
 

 

 

 

 
 

 

 

Citation/Reference Lavanga M., De Wel O., Caicedo A., Jansen K., Dereymaeker A., Naulaers 

G., Van Huffel S (2017), 

Monitoring effective connectivity in the preterm brain: a graph 

approach to study maturation. 

Complexity, Special Issue on New Methods for Analyzing Complex 

Biomedical Systems and Signals, vol. 2017, Oct. 2017, pp. 1-13. 

Archived version Author manuscript: the content is identical to the content of the published 

paper, but without the final typesetting by the publisher 

 

Published version https://www.hindawi.com/journals/complexity/2017/9078541/ 

Journal homepage https://www.hindawi.com/journals/complexity/ 

Author contact mlavanga@esat.kuleuven.be 

+32 16 37 38 28  

Abstract In recent years, functional connectivity in the developmental science 

received increasing attention. Although it has been reported that the 

anatomical connectivity in the preterm brain develops dramatically 

during the last months of pregnancy, little is known about how functional 

and effective connectivity change with maturation. The present study 

investigated how effective connectivity in premature infants evolves. To 

assess it, we use EEG measurements and graph-theory methodologies. We 

recorded data from 25 preterm babies, who underwent long-EEG 

monitoring at least twice during their stay in the NICU. The recordings 

took place from 27 weekspostmenstrual age (PMA) until 42 weeks PMA. 

Results showed that the EEG-connectivity, assessed using graph-theory 

indices, moved from a small-world network to a random one, since the 

clustering coefficient increases and the path length decreases. This shift 
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can be due to the development of the thalamocortical connections and 

long-range cortical connections. Based on the network indices, we 

developed different age-prediction models. The best result showed that it 

is possible to predict the age of the infant with a root mean-squared 

error (√𝑀𝑆𝐸) equal to 2.11 weeks. These results are similar to the ones 

reported in the literature for age prediction in preterm babies. 
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Monitoring effective connectivity in the preterm brain: a graph
approach to study maturation
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Abstract— In recent years, functional connectivity in the
developmental science received increasing attention. Although
it has been reported that the anatomical connectivity in the
preterm brain develops dramatically during the last months
of pregnancy, little is known about how functional and effec-
tive connectivity change with maturation. The present study
investigated how effective connectivity in premature infants
evolves. To assess it we use EEG-measurements and graph-
theory methodologiesWe recorded data from 25 preterm babies,
who underwent long-EEG monitoring at least twice during their
stay in the NICU. The recordings took place from 27 weeks post-
menstrual age (PMA) until 42 weeks PMA. Results showed the
EEG-connectivity, assessed using graph-theory indices, moved
from a small-world network to a random one, since the
clustering coefficient increases and the path length decreases.
This shift can be due to the development of the thalamo-cortical
connections and long-range cortical connections. Based on the
network indices, we developed different age-prediction models.
The best result showed that it is possible to predict the age of
the infant with a root mean-squared error (

√
MSE) equal to

2.11 weeks. These results are similar to the ones reported in
the literature for age prediction in preterm babies.

I. INTRODUCTION

The brain can be seen as a complex network of inter-
acting regions and hierarchical communications, which are
constrained by the anatomy, but not limited to it [19]. The
neuronal clusters can actually work together and commu-
nicate to perform a joint task beyond their structural loca-
tions. The clinical literature [24] distinguishes this type of
connectivity from the anatomical one, which is often called
structural. The consequence of this functional infrastructure
is the generation of complex electrophysiological patterns,
which are temporally correlated, by distant cerebral areas
[40]. Those spatiotemporal patterns are dynamic, they change
according to the individual development trajectory [31]. In
particular, the last trimester of gestation is a period of brain
development, which includes both anatomical rewiring [6]
and electrophysiological modifications [1]. Different authors
illustrated that the cortical regions undergo differentiation,
folding and gyrification, while the subcortical areas expe-
rience synaptogenesis and myelination as well as neural
pruning to establish thalamo-cortical connections or long

1 Department of Electrical Engineering (ESAT), STADIUS Center for
Dynamical Systems, Signal Processing and Data Analytics, KU Leuven,
Belgium mlavanga at esat.kuleuven.be

2 imec, Leuven, Belgium
3Department of Development and Regeneration, Neonatal Intensive Care

Unit, UZ Leuven, Belgium
4Department of Development and Regeneration, Child Neurology, UZ

