicate product logic is a variant of first-order logic wherein sen-
tences are assigned a truth value in the closed interval [0, 1]. In product
logic the truth value of a conjunction ¢&1 of sentences is equal to the
product of the truth values of ¢ and ¢, which is natural in certain
applications (e.g., if ¢ and v describe independent events).

In [H] Petr Hajek laid the groundwork for a proof theory for this
logic. He defined an axiom system IIV, which consists of a (recursive)
list of ‘Basic Logic’ axioms BLYV, together with two additional axiom
schema:

(1) (o A=p) —0 and

(2) X — ((p&x — v&ex) — (p — ¥))

The basic logic axioms are valid in many different predicate fuzzy logic
systems, while the two additional axioms are valid in Product Logic
(as well as conventional two-valued logic) but distinguish it from Godel
logic and Lukasiewicz logic.

As for semantics, Hajek defined a BL-chain as a linearly ordered
residuated lattice satisfying certain properties. Here, however, we fol-
low the treatment set out in [LS1] and [LS2] and define a BL-chain
to be an ordered abelian semigroup (L,+,<,0,1) in which 1 is both
the maximal element of the ordering and the identity element of the
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semigroup, 0 is the minimal element of the semigroup, and whenever
a < b there is a maximal ¢ such that b+ c = a. By defining b = a to be
1 whenever b < a and the maximal ¢ such that b+ ¢ = a otherwise, one
readily sees that this definition is equivalent to the definition proposed
by Héjek in [H].

Following Héjek, fix a predicate language 7. For a given BL-chain L,
an L-structure M is a triple (M, (m.)., (rp)p), where M is a nonempty
set, m. is an element of M for each constant symbol ¢ € 7, and rp :
M"™ — L is a function for every n-ary predicate symbol P € 7. Given
an L-structure M, one recursively defines a function ||p||m to every
7(M)-sentence ¢ by demanding that [|p&ip|[ = |||[+][¢[]; [l — [ =
loll = [¥l]; |Bre(@)]] = sup{ll¢(a)l| : a € M}; and |Vro(z)|] =
inf{||¢(a)|| : « € M}. (In the clauses above, and whenever it is clear,
we suppress the subscript on ||¢]].) In general, there is no reason why
the requisite suprema and infima need exist. Again, following Hajek,
we call an L-structure M safe if in fact all the suprema and infima
needed to compute ||p|| do exist for all (M )-sentences ¢.

A theory T is simply a set of formulas. We say that an L-structure
M is a model of T' if ||p(a)|| = 1 for every ¢ € T and every a from M
of the requisite length. In [H] Héjek proves the following results that
we use freely:

Theorem 1.1 (Deduction Theorem). For any theory T extending BLY
and sentences ¢, 1, T U{p} = if and only if T = ©F — 1 for some
positive integer k (where * denotes the k-fold conjunction p& . .. &yp).

Theorem 1.2 (Completeness Theorem). T F ¢ if and only if ||¢||m =
1 for all BL-chains L and all L-structures M that model T'.

In this paper we obtain several strengthenings of Hajek’s complete-
ness theorem for theories extending IIV, the strongest of which is Theo-
rem 29 As is usual in the study of provability, in order to understand
the logical consequences of the theory I1V, one must include nonstan-
dard models as well. In this context, this means defining a class of
BL-chains that are generated from ordered abelian groups.

Definition 1.3. Let (G, +, <) be any ordered abelian group. Let N(G)
be the subsemigroup with universe {a € G : a < 0}. Let L(G) denote
the BL-chain with universe N(G)U{—o0} in which + and < are inher-
ited from G with the additional stipulations that —oo is the minimal
element of L(G) and that a4 (—o0) = —oo for all a € L(G). The ‘top’
element of L(G) is the zero element of G, and the ‘bottom’ element of
L(G) is —o0.
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It is readily verified that L(G) is a BL-chain for any ordered abelian
group G. (In fact, for any a < b in L(G) there is a unique ¢ such that
b+ ¢ = a.) Furthermore, any L(G)-structure is necessarily a model
of IIV. In order to describe a converse, we need to specify when two
structures can be identified.

Definition 1.4. Fix a predicate language 7. An L-structure M and an
L'-structure M’ are identified if M = M', mM = mM’ for all constant
symbols ¢ € 7, and

[lpllne = [l [
for all 7(M)-formulas .

