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We develop a notion of cell decomposition suitable for studying weak p-adic structures (reducts of p-adic fields
where addition and multiplication are not (everywhere) definable). As an example, we consider a structure with
restricted addition.
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1 Introduction and first definitions

Results for real fields have always been a big source of inspiration for the study of p-adic fields. An example
of this is the concept of o-minimality (cf., e.g., [16]) which inspired Haskell and Macpherson [5] to develop a
similar concept, P-minimality, for p-adic fields. A difference between those concepts is that o-minimality also
covers reducts of real closed fields R (cf. [11, 13, 14]) while P-minimality focuses on expansions of the language
of valued fields. A natural question is whether the concept of P-minimality can be expanded to include structures
for which the corresponding language is weaker than the ring language.

A structure (R,L) is o-minimal if the L-definable subsets of R coincide with the subsets definable in the
language containing only the symbol ‘<’. In the p-adic context, one might consider the analogous relation
D(2)(x, y) ↔ ord (x) < ord (y). A possible candidate-expansion for P-minimality would then be to study
those structures (K,L) for which the L-definable subsets of K coincide with the

(
D(2))-definable subsets; let us

call such structures D(2)-minimal. However, even very basic structures like
(
Qp ;D(2) ,+

)
are not D(2)-minimal:

a set {x ∈ Qp | ord (x + a) < ord (b)} is in general not
(
D(2))-definable. Moreover, P-minimal structures are

not
(
D2)-minimal, as for example the sets of nonzero n-th powers Pn are not

(
D(2))-definable. (Note that in this

paper ‘definable’ will always mean ‘definable with parameters’.)
To obtain a more interesting minimality concept, we shall need to require that the structure of p-adic semi-

algebraic sets satisfies our minimality property. We shall consider reducts (K,L) of (K,Lring), where K is a
p-adically closed field, and the L-definable subsets of K are exactly the Lring-definable (semi-algebraic) subsets
of K. A first step towards understanding such structures is to describe the boundaries of our ‘playing field’:
identify the relations and functions that, as a bare minimum, would have to be definable in such a structure. In
our paper [2], we concluded that all semi-algebraic subsets of K can be defined using only the relations

Rn,m (x, y, z) ↔ y − x ∈ zQn,m .

The sets Qn,m , which for K = Qp can be defined as
⋃

k∈Z pkn
(
1 + pm Zp

)
, are a variation on the sets of n-th

powers Pn that one encounters in the study of p-adic semi-algebraic sets. A more general definition will be given
in Section 1.1. Write LM for the language LM := ({Rn,m}n,m∈N). Expansions (K,L) of (K,LM ) will be called
LM -minimal if the L-definable subsets of K coincide with the LM -definable subsets of K.

∗e-mail: eleenkne@math.purdue.edu
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Now that we know which structures we want to consider, the second step will be to describe their definable sets.
Historically, cell decomposition has proved to be a very useful tool in studying definability questions. Examples
include o-minimal cell decomposition in the real case, and Denef’s cell decomposition for p-adic semi-algebraic
sets, which can be stated as follows:

Theorem 1.1 (Denef, [3, 4]) Let K be a finite field extension of Qp . Any semi-algebraic set X ⊆ Kk+1 can
be partitioned as a finite union of cells of the form

{(x, t) ∈ D × K | ord (a1(x)) !1 ord (t − c(x)) !2 ord (a2(x)), t − c(x) ∈ λPn},

where D is a semi-algebraic subset of Kk and c(x), ai(x) are semi-algebraic functions. The symbols !i denote
‘<’ or ‘no condition’.

Among other applications, Denef used this result to give a new proof of Macintyre’s quantifier elimination
result [10]. The result was also important for Mourgues [12] result on P-minimal cell decomposition.

In [2], we showed that the relation D(3)(x, y, z) ↔ ord (x − y) < ord (z − y) is definable in the language
LM = ({Rn,m}n,m ). Because of this, cells C ⊂ K are LM -definable, which is what we wanted. However, to
get a language that is more convenient to work with, we shall replace D(3) by the slightly stronger relation D(4) ,
defined as

D(4)(x, y, z, t) ↔ ord (x − y) < ord (z − t).

The resulting language Ldist =
(
D(4) , {Rn,m}n,m

)
is strictly stronger than LM , as there are sets which are

Ldist-definable, but not LM -definable [8].
Our definition of cells is inspired by Denef’s p-adic cells, but with some modifications, the first being that

we use the sets Qn,m instead of the usual Pn . A second difference is that we shall only require the relation
ord (ai(x)) < ord (t) to be definable, and not necessarily the function ai(x) itself. This change is motivated by
the observation that the function (x, y) '→ x−y is not necessarily definable in all languages that contain a symbol
for the relation D(4) . We shall call this weak cell decomposition as opposed to (strong) cell decomposition results
that only use definable functions.

While working on the cell decomposition results presented in this paper, we noticed that many of those results
were valid for a much wider class of fields than just p-adically closed fields. In particular, we do not need to
assume that the field is henselian, and our results will work in any characteristic. For this reason, even though
our original motivation was the study of p-adically closed fields, we present our results for (Fq , Z)-fields: valued
fields with residue field isomorphic to Fq and value group elementarily equivalent to Z. So this paper is really
about cell decomposition techniques for expansions of (K,Ldist), where K is an (Fq , Z)-field.

Let us now give a brief overview of the contents of this paper. We first explain the ideas behind the sets Qn,m

in Section 1.1, and then give a formal definition of our concept of cells in Section 1.2. In Section 2, we state some
cell decomposition results valid for all expansions of Ldist, and we show how these results can be used to study
the language Ldist itself.

In our definition of cells, we made a distinction between weak and strong cell decomposition, depending on
whether or not the functions used were definable. In Section 3 we investigate the definable functions of structures
that admit weak cell decomposition. In particular, we shall focus on the existence of definable Skolem functions.
The reason for this is a result by Mourgues for P-minimal fields, stating that a structure has (strong) cell decom-
position if and only if it admits definable Skolem functions. When restricting our attention to p-adically closed
fields, we can obtain a similar result for LM -minimal expansions of Ldist. More precisely, if an LM -minimal
expansion of (K,Ldist) has definable Skolem functions, then it admits strong cell decomposition. If we assume
that addition and some scalar multiplication are definable, we also obtain the converse: a structure that has strong
cell decomposition will automatically have definable Skolem functions as well.

However, this result is not as strong as it seems to be. In P-minimality, requiring the existence of definable
Skolem functions is a relatively minor assumption, as there are no known examples of structures that do not have
such functions. For the weaker structures we study, we get a different picture: (K,Ldist) itself is an example of
a structure having no definable Skolem functions. So the really interesting questions are whether or not every
expansion of (K,Ldist) admits weak cell decomposition, and under which conditions a structure would have
definable Skolem functions.
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At this time, we cannot answer the first question, and we can only give a conjecture for the second question.
It is known that every o-minimal expansion of the structure (R,+,−, <, 0, 1) has definable Skolem functions
(here R is a real closed field). Based on the structures we have studied, it seems that expansions of Ldist cannot
have Skolem functions unless addition and sufficient scalar multiplication are definable. Section 4 provides an
example of a structure where we have full scalar multiplication, and where addition is definable on large open
sets, but which still does not admit definable Skolem functions.