Leuven, Belgium

distance cortical connections [38], [12]. Based on MRI
scans of preterm babies, Dubois [12] showed that the white
matter volume and the inner cortical surface increase with
gestational age. Furthermore, the same author [12], [21]
demonstrated that fractional anisotropy (FA) of the brain
fiber bundles increases with post-birth maturation, although
the different connection pathways seem to develop in an
asynchronous way. According to Batalle, FA is a measure of
anatomical directivity that describes the connectivity strength
among brain regions together with the density and the
percentage of connecting streamlines. Huppi [21] eventually
argued that diffusion tensor imaging parameters, such as
anisotropy, can be structural markers of network functional
organization [6]. A possible implication is that the tem-
poral correlation among brain regions is also expected to
change since the functional connectivity is related to the
structural topology [19]. However, less is known about func-
tional connectivity and maturation [37]. Therefore, functional
connectivity in developmental science received increasing
attention in the recent years [19]. Moreover, different tools
to describe functional connectivity became available in the
last two decades. According to Bullmore [9], brain networks
can be represented as a graph, where the nodes are brain
regions and the edges are the connection strengths. The
nodes are defined by the neural activity, while the edges
define the presence of a coupling between time series and
the associated weight represents the coupling degree. Friston
[18] recognizes two main types of functional connectiv-
ity: the actual functional connectivity, which investigates
the temporal correlation among signals, and the effective
connectivity, which measures the causality of the coupling.
While the former does not imply any directionality, the
second one highlights which area or node causes the activity
of other ones. Functional connectivity methods generate
undirected graphs, while the effective connectivity methods
are associated to directed graphs [9]. In different studies of
the preterm infant brain [6], [28], the neural activity has been
measured using fMRI. Although this neuroimaging technique
can investigate the subcortical structures, it is an expensive
method and it is not suitable to measure effective connectiv-
ity due to fMRI low temporal resolution [35]. In contrast,
EEG is a suitable measurement for effective connectivity
and has been employed in recent papers to study the brain
connectivity maturation [35], [25]. The main drawbacks of
those studies are the limited investigated maturation period
or the absence of graph theory metrics to investigate the
connectivity changes. Studies about the long term develop-
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ment of effective connectivity based on EEG haven’t been
performed yet. In particular, there is a lack of research, that
investigates the effective connectivity from birth until full-
term age in premature infants. Furthermore, in the literature,
there are a few works that study the connectivity maturation
in the preterm brain from a graph point of view [6],[28].
The main aim of the present study was a thorough inves-
tigation of the effective connectivity evolution during the
preterm maturation after birth, exploiting different network
metrics (as in [6]). In particular, we measured the effective
connectivity by means of transfer entropy [34] and Granger
Causality [20]. On the obtained directed graph, different
graph metrics were computed to track their evolution from
27 to 42 post-menstrual age (PMA) weeks. The network
analysis was complemented by a regression study to predict
the age of the patient and assess the predictive power of the
connectivity analysis (as performed in one of our previous
studies, [25]). The paper is organized as follows: in the
section II, we introduce the simulated and the real dataset
alongside the methods used to estimate effective connectivity.
In the section II, the applied graph theory metrics are also
discussed. The section III reports the results, while the
section IV includes our discussion on the reported results.

II. METHODS

A. Data

Different datasets were used. A simulated dataset was
also employed in order to show how connectivity analysis
performs in a controlled case. In particular, the main
objective of the simulation was to illustrate the meaning of
the most common graph indices used in the literature. A
dataset comprised of EEG signals was the main part of the
maturation study.

1) Simulated data: The first experiment of the study
consisted of a simulation based on a linear Gaussian regres-
sion model (derived from [27]), expressed by the following
equations

x1,t = 0.9x1,t−1 + 0.9βx2,t−1 + 0.7βx3,t−1 + ξ1,t

x2,t = −0.9βx1,t−1 + 0.7βx3,t−1 + ξ2,t

x3,t = 0.8βx1,t−1 + 0.7βx2,t−1 + ξ3,t

x4,t = −0.25βx1,t−1 − 0.6x4,t−1 + ξ4,t

x5,t = 0.25βx1,t−1 + 0.9βx4,t−1 + ξ5,t

x6,t = 0.9βx4,t−1 + 0.9x5,t−1 − 0.7βx6,t−1 + ξ6,t

(1)

The parameter β is a scalar value that varies between 0
and 1 and it influences the strength of the coupling among
the xi,t variables. The ξi,t variables represent white noise
with unit variance. The associated graph is reported in
Fig.1. In order to give the reader a clear insight of the
graph theory measures, the objective of the simulation was
twofold: firstly, we investigated the influence of the strength
of the coupling, provided by the parameter β, and show the
effect of the weakening of causality among the variables.
Secondly, we investigated the influence of the noise using
different levels of signal to noise ratio (SNR), which were

obtained varying the variance of white noise in (1). In the
latter objective, time series were simulated using the AR
model (1) and the coupling was estimated with the effective
connectivity methods discussed in the following paragraphs.
We also studied the impact of filtering on the graph based
metrics by computing the scores from filtered signals,
using a sampling frequency which was set at 200 Hz and
a band-pass filter between 1 and 80 Hz was applied on
the simulated data. The reason to investigate the impact
of filtering is explained in section II.C. The band-pass
frequencies were obtained from [17].

Fig. 1: The figure displays the graph associated to the model 1.

2) EEG data: The second dataset comprised of 25
preterm infants, with gestational age (GA) ≤ 32 weeks,
who were recruited for a larger EEG study to assess brain
development and automatically detect quiet sleep epochs
[11],[22]. Each patient was enrolled with informed parental
consent at the Neonatal Intensive Care Unit (NICU) of the
University Hospital of Leuven, Belgium. All the included
subjects presented good outcome at 2 years. EEG was
recorded with 9 electrodes (Fp1, Fp2, C3, C4, T3, T4, O1,
O2 and reference Cz) according to the 10-20 international
system (BRAIN RT, OSG equipment, Mechelen, Belgium).
Throughout connectivity analysis, the channel Cz was dis-
regarded. The measurements were performed twice during
their stay in the unit, resulting in 88 recordings ranging from
postmenstrual age of 27 weeks to 42 weeks. Mean time of
recording EEG was 4h55. Monopolar signals were recorded
at a sampling frequency of 250 Hz. Two independent EEG
readers annotated the data for the different sleep stages,
namely quiet sleep (QS) and non-quiet sleep (NQS) epochs.
The reason for this binary manual classification is due to the
difficulty to discriminate active sleep from the awake state
in the very young child.

