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In recent years, functional connectivity in the developmental science received increasing attention. Although it has been reported
that the anatomical connectivity in the preterm brain develops dramatically during the last months of pregnancy, little is known
about how functional and effective connectivity change with maturation.The present study investigated how effective connectivity
in premature infants evolves. To assess it, we use EEG measurements and graph-theory methodologies. We recorded data from
25 preterm babies, who underwent long-EEG monitoring at least twice during their stay in the NICU. The recordings took place
from 27 weeks postmenstrual age (PMA) until 42 weeks PMA. Results showed that the EEG-connectivity, assessed using graph-
theory indices, moved from a small-world network to a random one, since the clustering coefficient increases and the path length
decreases. This shift can be due to the development of the thalamocortical connections and long-range cortical connections. Based
on the network indices, we developed different age-predictionmodels.The best result showed that it is possible to predict the age of
the infant with a root mean-squared error (√MSE) equal to 2.11 weeks.These results are similar to the ones reported in the literature
for age prediction in preterm babies.

1. Introduction

The brain can be seen as a complex network of interacting
regions and hierarchical communications, which are con-
strained by the anatomy, but not limited to it [1].Theneuronal
clusters can actually work together and communicate to
perform a joint task beyond their structural locations. The
clinical literature [2] distinguishes this type of connectivity
from the anatomical one, which is often called structural.
The consequence of this functional infrastructure is the
generation of complex electrophysiological patterns, which
are temporally correlated, by distant cerebral areas [3].
Those spatiotemporal patterns are dynamic; they change
according to the individual development trajectory [4]. In
particular, the last trimester of gestation is a period of brain

development, which includes both anatomical rewiring [5]
and electrophysiological modifications [6]. Different authors
illustrated that the cortical regions undergo differentiation,
folding, and gyrification, while the subcortical areas expe-
rience synaptogenesis and myelination as well as neural
pruning to establish thalamocortical connections or long
distance cortical connections [7, 8]. Based on MRI scans
of preterm babies, Dubois et al. [8] showed that the white
matter volume and the inner cortical surface increase with
gestational age. Furthermore, the same author [8, 9] demon-
strated that fractional anisotropy (FA) of the brain fiber
bundles increases with postbirth maturation, although the
different connection pathways seem to develop in an asyn-
chronous way. According to Batalle et al. [5], FA is a measure
of anatomical directivity that describes the connectivity
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strength among brain regions together with the density
and the percentage of connecting streamlines. Hüppi and
Dubois [9] eventually argued that diffusion tensor imaging
parameters, such as anisotropy, can be structural markers of
network functional organization [5]. A possible implication
is that the temporal correlation among brain regions is
also expected to change since the functional connectivity
is related to the structural topology [1]. However, less is
known about functional connectivity and maturation [10].
Therefore, functional connectivity in developmental science
received increasing attention in recent years [1]. Moreover,
different tools to describe functional connectivity became
available in the last two decades. According to Bullmore and
Sporns [11], brain networks can be represented as a graph,
where the nodes are brain regions and the edges are the
connection strengths. The nodes are defined by the neural
activity, while the edges define the presence of a coupling
between time series and the associated weight represents the
coupling degree. Friston [12] recognizes two main types of
functional connectivity: the actual functional connectivity,
which investigates the temporal correlation among signals,
and the effective connectivity, which measures the causality
of the coupling. While the former does not imply any
directionality, the second one highlights which area or node
causes the activity of other ones. Functional connectivity
methods generate undirected graphs, while the effective
connectivity methods are associated with directed graphs
[11]. In different studies of the preterm infant brain [5, 13],
the neural activity has been measured using fMRI. Although
this neuroimaging technique can investigate the subcortical
structures, it is an expensive method and it is not suitable
to measure effective connectivity due to fMRI low temporal
resolution [14]. In contrast, EEG is a suitable measurement
for effective connectivity and has been employed in recent
papers to study the brain connectivitymaturation [14, 15].The
main drawbacks of those studies are the limited investigated
maturation period or the absence of graph-theory metrics to
investigate the connectivity changes. Studies about the long
term development of effective connectivity based on EEG
have not been performed yet. In particular, there is a lack of
research that investigates the effective connectivity frombirth
until full-term age in premature infants. Furthermore, in the
literature, there are a few works that study the connectivity
maturation in the pretermbrain froma graphpoint of view [5,
13]. The main aim of the present study was a thorough inves-
tigation of the effective connectivity evolution during the
preterm maturation after birth, exploiting different network
metrics (as in [5]). In particular, we measured the effective
connectivity by means of transfer entropy [16] and Granger
causality [17]. On the obtained directed graph, different graph
metrics were computed to track their evolution from 27 to 42
postmenstrual age (PMA) weeks. The network analysis was
complemented by a regression study to predict the age of the
patient and assess the predictive power of the connectivity
analysis (as performed in one of our previous studies [15]).
The paper is organized as follows: in Section 2, we introduce
the simulated and the real dataset alongside themethods used
to estimate effective connectivity. In Section 2, the applied
graph-theory metrics are also discussed. Section 3 reports
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Figure 1: The figure displays the graph associated with model (1).

the results, while Section 4 includes our discussion on the
reported results.

2. Methods

2.1. Data. Different datasets were used. A simulated dataset
was also employed in order to show how connectivity
analysis performs in a controlled case. In particular, the main
objective of the simulationwas to illustrate themeaning of the
most common graph indices used in the literature. A dataset
comprised of EEG signalswas themain part of thematuration
study.