In particular, the BL-chains L and L’ have a large intersection. The
intuition behind identifying such structures is that ‘extra elements’ of
L or L are irrelevant if they never appear in the computation of the
truth of any 7(M)-sentence. The following proposition is fundamental
to our analysis.

Proposition 1.5. Any L-structure M that is a model of 1IV can be
identified with an L(G)-structure M’ for some ordered abelian group

G.

Proof. Let B = {||¢||: p € 7(M)}. It is readily checked that the
substructure (B, 4+, <,0,1) is itself a BL-chain. We will show that it
is isomorphic to N(G) for some ordered abelian group G. To see this,
first note that by [, min{a,a = 0} = 0 for all a € B. It follows from
this that

(3) a+b#0 forallabe B\{0}

To see this, choose any a,b € B\ {0}. If a + b = 0, then a = 0, which
is the largest ¢ such that a + ¢ = 0 would be at least b, contradicting
the note above.

Because of this, ||[-—x|| = 1 for all 7(M)-sentences x, so long as
l|x|| # 0. Thus, Axiom B2 implies that

(4) [(a+c)=(b+¢)] = (a=0b) foralla,bceB\{0}

As a special case of this, if a,b,c € B\ {0} satisfy a + ¢ < b+ ¢, then
a < b. By symmetry, this implies that B \ {0} is cancellative, i.e., if
a+c=b+c, then a = b.

Let S = B\ {0,1}. Then S is a cancellative, ordered abelian semi-
group. Furthermore, since for any a € S, 1 is the unique element ¢ of
B\ {0} such that a + ¢ = q, it follows that a +b < a for all a,b € S.
But now, Lemma 2.3 of [LS1] (which is similar to Lemma 1.6.9 of [H])
says that (S, +, <) is itself isomorphic to the set of negative elements
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of an ordered abelian group G. It follows that B is isomorphic to N(G)
for this group G.

It follows immediately from Proposition that Hajek’s complete-
ness theorem can be improved: A formula ¢ is provable from IIV if and
only if ¢ is an L(G)-tautology for every ordered abelian group G. With
our eye on improving this result further, we describe a certain class of
ordered abelian groups.

Definition 1.6. For (J, <) any linear order, the lexicographic sum
(R7, +, <) is the ordered abelian group whose elements consist of all
functions f : J — R whose support is well-ordered (i.e., {j € J : f(j) #
0} is a well-ordered subset of J). Addition is defined componentwise
and the ordering on R” is lexicographic.

The Hahn embedding theorem states that every ordered abelian
group naturally embeds into a lexicographic sum. Moreover, Clifford’s

proof of this result (see [C]) shows that the embedding can be chosen
in a very desirable fashion, which we describe below.

Definition 1.7. Let G be any ordered abelian group. For a,b € G, we
say a and b are equivalent, written a ~ b, if a =b =0, or a,b > 0 and
there is a positive integer n such that na > b and nb > a, or a,b < 0 and
there is a positive integer n such that na < b and nb < a (the notation
na is shorthand for adding a to itself n times.) For a,b € N(G) we
write a << b when a < nb for all n € w.

It is easily checked that ~ is an equivalence relation on GG and that
the equivalence classes are convex subsets of (G. The ~-classes are
called the archimedean classes of G. Since G is a group, the behavior
of ~ on the set of negative elements determines the behavior of ~ on
all of G. Our notation is slightly nonstandard, as here the elements a
and —a are in different archimedean classes whenever a # 0. Note that
<< defines a strict linear order on the archimedean classes of N(G).

It is easily checked that if f : G — H is a strict order-preserving
homomorphism of ordered abelian groups, then a ~ b if and only if
f(a) ~ f(b) for all a,b € G. However, if we want our embedding
to preserve suprema and infima, we require an additional property.
Specifically, call a strict, order-preserving homomorphism f : G — H
an archimedean surjection if for every b € H there is a € G such that
f(a) ~ b. Our interest in this notion is given by the following two
results.

Lemma 1.8. If f: G — H is an archimedean surjection, X C G, and
a,b € G satisfy a = sup(X), b = inf(X), then f(a) = sup(f(X)) and
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f(b) = inf(f(X)). Moreover, if X is a cofinal (coinitial) subset of G,
then f(X) is a cofinal (coinitial) subset of H.