B. Connectivity analysis

The literature about effective connectivity presents
different methods to assess coupling among time series,
such as directed transfer function (DTF), partial directed
coherence or Granger causality test (GCT) [7]. With these
approaches, the coupling is frequently defined as G-causality
[2], in the sense that a time series Granger-causes another
one when the past values of a time series significantly
explain the evolution of the other one. Even though Granger
himself pointed out the limited applicability to the bivariate
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case, the recently published conditional multivariate Granger
causality (cMVGC) [3] overcomes the problem. According
to [2] and [33], these methods are based on the same
multivariate or Vector AutoRegressive (VAR) modeling.
However, they can show different aspects in the causality
analysis. While the DTF estimates the reachability from
one channel to another (defined also as G-influentiability by
[2]), both PDC and cMVGC look into the direct active link
between two channels, which is defined as G-connectivity
[2]. Those two methods investigate the same connectivity
model in two different domains, which are the frequency
(PDC) and time (cMVGC) domain. Since in this paper we
are mainly interested in the time-domain coupling, we opted
for the cMVGC in its AutoRegressive (AR) and information
dynamics implementations, respectively described in [3] and
[27].

1) Granger Causality: The first method employed to
assess the G-connectivity among EEG channels was Granger
Causality (GC) with a VAR modelling framework. In the
present study, we followed the formulation by [3]. A pth

order multivariate autoregressive model VAR(p) takes the
form

Ut =

p∑
k=1

Ak ·Ut−k + ε(t) (2)

where Ut is a collection of process Ui, while Ak and ε(t)
are respectively the regression coefficient matrices and the
stochastic process residuals. In the conditional scenario [3],
where we want to know the pairwise influence of process Xt

over Yt considering the presence of the other Ui variables,
Ut can be rewritten as

Ut =

Xt

Yt

Zt

 (3)

where Xt and Yt are the two time series of interest,
while Zt represents the third set of variables involved in
the analysis. In our study, Xt and Yt can be two variables
xi,t in (1), e.g. x4,t and x5,t, or two EEG channels, e.g.
Fp1 and C3. Consequently, Zt will be a vector time series
which contain the remaining xi,t in (1) or the remaining
EEG channels. Based on the VAR(p) model (2) and the split
defined in (3), we may actually explain the future of Xt

based on the following full and reduced regressions

Yt =

p∑
k=1

Ayy ·Yt−k +

p∑
k=1

Ayx ·Xt−k+

+

p∑
k=1

Ayz · Zt−k + εy(t)

(4)

Yt =

p∑
k=1

Ãyy ·Yt−k +

p∑
k=1

Ãyz · Zt−k + ε̃y(t) (5)

In both cases we consider the conditioning variable Zt,
although only the first model considers explicitly the influ-
ence of Xt. The difference is also highlighted by the two
regression coefficient matrices Ayy and Ãyy. In order to
test whether the coefficient matrices Ayx are significantly
different from zero, the Granger Causality is defined as the
log-likelihood ratio

FX→Y |Z = log
˜|Σyy|
|Σyy|

(6)

where Σyy and Σ̃yy are the covariance matrices of the
residuals εy(t) and ε̃y(t). Based on this multivariate frame-
work, the G-causality basically quantifies the reduction of the
prediction error if the variable X is added to explanatory
variables of Y , one of which is the variable Z [3].Unlike
the classical Granger causality test limited to the bivariate
case, we defined FX→Y |Z conditional multivariate Granger
causality. A special case of the conditional scenario is the
pairwise conditional G-causality, where the pairwise effective
couplings among all pair of variable Ui and Uj contained
in Ut are measured. Since we take in account the spurious
effect due to the presence of other variables (i.e. the coupling
between Ui and Uj conditioned by the presence of the other
variables), the pairwise conditional causalities are defined as

Gij(U) = FUi→Uj |U[ij]
(7)

which is an M × M matrix, where M is the number of
processes, and contains all the pairwise coupling estimations.
Those quantities may be considered a weighted directed
graph, also known as G-causal graph, and the matrix Gij
as the associated adjacency matrix A. The G-causality was
computed with the Multivariate Granger Causality toolbox
[3] implemented in Matlab (Mathworks, Natick, Ma, USA).

2) Transfer Entropy: The second method applied to as-
sess the G-connectivity among EEG channels was transfer
entropy. According to the information dynamics framework
by [34], the expected Kullback-Leibler divergence defines
the transfer entropy (TE) from process X to process Y as
follows

TX→Y =
∑

p(Yt,X
m
t ,Y

n
t ) log

p(Yt|Xm
t ,Y

n
t )

p(Yt|Yn
t )

(8)

where p(Yt|Xm
t ,Y

n
t ) is the conditional probability that Y

at times t is explained by past values of X and Y with re-
spective memory order m and n. p(Yt|Yn

t ) is the conditional
probability that Y at times t is only explained by past values
of Y . p(Yt,Xm

t ,Y
n
t ) is the joint probability distribution

among the three variables Yt, Xm
t , Yn

t . Transfer entropy
inherently implies directionality (i.e. effective connectivity),
since it is asymmetric and contains transition probabilities
[34], [39]. In order to estimate the information dynamics
coupling, Montalto [27] pointed out that TE is equivalent to
the difference of two conditional entropies (CE)

TX→Y |Z = H(Yt|Yn
t ,Z

p
t )−H(Yt|Yn

t ,X
m
t ,Z

p
t ) (9)
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With respect to (8), the variable Zpt is here introduced. In
a multivariate analysis, we cannot discriminate the exclusive
relationship between two processes [20], [3]. However, it
is possible to investigate the contribution of time series X
in the evolution of time series Y with respect to all the
other agents involved in the analysis. Consequently, we can
actually define Zpt as a vector variable that does contain
neither Y nor X as past values and the TX→Y |Z illustrates
the transfer of information from X to Y taking into account
other time series involved. If we assume that X , Y , Z
have a joint gaussian distribution, the two CE in (9) can
be expressed as linear regression of past values of the vector
variables involved in the multivariate system as follows