The expansions considered in this paper are still very basic. Adding a symbol for either addition [7] or (re-
stricted) multiplication [8] is also possible, but for this we refer to [7] and [8, 9] respectively.

1.1 Definition of the sets Qn,m

The field of p-adic numbers admits elimination of quantifiers in the language LMac, which is the ring language,
extended with predicates Pn for the sets of n-th powers. Note that by Hensel’s lemma, there exists r ∈ N such
that 1+prZp ⊂ Pn . Hence, elements x ∈ Qp can be written as x = λpknu, with k ∈ Z, u ∈ 1+prZp . From this,
one can see that cosets λPn encode certain information concerning the value group and the angular components
of their elements. This is essentially the reason why Qp admits elimination of quantifiers in LMac.

However, this only works because Qp and other p-adically closed fields are Henselian. Write L| for the lan-
guage of valued fields, and assume that K is a general valued field. To obtain quantifier elimination for (K,L|),
Basarab and Kuhlmann [1, 6] proposed to add symbols for additive-multiplicative congruences (amc-structures).
Amc-structures are quotient groups K×/(1 + I), for ideals I ⊂ RK (where RK is the valuation ring of K). For
example, if I = MK , the maximal ideal of RK , then the corresponding amc-structure encodes information about
the value group and the angular component modulo π.

We shall use a variation on amc-structures, that encodes similar information as the sets Pn , even when Hensel’s
lemma does not hold. In particular, we consider the following class of fields.

Definition 1.2 Let Fq be the finite field with q elements and Z the ordered abelian group of integers. We
define an (Fq , Z)-field K to be a valued field with residue field isomorphic to Fq and value group elementarily
equivalent to Z.

Write ord : K → ΓK for the valuation on K, where ΓK denotes the value group of K. Let π be a fixed element
of smallest positive order. The valuation is normalized such that ord (π) = 1. Write MK for the maximal ideal
of the valuation ring RK of K.

A first class of examples of
(
Fq , Z

)
-fields are p-adically closed fields, that is: henselian

(
Fq , Z

)
-fields of

characteristic zero, where q = pr and the dimension of RK /pRk regarded as a vector space over Fp is finite.
Note that in general, an

(
Fq , Z

)
-field need not be of characteristic zero: fields like Fq (t) and Fq ((t)) are also

examples.
For each integer n > 0, let Pn be the set of nonzero n-th powers in K. For each m > 0, we shall define

sets Qn,m using angular component maps. The following lemma shows that such maps exist and that they can be
defined in a unique way.

Lemma 1.3 For each integer m > 0, there is a unique group homomorphism

ac m : K× → (RK mod πm )×

such that ac m (π) = 1 and such that ac m (u) ≡ u mod (π)m for any unit u ∈ RK .

P r o o f. Cf. [2, Lemma 1.3].

Using these angular component maps, we can define sets Qn,m , for any m,n > 0, as follows:

Qn,m :=
{
x ∈ Pn ·

(
1 + Mm

K

)
| ac m (x) = 1

}
.

For example if K = Qp , then Qn,m is just the set
⋃

k∈Z pkn (1 + pm Zp). Note that Qn,m is an open subgroup
of finite index of K× (for the valuation topology). Moreover, Qn,m is definable in the language of valued fields
(+,−, ·, |). Indeed, in the proof of the above lemma it is observed that there exists N ∈ N such that ac m (x) = 1
for all x ∈ PN . Hence, the set consisting of all x ∈ K for which ac m (x) = 1 is just a finite union of cosets of
PN .

c© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mlq-journal.org
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For any element λ ∈ K, let λQn,m denote the set {λt | t ∈ Qn,m}. We shall sometimes use the alternative
notation ρn,m (x) = λ to express that x ∈ λQn,m . The relation between ρn,m (x + y), ρn,m (x) and ρn,m (y) is
investigated in the lemma below (the proof is left to the reader).

Lemma 1.4 Put δ ∈ {−1, 1}. Suppose that ρn,m (a) = λ and ρn,m (b) = µ, then

ρn,m (a + δb) =






λ if m + ord (a) " ord (b),
ρn,m (λ + δµπrn ), with rn = ord (µa

λb ) if −m + ord (b) < ord (a) < ord (b),
ρn,m (λ + δµ) if ord (a) = ord (b) = ord (a + δb).

1.2 Definition of (L, ∆1 , ∆2)-cells

Let K be an (Fq , Z)-field. As stated in the introduction, we shall be working with functions f : Kk → K for
which the relation

ord (f(x)) < ord (t)

is definable for all (x, t) ∈ Kk+1 . We call these order-definable functions. Note that f is not required to be a
definable function. However, the following relations are always definable if the relation ord (x) < ord (y) is
definable in our language:

Lemma 1.5 Let L be a language where the relation D(2)(x, y) := ord (x) < ord (y) is definable. Let
a1(x), a2(x) be two functions Kk → K that are order-definable in L. The following relations are definable:

(1) ord (x) < ord (y) + k, for any k ∈ Z;

(2) ord (a1(x)) ! ord (t);
(3) ord (a1(x)) ! ord (a2(x)) + k, for any k ∈ Z;

where ! may denote <,",=,# or >.

P r o o f. (1) For k < 0, the relation ord (x) + k > ord (y) can be expressed as

(∃u1) . . . (∃u−k )[ord (x) > ord (u1) > ord (u2) > · · · > ord (u−k ) > ord (y)].

For k > 0, it is equivalent with

(∀u1) . . . (∀uk ) [(ord (x) < ord (u1) < · · · < ord (uk )) → ord (uk ) > ord (y)] .

(2) For example if ! denotes ‘=’, we can define the relation ord (a1(x)) = ord (t) as

¬[ord (a1(x)) < ord (t)] ∧ (∀u)[ord (t) < ord (u) → ord (a1(x)) < ord (u)].

The other cases can be derived from this.
(3) The relation ord (a1(x)) < ord (a2(x)) is equivalent with

(∃t)[ord (a1(x)) < ord (t) ∧ ord (a2(x)) = ord (t)].

The rest can be derived from (1) and (2).

Let L be an expansion of (D(2) , {Rn,m}n,m ). First we need some definitions.

Definition 1.6 A compatible set of functions is a tuple of sets (∆1 ,∆2) satisfying the following conditions.
For each k > 0, let ∆(k)

1 be a collection of functions Kk → K that are order-definable in (K,L). Let ∆(k)
2 be

a collection of L-definable functions Kk → K, and put ∆i =
⋃

k ∆
(k)
i . For all f1 , f2 ∈ ∆(k)

2 we require that
f1 − f2 ∈ ∆(k)

1 .