Proof. By symmetry, inversion, and translation, it suffices to show
that if X is a set of positive elements from G and inf(X) = Og, then
inf(f(X)) = Og. So fix such a set X C G. Since f is strictly order-
preserving every element of f(X) is positive, so Oy is a lower bound.
Now choose r € H, r > 0g. It suffices to find some a € X such that
f(a) < r. Before demonstrating this, we establish the following claim:

Claim. For every positive b € G there is a € X such that 2a < b.

Proof. Fix b > 0. Choose any ¢ € X such that ¢ < b and let
d = b — c. There are now two cases. First, if 2d < b then take a to be
any element of X less than d. Second, if b < 2d, then let e = b —d and
choose ¢ € X with ¢ < e. Then 2a < 2e = 2b — 2d < b and the claim
is proved.

Since f is an archimedean surjection we can choose b € G such that
f(b) ~ r. Fix a positive integer n so that f(b) < nr. By iterating the
Claim several times we can find an @ € X such that na < b. Hence
nf(a) = f(na) < f(b) < nr,so f(a) < r as required. The ‘moreover’
clause is proved similarly.

Proposition 1.9. If f : G — H 1is an archimedean surjection and M
is any L(QG)-structure, then there is a (unique) L(H )-structure M’ with
the same universe as M that satisfies

Fllell) = M@l
for all T(M)-sentences .

Proof. Take M’ to have universe M and let mM = mM for all
constants ¢ € 7. For every predicate symbol P, let rM = f(rM). One
recursively checks that

Flllellm) = llellme

for all 7(M)-sentences ¢, using the previous Lemma to show that quan-
tifiers are well behaved.

The following theorem can be read off from the main result in [C].

Theorem 1.10 (Clifford’s proof of the Hahn embedding theorem). Let
G be any ordered abelian group and let J consist of the archimedean
classes of the negative elements of G with the induced ordering. Then
there is an archimedean surjection f : G — RY.
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One special case is worth noting. If G = (0) is the trivial group,
then J = () and R” is trivial as well. In this case L(R?) = {0, 1}, hence
L(R?)-structures are classical two-valued structures.

In order to connect the results in this section we introduce the notion
of isomorphism of structures in the same predicate language 7. The
novelty is that a structure has two distinct sorts (its universe and the
associated BL-chain) so an isomorphism itself should be a two-sorted
object. Specifically, we say that an L-structure M is isomorphic to an
L/-structure M’ if there is a BL-chain isomorphism ¢ : L, — L’/ and a
bijection f : M — M’ such that ||f(¢)|lm = g(||¢|lm) for all 7(M)-
sentences . That said, the Corollary below follows immediately from
our previous results.

Corollary 1.11. Every model of 11V is identified with a structure that
is isomorphic to an L(R”)-structure for some (possibly empty) linear
order (J, <).

Corollary 1.12. A formula ¢ is provable from 1IV if and only if v is
an L(R7)-tautology for every linear order (J,<).

2. CLOSED MODELS AND LEXICOGRAPHIC SUMS

Together with Hajek’s Completeness Theorem, Corollary [LTT tells us
that if we want to semantically determine whether a formula is provable
from a theory T extending IIV it suffices to look at structures whose
associated BL-chain arise from lexicographic sums. In this section we
analyze the sets of tautologies for each of the lexicographic sums R”.
In order to compare these sets of tautologies we need a suitable notion
of embedding between lexicographic sums. Archimedean surjections
are very nice, but unfortunately an archimedean surjection between
lexicographic sums R” and R¥ exists only when the linear orders (J, <
) and (K, <) are isomorphic. Thus, we both weaken our notion of
embedding and strengthen our requirements on the class of ‘suitable’
structures.

Definition 2.1. A BL-chain embedding is a strict, order-preserving
homomorphism f : L — L’ of the BL-chains L and L’. Such an
embedding respects 0 if, moreover, for every subset X C L, if inf(X) =
Or, then inf(f(X)) = Op/. If M is an L-structure and f : L — L' is a
BL-chain embedding, then f(M) is the L’-structure M’ with universe

M, mM =mM, and rM = f(rM).

The reader is cautioned that without extra conditions being placed
on either the embedding or the structure, it is possible that the image
of a safe L-structure under a BL-chain embedding need not be safe.
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If f:G — H is a strict, order preserving homomorphism of ordered
abelian groups, then f extends naturally to a BL-chain embedding
(also called f) from L(G) to L(H) by positing that f(—o0) = —oc0. It
is easily checked that this induced embedding will respect 0 if and only
if the mapping of ordered abelian groups was coinitiality preserving.