Yt = AuV u + ε(t)

Yt = ArV r + ε(t)
(10)

The first equation explains Yt with a regression on the
vector V u = [Vx, Vy, Vz], where Vx,Vy ,Vz approximates
respectively Xm

t , Yn
t , Zpt with a vector of size p as follows:

Vx = [Xt−1, Xt−2, . . . , Xt−p]

Vy = [Yt−1, Yt−2, . . . , Yt−p]

Vz = [Zt−1,Zt−2, . . . ,Zt−p]

The second equation explains Yt with a regression on the vec-
tor V r = [Vy, Vz], which only contains Vy ,Vz . Equations (10)
are usually referred to as full and restricted regressions. The
reader can easily recognize the same structure of Granger
causality equations (4) and (5), which is asymptotically
equivalent to Transfer entropy [34]. At the light of the
previous results, TX→Y |Z can be rewritten as

TX→Y |Z =
1

2
log

σr

σu
(11)

where σr and σu are the variances of the white noise
residuals in (10). Except for a scalar factor, (11) is the same
expression of (6). It is important to notice that also TE
estimates the G-connectivity in a conditioned framework.
In the present study, the TE entropy has been computed
using the MUTE toolbox [27] implemented in Matlab
(Mathworks, Natick, Ma, USA).

3) Graph theory indices: The effective connectivity meth-
ods generate an adjacency matrix A that describes a weighted
directed graph [3], called G-causal graph. Unlike a binary
network, those graphs tend to be complete or full without a
specific thresholding and the adjacency matrix is asymmetric.
Since the maximal number of couplings is M2 −M (where
M is the number of signals), graph theory measures can be
used to summarize the causal connectivity [36]. Although
there is no minimal theoretical number of graph nodes, 8
EEG channels can be considered quite limited for a graph
analysis. However, there are studies in the neural processing
literature where graph theory was applied on a limited
number of time series in order to give a concise view of a
high-density (or complete) network [36], [16], in particular
if the sources-level is concerned. Bullmore [9] illustrated a

list of measures to describe the graph topology, such as the
average characteristic path length, the clustering coefficient
and the diameter. The path length represents the minimum
number of edges to reach each other node in the graph
starting from one specific node. The average path length is
the mean of the nodes’ shortest paths and can be considered
a measure of network integration capacity [6]. The latter can
be also investigated by means of the clustering coefficient. In
case of a weighted network, a clustering coefficient is defined
as average intensity of all triangles around each node [14]. A
common overall measure is the average of nodes clustering
coefficients, defined in a similar way to the average path
length. The last index to evaluate the integration capacity
of the graph is the diameter. Let the node eccentricity be
the maximum graph distance from one node to any other
node in the network [8]. The diameter is then defined as
the maximum eccentricity in the graph. All those indices
have been computed thanks to the Brain connectivity toolbox
[32] implemented in Matlab (Mathworks, Natick, Ma, USA).
In addition, we computed also the causal density as the
sum of all significant couplings of the adjacency matrix,
as defined by [5]. Alongside those network metrics, the
spectral indices such as the spectral radius, the spectral
gap and the algebraic connectivity were considered. The
spectral radius and the spectral indices were the maximal
absolute eigenvalue and the difference between the first and
the second absolute eigenvalues of the adjacency matrix,
respectively [42] [13]. The spectral radius, commonly known
as "Page Rank", represents the dominance degree of a node
in the network: the higher the value, the higher the centrality
of the dominant node in the network. In other words, the
dominant node behaves as the center of a hub [42]. Another
way to look into the change of dominance is the spectral gap:
if the difference between the first and second eigenvalue in
the graph matrix decreases, the node with highest eigenvalue
(the spectral radius) is less dominant with respect to the
other nodes in the network. However, Estrada [13] argued
that the spectral gap behaves as a measure of clustering in
the undirected graph: in case of lower values of spectral gap,
the graph can present small clusters in the network. The last
spectral measure is the algebraic connectivity, which is the
second smallest eigenvalue of the Laplacian matrix Lsym and
it illustrates how easily a graph can be divided into clusters
[8]. In case of a directed graph, the Laplacian matrix can be
obtained as follows

Ldir = D −A

Lsym =
1

2
(Ldir + LTdir) = D − A+AT

2

(12)

where A is the adjacency matrix obtained by the effective
connectivity tools described above and D is the degree
matrix of the associated graph [10]. An overview of all graph
indices is reported in Table I.

C. Algorithmic pipeline and statistical analysis

According to different authors [4], [17], filtering could add
spurious connectivity in the effective connectivity analysis

4



TABLE I: An overview of all graph metrics that have been used in
the study.