Let (∆1 ,∆2) be a compatible set of functions. We shall work with the following types of sets:

www.mlq-journal.org c© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



486 E. Leenknegt: Cell decomposition for weak p-adic structures

Definition 1.7 An (L,∆1 ,∆2)-precell in Kk is a set
{
x ∈ Kk | φ(x)

}
, where φ(x) is a Boolean combination

of relations of the forms

ord (a1(x)) < ord (a2(x)) + &, and b1(x) − b2(x) ∈ λQn,m ,

the ai(x) are functions in ∆(k)
1 , & ∈ Z and the bi(x) are in ∆(k)

2 .
Definition 1.8 An (L,∆1 ,∆2)-cell CD

c (a1 , a2 , λ) ⊆ Kk+1 is an L-definable set of the following form:

{(x, t) ∈ D × K | ord (a1(x)) !1 ord (t − c(x)) !2 ord (a2(x)), t − c(x) ∈ λQn,m},

where λ ∈ K, D is an (L,∆1 ,∆2)-precell in Kk , !i denotes ‘<’ or ‘no condition’, and the ai(x) are functions
from ∆(k)

1 . We call the function c(x) the center of the cell and we require that c(x) ∈ ∆(k)
2 .

When the language L and the set of functions (∆1 ,∆2) are clear from the context, we shall sometimes just
talk about precells and cells.

A structure (K,L) then admits cell decompositon if there exist a compatible set of functions (∆1 ,∆2) such
that every definable set of (K,L) can be partitioned as a finite union of (L,∆1 ,∆2)-cells. The decomposition
is said to be strong if every f ∈ ∆1 is L-definable. Otherwise, the decomposition is said to be weak. The
structures we study in this paper only allow weak cell decomposition. Cell decomposition for semi-algebraic sets
and semilinear sets are (after a few straightforward adaptations) examples of strong cell decomposition.

2 Cell Decomposition results

Let L be a language expanding Ldist. The relation D(2) is definable in all expansions of (K,Ldist), and hence
our notion of cells makes sense for (K,L). Assume that (∆1 ,∆2) is a compatible set of functions. Then every
Boolean combination of (L,∆1 ,∆2)-cells can be partitioned into a finite number of (L,∆1 ,∆2)-cells. This is an
easy consequence of the following theorem.

Theorem 2.1 Let L be a language expanding Ldist, and assume that (∆1 ,∆2) is a compatible set of functions.
Let A1 , A2 be (L,∆1 ,∆2)-cells with centers c1 , resp. c2 . The intersection A1 ∩ A2 can be written as a finite
union of disjoint (L,∆1 ,∆2)-cells A, each of which has a center which is a restriction of either c1 or c2 .

P r o o f. By partitioning C1 and C2 further if necessary, we may suppose that they both use Qn,m with the
same positive integers m,n, that is, that Ci is of the form

{(x, t) ∈ Di × K |ord (a1i(x)) !1i ord (t − ci) !2i ord (a2i(x)), t − ci ∈ λiQn,m}

for i ∈ {1, 2}, where the symbols have their meaning as in Definition 1.8. Using Lemma 1.5, we can find a finite
partitioning of C1 in cells with the same center, such that on such a cell one of the following conditions holds for
k = 1 + m + n +

∑
i,j=1,2 |kij | and some integer &1 with −k ≤ &1 ≤ k.

ord (t − c1) > ord (c2 − c1) + k,(Ik )

ord (t − c1) < ord (c2 − c1) − k,(IIk )

ord (t − c1) + &1 = ord (c2 − c1).(III&1 )

Hence, we may suppose that one of these conditions holds for C1 . Note that (I)k and (II)k imply respectively

ord (t − c1) > ord (c2 − c1) + k = ord (t − c2) + k,(ik )

ord (t − c2) = ord (t − c1) < ord (c1 − c2) − k.(iik )

If (I)k holds on C1 , let W = {x ∈ D2 | ord (a12(x))!12 ord (c1 − c2)!22 ord (a22(x))}. Then one has, if
C1 ∩ C2 is nonempty, that C1 ∩ C2 = (W × K) ∩ C1 , which can easily be seen to be a finite disjoint union
of (L,∆1 ,∆2)-cells of the desired form. If (II)k holds on C1 , then we may suppose, up to partitioning C2 , that
(II)k holds for all (x, t) ∈ C1 and all (x, t) ∈ C2 . Also, we find that ρn,m (t − c1) = ρn,m (t − c2), so either
C1 ∩ C2 is empty or C1 ∩ C2 consists of all points (x, t) ∈ (D1 ∩ D2) × K satisfying the conditions

max
i∈I

{ord (a1i(x))} < ord (t − c1) < min
i=1,2

{ord (a2i(x))},

c© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mlq-journal.org
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and

t − c1 ∈ λ1Qn,m ,

where I consists of i such that !1i is the condition <, and where the maximum over the empty set is −∞. We
know by Lemma 1.5 that relations of the form ord (aij ) < ord (alk ) are definable. It is then easy to see that
C1 ∩ C2 can be partitioned into a finite number of disjoint (L,∆1 ,∆2)-cells, which finishes the proof for this
case.

We may suppose by symmetry (that is, up to reversing the role of C1 and C2) that, if (III)&1 holds on C1 , then
also

(iii&) ord (t − c1) + &1 = ord (c2 − c1) = ord (t − c2) + &2

holds with & = (&1 , &2) and −k ≤ &2 ≤ k. Suppose again that C1 ∩ C2 is nonempty. If one now fixes the residue
classes of c2 − c1 and of t − c1 modulo Q2kn,2kn , then the conditions

ord (c2 − c1) = ord (t − c2) + &2 and t − c2 ∈ λ2Qn,m

follow automatically from ord (t − c1) + &1 = ord (c2 − c1). (The exact relations are described in Lemma 1.4.)
Hence, one can easily partition C1 ∩ C2 into finitely many (L,∆1 ,∆2)-cells.

One of our main motivations for using cell decomposition is because it is a very useful tool for quantifier
elimination. An example is Denef’s proof of quantifier elimination for semi-algebraic sets [4]. The following
lemma, which is closely inspired by this paper, will be used quite often.

Lemma 2.2 Let L be a language expanding (D(2) , {Rn,m}n,m ), and assume that (∆1 ,∆2) is a compatible
set of functions. Let CD

c (a1 , a2 , λ) ⊆ Kk+1 be an (L,∆1 ,∆2)-cell. Suppose that for every l ∈ N, the set
{x ∈ Kk | ord (a1) ≡ l mod n} can be partitioned as a finite union of (L,∆1 ,∆2)-precells ⊆ Kk . Then the
projection

P := {x ∈ Kk | ∃t : (x, t) ∈ CD
c (a1 , a2 , λ)}

can be partitioned in a finite number of (L,∆1 ,∆2)-precells.

P r o o f. It is easy to check that P consists of all x ∈ D satisfying the following condition:

P = {x ∈ D | ∃γ ∈ ΓK : ord (a1(x)) < γ < ord (a2(x)), γ ≡ ord (λ) mod n}.

Thus P is the set of all x ∈ D satisfying

(1) ∃γ ∈ ΓK :
ord [a1(x)λ−1 ]

n
< γ <

ord [a2(x)λ−1 ]
n

.

Now if ord (a1(x)λ−1) ≡ ζ mod n, for 0 " ζ < n, then condition (1) is equivalent with ord (a1(x)λ−1)+n−
ζ < ord (a2(x)λ−1), which can be simplified to

(2) ord (a1(x)) + n − ζ < ord (a2(x)).

This completes the proof, since D is a precell, (2) is a precell condition and by our assumption, the set {x ∈
Kk | ord (a1(x)λ−1) ≡ ζ mod n} can be partitioned as a finite union of precells.