Definition 2.2. Fix a BL-chain L and a predicate language 7.

(1) An L-structure M is strongly closed if for all 7(M)-formulas
©(x) with one free variable, there are a,b € M such that
()|l = |[Fze(z)|] and [[¢()]| = [[Vze(2)]].

(2) An L-structure M is closed if for all 7(M)-formulas ¢(x) with
one free variable, there are a,b € M such that ||p(a)|] =
|[Bze(z)|| and either [|o(b)|| = [[Vazp(z)|| or [|[Vzp(z) = 0]|.

Note that if M is strongly closed then it is closed, and if it is closed
then it is safe. The following Lemma is proved by an easy induction
on the complexity of ¢ (c¢f. Proposition [L3).

Lemma 2.3. If M is a closed L-structure and f : L — L’ respects 0,
then [|ollrany = f(l|¢llm) for all T(M)-sentences ¢. In particular, M
models T if and only if f(M) models T for any theory T.

Similarly, if M is a strongly closed L-structure, then the conclusions
of Lemma apply for any BL-chain embedding. This observation
yields a slight strengthening of Corollary [LTIl At the end of this
section we will achieve a far stronger result.

Lemma 2.4. If T extends IIV and T t/ o, then there is a nonempty
ordering (J, <) and an L(R”)-structure M that models T, yet ||o||m <
1. In particular, any such RY is infinite and divisible.

Proof. In light of Corollary [LTTl we need only consider what hap-
pens if there is an L(R?)-structure M that models T with ||o||y < 1
(hence equal to 0). Then (trivially) M is strongly closed. Thus, if
(J, <) is arbitrary and f : L(R?) — L(R’) is any BL-chain embedding
(ie., f(0) =0 and f(1) = 1) then f(M) models T" and ||o||f) < 1.

At first blush it seems like the notion of being strongly closed is
more natural than that of being closed, but the example below, which
exploits the fact that — is discontinuous at (0,0), indicates that one
cannot prove Theorem L@ for such structures.

Example 2.5. Take o to be (VxR — S) — (Jz(R — 5)) where R and
S are unary predicate symbols. Then there are closed structures M in
which ||o||m = 1, yet ||o||lm = 1 for every strongly closed structure M.
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Theorem 2.6. Let T be any theory extending 1INV and let o be any
sentence. If T t/ o then there is a closed model M of T such that
llo||ne < 1. Furthermore, if the language is countable then M can be
chosen to be countable as well.

Before proving Theorem we state and prove two proof-theoretic
lemmas about the axiom system IIV. In keeping with the spirit of
the paper, our proofs of these facts will be model theoretic in nature.
However, in [M] the second author proves these lemmas directly from
the axiom system.

Lemma 2.7. Suppose that T is a theory extending 11V, o is a sentence,

c 1s a constant symbol that does not appear in either T or o, and T U
{Fzp(z) = p(c)} Fo. Then Tk o.

Proof. Let 7 denote the language of T'U {c} and let 7. = 7 U {c}.
Let M be an L(R7)-structure in the language of 7 that models T in
which J # (. In particular, R” is infinite and divisible as an abelian
group.

Because of Lemma 4, in order to show that T+ o it suffices to
show that ||o|lp = 1. Since L(RY) is infinite and divisible, it suffices
to prove that ||o||v > € for every € € L(R”)), e < 1.

For each a € M, let M, denote the expansion of M to a structure
in the language 7. formed by setting mMe = a. As notation, let 6(y)
abbreviate dxp(x) — ¢(y). Since T'U 6(c) o, it follows from the
Deduction theorem that we can fix a positive integer k such that 7'
0(c)* — o. Since M is a model of T, each M, is a model of T, hence
10(c)¥ — o||m, = 1 for all a € M. Reflecting back to M, this implies
|0(a)k — o||am for all @ € M, hence

k[10(a)|lnt < ||ollm for all a € M

Now fix an € < 1. From our comments above, it suffices to show that
k[|0(a)||m > € for some a € M.

But ||3ze(z)||m = sup{||¢(a)||m : a € M}, so there is some a € M
so that [|o(a)|lm > [|Fre(z)||m + €/k (this makes sense since R is

divisible). It follows that k||0(a)||nm > € and the lemma is proved.