Overview of graph indices
Path length Mean of the nodes’ shortest paths
Clustering coefficient Mean of the nodes’ triangles

intensity around each node
Diameter Maximum graph eccentricity
Causal density Sum of all significant couplings in A
Spectral radius λ1(A) : first eigenvalue

of adjacency matrix A
Spectral gap λ1(A)− λ2(A): the difference

between the first two eigenvalues
of matrix A

Algebraic connectivity λM−1(Lsym): the second
smallest eigenvalue

of the Laplacian matrix Lsym

or make the estimation of the underlying Granger causality
VAR model unstable. Although a theoretical invariance of
causality estimation has been demonstrated under filtering,
the G-causality works in practice if, and only if, the data are
stationary. The use of filtering as mean to reach stationarity
with filtering has already been investigated by [4]. However,
three main reasons can undermine this approach. The first
reason is the increase of the estimated VAR model order
due to the fitting of filtered process of theoretical infinite
order with a numerical finite order. This could lead to a
poor, and not robust, parameter estimation or even unstable
VAR model, which is the second reason to avoid band-pass
filtering. The last reason is the ill-conditioning of the Toeplitz
matrix of the autocorrelation sequence Γk = cov(Ut,Ut−k),
which is necessary for VAR model estimation. All the
related theoretical details are explained in [4]. The practical
downsides of the band-pass filtering are the dramatic increase
of the VAR model order compared to the unprocessed data
or the increase of false positive detection of connectivity
links with both the GC [4] or the PDC [17]. In particular,
the amount of false detections increases with narrowing of
the filtering frequency band or the increase of the filter
order. In general there is no distinction between FIR or IIR
filtering for both the authors. However, in both studies [4]
and [17], it is pointed out notch filtering and differentation
(or high pass filtering at 1 Hz) as methods to keep the
VAR model order low and reduce the false detection, even
compared to unprocessed data. Those approaches help to
achieve stationarity or keep the VAR model order low for
nearly-nonstationary processes like EEG. In addition, the
presence of trends or seasonality can add unit-roots to the
time series (poles on the unit circle or outside it in the
complex plane), which violates the hypothesis of covariance
stationarity. In the presence of unit-roots, the impulse re-
sponse of the VAR model would be oscillatory or diverge
to infinity. Consequently, it is suggested to eliminate trends
and seasonality by first order differentiation or differentiation
at various lags (notch-filtering). Theoretical and numerical
details of the different type of filtering are reported in [4]
and [3]. Given the stated literature results, on the one hand,

we decided to investigate the impact of filtering on the
simulated data and, on the other hand, we applied only notch
filtering at 50 Hz and 100 Hz and differentiation on the
EEG data in order to reduce nonstationarities in the time
series. However, the EEG can be affected by muscle artifacts,
which can spread out among the different electrodes and bias
the connectivity analysis. To mitigate this effect, we applied
canonical correlation analysis (CCA) to remove the artefacts
caused by the change in the EMG signals [41]. To investigate
the effect of the CCA on the analysis, we compared the
output of the connectivity analysis in two scenarios: the
first one did not consider the usage of CCA; the second
one applies CCA and reconstructed the EEG removing the
3 sources with lowest autocorrelation. In the first case, the
authors segmented the EEG in 5 s windows and computed
the effective coupling with both listed methods. In the second
scenario, CCA was applied on 5 s EEG segments. However,
before performing any connectivity analysis, we recombined
the segments in 30s intervals in order to increase the rank of
the reconstructed EEG matrix. This step was required since
both GC and TE request data that do not present collinearity
(i.e. the time series matrix cannot be rank-deficient, [3]).
The window length was suggested as a further step to keep
time series stationarity [3]. For each recording, we computed
the adjacency connectivity matrix for EEG segments and
we averaged over the QS epochs and NQS epochs. This
averaging step did not consider coupling values that were
not statistically significant. According to [27] and [3], the GC
and TE follow an asymptotic F-distribution, like R2 statistics.
Therefore, an F-test was implemented to test the significance
of coupling among EEG channels and all the couplings
with p-value p < 0.05 were set to zero. Consequently,
352 = 88 ∗ 2 ∗ 2 coupling graphs were obtained, where
88 is the total number of recordings, 2 is the employed
causality methods, 2 is the considered number of sleep states.
On the average matrices we computed the network indices
described above, which results in a tensor 88× 7× 4, where
7 is the number of graph features and 4 is the number
of combinations considering the number of connectivity
methods and sleep states involved (TE in QS, TE in NQS,
GC in QS, GC in NQS). For each feature, we evaluated
the maturation trend in three distinctive age groups (≤ 31,
∈ (31−37), ≥ 37 PMA weeks) as median(IQR), where IQR
is InterQuartile Range. Besides, we computed the Pearson
correlation coefficient between the variable age and each
single feature and its statistical significance were computed.
Those results were meant to give a general overview of
the feature maturation trend for each connectivity method,
for each sleep state, with or without CCA preprocessing.
In addition, we computed an ordinary least squares (OLS)
regression for each single feature in case of GC during QS
and the associated confidence interval at 95%, in order to
give a visual representation of any network index prediction
power. In particular, we split randomly the single graph index
dataset 100 times in 70% training set and 30% testing set and
we computed the prediction error on the test set as root mean
squared error,

√
MSE, as shown by [30]. Furthermore, each
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slice of the tensor (a matrix 88 × 7) was used to predict
the patient’s age at the moment of the recording with a
multivariate linear regression. Similarly to the single feature
approach, we randomly split the dataset 100 times, as in [30]
and we assessed

√
MSE in the test set. At each iteration,

the R2 index and the F-test statistics were computed.

III. RESULTS

In the following paragraphs, the results obtained in both
the simulated and the real dataset are discussed. In particular,
we will show how the network indices behave in both ex-
amples, the simulated data and the EEG maturation dataset.
The last part summarizes the predictive power of those graph
metrics to infer the post-menstrual age of the subject.