2.1 Example: the language Ldist

We shall now use the results from the previous section to investigate the language Ldist. More specifically, we
shall show that any (Fq , Z)-field admits quantifier elimination in the language

L′
dist :=

({
D(4)

k

}
k∈Z, {Rn,m}n,m

)
,

where

D(4)
k (x, y, z, t) ↔ ord (x − y) < ord (z − t) + k.
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488 E. Leenknegt: Cell decomposition for weak p-adic structures

Definition 2.3 We call a polynomial f(x) ∈ K[x1 , . . . , xk ] an Ldist-polynomial in variables {x1 , . . . xk} if
f(x) has one of the following forms

f(x) = a, or f(x) = πk (xi − a), or f(x) = πk (xi − xj ),

where a ∈ K, k ∈ Z; 1 " i, j " k.
An Ldist-cell will be an (Ldist,∆1 ,∆2)-cell with the following specifications.

Definition 2.4 Let ∆(k)
dist,1 be the set of all Ldist-polynomials in k variables. The set ∆(k)

dist,2 consists of all
constant functions Kk → K : x '→ a, and projection maps Kk → K : x '→ xi onto the coordinate functions.
Put ∆i

dist :=
⋃

k!0 ∆
(k)
dist,i . An Ldist-cell ⊆ Kk+1 is then an

(
Ldist,∆1

dist,∆2
dist

)
-cell ⊆ Kk+1 .

It is an easy consequence of Lemma 1.5 that Ldist- polynomials are order-definable functions, so
(
∆1

dist,∆2
dist

)

is clearly a compatible set of functions. Therefore the following holds for Ldist-cells.
Proposition 2.5 Let A1 , A2 be Ldist- cells with centers c1 , resp. c2 . The intersection A1 ∩ A2 can be written

as a finite union of disjoint Ldist-cells A with as center a restriction of either c1 or c2 .

P r o o f. This follows from Theorem 2.1.

Proposition 2.6 Every
(
Fq , Z

)
-field admits elimination of quantifiers in the language L′

dist .

P r o o f. It is clear that any Ldist-cell (and any Ldist-precell) is quantifier free definable in L′
dist. Moreover, for

any Ldist-polynomial f(x), the relation ord (f(x)) ≡ l mod n can be partitioned in a finite number of precells.
(Indeed, this relation can be written as a finite disjunction of relations xi − a ∈ λQn,m or xi − xj ∈ λQn,m .)

Since the requirements of Lemma 2.2 are satisfied, it is now sufficient to show that any set that is quantifier
free definable in L′

dist can be partitioned as a finite union of Ldist-cells.
By Proposition 2.5, we only need to check that the sets (and complements of these sets)

{
x ∈ Kk | D(4)

r (g1 , g2 , g3 , g4)
}

and
{
x ∈ Kk | Rn,m (g1 , g2 , g3)

}
,

with gi(x) ∈ {x1 , . . . , xk} ∪ K and r ∈ Z can be partitioned as a finite union of Ldist-cells.
The fact that Rn,m (x, y, z) is equivalent to

∨

λ ∈Λn , m

Rn,m (x, y, λ) ∧ Rn,m (0, z, λ),

implies that {x ∈ K3 | Rn,m (x, y, z)} can be written as a union of Ldist-cells, by Theorem 2.1. The complement
of this set can also be written as a union of disjoint Ldist-cells, since {(x, y) ∈ K2 | ¬Rn,m (x, y, λ)} can be
written as a finite union of (disjoint) sets of the form {(x, y) ∈ K2 | Rn,m (x, y, µ)}.

To complete the proof it suffices to check that the set

A :=
{
(x, t) ∈ Kk+1 | ord (t − c1) < ord (πn (t − c2))

}
,

with c1 , c2 ∈ {x1 , . . . , xk} ∪ K, can be partitioned as a finite union of cells. We may suppose that c1 1= c2 .
Partition Kk+1 in the following way:

Kk+1 =
{
(x, t) ∈ Kk+1 | ord (t − c1) > ord (c1 − c2)

}

∪
{
(x, t) ∈ Kk+1 | ord (t − c1) < ord (c1 − c2)

}
(3)

∪
{
(x, t) ∈ Kk+1 | ord (t − c1) = ord (c1 − c2)

}
.

Since A = A∩Kk+1 , we can write A as a union of sets on which one of the conditions in (3) holds. For example,
on

B = A ∩
{
(x, t) ∈ Kk+1 | ord (t − c1) > ord (c1 − c2)

}
,

we have that ord (t − c2) = ord (c1 − c2), and therefore B is equal to the set

B =
{
(x, t) ∈ Kk+1 | ord (c1 − c2) < ord (t − c1) < ord (πn (c1 − c2))

}
.

It is clear that B can be partitoned as a finite number of Ldist-cells. The other cases are similar.
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Note our strategy: For the given language L, we first try to find a suitable compatible set (∆1 ,∆2), such that
we get a system of (L,∆1 ,∆2)-cells. Generally, we shall try to make sure that ∆2 contains only quantifier-free
definable functions. To obtain a definitional expansion that has quantifier elimination, we shall then add symbols
to L such that for each f ∈ ∆1 , the relations

ord (f(x)) < ord (t) + k and ord (f(x)) ≡ l mod n

are quantifier free definable in the extended language L′. To obtain quantifier elimination for L′, it is then suf-
ficient to show that quantifier free L′-definable sets can be partitioned as a finite number of (L,∆1 ,∆2)-cells.
(Unfortunately, this last step may require quite a lot of work.)

3 Cell decomposition and definable (Skolem) functions

3.1 Definable functions

The example of Ldist-definable sets illustrates how we can use cell decomposition to obtain quantifier elimination
results for a structure (K,L). Cell decomposition results also provide a lot of information concerning the definable
functions of a given structure. For instance, all Ldist-definable functions must have the following form (and thus
these structures have only trivial definable functions):

Lemma 3.1 Let f : A ⊆ Kk → K& be an Ldist-definable function. There exists a finite partition of A in
Ldist-cells such that on each cell C the function f has the form

f|C : C → K& : x '→ (f1(x), f2(x), . . . , f&(x)),

where fi(x) is either one of the variables {x1 , . . . , xk} or a constant from K.

This is a direct consequence of the following more general observation:

Proposition 3.2 Assume that (K,L) admits cell decomposition using (L,∆1 ,∆2)-cells. Let f : A ⊆ Kk →
K& be an L-definable function. There exists a finite partion of A, such that on each cell C in the decomposition
there are functions fi ∈ ∆(k)

2 such that f|C (x) = (f1(x), f2(x), . . . , f&(x)) for all x ∈ C.

P r o o f. First we note that f can be written as

f : A ⊆ Kk → K& : x '→ (f1(x), . . . , f&(x)),

where the coordinate functions fi : Km → K are all L-definable functions. Therefore it suffices to prove the
lemma for the case & = 1. A function f : A ⊆ Kk → K is L-definable if and only if

Graphf = {(x, t) ∈ A × K |t = f(x)}

is an L-definable set. This means there exists a finite partition of Graph f in (L,∆1 ,∆2)-cells G of the form

{(x, t) ∈ D × K | ord (a1(x)) !1 ord (t − c(x)) !2 ord (a2(x)), t − c(x) ∈ λQn,m},

with c(x) ∈ ∆(k)
2 . Since f is a function, for each x ∈ D there must be a unique t such that (x, t) ∈ G. This

uniqueness condition implies that λ = 0, and thus G must have the form {(x, t) ∈ D × K | t = c(x)}.