Lemma 2.8. Suppose that T is a theory extending 11V, o is a sentence,
¢ is a constant symbol that does not appear in either T or o, and both
TU{Vzp(zr) = 0} Fo and T U{p(c) = Vep(x)} Fo. ThenT F o,

Proof. Fix 7, 7. and M as in the proof of the Lemma 1 As
before, it suffices to prove that ||o||m = 1. First, if ||Vze(z)||m = 0,
then M would be a model of T U{Vzp(x) — 0} F o and ||o||pm = 1 by
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our hypothesis. So we assume that ||Vxp(z)||m # 0. As notation, let
¥ (y) abbreviate p(y) — Vaxp(zr) and, for each a € M, let M, denote
the expansion of M satisfying mMe = a. As in the proof of Lemma E7

choose k so that T'F ¢(c)* — o. As in that argument, by considering
each of the M,’s and reflecting back to M, we obtain that

kl[b(a)||ar < |Jollv for all a € M

Now fix an € < 1. k||0(a)||n > € for some a € M.

Since [[Vep(r)|lm = inf{[[¢(a)l] : a € M} and [Vre(z)|lm # 0,
there is some a € M so that |[Vop(x)||m > ||¢(a)|| + €¢/k (again R is
divisible). As before, this implies that k||¢(a)||m > €. Since ||o||m >
[l (a)]|m and € < 1 was arbitrary, it follows that ||o||m = 1.

Proof of Theorem We follow the proof of Hajek’s Complete-
ness Theorem (Theorem 5.2.9 of [H]). Therein, given 7" and ¢ in the
language 7, he first augments 7 by adding one new constant symbol for
each formula in the original language. Then, in Lemma 5.2.7 he itera-
tively constructs an extension 7" of T in this expanded language that
is complete (i.e., for every pair (¢, 1) of sentences, either T'F (¢ — 1)
or T F (¢ — ¢)) and Henkin (i.e., for every formula ¢(z) with one
free variable if T' I/ Vxp(z) then there is a constant symbol ¢ such that
T t o(c)) while still preserving that T" I/ o. In our context, we do
precisely the same thing, but by iteratively using Lemmas 277 and
to handle each formula ¢(x) we additionally require that 7" satisfy two
additional requirements:

e For all p(z) in the expanded language there is a constant symbol
¢ such that 7" F Jzp(x) — ¢(c) and

e For all p(z) in the expanded language either 7" - Vrp(z) — 0
or there is a constant symbol ¢ such that 7" F ¢(c) — Vap(z).

Then, just as in Hajek, one can canonically construct a structure M
whose universe consists of the constant symbols of the expanded lan-
guage. In his context M was safe, M model of 7" (hence the reduct to
the original language is a model of T') and ||o||m < 1. It is easy to see
that with the addition of the two extra properties noted above, M is
closed.

We close this section by indicating a general construction and then
an application of it which asserts the existence of a ‘universal’ BL-chain
in the context of predicate product logic.

Fix a language 7. Given any BL-chain L and any L-structure M =
(M, m.,rp), we form a first-order, two-valued structure that encodes
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all of this data. Specifically, let
M = (M>L>+> Svoa 17mc>TP)

be the two-sorted structure in which {+, <, 0, 1} refer to the BL-chain,
each m, points to an element in the M-sort, and rp : M"™ — L is the
map described by M for each n-ary P € 7.

Many of the notions discussed in this paper are first-order in this
language. If 9V = (M', L/, ...) is elementarily equivalent to the struc-
ture M defined above, then L' = (L', +,<,0,1) is a BL-chain and 9V
describes a L’-structure M’ with universe M’. One can check that
M is safe (resp. closed) if and only if M’ is safe (closed). Using the
algebraic characterization of such semigroups in Proposition [LH, the
BL-chain L is equal to L(G) for some ordered abelian group if and
only if L' = L(G") for some group G’. Furthermore, if 9 is an el-
ementary substructure of 9 (in the usual first-order sense) one can
inductively argue that ||¢||m = ||¢||mr for all 7(M)-sentences .

Theorem 2.9. If 7 is countable, T O IIV and T I/ o, then there is a
countable, closed L(RQ)-structure M that models T but does not model
o. In particular, a sentence o is an L(R%)-tautology if and only if o is
provable from TIV.

Proof. Fix 7, T, and o as in the hypotheses. By Lemma 27 there
is a nonempty (J, <) and a closed L(R”)-structure M that models T,
but ||o||lm < 1. Form the first-order structure 9 = (M, L(R7),...)
described above. Let 9y be any countable elementary substructure of
M. Note that by elementarity the BL-chain associated to 9 is equal
to L(G) for some infinite ordered abelian group G.