A. Simulation study

Fig.2.a, Fig.2.b and Fig.2.c display the integration graph
indices for the AR model defined in (1), whose network is
depicted in Fig.1. In the original model (β = 1), the graph
presents two distinct clusters, which are loosely connected by
the edges between node 1 and nodes 4 and 5. This two-hubs
structure is reflected by the first two panels in Figure 2. When
the intra-cluster connectivity is high (β = 1), the clustering
coefficient reaches its highest level, while the path length is
at its lowest level. Those results are in line with a rich-club
or small world network [9]. However, when the coefficient
β starts decreasing, the clustering coefficient proportionally
decreases, while the path length increases. The spectral
radius decreases with vanishing values of β, as the clustering
coefficient does. Fig.2.d, Fig.2.e and Fig.2.f display the ratio
between the network indices estimated from the simulated
time series via Transfer Entropy and the original measures
(in particular, in the first panel, CCTE

CCorig
, in the second one,

lengthorig

lengthTE
, in the third one, λTE

λorig
). Different noise levels

have been used. The results are quite straightforward for the
clustering coefficient and the spectral radius: the higher the
signal-to-noise ratio, the higher the values of two indices
are and the closer they are to the original values (Fig.2.d
and Fig.2.f ). In the case of the path length, the absolute
value is decreasing with higher SNR. However, the estimated
value becomes similar to the original one for very low noise
variance (Fig.2.e). Fig.2.d, Fig.2.e and Fig.2.f show also the
effect on band-pass filtering on the graph indices estimation.
The most remarkable results are related to the path length and
the clustering coefficient. The estimated clustering coefficient
tend to underestimate the original one, while the estimated
path length tends to be persistently higher than the original
one. On the contrary, the ratio for the spectral radius in case
of filtering behaves similarly to the one obtained using the
raw data.

B. EEG data - Graph indices

Fig.3 shows graph metrics for the adjacency matrices
obtained using the EEG measurements and Granger causality
in QS (GC in QS). Fig3.a, Fig3.b, Fig3.c and Fig3.d show
the scatter plots with the fitted OLS regression model, while
Fig3.e and Fig3.f display the clustering coefficient and path

length dynamics in three distinct age groups.As already
mentioned in section II.C, Fig.3 gives a visual representation
of the trends for the graph features, while Table II, Table III
provide a complete overview for all coupling methods and
all sleep states. Each single feature has a significant trend
with age, although the Pearson correlation coefficient ρ(%)
increases when CCA is used as a pre-processing step. Specif-
ically, the trend for the clustering coefficient, the spectral
radius and the spectral gap is negative, while the path length
is increasing with age. This result is persistent in each
method and each sleep state. The connectivity weakening for
GC in QS is also reported in Fig.4, which shows the average
connectivity graph for three distinct age groups. The three
panels show how the coupling among time series decreases
by the reduction in arrows width and the color shift from
red to blue. Table IV reports the results for age prediction
with a multivariate linear model, combining all the network
features. All the models can predict the age of the infant
recording with a

√
MSE between 2 to 3 weeks and the

CCA models always outperform the model without CCA
as a preprocessing step. Furthermore, the explained variance
(R2) is higher with the models that include CCA. It is also
interesting to notice that best prediction results are obtained
with GC during QS (

√
MSEsimple = 2.52 PMA weeks,√

MSECCA = 2.10 PMA weeks). Table IV does not report
the results for one single model estimation, but the median
and InterQuartile Range (IQR) of the evaluation parameters
for 100 bootstrap iterations. In each single iteration, the
model proved to be significant as reported by the p-value
column in the Table IV (p < 0.01).

IV. DISCUSSION

In the present study, we quantified the effective brain
connectivity in preterm infants to track their maturation.
Although there are some studies that investigate connectivity
in the neonates [6], [31] and its change in the first days
of life (short maturation period) [35], this is the first study
to track maturity using effective EEG-based connectivity in
preterm patients on a wide maturation period, from birth to
full-term age. To the best of our knowledge, MRI [12] and
fMRI [37] have been the leading method to track maturity.
However, fMRI is only suitable for functional connectivity,
as discussed above. In this article, we compared two well-
known methods to estimate coupling between processes, like
GC and TE. Based on the obtained connectivity matrices,
we estimated integration and spectral network indices for di-
rected weighted graphs. Those features were used to predict
the age of the patient during the recording. The same process
was applied on a simulated dataset to investigate how the
network measures behaved in a controlled case.

A. Simulated dataset

According to [9], graphs with high clustering coefficient
and low path length behave like a rich-club network, while
graphs with low clustering coefficient and high path length
denote a random network, where the number of edges for
each node is normally distributed. Fig.1 portraits two club
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Fig. 2: The figure shows the results for the simulation dataset. The first three panels show how the graph indices behave for different
level of coupling in the model 1. The last three panels investigate how the transfer entropy can estimate the network indices for different
level of SNR. In particular, the figure compares the two cases when the data is filtered and when the raw data is used.
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Fig. 3: The figure shows the results for EEG data. The first four panels show OLS regression between 4 main graph indices vs the age for
GC in QS. The grey area is the confidence interval at 95%. On the top of the panel, the associated R2 and

√
MSE in PMA weeks on

the test set. The last two panels show the trend of the clustering coefficient and the path length in three distinct age groups. The results
are reported about GC in QS.
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Fig. 4: The figure shows the average connectivity graph (GC for three different age groups. The strength of the coupling among the
electrodes is decoded by the color (the closer to the red color, the higher the coupling) and by the width of the arrow. The connectivity
values have been normalized between 0 and 1 for the three groups together. The panels cleraly show the weakening of the coupling among
EEG channels with maturation. The consequence is the increase of path length and the decrease of the clustering coefficient Fig.3.