3.2 Cell decomposition and Skolem functions

When studying definable functions, another natural question to ask is whether a language L has definable Skolem
functions: for a given definable function f : X → Y , does there exist a definable function g : f(X) → X such
that f ◦ g = Idf (X )?

In the P-minimal context, Mourgues showed that a P-minimal structure (K,L) has definable Skolem functions
if and only if the structure allows cell decomposition, using a notion of cells similar to what we called ‘strong
cells’, i.e., using cells that are defined using only definable functions. We obtain similar results for LM -minimal
extensions of (K,Ldist).
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Theorem 3.3 Let K be a p-adically closed field, and suppose that L ⊇ Ldist. If an LM -minimal structure
(K,L) has definable Skolem functions, then it admits strong cell decomposition.

P r o o f. Assume that (K,L) has definable Skolem functions. This implies that, if (K,L) has cell decomposi-
tion, say using (L,∆1 ,∆2)-cells, then it admits strong cell decomposition. Indeed, let f : Kk → K be a function
in ∆1 . Since f is order-definable in L, the following set is L-definable:

A := {(x, t) ∈ Kk+1 | ord (f(x)) = ord (t)}.

Consider the projection map πx : A → Kk : (x, t) '→ x. Since (L,K) has definable Skolem functions, there
exists a definable function g : Imπx → A : x '→ (x, a(x)) such that (πx ◦ f)(x) = x for all x ∈ Imπx . But then
a(x) is a definable function, such that for each x ∈ Kk , ord (f(x)) = ord (a(x)).

Let us now check that under our assumptions, (K,L) does indeed admit cell decomposition. The proof is
essentially the same as the original proof (for P-minimal structures) by Mourgues. For this reason, we shall only
give a brief sketch, and refer the reader to [12] for details. Let L be an extension of Ldist, and S′ ⊆ Kn+1 an
L-definable set, defined by a formula φ(y, x). As in [12], using a compactness argument, it can be shown that
there exists a quantifier-free Ldist-formula ψ(z, x) such that

(4) K |= ∀y∃z∀x(φ(y, x) ⇔ ψ(z, x)).

Write πn : Kn+1 → Kn for the projection onto the first n coordinates. As in Lemma 3.3 of [12], it can follows
from (4) that, if (K,L) has definable Skolem functions, there exists m, an Ldist-definable subset S of Km+1 and
an L-definable function f : πn (S′) → Km such that for any y ∈ πn (S′),

{x ∈ K | (y, x) ∈ S′} = {x ∈ K | (f(y), x) ∈ S}.

Now use the same reasoning as in the proof of Theorem 3.5 of [12], reducing to Ldist-cell decomposition instead
of semi-algebraic cell decomposition. We need to assume that K is a p-adically closed field, to ensure that the
Ldist-definable subsets of K coincide with the Lring-definable subsets of K. (Only for such fields, LM -minimality
is truly an expansion of the notion of P-minimality.)

In fact, we can obtain a stronger result: any structure that satisfies the conditions of Theorem 3.3 and has
definable Skolem functions, has strong cell decomposition using continuous functions. The reason is that if K is
p-adically closed, then every LM -minimal structure (K,L) is a reduct of the P-minimal structure (K,Lring). This
makes it possible to transfer some results about functions in P-minimal structures to the LM -minimal context.
For example, we have that

Lemma 3.4 Let K be a p-adically closed field and (K,L) an LM -minimal structure.

(1) Let f : K → K be an L-definable partial function. Then there is an open subset U of dom(f) such that
dom(f) − U is finite and f|U is continuous.

(2) Let n > 0 and g : Kn → K be an LM -definable partial function, and let X = dom(f). Let Y =
{y ∈ X : g is defined and continuous in a neighbourhood of y}. Then the topological dimension of X\Y
is strictly smaller than n.

(
The topological dimension of a set S ⊆ Kn is the greatest integer k " n for which there is a projection

Proj : Kn → Kk such that Proj(S) has non-empty interior in Kk .
)

P r o o f. The results stated in the lemma where originally proven by Haskell and MacPherson [5] in the
P-minimal context. Note that any LM -minimal structure (K,L) is either P-minimal (in which case the lemma
holds), or (K,L) is a reduct of the P-minimal structure of semi-algebraic sets (K,Lring). In the latter case, the
L-definable function f : dom(f) → K is also a semi-algebraic function in (K,Lring). Applying the P-minimal
version of the lemma, we find a semi-algebraic set U such that dom(f)−U is finite and f|U is continuous. Since
dom(f) is an L-definable set and dom(f)−U is finite, the set U must also be L-definable, and hence this part of
the lemma transfers to LM -minimal structures.

The second part can be checked similarly. (Y is L-definable since the relation ord (x − y) < ord (x − z) is
LM -definable.)
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Because these properties hold for LM -minimal structures, Theorem 3.3 can be strengthened:
Lemma 3.5 Let K is a p-adically closed field. If an LM -minimal expansion(K,L) of (K,Ldist) admits strong

cell decomposition using (L,∆1 ,∆2)-cells, then all functions in (∆1 ,∆2) can be assumed to be continuous.

P r o o f. The proof is the same as the original proof of Mourgues in [12], using Lemma 3.4 instead of the
original P-minimal version.

If we omit the condition that K has to be p-adically closed, we obtain a weaker version of Theorem 3.3: we
can no longer be assured that definable Skolem functions imply the existence of cell decomposition, but if such a
decomposition exists, it will be a strong decomposition.

How about the other direction? Does the fact that a structure admits strong cell decomposition automatically
imply that it also has Skolem functions (as in the p-minimal case)? The answer is yes, under the additional
assumptions that addition and a sufficient amount of scalar multiplication are definable.

How much scalar multiplication do we need exactly? For every coset λQn,m , there should exist a representative
λ for which the function x '→ λx is definable. Write PK for the prime field of K. Choose an element π of RK

of minimal positive valuation (hence, ord (π) = 1). If Fp [a1 , . . . , ad ] is the residue field of K, choose elements
ai ∈ R×

K such that ai ≡ ai mod π. Then put KK := PK [πk , a1 , . . . , ad ]. It is easy to see that this field contains
an element of every coset of Qn,m : if we put

Λn,m :=
{
c0 + c1π + . . . + cm−1π

m−1 | ci ∈ {a1 , . . . , ad} ∪ {0} and c0 1= 0
}
,

then clearly
⋃

λ∈Λn , m
λQn,m = K×. If K is a p-adically closed field, it is sufficient to require that scalar

multiplication by elements of QK
(the algebraic closure of Q in K) is definable. Indeed, this subfield, which

contains all elements of K that are algebraic over Q, has the following additional properties (as usual, we write
ord for the valuation on K):

Lemma 3.6 If K is a p-adically closed field, then QK
has the same residue field as K. Moreover, there exists

π ∈ QK
such that ord (π) = 1.