We now form an increasing elementary chain of countable (first-
order) structures My < My < ... as follows: Given M consider the
type p(x) stating that z is in the L-sort, x > 0, but for any element
¢ in the L-sort of 9, x < nc for all positive integers n. p is clearly
consistent since the L-sort of M has the form L(Gy) for some infi-
nite ordered abelian group Gy. So choose M to be any countable
elementary extension of 9, that realizes p.

Let 9" = (M*, L*,...) be the union of the chain, let L* = (L*, +, <
,0,1), and let M* be the L*-structure coded by 9t*. Since 9%, < M*,
M* is a closed model of T" with ||o||m+ < 1. Also, L* = L(G*) for
some ordered abelian group G*. As well, our construction guarantees
that there is no smallest archimedean class of the negative elements
of G*. By Theorem [[T0 we can choose (J, <) and an archimedean
surjection f : G* — R7. It follows from Proposition that f(IM*)
is closed, is a model of T, and ||o||fmm=) < 1. Since G* is countable,
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J is countable. Furthermore, J has no smallest element. Thus, there
is an order-preserving coinitial map ¢ : J — Q. This map induces a
BL-chain embedding ¢’ : L(R’) — L(R?). Since f(M*) is a closed
L(RY)-structure, it follows from our construction and Lemma 3 that
g'(f(M*)) is a closed L(R@)-structure that models T with ||o|| < 1.

3. INITIALLY DENSE LINEAR ORDERINGS

In this section we obtain a dichotomy among the sets of L(R’)-
tautologies that is related to the order type of (J, <).

Definition 3.1. A linear ordering (J, <) is initially dense if there is a
coinitiality preserving embedding f : (Q, <) — (J, <).

It is readily checked that if (J, <) is countable, then J is not initially
dense if and only if there is some a € J such that {b € J : b < a} is
scattered. The following theorem indicate that the BL-chain L(R”) is
universal in a strong sense whenever J is initially dense.

Theorem 3.2. Suppose that (J, <) is initially dense. If o is any sen-
tence andT' O 11V is any theory that has a model that does not model o,
then there is a closed L(R”)-model of T that does not model . In par-
ticular, a sentence o is an L(R”)-tautology if and only if o is provable
from 11V.

Proof. Fix T and o as in the hypothesis. By Theorem there
is a closed L(R®)-structure M that models T but does not model o.
Fix a coinitiality preserving embedding of (Q, <) into (J,<). This
embedding naturally induces a coinitiality preserving ordered group
homomorphism f : R® — R’ of lexicographic sums, which in turn
yields a BL-chain embedding f : L(R®) — L(R”) that respects 0. Since
M is closed, Lemma implies that f(M) is the desired structure.

By contrast, Montagna [Ma] proves that the set of tautologies of
L(R') is not arithmetical. Here we extend his method to show that the
set of L(R7)-tautologies are not arithmetical whenever J is countable
but not initially dense. We begin our analysis with a construction that
appears in [Mo.

Let 7 be a finite, relational vocabulary (for simplicity we do not
allow 7 to have any constant symbols in this discussion) containing a
distinguished binary relation E. For any 7-formula ¢, let ©° denote the
7T-formula in which every relation symbol R € 7 is replaced by —=—R.
Note that if M is any model of TIV then ||R°(ay,...,a,)|[|M € {0,1}
for any ay,...a, from M and ||R°(ay,...,a,)||lm = 1 if and only if
||R(ai,...,a,)|lm > 0. It follows by induction on the complexity
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of ¢ that ||p(a)|lm € {0,1} for any 7-formula ¢ and any tuple a
from M. Moreover, the interpretation of quantifiers is ‘standard’ i.e.,
|V (z,a)||m = 1 if and only if ||¢°(b,@)||s = 1 for all b€ M.

Let Quot(7) denote the conjunction of (finitely many) axioms assert-
ing that E° is an equivalence relation and that

Var, an Yy yn(N\ B (e, y) AR (21, x) = ROy, )

for each relation symbol R € 7. Note that ||o||m € {0,1} for each
o € Quot(t) and any model M of II¥. We call a model M of 11V 7-
quotientable if ||o||m = 1 for all o € Quot(7). As the name suggests, it
is easily checked that if M is 7-quotientable, then E° is an equivalence
relation on M. As notation, for each a € M, let [a] = {b € M :
||E°(a,b)||]m = 1} and let M° = {[a] : @ € M}. Furthermore, we can
define an L({0, 1})-structure M° with universe M° by positing that
RM*([ay], ..., [ay]) holds if and only if ||R°(ay,...,a,)||m = 1. (The
axioms of Quot(7) guarantee that this is well-defined.) It follows by
induction on the complexity of ¢ that

M° = ¢([a1], ..., [as]) if and only if ||p°(ay...,a,)|lm =1

for any choice of representatives for [a4], ..., [a,].