TABLE II: The main integration and spectral features in three
discrete time points. The table shows the indices for both sleep
states (QS = quiet sleep, NQS = non-quiet sleep) and they were
computed on the Transfer Entropy connectivity graph. The results
are reported as median(IQR), where IQR stands for InterQuartile
Range. The symbol ρ stands for the Pearson correlation coefficient,
while # represents a significant correlation with p ≤ 0.01. The
values 10−3 or 10−2 mean the reported results are multiplied by a
factor 10−3 or 10−2

Network indices - Transfer Entropy in three age groups
Median(IQR) - PMA weeks ≤ 31 ∈ (31− 37) ≥ 37 ρ(%)
Clustering coefficient
QS .025(.008) .021(.005) .017(.002) -53 #
NQS .025(.006) .020(.006) .018(.002) -49 #
Path length
QS 3.73(.30) 3.89(.22) 4.07(.10) 59 #
NQS 3.71(.20) 3.91(.25) 4.04(.14) 54 #
Spectral radius
QS .18(.07) .16(.05) .12(.01) -49 #
NQS .18(.05) .15(.04) .13(.02) -48 #
Spectral gap
QS .15(.09) .12(.04) .10(.02) -51 #
NQS .15(.06) .12(.04) .11(.02) -48 #

Network indices - Transfer Entropy - CCA
Median(IQR) ≤ 31 ∈ (31− 37) ≥ 37 ρ(%)
Clustering coefficient
QS(10−3) 9.82(6.1) 6.21(3.3) 4.98(0.9) -57 #
NQS(10−3) 9.13(3.5) 6.29(2.0) 5.90(1.0) -49 #
Path length
QS 4.70(.57) 5.11(.47) 5.32(.18) 64 #
NQS 4.73(.40) 5.09(.27) 5.16(.18) 52 #
Spectral radius
QS(10−2) 8.20(4.7) 4.68(3.1) 3.63(.6) -55 #
NQS(10−2) 6.94(2.8) 4.74(1.6) 4.30(.7) -48 #
Spectral gap
QS(10−2) 5.84(3.1) 3.93(2.0) 3.30(.6) -52 #
NQS(10−2) 5.84(3.1) 3.93(2.0) 3.30(.6) -49 #

TABLE III: The main integration and spectral features in three
discrete time points. The table shows the indices for both sleep
states (QS = quiet sleep, NQS = non-quiet sleep) and they were
computed on the Granger Causality connectivity graph. The results
are reported as median(IQR), where IQR stands for InterQuartile
Range. The symbol ρ stands for the Pearson correlation coefficient,
while # represents a significant correlation with p ≤ 0.01. The
values 10−3 or 10−2 mean the reported results are multiplied by a
factor 10−3 or 10−2.

Network indices - Granger Causality
Median(IQR)- PMA weeks ≤ 31 ∈ (31− 37) ≥ 37 ρ(%)
Clustering coefficient
QS .024(.006) .019(.006) .015(.002) -56 #
NQS .024(.007) .019(.005) .016(.002) -51 #
Path length
QS 3.77(.20) 3.95(.25) 4.17(.13) 61 #
NQS 3.75(.33) 3.95(.27) 4.10(.14) 56 #
Spectral radius
QS .18(.06) .15(.04) .10(.02) -54 #
NQS .18(.05) .14(.03) .10(.01) -51 #
Spectral gap
QS .14(.06) .13(.04) .09(.02) -58 #
NQS .15(.05) .11(.03) .11(.01) -51 #

Network indices - Granger Causality - CCA
Median(IQR)- PMA weeks ≤ 31 ∈ (31− 37) ≥ 37 ρ(%)
Clustering coefficient
QS(10−3) 12.87(4.8) 9.34(3.2) 7.39(1.2) -68 #
NQS(10−3) 12.29(3.4) 9.08(2.1) 8.51(1.2) -61 #
Path length
QS 4.36(.37) 4.69(.33) 4.92(.16) 73 #
NQS 4.41(.28) 4.71(.21) 4.77(.14) 63 #
Spectral radius
QS(10−2) 9.52(3.5) 6.79(2.6) 5.28(.8) -68 #
NQS(10−2) 8.98(2.5) 6.50(1.5) 6.05(.9) -61 #
Spectral gap
QS(10−2) 7.28(2.4) 5.87(2.3) 4.91(1.1) -63 #
NQS(10−2) 6.91(3.0) 6.07(1.0) 5.35(1.4) -56 #
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TABLE IV: Multivariate regression model performances. The table
shows the error on the test set (Error), the R2 and the F-statistics
(F-stat) and the p-value obtained with the different connectivity
methods in the different sleep states. The results are reported as
median(IQR), where IQR stands for InterQuartile range over the
100 random splits of the dataset. The labels reported are TE =
transfer entropy, GC = Granger causality, QS = quiet sleep, NQS
= non-quiet sleep.

Multivariate regression performances
Median(IQR) Error(weeks) R2 F -stat P-value
Simple filtering
TE - QS 2.54(0.41) 0.57(0.07) 11.64(3.46) p < 0.01 ∗ 100
TE - NQS 2.88(0.39) 0.40(0.07) 6.23(1.72) p < 0.01 ∗ 100
GC - QS 2.52(0.37) 0.52(0.07) 10.01(2.64) p < 0.01 ∗ 100
GC - NQS 2.79(0.53) 0.44(0.07) 7.20(2.09) p < 0.01 ∗ 100
CCA
TE - QS 2.23(0.29) 0.63(0.06) 12.90(3.14) p < 0.01 ∗ 100
TE - NQS 2.54(0.51) 0.57(0.06) 10.36(2.66) p < 0.01 ∗ 100
GC - QS 2.10(0.38) 0.67(0.05) 15.96(3.64) p < 0.01 ∗ 100
GC - NQS 2.35(0.42) 0.63(0.04) 13.38(2.61) p < 0.01 ∗ 100