P r o o f. It is easy to see that QK
has the same residue field as K, since each x ∈ FK is a simple root of

XqK − X . The claim then follows by Hensel’s Lemma. It is shown in Lemma 3.5ii of [15] that if K is a p-
adically closed field, and F ⊂ K is algebraically closed in K, then F contains an element π of minimal positive
valuation. Hence, QK

contains an element π with ord (π) = 1.

Proposition 3.7 Let K be a p-adically closed field. Suppose that L ⊇ Ldist ∪ {+}, and that multiplication

by constants from QK
is definable in the structure (K,L). If an LM -minimal structure (K,L) admits strong cell

decomposition, then it also has definable Skolem functions.

P r o o f. Assume that (K,L) admits cell decomposition using (L,∆1 ,∆2)-cells, and that every function in∆1
is L-definable. If suffices to check that given an (L,∆1 ,∆2)-cell C and the projection map πx : C ⊂ Kl+1 →
K& , there exists a definable function g : πx(C) → C such that πx ◦ g = Idπx (C ) .

If the cell C has a center c(x) 1= 0, we first apply a translation

C → C ′ : (x, t) '→ (x, t − c(x)),

to a cell C ′ with center c′(x) = 0. Since this translation is bijective, it is invertible. Therefore the problem is
reduced to the following. Let C be a cell of the form

C = {(x, t) ∈ D × K | ord (b(x))!1 ord (t)!2 ord (a(x)), t ∈ λQn,m},

where a(x), b(x) are L-definable functions and D is an (L,∆1 ,∆2)-precell. We must show that there exists a
definable function g : πx(C) → C such that πx ◦ g = Idπx (C ) .

Given x ∈ πx(C) ⊆ D, we have to find t(x) such that (x, t(x)) satisfies the conditions

ord (b(x)) !1 ord (t(x)) !2 ord (a(x))(5)

t(x) ∈ λQn,m(6)
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We shall assume that each λ ∈ Λn,m . Then each representative has an order between 0 and n − 1. Because of

Lemma 3.6, we can assume that Λn,m ⊂ Q
K

, and hence multiplication and division by elements of Λn,m is
definable.

If λ = 0, put g(x) = (x, 0). From now on we assume that λ 1= 0.
If !1 = !2 = ‘no condition’, we can simply put g(x) = (x, λ).
If !2 = <, we can define g as follows. First partition πx(C) in parts Dµ , such that

Dµ = {x ∈ πx(C) | a(x) ∈ µQn,m}.

(Note: if µ = 0, we can reduce to the cases were !2 = ‘no condition’.) Our strategy is based on the fact that for
every x ∈ D, there exists k ∈ Z such that k satisfies

ord (b1(x)) !1ord (λ) + kn < ord (a(x)).

Restricting to a set Dµ , we construct an element t(x) with order as close as possible to ord (a(x)). This ensures
that t(x) satisfies (5). The definition of g on Dµ will depend on the respective orders of λ and µ.

If ord (λ) < ord (µ), we can define g|Dµ
as g|Dµ

: Dµ → C : x '→
(
x, λ

µ a(x)
)

. This means that we put

t(x) = λ
µ a(x). Clearly t(x) ∈ λQn,m . Also, since −n < ord ( λ

µ ) < 0, we have that 0 < ord
(

a(x)
t(x)

)
< n, and

thus condition (5) must be satisfied.
If ord (λ) # ord (µ), put gDµ : Dµ → C : x '→

(
x, λ

πn µ a(x)
)

.

If !1 = < and !2 = ‘no condition’, we choose t(x) with order as close as possible to ord (b(x)). More

specifically, if ord (λ) " ord (µ), define g as gDµ : Dµ → C : x '→
(
x, λπn

µ b(x)
)

, and if ord (λ) > ord (µ),

put gDµ : Dµ → C : x '→
(
x, λ

µ b(x)
)

.

The condition that multiplication by constants from KK should be definable in (K,L) is needed: for exam-
ple the structure

(
K; +,−,D(4) , {Rn,m}n,m

)
does not have definable Skolem functions for most (Fq , Z)-fields

because we cannot define multiplication by enough scalars (in this structure, scalar multiplication is only defin-
able for elements of PK ). The examples in the next section support the conjecture that addition also needs to be
definable in order to have definable Skolem functions.

4 Subaffine structures

In this section we study some expansions of the language Ldist
(
or rather L′

dist as we should like to achieve quan-
tifier elimination whenever possible

)
. We call these expansions subaffine because we shall only be considering

structures (K,L) that are affine in the sense that there does not exist any open subset of K2 on which multiplica-
tion is L-definable. They are subaffine because addition should not be definable on all of K2 .

A first, rather trivial example of such an expansion is the language we obtain by adding symbols c for the
scalar multiplication c : x '→ cx.

LF := {c}c∈F ∪ L′
dist.

Take fields F,K and q, q′ ∈ N such that F is an (Fq ′ , Z)-field and K is an (Fq , Z)-field. We assume that F ⊂ K
and that the valuation on K extends the valuation on F (we shall use the notation ord in both cases). Define the
set ∆K,F to be

⋃
k∈N∆

(k)
K,F , where ∆(k)

K,F is the following set of polynomials

∆(k)
K,F := {ax + by | a, b ∈ F ;x, y ∈ {x1 , . . . , xk} ∪ K}.

Let ∆(k)
K,F be the set consisting of all constant functions Kk → K : x '→ a and maps Kk → K : x '→ bxi ,

where a ∈ K, b ∈ F and xi is one of the variables x1 , . . . , xk . Put∆K,F :=
⋃

k∈N∆
(k)
K,F . It is easy to see that the

structure (K,LF ) has cell decomposition and quantifier elimination using (LF ,∆K,F ,∆K,F )-cells. The proof
is almost literally the same as the corresponding proof for Ldist. Moreover, the scalar multiplication functions we
added are the only non-trivial functions, or to be more precise:
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Lemma 4.1 Let f : A ⊆ Kk → K& be a function definable in (K,LF ). There exists a finite partition of A in
(LF ,∆K,F ,∆K,F )-cells such that on each cell C the function f has the form

f|c : C → K& : x '→ (f&(x), f2(x), . . . , fl(x)),

where fi(x) is either a constant from K or fi(x) = axj , with a ∈ F and xj one of the variables {x1 , . . . , xk}.

Structures (K,LF ) do not have definable Skolem functions, as can be seen from the following counterexample:

Lemma 4.2 Let Π be the projection map

Π : A := {(x, y, z) ∈ K3 | ord (z) = ord (y − x)} → K2 : (x, y, z) '→ (x, y).

There exists no LF -definable function f such that Π ◦ f = IdImΠ .

P r o o f. Suppose that such a function f exists. Up to a finite partition of π(A) in cells
⋃

Ci ∪
⋃

Dj , this
function will be of one of the forms

f|Ci
: C → K3 : (x, y) '→ (x, y, ai) or f|Dj

: Dj → K3 : (x, y) '→ (x, y, bjxj ),

with ai ∈ K, bj ∈ F and xj is one of the variables x and y.
On cells Ci , we use a function of the form (x, y) '→ (x, y, ai), which implies that ord (x − y) = ord (ai)

for all (x, y) ∈ Ci . As our partition is finite, we can only have a finite number of cells of this type. Put M :=
maxi ord (ai), then all tuples (x, y) for which ord (x − y) > M will be contained in

⋃
Dj . For each k > 0, this

set contains elements (x, y) that satisfy

ord (x) = ord (y) < M ∧ ord (x − y) = ord (x) + k,

which means that we should need a partition in an infinite number of parts Dj to define f .