Let 7, ={E,L,S, Z, A, P} denote the (relational) language of arith-
metic. The relations F, L, S are binary and their intended interpreta-
tions are equality, strict less than, and the graph of the successor func-
tion. Z is unary and is intended to denote the class of zero elements,
while A and P are ternary and are intended to represent the graphs of
addition and multiplication. Let 9 denote the standard {0, 1}-model
of arithmetic in the vocabulary 7, i.e., the universe of 91 is w and each
of the relations are given their intended interpretations.

Next, let Q* be the finite set of 7,-sentences Quot(7,), together with
modified versions of each axiom of Robinson’s ). The modifications
are two-fold. First, they need to be written in our relational language
Ta. Second, we replace each relation symbol R by R°. So, for example,
the axiom Vx(zx < S(z)) becomes VaVy(S°(z,y) — L°(z,y)).

It is easily checked that if M is any model of Q* then the two-valued
structure M° (which is well-defined since M is quotientable) is a model
of Robinson’s (). Note that Robinson’s @) is strong enough to determine
the ‘standard part’ of any two-valued model of ). In particular, if
M° = @ is ‘standard’, i.e., every class is an iterated successor of the
zero class, then M° is 7,-isomorphic to 1.
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Let 77 = 7, U {U}, where U is a unary predicate. We will be in-
terested in structures M in the vocabulary 7y and their reducts to
Ta.

Definition 3.3. A structure M modelling IIV in the vocabulary 7y
has a standard arithmetical part if ||o||lm = 1 for all o € @Q* and the
associated two-valued structure M° is 7,-isomorphic to .

Let ¥ denote 7y-sentence that is the conjunction of * with the
following five sentences:
o ¢y :=Vo—-U(x);
L ’l/)g = _\\V/I’U( )
o V3= Vavy(E°(z,y) A U(x) — U(y));
o Yy = Vavy(Lo(z,y) ANU(x) — U(y));
o U5 :=VaVy(5°(z,y) AU(y) — (Ulz) ANU(x) AU (x))).

Lemma 3.4. If (J, <) is countable then there is an L(R”)-model of W.

Proof. Fix any countable J. Since R’ has countable coinitiality,
we can choose elements (b, : n € w) from R such that {b, : n € w}
are coinitial and such that b, < 3b, for each n € w. Let M be the
structure in the vocabulary 7y with universe w in which each of the
relations in L, is given its ‘standard’ interpretation and ||U(n)||m = by
for each n € w.

Proposition 3.5. Suppose that (J, <) is countable but not initially
dense and M is any Ly (R7)-model of TIV such that ||¥||p > 0. Then
M has a standard arithmetical part.

Proof. Fixsuch a (J, <) and M. To ease notation, we write ||-|| in
place of || - ||m throughout the proof of this lemma. Let ||¥|| = ~. Since
v #0, v € N(R). Since ||o|| € {0,1} for each o € Q*, it follows that
llo|| = 1 for each o € @*. Thus, the reduct of M is 7,-quotientable.
As well, since |[11]|| > 0 ]|U(a)]| # 0, hence ||U(a)|| € N(R’) for all
a € M. Since ||i)o]| # 0, {||U(a)|| : @ € M} is coinitial in N(R”).
Since ||¢;|| > v for i € {3,4,5}, [|[U(b)|| < ||U(a)|| —y whenever either
E°(a,b) or L°(a,b) hold, and

(5) U@ < 3[[U(a)]] =~

whenever S°(a,b) holds. (Recall that v is a negative element of R”.)
Fix an element ¢ € M such that ||U(c)|| < 2v. It follows from ({) that

(6) HUO)I] < 2[|U(a)]
whenever L°(c,a) and S°(a,b) hold.
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Now assume by way of contradiction that M° 2 91. Thus M° | @,
but has nonstandard elements. By iterating (@),

(7) U@ << [[U(a)]]

whenever L°(c,a) and L°(a,b) hold, and [b] — [a] is nonstandard. That
is, [|U(b)]] is in a strictly smaller archimedean class than ||U(a)||. This
fact, together with the fact that {||U(a)|| : @ € M} is coinitial in R
imply that R’ has no smallest archimedean class, i.e., J has no least
element.