2.1.1. Simulated Data. The first experiment of the study
consisted of a simulation based on a linear Gaussian regres-
sion model (derived from [18]), expressed by the following
equations:

𝑥1,𝑡 = 0.9𝑥1,𝑡−1 + 0.9𝛽𝑥2,𝑡−1 + 0.7𝛽𝑥3,𝑡−1 + 𝜉1,𝑡,
𝑥2,𝑡 = −0.9𝛽𝑥1,𝑡−1 + 0.7𝛽𝑥3,𝑡−1 + 𝜉2,𝑡,
𝑥3,𝑡 = 0.8𝛽𝑥1,𝑡−1 + 0.7𝛽𝑥2,𝑡−1 + 𝜉3,𝑡,
𝑥4,𝑡 = −0.25𝛽𝑥1,𝑡−1 − 0.6𝑥4,𝑡−1 + 𝜉4,𝑡,
𝑥5,𝑡 = 0.25𝛽𝑥1,𝑡−1 + 0.9𝛽𝑥4,𝑡−1 + 𝜉5,𝑡,
𝑥6,𝑡 = 0.9𝛽𝑥4,𝑡−1 + 0.9𝑥5,𝑡−1 − 0.7𝛽𝑥6,𝑡−1 + 𝜉6,𝑡.

(1)

The parameter 𝛽 is a scalar value that varies between 0
and 1 and it influences the strength of the coupling among
the 𝑥𝑖,𝑡 variables. The 𝜉𝑖,𝑡 variables represent white noise with
unit variance.The associated graph is reported in Figure 1. In
order to give the reader a clear insight of the graph-theory
measures, the objective of the simulation was twofold: firstly,
we investigated the influence of the strength of the coupling,
provided by the parameter 𝛽, and show the effect of the
weakening of causality among the variables. Secondly, we
investigated the influence of the noise using different levels
of signal-to-noise ratio (SNR), which were obtained varying
the variance of white noise in (1). In the latter objective,
time series were simulated using the AR model (1) and
the coupling was estimated with the effective connectivity
methods discussed in the following paragraphs. We also
studied the impact of filtering on the graph based metrics by
computing the scores from filtered signals, using a sampling
frequency which was set at 200Hz and a band-pass filter
between 1 and 80Hz was applied on the simulated data. The
reason to investigate the impact of filtering is explained in



Complexity 3

Section 2.3. The band-pass frequencies were obtained from
[19].

2.1.2. EEG Data. The second dataset comprised 25 preterm
infants, with gestational age (GA) ≤ 32 weeks, who were
recruited for a larger EEG study to assess brain development
and automatically detect quiet sleep epochs [20, 21]. Each
patient was enrolled with informed parental consent at the
Neonatal Intensive Care Unit (NICU) of the University
Hospital of Leuven, Belgium. All the included subjects
presented good outcome at 2 years. EEG was recorded with 9
electrodes (𝐹𝑝1, 𝐹𝑝2, 𝐶3, 𝐶4, 𝑇3, 𝑇4,𝑂1,𝑂2, and reference 𝐶𝑧)
according to the 10–20 international system (BRAINRT,OSG
Equipment, Mechelen, Belgium). Throughout connectivity
analysis, the channel 𝐶𝑧 was disregarded. The measurements
were performed twice during their stay in the unit, resulting
in 88 recordings ranging from postmenstrual age of 27 weeks
to 42 weeks. Mean time of recording EEG was 4 h 55min.
Monopolar signals were recorded at a sampling frequency of
250Hz. Two independent EEG readers annotated the data
for the different sleep stages, namely, quiet sleep (QS) and
nonquiet sleep (NQS) epochs. The reason for this binary
manual classification is due to the difficulty to discriminate
active sleep from the awake state in the very young child.

2.2. Connectivity Analysis. The literature about effective con-
nectivity presents differentmethods to assess coupling among
time series, such as directed transfer function (DTF), partial
directed coherence, orGranger causality test (GCT) [22]. With
these approaches, the coupling is frequently defined as G-
causality [23], in the sense that a time series Granger-causes
another one when the past values of a time series significantly
explain the evolution of the other one. Even though Granger
himself pointed out the limited applicability to the bivariate
case, the recently published conditional multivariate Granger
causality (cMVGC) [24] overcomes the problem. According
to [23, 25], these methods are based on the same multivariate
or vector autoregressive (VAR) modeling. However, they
can show different aspects in the causality analysis. While
the DTF estimates the reachability from one channel to
another (defined also as G-influentiability by [23]), both
PDC and cMVGC look into the direct active link between
two channels, which is defined as G-connectivity [23]. Those
two methods investigate the same connectivity model in
two different domains, which are the frequency (PDC) and
time (cMVGC) domain. Since in this paper we are mainly
interested in the time-domain coupling, we opted for the
cMVGC in its autoregressive (AR) and information dynamics
implementations, respectively, described in [18, 24].

2.2.1. Granger Causality. Thefirst method employed to assess
the G-connectivity among EEG channels was Granger causal-
ity (GC) with a VAR modeling framework. In the present
study, we followed the formulation by [24]. A 𝑝th order
multivariate autoregressive model VAR(𝑝) takes the form

U𝑡 =
𝑝

∑
𝑘=1

A𝑘 ⋅ U𝑡−𝑘 + 𝜖 (𝑡) , (2)

where U𝑡 is a collection of process 𝑈𝑖, while A𝑘 and 𝜖(𝑡)
are, respectively, the regression coefficient matrices and the
stochastic process residuals. In the conditional scenario [24],
where we want to know the pairwise influence of process X𝑡
over Y𝑡 considering the presence of the other𝑈𝑖 variables,U𝑡
can be rewritten as

U𝑡 = [[
[

X𝑡
Y𝑡
Z𝑡

]]
]

, (3)

where X𝑡 and Y𝑡 are the two time series of interest, while Z𝑡
represents the third set of variables involved in the analysis.
In our study, X𝑡 and Y𝑡 can be two variables 𝑥𝑖,𝑡 in (1), for
example, 𝑥4,𝑡 and 𝑥5,𝑡, or two EEG channels, for example,
𝐹𝑝1 and 𝐶3. Consequently, Z𝑡 will be a vector time series
which contain the remaining 𝑥𝑖,𝑡 in (1) or the remaining
EEG channels. Based on the VAR(𝑝) model (2) and the split
defined in (3), we may actually explain the future of X𝑡 based
on the following full and reduced regressions:

Y𝑡 =
𝑝

∑
𝑘=1

A𝑦𝑦 ⋅ Y𝑡−𝑘 +
𝑝

∑
𝑘=1

A𝑦𝑥 ⋅ X𝑡−𝑘 +
𝑝

∑
𝑘=1

A𝑦𝑧 ⋅ Z𝑡−𝑘
+ 𝜖𝑦 (𝑡) ,

Y𝑡 =
𝑝

∑
𝑘=1

Ã𝑦𝑦 ⋅ Y𝑡−𝑘 +
𝑝

∑
𝑘=1

Ã𝑦𝑧 ⋅ Z𝑡−𝑘 + 𝜖𝑦 (𝑡) .

(4)

In both cases we consider the conditioning variable Z𝑡,
although only the first model considers explicitly the influ-
ence of X𝑡. The difference is also highlighted by the two
regression coefficient matrices A𝑦𝑦 and Ã𝑦𝑦. In order to
test whether the coefficient matrices A𝑦𝑥 are significantly
different from zero, the Granger causality is defined as the
log-likelihood ratio

F𝑋→𝑌|Z = log
󵄨󵄨󵄨󵄨󵄨Σ̃𝑦𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Σ𝑦𝑦
󵄨󵄨󵄨󵄨󵄨
, (5)

whereΣ𝑦𝑦 and Σ̃𝑦𝑦 are the covariancematrices of the residuals
𝜖𝑦(𝑡) and 𝜖𝑦(𝑡). Based on this multivariate framework, the G-
causality basically quantifies the reduction of the prediction
error if the variable 𝑋 is added to explanatory variables of
𝑌, one of which is the variable Z [24]. Unlike the classical
Granger causality test limited to the bivariate case, we defined
F𝑋→𝑌|Z conditional multivariate Granger causality. A special
case of the conditional scenario is the pairwise conditional
G-causality, where the pairwise effective couplings among all
pair of variables 𝑈𝑖 and 𝑈𝑗 contained in U𝑡 are measured.
Since we take in account the spurious effect due to the
presence of other variables (i.e., the coupling between 𝑈𝑖 and𝑈𝑗 conditioned by the presence of the other variables), the
pairwise conditional causalities are defined as

G𝑖𝑗 (U) = F𝑈𝑖→𝑈𝑗|U[ij] (6)

which is an 𝑀 × 𝑀 matrix, where 𝑀 is the number of
processes, and contains all the pairwise coupling estimations.
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Those quantities may be considered a weighted directed
graph, also known as G-causal graph, and the matrix G𝑖𝑗
as the associated adjacency matrix 𝐴. The G-causality was
computed with the multivariate Granger causality toolbox
[24] implemented in MATLAB (Mathworks, Natick, MA,
USA).

2.2.2. Transfer Entropy. The second method applied to assess
theG-connectivity among EEG channels was transfer entropy.
According to the information dynamics framework by [16],
the expected Kullback-Leibler divergence defines the transfer
entropy (TE) from process 𝑋 to process 𝑌 as follows:

𝑇𝑋→𝑌 = ∑𝑝 (𝑌𝑡,X𝑚𝑡 ,Y𝑛𝑡 ) log 𝑝 (𝑌𝑡 | X𝑚𝑡 ,Y𝑛𝑡 )
𝑝 (𝑌𝑡 | Y𝑛𝑡 ) , (7)

where 𝑝(𝑌𝑡 | X𝑚𝑡 ,Y𝑛𝑡 ) is the conditional probability that 𝑌 at
times 𝑡 is explained by past values of𝑋 and 𝑌 with respective
memory order 𝑚 and 𝑛. 𝑝(𝑌𝑡 | Y𝑛𝑡 ) is the conditional
probability that 𝑌 at times 𝑡 is only explained by past values
of𝑌. 𝑝(𝑌𝑡,X𝑚𝑡 ,Y𝑛𝑡 ) is the joint probability distribution among
the three variables 𝑌𝑡, X𝑚𝑡 , Y𝑛𝑡 . Transfer entropy inherently
implies directionality (i.e., effective connectivity), since it is
asymmetric and contains transition probabilities [16, 26].
In order to estimate the information dynamics coupling,
Montalto et al. [18] pointed out that TE is equivalent to the
difference of two conditional entropies (CE)

𝑇𝑋→𝑌|Z = 𝐻(𝑌𝑡 | Y𝑛𝑡 ,Z𝑝𝑡 ) − 𝐻(𝑌𝑡 | Y𝑛𝑡 ,X𝑚𝑡 ,Z𝑝𝑡 ) . (8)

With respect to (7), the variable Z𝑝𝑡 is here introduced. In
a multivariate analysis, we cannot discriminate the exclusive
relationship between two processes [17, 24]. However, it is
possible to investigate the contribution of time series 𝑋 in
the evolution of time series 𝑌 with respect to all the other
agents involved in the analysis. Consequently, we can actually
define Z𝑝𝑡 as a vector variable that does not contain neither
𝑌 nor 𝑋 as past values and 𝑇𝑋→𝑌|Z illustrates the transfer of
information from𝑋 to𝑌 taking into account other time series
involved. If we assume that 𝑋, 𝑌, Z have a joint Gaussian
distribution, the two CE in (8) can be expressed as linear
regression of past values of the vector variables involved in
the multivariate system as follows:

𝑌𝑡 = 𝐴𝑢𝑉𝑢 + 𝜖 (𝑡) ,
𝑌𝑡 = 𝐴𝑟𝑉𝑟 + 𝜖 (𝑡) . (9)

The first equation explains 𝑌𝑡 with a regression on the
vector 𝑉𝑢 = [𝑉𝑥, 𝑉𝑦, 𝑉𝑧], where 𝑉𝑥, 𝑉𝑦, 𝑉𝑧 approximate
respectively X𝑚𝑡 , Y

𝑛
𝑡 , Z
𝑝
𝑡 with a vector of size 𝑝 as follows:

𝑉𝑥 = [𝑋𝑡−1, 𝑋𝑡−2, . . . , 𝑋𝑡−𝑝] ,
𝑉𝑦 = [𝑌𝑡−1, 𝑌𝑡−2, . . . , 𝑌𝑡−𝑝] ,
𝑉𝑧 = [Z𝑡−1,Z𝑡−2, . . . ,Z𝑡−𝑝] .