This counterexample suggests that it might be impossible to have definable Skolem functions in a language
where addition is not definable. This is our main motivation for studying subaffine structures: we shall consider
languages L"0 ,K that have a restricted form of addition, and see whether the corresponding structures (K,L"0 ,K )
have definable Skolem functions. Consider the following the functions $0 and %0 , defined by

$0 : K2 → K : (x, y) '→
{

x + y x, y ∈ RK

0 otherwise,

and analogously for %0 , with + replaced by −. Let K ⊃ F be (Fq , Z)-fields, resp. (Fq ′ , Z)-fields. We shall verify
that structures (K,L"0 ,F ) have cell decomposition and quantifier elimination, where L"0 ,F is the language

L"0 ,F := {$0 ,%0} ∪ LF .

Definition 4.3 Let (K,L"0 ,F ) be a structure. Write Poly"0 ,F for the set of functions that can be defined as a
composition of the functions $0 ,%0 and c for c ∈ F , combined with variables x1 , x2 , . . . and constants from K.

It is important to stress that these expressions do not entirely behave like polynomials. More precisely, we have
to be aware that distributivity does not always hold. For example: suppose 0 < k1 < k2 < k3 , then

π−k2
(
πk1 $0 πk3

)
1= πk1 −k2 $0 πk3 −k2 = 0.

First we need to define a notion of cells for this context.

Definition 4.4 Let ∆"0 ,F be the set
⋃

r∈N

{
a(x1 , . . . , xr ) − b(x1 , . . . , xr ) | a(x), b(x) ∈ Poly"0 ,F

}
.

A subset of Kk is called a ($0 , F )-cell if it is a
(
L"0 ,F ,∆"0 ,F ,Poly"0 ,F

)
-cell.
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In the next lemmas, we shall show that, up to a finite partition in cells, Poly"0 ,F -functions can always be
written in a fairly simple way. Note that for every γ0 ∈ ΓK , the following function is (quantifier free) definable:

$γ0 : (x, y) '→
{

x + y ord (x), ord (y) # γ0
0 otherwise

Moreover, we have the following calculation rule. For every a ∈ F ; b, c ∈ K, γ ∈ ΓK :

a(b $γ c) = ab $γ+ord a ac.

Lemma 4.5 Take γ ∈ ΓK , a ∈ F ; d(x), h(x) ∈ Poly"0 ,F . Let ! denote <, ", > or #. The set

S := {(x, t) ∈ Kk+1 | ord (at $γ d(x)) ! ord (h(x))}

can be partitioned as a finite union of ($0 , F )-cells.

P r o o f. First note that we may suppose that a = 1 (if at 1= 0), since

ord (at $γ d(x)) ! ord (h(x)) ⇔ ord
(

t $γ−ord a
d(x)

a

)
! ord

(
h(x)

a

)
.

Put a = 1. The set S can then be partitioned as the union of the following three sets:

S =
{
(x, t) ∈ Kk+1 | ord (t) < γ ∧ ord (0)! ord (h(x))

}

∪
{
(x, t) ∈ Kk+1 | ord (t) # γ ∧ ord (d(x)) < γ ∧ ord (0)! ord (h(x))

}

∪
({

(x, t) ∈ Kk+1 | ord (t) # γ ∧ ord (d(x)) # γ
}

∩
{
(x, t) ∈ Kk+1 | ord (t + d(x)) ! ord (h(x))

})
.

The first two sets are cells. The third set is the intersection of two ($0 , F )-cells and thus again a finite union of
cells by Theorem 2.1.

Lemma 4.6 For x = (x1 , . . . , xk ), and t one variable, let the functions f1(x, t), . . . , fr (x, t) be in Poly"0 ,F .
Then Kk+1 can be partitioned in a finite number of cells A, such that on each cell A there are γ1 , . . . , γr ∈ ΓK ,
such that either

fi(x, t) = hi(x) or fi(x, t) = ait or fi(x, t) = ait $γi di(x),

with ai ∈ F , and hi(x), di(x) are in Poly"0 ,F .

P r o o f. We shall work by induction on the number of compositions. Suppose the lemma holds for functions
f and g. It suffices to check that the lemma also holds for c ◦ f and f $0 g. Take a suitable decomposition into
cells A. Choose c ∈ K. For all (x, t) ∈ A, the function c ◦ f will have one of the following forms: either

(7) (c ◦ f)(x, t) = c ◦ hf (x) or (c ◦ f)(x, t) = caf t,

or

(8) (c ◦ f)(x, t) = c
(
af t $γf df (x)

)
.

If we have functions as in (7), we are done. We can rewrite (8) as

c
(
af t $γf df (x)

)
= caf t $γf +ord c (c ◦ df (x)).

We can apply a similar reasoning to the function (f $0 g). In most cases, it is obvious that the function has one
of the required forms. The only nontrivial cases are when (f $0 g) has one of the following forms for (x, t) ∈ A:

(f $0 g)(x, t) =






af t $0
(
ag t $γg dg (x)

)
(case 1)

hf (x) $0
(
ag t $γg dg (x)

)
(case 2)

(
af t $γf df (x)

)
$0

(
ag t $γg dg (x)

)
(case 3)
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Remember that the set
{
(x, t) ∈ Kk+1 | ord (at $γ d(x)) # 0

}
can be written as a finite union of cells, by

Lemma 4.5.
We shall check that the lemma holds in case 3 (Case 1 and 2 are similar). Partition A further in cells such that

either ord
(
af t $γf df (x)

)
< 0, or ord

(
af t $γf df (x)

)
# 0 for all (x, t) ∈ A (and similarly for g). We only

need to consider cells where ord
(
af t $γf df (x)

)
# 0 and ord

(
ag t $γg df (x)

)
# 0 as our claim is trivially true

on other cells. Partition these cells further depending on the order of af t, ag t, df (x), dg (x). The only case that is
not immediately obvious is when

ord (af t) # γf , ord (df (x)) # γf , ord (ag t) # γg and ord (dg (x)) # γg .

Let C be such a cell. Without loss of generality, we may suppose that γf " γg . For (x, t) ∈ C we find that

(f $0 g)|C =
(
af t $γf df (x)

)
$0

(
ag t $γg dg (x)

)

= (af + ag )t + (df (x) + dg (x))

= (af + ag )t $γf

(
df (x) $γf dg (x)

)
.

Proposition 4.7 Every definable set of
(
K,L"0 ,F

)
can be partitioned as a finite union of ($0 , F )-cells.