‘

networks, where the nodes are connected to each other with
a short distance. This leads to a high clustering coefficient
and low path length when the coupling coefficient is equal to
1. However, when β decreases, the intra-cluster connectivity
weakens and the graph becomes more similar to a random
network. This type of graph is characterized by low cluster-
ing coefficient and high path length: indeed, the nodes are
less connected among each other in a more homogeneous
network. This result is also supported by the direct propor-
tionality between spectral radius and coupling coefficient.
Another interesting point is related to the filtering. Fig.2
illustrates clearly how the clustering coefficient and the path
length estimation can be highly affected by the filtering.
Those results are in line with the analysis by [4], which
demonstrated that careless filtering can add spurious con-
nectivity in the time courses. In our simulation, the effect of
filtering weakens the intracluster connectivity (adding inter-
cluster connectivity). The net effect is a decrease in clustering
coefficient and an increase in path length. Therefore, we
decided only to apply a notch filter and differentiation as
preprocessing steps on the EEG.

B. EEG data

In the literature, a number of studies can be found to have
assessed the brain maturation in children and adolescents
by graph theory [37],[19],[31] and a few papers focused on
preterm brain maturation by network metrics [28], [6]. The
first result obtained in our study is the change in effective
connectivity with age. Although Schumacher [35] used a
different method, he also concluded that there is a change in
effective connectivity mainly driven by postnatal maturation.
In addition to that, we have been able to demonstrate the
existence of a relationship between connectivity and PMA.
In this study we also observed a change in graph parameters
that suggest that the EEG-scalp network moved from a rich-
club network to a more random network. The integration
and spectral indices decreased with age, except for the path
length, which reflects a segregation of nodes due to a higher
graph distance as well as less intense triangle patterns around

the nodes themselves. Hub-networks have high clustering
coefficients since they have central club nodes, which are
surrounded by triangle patterns. On the contrary, a random
network present nodes, which are connected to any other
node in the network with a weak coupling. The net effect
is a low clustering coefficient and high path length. This
emergence of a normal-distributed network is also confirmed
by the decrease of the spectral gap, spectral radius and
the algebraic connectivity. The latter two indices emphasize
how easily the graph can be clustered and a negative trend
would suggest the absence of modules or groups in the
graph. On the contrary, a negative trend of the former
index should suggest an increase of modularity, as shown
by [13]. However, since the spectral gap is also inversely
proportional to the path length, its reduction just shows
that the spectral radius is less dominant with respect to the
other eigenvalues [42] and it becomes another measure of
modularity like the other two spectral indices. The results
of the multivariate model further highlight the shift from a
rich-club network at younger age to a more random one at
full-term age. In particular, the lowest

√
MSE on the test

set is around 2.11 weeks than in other studies [25], [29].
Finally, it is important to notice that those negative trends for
graph features are consistent for each effective connectivity
method and each sleep state. At first sight, the results we
obtained seem to be in contradiction with maturation trends
that can be found in children or adolescents, where a shift
from random to a rich-club network has been discovered.
However, it should be taken in account that, on one side,
only 9 electrodes on the scalp were used, due to the small
size of the preterm brain and, on the other hand, there
is a fast development of the brain during this monitoring
period with different trajectories for the different cerebral
regions [23]. This composite evolution is mainly driven by
the different disappearance timing of cortical subplate in the
various brain areas [23]. In particular, two main changes
took place. The first one is the faster development of the
thalamo-cortical connections compared to the cortico-cortical
ones [6]. The shift from one type of connections to the
other happens only at later age [26], therefore the maturation
process might lead to "separation" of the nodes, as reflected
by the results in this study. In simple terms, the EEG
scalp connections became weaker in favour of a connection
strengthening between the cortical and subcortical areas.
The second important change is the negative correlation
between age and short-range cortico-cortical connections, as
shown by [6] via fMRI. In [6], the study results showed
that long distance connections develop faster than the short
ones. Furthermore, the development is characterized by a
strengthening of the former connections and weakening
of the short-range couplings [19]. Consequently, the EEG
electrodes/nodes (which measure short-range connectivity)
tend to separate each other, with an increase of the path
length and a reduction of the clustering coefficient. This
hypothesis is also supported by the decrease in fronto-
frontal and occipito-occipital functional coupling measured
by fMRI [6]. This segregation can be emphasized by the fact
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that there are a few electrodes on infant scalp. However, a
study with high-density EEG on preterm infants [28] found
an increased modularity on the scalp EEG network and a
reduced clustering coefficient in the postcentral network,
while the clustering coefficient increases in the precentral
network. This result could confirm the segregation or the
more local integration of the brain network due to the pruning
of short-range connections, as also shown by [15] in the
comparison between adults and children. It is important to
notice that both models with and without CCA found the
same trends, but source filtering increased the prediction
power of the model. It is possible that the EMG artifacts
disturbed the connectivity analysis and biased the prediction
model in the first considered scenario.

V. CONCLUSIONS

In the present study, we investigated effective EEG-based
brain connectivity in premature infants, whose PMA ranged
from 27 to 42 weeks. Results showed that the EEG-graphs
changed with age in terms of topology. In particular, the
clustering coefficient and the spectral radius decreased with
maturation, while the path length increased. This perspec-
tive suggests that the EEG graph shifted from a small-
world network to a random network. This apparent nodes’
segregation can be a consequence of the thalamo-cortical
connections development and the strenghtening of the long-
range cortical connections. The lowest age prediction error
was 2.11 PMA weeks (obtained with GC in QS), which is
in line with literature results. Application of source filtering
methods,like CCA, can improve the performance of the
connectivity analysis.
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