(10)

The second equation explains𝑌𝑡 with a regression on the vec-
tor 𝑉𝑟 = [𝑉𝑦, 𝑉𝑧], which only contains 𝑉𝑦, 𝑉𝑧. Equations (9)

are usually referred to as full and restricted regressions. The
reader can easily recognize the same structure of Granger
causality equations (4), which is asymptotically equivalent
to transfer entropy [16]. At the light of the previous results,
𝑇𝑋→𝑌|Z can be rewritten as

𝑇𝑋→𝑌|Z = 1
2 log 𝜎𝑟

𝜎𝑢 , (11)

where 𝜎𝑟 and 𝜎𝑢 are the variances of the white noise residuals
in (9). Except for a scalar factor, (11) is the same expression
of (5). It is important to notice that also TE estimates the
G-connectivity in a conditioned framework. In the present
study, the TE entropy has been computed using the MUTE
toolbox [18] implemented in MATLAB (Mathworks, Natick,
MA, USA).

2.2.3. Graph-Theory Indices. The effective connectivity meth-
ods generate an adjacencymatrix𝐴 that describes a weighted
directed graph [24], called G-causal graph. Unlike a binary
network, those graphs tend to be complete or full without a
specific thresholding and the adjacencymatrix is asymmetric.
Since the maximal number of couplings is𝑀2 −𝑀 (where𝑀
is the number of signals), graph-theorymeasures can be used
to summarize the causal connectivity [27]. Although there
is no minimal theoretical number of graph nodes, 8 EEG
channels can be considered quite limited for a graph analysis.
However, there are studies in the neural processing literature
where graph theory was applied on a limited number of time
series in order to give a concise view of a high-density (or
complete) network [27, 28], in particular if the sources-level
is concerned. Bullmore and Sporns [11] illustrated a list of
measures to describe the graph topology, such as the average
characteristic path length, the clustering coefficient, and the
diameter. The path length represents the minimum number
of edges to reach each other node in the graph starting from
one specific node. The average path length is the mean of
the nodes’ shortest paths and can be considered a measure
of network integration capacity [5]. The latter can be also
investigated by means of the clustering coefficient. In case
of a weighted network, a clustering coefficient is defined as
average intensity of all triangles around each node [29]. A
common overall measure is the average of nodes clustering
coefficients, defined in a similar way to the average path
length. The last index to evaluate the integration capacity
of the graph is the diameter. Let the node eccentricity be
the maximum graph distance from one node to any other
node in the network [30].The diameter is then defined as the
maximum eccentricity in the graph. All those indices have
been computed thanks to the brain connectivity toolbox [31]
implemented in MATLAB (Mathworks, Natick, MA, USA).
In addition, we computed also the causal density as the
sum of all significant couplings of the adjacency matrix, as
defined by [32]. Alongside those networkmetrics, the spectral
indices such as the spectral radius, the spectral gap, and the
algebraic connectivity were considered. The spectral radius
and the spectral indiceswere themaximal absolute eigenvalue
and the difference between the first and the second absolute
eigenvalues of the adjacencymatrix, respectively [33, 34].The
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Table 1: An overview of all graph metrics that have been used in the study.

Overview of graph indices
Path length Mean of the nodes’ shortest paths
Clustering coefficient Mean of the nodes’ triangles intensity around each node
Diameter Maximum graph eccentricity
Causal density Sum of all significant couplings in 𝐴
Spectral radius 𝜆1(𝐴): first eigenvalue of adjacency matrix 𝐴
Spectral gap 𝜆1(𝐴) − 𝜆2(𝐴): the difference between the first two eigenvalues of matrix 𝐴
Algebraic connectivity 𝜆𝑀−1(𝐿 sym): the second smallest eigenvalue of the Laplacian matrix 𝐿 sym

spectral radius, commonly known as “Page Rank,” represents
the dominance degree of a node in the network: the higher
the value, the higher the centrality of the dominant node
in the network. In other words, the dominant node behaves
as the center of a hub [33]. Another way to look into the
change of dominance is the spectral gap: if the difference
between the first and second eigenvalues in the graph matrix
decreases, the node with highest eigenvalue (the spectral
radius) is less dominant with respect to the other nodes in
the network. However, Estrada and Hatano [34] argued that
the spectral gap behaves as a measure of clustering in the
undirected graph: in case of lower values of spectral gap,
the graph can present small clusters in the network. The last
spectral measure is the algebraic connectivity, which is the
second smallest eigenvalue of the Laplacian matrix 𝐿 sym and
it illustrates how easily a graph can be divided into clusters
[30]. In case of a directed graph, the Laplacian matrix can be
obtained as follows:

𝐿dir = 𝐷 − 𝐴,

𝐿 sym = 1
2 (𝐿dir + 𝐿𝑇dir) = 𝐷 − 𝐴 + 𝐴𝑇

2 ,
(12)

where 𝐴 is the adjacency matrix obtained by the effective
connectivity tools described above and𝐷 is the degreematrix
of the associated graph [35]. An overview of all graph indices
is reported in Table 1.