P r o o f. First we show that quantifier-free definable sets can be partitioned as a finite union of cells. Because
of Theorem 2.1, it is sufficient to check that sets of type S1 or S2 can be partitioned as a finite union of cells:

S1 :=
{
(x, t) ∈ Kk+1 | f1(x, t) − f2(x, t) ∈ λQn,m

}
,

S2 :=
{
(x, t) ∈ Kk+1 | ord (f1(x, t) − f2(x, t)) < ord (f3(x, t) − f4(x, t))

}
,

where the fi(x, t) are functions from Poly"0 ,F . Intersect the sets S1 and S2 with sets {(x, t) ∈ Kk+1 |
ord (fi(x, t)) ! ord (fj (x, t))} or {(x, t) ∈ Kk+1 | ord (fi(x, t)) ! ord (hj (x))}, where ! may denote <,=
or >. When we apply Theorem 2.1 and Proposition 4.6 to these intersections, it is easy to see that it suffices to
check that the sets S̃1 and S̃2

S̃1 :=
{
(x, t) ∈ Kk+1 | a1t $γ1 d1(x) ∈ λQn,m

}
,

S̃2 :=
{
(x, t) ∈ Kk+1 | ord (a2t $γ2 d2(x)) < ord (a3t $γ3 d3(x))

}
,

can be partitioned as a finite union of cells for all γi ∈ ΓK and di(x) ∈ Poly"0 ,F . For S̃1 this follows from the
observation that the expression at $γ d(x) ∈ λQn,m is equivalent with

[ ord (at) < γ ∧ λ = 0] ∨ [ord (at) # γ ∧ ord (d(x)) < γ ∧ λ = 0]

∨
[

ord (at) # γ ∧ ord (d(x)) # γ ∧
(

t − −d(x)
a

)
∈ λ

a
Qn,m

]
.

For the set S̃2 , note that we can restrict our attention to S̃2
(1)

:= S̃2 ∩ A!, with

A! :=
{
(x, t) ∈ Kk+1 |ord (ait) # γi ∧ ord (di(x)) # γi, for i ∈ {2, 3}

}
,

since it follows easily from Theorem 2.1 that S̃2\S̃2
(1)

can be partitioned as a finite union of cells. Write d′i(x) =
−di (x)

ai
. Now S̃2

(1)
is equal to the set

S̃2
(1)

=
{
(x, t) ∈ A! | ord

(
a2(t − d′2(x))

)
< ord

(
a3(t − d′3(x))

)}
.

For ! = <, =, or >, and put

B# :=
{
(x, t) ∈ Kk+1 | ord

(
t − d′2(x)

)
! ord

(
d′2(x) − d′3(x)

)}
.

www.mlq-journal.org c© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



496 E. Leenknegt: Cell decomposition for weak p-adic structures

Then S̃2
(1)

=
(
S̃2

(1)
∩ B<

)
∪

(
S̃2

(1)
∩ B=

)
∩

(
S̃2

(1)
∩ B>

)
.

Now if ord (t − d′2(x)) < ord (d′2(x) − d′3(x)), then ord (t − d′3(x)) = ord (t − d′2(x)), so

S̃2
(1)

∩ B< = A! ∩ B< ∩
{
(x, t) ∈ Fk+1 |ord (a2) < ord (a3)

}
.

By Theorem 2.1, this can be written as a finite union of cells. The situation is similar when we intersect with B=
or B> .

The fact that quantifier-free definable sets can be partitioned as a finite union of cells, also implies that for
all ai ∈ ∆"0 ,F , the sets

{
x ∈ Kk | ord (ai) ≡ l mod n

}
can be partitioned into

(
L"0 ,F ,∆"0 ,F ,Poly"0 ,F

)
-

precells. Because of this, structures
(
K,L"0 ,F

)
have quantifier elimination by Lemma 2.2.

The following classification of the definable functions is an immediate consequence of this proposition.

Corollary 4.8 Let f : A ⊆ K& → Kr be an L"0 ,F -definable function. There exists a finite partition of A in
cells C, such that on each cell C,

f|C (x) = (f1(x), . . . fr (x)),

where fi(x) ∈ Poly"0 ,F , for i = 1, . . . , r.

Proposition 4.9 The addition function + : K2 → K : (x, y) '→ x + y is not definable in L"0 ,F .

P r o o f. Suppose addition is definable, say by some function f . Applying Corollary 4.8 and Lemma 4.6, we
can partition K2 in cells Ci and Di such that

f|Ci
(x, y) = aix $γi , 1

(
biy $γi , 2 ci

)
,

and

f|Di
(x, y) = aix or f|Di

(x, y) = biy or f|Di
(x, y) = ci,

for some ai, bi ,∈ F, ci ∈ K and γi,1 , γi,2 ∈ ΓK . The precise value of these constants depends on Ci . Put
γ := mini{γi,1}. Clearly all elements (x, y) for which ord (aix) < γ must be contained in the cells Di since for
such elements,

f|Ci
(x, y) = 0 1= x + y.

It is clear that the functions f|Di
cannot be used to define addition on a large enough set, which proves that the

addition function ‘+’ is not definable.

The fact that addition is not definable is caused by the fact that we have restricted multiplication to multipli-
cation by a constant. More precisely, the reason is the following (for simplicity, suppose that ΓK is Z). In our
language, it is impossible to take a ‘limit’ for ordx going to −∞. In a language with normal multiplication, we
do not have this restriction, and as a consequence ‘+’ can easily be defined in such a language. Take for example
the language L = ($0 , ·). For any x, y ∈ K with ord (x) " ord (y) and x 1= 0, we can define addition using the
following equality.

x + y = x
(
1 $0

y

x

)
.

It is also not hard to see that definable Skolem functions do not always exist for structures (K,L"0 ,F ). Indeed,
this follows from the following counterexample.

Lemma 4.10 Let Π be the projection map

Π :
{
(x, y, z) ∈ K3 | ord (z) = ord (y − x)} → K2 : (x, y, z) '→ (x, y)

}
.

There exists no L"0 ,F -definable function f such that Π ◦ f = IdImΠ .
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P r o o f. Put A =
{
(x, y, z) ∈ K3 | ord (z) = ord (y − x)

}
. Suppose f : Π(A) → A is a definable function

for which Π ◦ f = IdImΠ . By Corollary 4.8, there exists a partition of Π(A) in cells Ci and Di such that

f|Ci
(x, y) =

(
x, y, aix $γi hi(y)

)
,

and

f|Di
(x, y) = (x, y, aix), or f|Di

(x, y) = (x, y, hi(y)),

with ai ∈ F, γi ∈ ΓK and hi ∈ Poly"0 ,F . Note that f|Ci
(x, y) = (x, y, 0) for elements (x, y) for which

ord (aix) < γi . So the sets Di must contain all (x, y) for which ordx is too small. However, it is easy to see that
the functions f|Di

do not satisfy our requirements.

This supports our conjecture that structures where addition is not definable do not have definable Skolem
functions. Take for example the structure (K,L"0 ,K ). If we fix any constant γ ∈ ΓK , we can define addition for
the set {(x, y) ∈ K2 |min{ord (x), ord (y)} # γ}. Taking smaller and smaller values for γ, we can thus define
addition on very large open subsets of K2 , but still not large enough to enable us to define Skolem functions.

While the definability of addition and scalar multiplication seem to be a lower bound for the existence of
Skolem functions, it is not a sufficient condition. In a next paper [9] we shall give examples of expansions of
(K,LK ∪ {+}) where all bounded semi-algebraic sets are definable, but where definable Skolem functions do
not exist.
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