Fix ¢* € M such that L°(c,c*) and ||U(c*)|| << . Since S+ ~ (3
whenever § << v, [[¢5]| > 7 implies [|U(a)|| ~ ||U(a)|| whenever
L°(c*,a), L°(c*,d’) and E°(a,a’). That is, the archimedean class of
||U(a)|| depends only on [a]. As well, suppose that L°(c*,a), L°(a,b),
and [b] — [a] is a nonstandard element of M°. Let d be any element in
the E°-class of ([a] + [b]/2 (which exists since M° |= @). Then [b] — [d]
and [d] — [a] are nonstandard elements and () yields

(8) @) << [[U(@d)]] << [[U(a)]]

We will obtain a contradiction by constructing a coinitiality preserv-
ing embedding f: Q — J. Let D = {n/2™ :n € w\ {0},m € w} de-
note the positive dyadics. We will construct an embedding g : D — M
such that L°(c¢*, f(d)) and ||U(d)|| << ||U(d)|| for all d < d' from
D and {||U(d)|]| : d € D} is coinitial in R7. Once we have such
a g, then f can be obtained by composing an isomorphism between
(Q,<) and (D, <) with ¢g. Since M° is nonstandard and (J, <) is
countable with no minimal element we can find {a, : n € w} from
M such that L°(c*,ag), L°(apn, ani1), ||U(ans1|| << ||U(ay,)|| for all n
and {||U(a,)|| : n € w} is coinitial in R7. We begin our construction
of g by letting g(n) = a,. Now suppose {g(n/2;)) : n € w,l < m}
have been defined. Fix an odd n € w, say n = 2k — 1. Let dj be any
element of the E°-class of ([g(k/2™)] + [g((k + 1)/2™)])/2. It follows
from @) that |[U(g((k + 1)/2™))[| << [|[U(di)[| << [lg(k/2™)[], s0 let
g(n/2m) = dy..

Definition 3.6. For o any sentence in 7,, let 0* denote the Ty -sentence
U — o°.

Theorem 3.7. If (J, <) is countable but not initially dense, then the
set of L(R”)-tautologies in the vocabulary Ty is not arithmetical.

Proof. Fix any countable (J, <) that is not initially dense. We
argue that for any 7,-sentence o, o* is an L(R7)-tautology if and only



PROVABILITY IN PREDICATE PRODUCT LOGIC 15

if M | o (in the usual two-valued sense). The Theorem follows im-
mediately from this by Tarski’s Theorem and the recursiveness of the
map o +— o*.

First, suppose that o* is an L(R”)-tautology. By Lemma B4 we
can choose M such that ||¥||pe > 0. By Proposition M is 7,-
quotientable and M° & M. Since o* is an L(R”)-tautology and ||¥||pr >
0, ||o°||lm > 0. But, as noted earlier, this implies ||o°||m = 1, hence
M° E 0°. Since ——y is equivalent to ¢ in the class of two-valued
structures and M° = 91, N = o.

Conversely, suppose M = o. Let M be any L(R”)-structure with
vocabulary 7. We argue that ||o*||[m = 1. This is immediate if
[|U||m = 0, so assume ||U||pp > 0. Then, again by Proposition B,
M is 7,-quotientable and M° = 9. Thus, M° |= ¢°, so ||c°||m = 1,
which implies ||o*||m = 1.

Remark 3.8. Note that the proofs of both Proposition and The-
orem B only require that (J, <) have countable coinitiality (and not
initially dense).

Corollary 3.9. The following are equivalent for a countable linear or-
der (J,<).
(1) For all countable vocabularies T, a sentence o is an L(R”)-
tautology if and only if o is provable from 11V,
(2) For all finite vocabularies T, the set of L(R”7)-tautologies is
arithmetic;
(3) (J, <) is initially dense.

Proof. Immediate by Theorems B2 and B

Corollary 3.10. Let o be any 7,-sentence such that N |= o, but Q I/ o
(in the usual proof theory of first-order logic). Let (J, <) be a countable
linear order. Then o* is an L(R’)-tautology if and only if (J, <) is not
iniatially dense.
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