2.3. Algorithmic Pipeline and Statistical Analysis. According
to different authors [19, 36], filtering could add spurious
connectivity in the effective connectivity analysis or make
the estimation of the underlying Granger causality VAR
model unstable. Although a theoretical invariance of causality
estimation has been demonstrated under filtering, the G-
causality works in practice if, and only if, the data are
stationary. The use of filtering as mean to reach stationarity
with filtering has already been investigated by [36]. However,
three main reasons can undermine this approach. The first
reason is the increase of the estimated VAR model order
due to the fitting of filtered process of theoretical infinite
order with a numerical finite order. This could lead to a
poor, and not robust, parameter estimation or even unstable
VAR model, which is the second reason to avoid band-pass
filtering.The last reason is the ill-conditioning of the Toeplitz
matrix of the autocorrelation sequence Γ𝑘 = cov(U𝑡,U𝑡−𝑘),
which is necessary for VAR model estimation. All the related

theoretical details are explained in [36]. The practical down-
sides of the band-pass filtering are the dramatic increase of
the VAR model order compared to the unprocessed data or
the increase of false positive detection of connectivity links
with both the GC [36] and the PDC [19]. In particular, the
amount of false detection increases with narrowing of the
filtering frequency band or the increase of the filter order. In
general there is no distinction between FIR and IIR filtering
for both the authors. However, in both studies [19, 36], notch
filtering and differentiation (or high pass filtering at 1Hz)
were pointed out as methods to keep the VAR model order
low and reduce the false detection, even compared to unpro-
cessed data. Those approaches help to achieve stationarity
or keep the VAR model order low for nearly nonstationary
processes like EEG. In addition, the presence of trends or
seasonality can add unit-roots to the time series (poles on the
unit circle or outside it in the complex plane), which violates
the hypothesis of covariance stationarity. In the presence
of unit-roots, the impulse response of the VAR model
would be oscillatory or diverge to infinity. Consequently,
it is suggested to eliminate trends and seasonality by first-
order differentiation or differentiation at various lags (notch
filtering). Theoretical and numerical details of the different
type of filtering are reported in [24, 36]. Given the stated
literature results, on the one hand, we decided to investigate
the impact of filtering on the simulated data and, on the
other hand, we applied only notch filtering at 50Hz and
100Hz and differentiation on the EEG data in order to reduce
nonstationarities in the time series. However, the EEG can
be affected by muscle artifacts, which can spread out among
the different electrodes and bias the connectivity analysis. To
mitigate this effect, we applied canonical correlation analysis
(CCA) to remove the artifacts caused by the change in the
EMG signals [37]. To investigate the effect of the CCA on the
analysis, we compared the output of the connectivity analysis
in two scenarios: the first one did not consider the usage of
CCA; the second one appliesCCAand reconstructed the EEG
removing the 3 sources with lowest autocorrelation. In the
first case, the authors segmented the EEG in 5 s windows and
computed the effective coupling with both listed methods. In
the second scenario, CCA was applied on 5 s EEG segments.
However, before performing any connectivity analysis, we
recombined the segments in 30 s intervals in order to increase
the rank of the reconstructed EEG matrix. This step was
required since both GC and TE request data that do not
present collinearity (i.e., the time series matrix cannot be
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rank-deficient [24]). The window length was suggested as a
further step to keep time series stationarity [24]. For each
recording, we computed the adjacency connectivity matrix
for EEG segments and we averaged over the QS epochs and
NQS epochs. This averaging step did not consider coupling
values that were not statistically significant. According to
[18, 24], the GC and TE follow an asymptotic 𝐹-distribution,
like𝑅2 statistics.Therefore, an 𝐹-test was implemented to test
the significance of coupling among EEG channels and all the
couplings with𝑝 > 0.05were set to zero. Consequently, 352 =
88∗2∗2 coupling graphs were obtained, where 88 is the total
number of recordings, 2 is the employed causality methods,
2 is the considered number of sleep states. On the average
matrices we computed the network indices described above,
which results in a tensor 88 × 7 × 4, where 7 is the number
of graph features and 4 is the number of combinations
considering the number of connectivity methods and sleep
states involved (TE in QS, TE in NQS, GC in QS, and GC in
NQS). For each feature, we evaluated the maturation trend in
three distinctive age groups (≤31,∈ (31−37),≥37 PMAweeks)
as median (IQR), where IQR is InterQuartile Range. Besides,
we computed the Pearson correlation coefficient between
the variable age and each single feature and its statistical
significance were computed.Those results were meant to give
a general overview of the feature maturation trend for each
connectivity method, for each sleep state, with or without
CCA preprocessing. In addition, we computed an ordinary
least squares (OLS) regression for each single feature in case
of GC during QS and the associated confidence interval at
95%, in order to give a visual representation of any network
index prediction power. In particular, we split randomly the
single graph index dataset 100 times in 70% training set and
30% testing set and we computed the prediction error on
the test set as root mean-squared error, √MSE, as shown by
[38]. Furthermore, each slice of the tensor (a matrix 88 × 7)
was used to predict the patient’s age at the moment of the
recording with a multivariate linear regression. Similar to the
single feature approach, we randomly split the dataset 100
times, as in [38] andwe assessed√MSE in the test set. At each
iteration, 𝑅2 index and the 𝐹-test statistics were computed.

3. Results

In the following paragraphs, the results obtained in both the
simulated and the real dataset are discussed. In particular, we
will show how the network indices behave in both examples,
the simulated data and the EEG maturation dataset. The last
part summarizes the predictive power of those graph metrics
to infer the postmenstrual age of the subject.

3.1. Simulation Study. Figures 2(a), 2(b), and 2(c) display
the integration graph indices for the AR model defined in
(1), whose network is depicted in Figure 1. In the original
model (𝛽 = 1), the graph presents two distinct clusters,
which are loosely connected by the edges between node 1
and nodes 4 and 5. This two-hubs structure is reflected by
Figures 2(a) and 2(b). When the intracluster connectivity is
high (𝛽 = 1), the clustering coefficient reaches its highest

level, while the path length is at its lowest level. Those
results are in line with a rich-club or small-world network
[11]. However, when the coefficient 𝛽 starts decreasing, the
clustering coefficient proportionally decreases, while the path
length increases.The spectral radius decreases with vanishing
values of 𝛽, as the clustering coefficient does. Figures 2(d),
2(e), and 2(f) display the ratio between the network indices
estimated from the simulated time series via transfer entropy
and the original measures (in particular, in (d), CCTE/CCorig,
in (e), lengthorig/lengthTE, in (f), 𝜆TE/𝜆orig). Different noise
levels have been used. The results are quite straightforward
for the clustering coefficient and the spectral radius: the
higher the signal-to-noise ratio, the higher the values of two
indices are and the closer they are to the original values
(Figures 2(d) and 2(f)). In the case of the path length, the
absolute value is decreasing with higher SNR. However, the
estimated value becomes similar to the original one for very
low noise variance (Figure 2(e)). Figures 2(d), 2(e), and 2(f)
show also the effect on band-pass filtering on the graph
indices estimation.Themost remarkable results are related to
the path length and the clustering coefficient. The estimated
clustering coefficient tends to underestimate the original one,
while the estimated path length tends to be persistently higher
than the original one. On the contrary, the ratio for the
spectral radius in case of filtering behaves similar to the one
obtained using the raw data.

3.2. EEG Data: Graph Indices. Figure 3 shows graph metrics
for the adjacency matrices obtained using the EEG measure-
ments and Granger causality in QS (GC in QS). Figures 3(a),
3(b), 3(c), and 3(d) show the scatter plots with the fitted
OLS regression model, while Figures 3(e) and 3(f) display
the clustering coefficient and path length dynamics in three
distinct age groups. As already mentioned in Section 2.3,
Figure 3 gives a visual representation of the trends for the
graph features, while Tables 2 and 3 provide a complete
overview for all coupling methods and all sleep states. Each
single feature has a significant trend with age, although the
Pearson correlation coefficient 𝜌 (%) increases when CCA is
used as a preprocessing step. Specifically, the trend for the
clustering coefficient, the spectral radius, and the spectral
gap is negative, while the path length is increasing with age.
This result is persistent in each method and each sleep state.
The connectivity weakening for GC in QS is also reported
in Figure 4, which shows the average connectivity graph for
three distinct age groups. The three panels show how the
coupling among time series decreases by the reduction in
arrows width and the color shift from red to blue. Table 4
reports the results for age prediction with a multivariate
linear model, combining all the network features. All the
models can predict the age of the infant recording with a
√MSE between 2 and 3 weeks and the CCA models always
outperform the model without CCA as a preprocessing step.
Furthermore, the explained variance (𝑅2) is higher with the
models that include CCA. It is also interesting to notice
that best prediction results are obtained with GC during
QS (√MSEsimple = 2.52 PMA weeks, √MSECCA = 2.10
PMA weeks). Table 4 does not report the results for one
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Figure 2: The figure shows the results for the simulation dataset. (a, b, c) show how the graph indices behave for different level of coupling
in model (1). (d, e, f) investigate how the transfer entropy can estimate the network indices for different level of SNR. In particular, the figure
compares the two cases when the data is filtered and when the raw data is used.

single model estimation, but the median and InterQuartile
Range (IQR) of the evaluation parameters for 100 bootstrap
iterations. In each single iteration, the model proved to be
significant as reported by the 𝑝 value column in Table 4 (𝑝 <
0.01).

4. Discussion

In the present study, we quantified the effective brain
connectivity in preterm infants to track their maturation.
Although there are some studies that investigate connectivity
in the neonates [4, 5] and its change in the first days of
life (short maturation period) [14], this is the first study
to track maturity using effective EEG-based connectivity in
preterm patients on a wide maturation period, from birth to
full-term age. To the best of our knowledge, MRI [8] and
fMRI [10] have been the leading method to track maturity.
However, fMRI is only suitable for functional connectivity,
as discussed above. In this article, we compared two well-
known methods to estimate coupling between processes, like

GC and TE. Based on the obtained connectivity matrices,
we estimated integration and spectral network indices for
directed weighted graphs.Those features were used to predict
the age of the patient during the recording.The same process
was applied on a simulated dataset to investigate how the
network measures behaved in a controlled case.

4.1. Simulated Dataset. According to [11], graphs with high
clustering coefficient and low path length behave like a rich-
club network, while graphs with low clustering coefficient
and high path length denote a random network, where the
number of edges for each node is normally distributed.
Figure 1 portraits two club networks, where the nodes are
connected to each other with a short distance. This leads to
a high clustering coefficient and low path length when the
coupling coefficient is equal to 1. However, when 𝛽 decreases,
the intracluster connectivity weakens and the graph becomes
more similar to a random network. This type of graph is
characterized by low clustering coefficient and high path
length: indeed, the nodes are less connected among each
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Figure 3: The figure shows the results for EEG data. (a, b, c, d) show OLS regression between 4 main graph indices versus the age (PMA in
weeks) for GC in QS.The grey area is the confidence interval at 95%. On the top of the panel, the associated 𝑅2 and√MSE in PMA weeks on
the test set. (e, f) show the trend of the clustering coefficient and the path length in three distinct age groups. The results are reported about
GC in QS.
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Figure 4: The figure shows the average connectivity graph (GC for three different age groups). The strength of the coupling among the
electrodes is decoded by the color (the closer to the red color, the higher the coupling) and by the width of the arrow.The connectivity values
have been normalized between 0 and 1 for the three groups together. The panels clearly show the weakening of the coupling among EEG
channels with maturation. The consequence is the increase of path length and the decrease of the clustering coefficient (Figure 3).

Table 2: The main integration and spectral features in three discrete time points. The table shows the indices for both sleep states (QS =
quiet sleep, NQS = nonquiet sleep) and they were computed on the transfer entropy connectivity graph. The results are reported as median
(IQR), where IQR stands for InterQuartile Range. The symbol 𝜌 stands for the Pearson correlation coefficient, while # represents a significant
correlation with 𝑝 ≤ 0.01. The values 10−3 or 10−2 mean the reported results are multiplied by a factor 10−3 or 10−2.

Network indices: transfer entropy in three age groups
Median (IQR), PMA weeks ≤31 ∈ (31–37) ≥37 𝜌 (%)
Clustering coefficient

QS .025 (.008) .021 (.005) .017 (.002) −53#
NQS .025 (.006) .020 (.006) .018 (.002) −49#

Path length
QS 3.73 (.30) 3.89 (.22) 4.07 (.10) 59#
NQS 3.71 (.20) 3.91 (.25) 4.04 (.14) 54#

Spectral radius
QS .18 (.07) .16 (.05) .12 (.01) −49#
NQS .18 (.05) .15 (.04) .13 (.02) −48#

Spectral gap
QS .15 (.09) .12 (.04) .10 (.02) −51#
NQS .15 (.06) .12 (.04) .11 (.02) −48#

Network indices: transfer entropy, CCA
Median (IQR) ≤31 ∈ (31–37) ≥37 𝜌 (%)
Clustering coefficient

QS (10−3) 9.82 (6.1) 6.21 (3.3) 4.98 (0.9) −57#
NQS (10−3) 9.13 (3.5) 6.29 (2.0) 5.90 (1.0) −49#

Path length
QS 4.70 (.57) 5.11 (.47) 5.32 (.18) 64#
NQS 4.73 (.40) 5.09 (.27) 5.16 (.18) 52#

Spectral radius
QS (10−2) 8.20 (4.7) 4.68 (3.1) 3.63 (.6) −55#
NQS (10−2) 6.94 (2.8) 4.74 (1.6) 4.30 (.7) −48#

Spectral gap
QS (10−2) 5.84 (3.1) 3.93 (2.0) 3.30 (.6) −52#
NQS (10−2) 5.84 (3.1) 3.93 (2.0) 3.30 (.6) −49#
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Table 3: The main integration and spectral features in three discrete time points. The table shows the indices for both sleep states (QS =
quiet sleep, NQS = nonquiet sleep) and they were computed on the Granger causality connectivity graph. The results are reported as median
(IQR), where IQR stands for InterQuartile Range. The symbol 𝜌 stands for the Pearson correlation coefficient, while # represents a significant
correlation with 𝑝 ≤ 0.01. The values 10−3 or 10−2 mean the reported results are multiplied by a factor 10−3 or 10−2.

Network indices: Granger causality
Median (IQR), PMA weeks ≤31 ∈ (31–37) ≥37 𝜌 (%)
Clustering coefficient

QS .024 (.006) .019 (.006) .015 (.002) −56#
NQS .024 (.007) .019 (.005) .016 (.002) −51#

Path length
QS 3.77 (.20) 3.95 (.25) 4.17 (.13) 61#
NQS 3.75 (.33) 3.95 (.27) 4.10 (.14) 56#

Spectral radius
QS .18 (.06) .15 (.04) .10 (.02) −54#
NQS .18 (.05) .14 (.03) .10 (.01) −51#

Spectral gap
QS .14 (.06) .13 (.04) .09 (.02) −58#
NQS .15 (.05) .11 (.03) .11 (.01) −51#

Network indices: Granger causality, CCA
Median (IQR), PMA weeks ≤31 ∈ (31–37) ≥37 𝜌 (%)
Clustering coefficient

QS (10−3) 12.87 (4.8) 9.34 (3.2) 7.39 (1.2) −68#
NQS (10−3) 12.29 (3.4) 9.08 (2.1) 8.51 (1.2) −61#

Path length
QS 4.36 (.37) 4.69 (.33) 4.92 (.16) 73#
NQS 4.41 (.28) 4.71 (.21) 4.77 (.14) 63#

Spectral radius
QS (10−2) 9.52 (3.5) 6.79 (2.6) 5.28 (.8) −68#
NQS (10−2) 8.98 (2.5) 6.50 (1.5) 6.05 (.9) −61#

Spectral gap
QS (10−2) 7.28 (2.4) 5.87 (2.3) 4.91 (1.1) −63#
NQS (10−2) 6.91 (3.0) 6.07 (1.0) 5.35 (1.4) −56#

Table 4: Multivariate regression model performances. The table shows the error on the test set (Error), 𝑅2 and the 𝐹-statistics (F-stat), and
the 𝑝 value obtained with the different connectivity methods in the different sleep states. The results are reported as median (IQR), where
IQR stands for InterQuartile Range over the 100 random splits of the dataset. The labels reported are TE = transfer entropy, GC = Granger
causality, QS = quiet sleep, and NQS = nonquiet sleep.

Multivariate regression performances
Median (IQR) Error (weeks) 𝑅2 F-stat 𝑝 value
Simple filtering

TE, QS 2.54 (0.41) 0.57 (0.07) 11.64 (3.46) 𝑝 < 0.01 ∗ 100
TE, NQS 2.88 (0.39) 0.40 (0.07) 6.23 (1.72) 𝑝 < 0.01 ∗ 100
GC, QS 2.52 (0.37) 0.52 (0.07) 10.01 (2.64) 𝑝 < 0.01 ∗ 100
GC, NQS 2.79 (0.53) 0.44 (0.07) 7.20 (2.09) 𝑝 < 0.01 ∗ 100

CCA
TE, QS 2.23 (0.29) 0.63 (0.06) 12.90 (3.14) 𝑝 < 0.01 ∗ 100
TE, NQS 2.54 (0.51) 0.57 (0.06) 10.36 (2.66) 𝑝 < 0.01 ∗ 100
GC, QS 2.10 (0.38) 0.67 (0.05) 15.96 (3.64) 𝑝 < 0.01 ∗ 100
GC, NQS 2.35 (0.42) 0.63 (0.04) 13.38 (2.61) 𝑝 < 0.01 ∗ 100
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other in a more homogeneous network. This result is also
supported by the direct proportionality between spectral
radius and coupling coefficient. Another interesting point is
related to the filtering. Figure 2 illustrates clearly how the
clustering coefficient and the path length estimation can
be highly affected by the filtering. Those results are in line
with the analysis by [36], which demonstrated that careless
filtering can add spurious connectivity in the time courses. In
our simulation, the effect of filtering weakens the intracluster
connectivity (adding intercluster connectivity).The net effect
is a decrease in clustering coefficient and an increase in path
length. Therefore, we decided only to apply a notch filter and
differentiation as preprocessing steps on the EEG.

4.2. EEG Data. In the literature, a number of studies can be
found to have assessed the brain maturation in children and
adolescents by graph theory [1, 4, 10] and a fewpapers focused
on preterm brain maturation by network metrics [5, 13]. The
first result obtained in our study is the change in effective
connectivity with age. Although Schumacher et al. [14] used a
differentmethod, they also concluded that there is a change in
effective connectivity mainly driven by postnatal maturation.
In addition to that, we have been able to demonstrate the
existence of a relationship between connectivity and PMA.
In this study, we also observed a change in graph parameters
that suggest that the EEG-scalp network moved from a rich-
club network to a more random network. The integration
and spectral indices decreased with age, except for the path
length, which reflects a segregation of nodes due to a higher
graph distance as well as less intense triangle patterns around
the nodes themselves. Hub-networks have high clustering
coefficients since they have central club nodes, which are
surrounded by triangle patterns. On the contrary, a random
network presents nodes, which are connected to any other
node in the network with a weak coupling. The net effect
is a low clustering coefficient and high path length. This
emergence of a normal-distributed network is also confirmed
by the decrease of the spectral gap, spectral radius, and
the algebraic connectivity. The latter two indices emphasize
how easily the graph can be clustered and a negative trend
would suggest the absence of modules or groups in the
graph. On the contrary, a negative trend of the former
index should suggest an increase of modularity, as shown
by [34]. However, since the spectral gap is also inversely
proportional to the path length, its reduction just shows
that the spectral radius is less dominant with respect to the
other eigenvalues [33] and it becomes another measure of
modularity like the other two spectral indices. The results
of the multivariate model further highlight the shift from
a rich-club network at younger age to a more random one
at full-term age. In particular, the lowest √MSE on the test
set is around 2.11 weeks compared to other studies [15, 39].
Finally, it is important to notice that those negative trends for
graph features are consistent for each effective connectivity
method and each sleep state. At first sight, the results we
obtained seem to be in contradiction with maturation trends
that can be found in children or adolescents, where a shift
from random to a rich-club network has been discovered.

However, it should be taken in account that, on one side,
only 9 electrodes on the scalp were used, due to the small
size of the preterm brain and, on the other hand, there
is a fast development of the brain during this monitoring
period with different trajectories for the different cerebral
regions [40]. This composite evolution is mainly driven by
the different disappearance timing of cortical subplate in the
various brain areas [40]. In particular, two main changes
took place. The first one is the faster development of the
thalamocortical connections compared to the corticocortical
ones [5]. The shift from one type of connections to the
other happens only at later age [41]; therefore, the maturation
process might lead to “separation” of the nodes, as reflected
by the results in this study. In simple terms, the EEG-
scalp connections became weaker in favour of a connection
strengthening between the cortical and subcortical areas.
The second important change is the negative correlation
between age and short-range corticocortical connections, as
shown by [5] via fMRI. In [5], the study results showed
that long distance connections develop faster than the short
ones. Furthermore, the development is characterized by a
strengthening of the former connections and weakening
of the short-range couplings [1]. Consequently, the EEG
electrodes/nodes (which measure short-range connectivity)
tend to separate each other, with an increase of the path length
and a reduction of the clustering coefficient. This hypothesis
is also supported by the decrease in fronto-frontal and
occipito-occipital functional coupling measured by fMRI [5].
This segregation can be emphasized by the fact that there
are a few electrodes on infant scalp. However, a study
with high-density EEG on preterm infants [13] found an
increased modularity on the scalp EEG network and a
reduced clustering coefficient in the postcentral network,
while the clustering coefficient increases in the precentral
network. This result could confirm the segregation or the
more local integration of the brain network due to the
pruning of short-range connections, as also shown by [42] in
the comparison between adults and children. It is important
to notice that both models with and without CCA found
the same trends, but source filtering increased the prediction
power of the model. It is possible that the EMG artifacts
disturbed the connectivity analysis and biased the prediction
model in the first considered scenario.

5. Conclusions

In the present study, we investigated effective EEG-based
brain connectivity in premature infants, whose PMA ranged
from 27 to 42 weeks. Results showed that the EEG-graphs
changed with age in terms of topology. In particular, the
clustering coefficient and the spectral radius decreased with
maturation, while the path length increased.This perspective
suggests that the EEG graph shifted from a small-world net-
work to a random network. This apparent nodes’ segregation
can be a consequence of the thalamocortical connections
development and the strengthening of the long-range cortical
connections. The lowest age-prediction error was 2.11 PMA
weeks (obtained with GC in QS), which is in line with
literature results. Application of source filtering methods,
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like CCA, can improve the performance of the connectivity
analysis.
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