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locking on impact is observed for the modulation of muscle reflex
responses and for the changes in overall hand impedance (the me-
chanical resistance to an imposed displacement, see Fig. 2). Re-
markably, motor preparation of reflex responses and limb imped-
ance is correctly timed on impact even when blindfolded subjects
are alerted of ball release by an auditory cue but have no real-time
information about TTC (Lacquaniti & Maioli 1989b). The hy-
pothesis that an internal model of gravity is used by the brain to
time catching actions has recently been tested in micro-gravity as
well (McIntyre et al. 1999). Astronauts caught a ball projected
from the ceiling at different, randomized speeds both on ground
(1g) and in-flight (0g). Motor activity started too early at 0g, with
time shifts in accord with the internal model hypothesis. Appar-
ently, they did not believe their eyes that told them the ball was

traveling at constant velocity, but they behaved as if the ball was
still accelerated by gravity.

Catching studies also reveal that another dynamic parameter
can be internalized, namely the predicted momentum at impact.
Figure 3 shows that the amplitude of anticipatory muscle activity
scales linearly with the expected momentum of the ball impact
(Lacquaniti & Maioli 1989a). This was demonstrated using a fac-
torial design, which involved the independent experimental ma-
nipulation of height of fall and mass of the ball. Thus, other kine-
matic or kinetic parameters could be excluded as putative control
elements. In addition, it has been shown that, when the mass of
the ball is unexpectedly changed, subjects scale their responses to
the expected momentum.

In conclusion, we reviewed evidence that supports shepard’s
hypothesis that during our evolutionary development we have in-
ternalized environmental regularities and constraints. In particu-
lar, we showed that physical laws may be internalized for our in-
teraction with the environment even in cases in which they are not
overtly exploited for perception and cognition. Moreover, the in-
ternal models of dynamics we have considered for the task of ball
interception also satisfy barlow’s criterion that the regularity
must be turned to an advantage to have a biologically relevant
value, as is well known to all fans of ball games.
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Figure 2 (Lacquaniti & Zago). Time course of the changes of
end-point impedance during catching. Continuous, unpredictable
perturbations were applied at the elbow joint by means of a torque
motor, starting from ball release (time – 0.55 sec) through ball im-
pact (time 0) and afterward. The time-varying values of stiffness
and viscosity coefficients at the end-point were computed by
cross-correlating input torque with output displacement. The
modulus (arbitrary scale) and the argument of hand viscosity are
plotted in A and B, respectively. A 0% argument corresponds to a
horizontal vector pointing outward from the hand, whereas a 90%
argument corresponds to a vertical, upward vector. Note that prior
to ball impact, the magnitude of hand viscosity (and stiffness, not
shown) increases significantly, while the direction of the viscosity
vector rotates closer to the vertical, that is the direction of ball im-
pact (modified from Lacquaniti et al. 1993b).

Figure 3 (Lacquaniti & Zago). Linear relation between the am-
plitude of biceps EMG anticipatory responses (mean value over
the 50-msec interval preceding impact) and the momentum of the
ball at impact time (modified from Lacquaniti & Maioli 1989a).



Two research areas in which Roger shepard has made enormous
contributions are stimulus representation (e.g., Shepard 1980)
and stimulus generalization (e.g., Shepard 1987b). The Bayesian
account of concept learning developed by tenenbaum & grif-
fiths (t&g) addresses both of these areas, providing a unifying
consolidation of Shepard’s representational ideas, and a natural
extension of the “consequential region” approach to modeling
generalization. A number of challenges and problems, however,
remain for future research.

On the representational front, t&g demonstrate that their ap-
proach to building representations is sufficiently flexible to ac-
commodate spatial, featural, and a range of other established ap-
proaches. While t&g note that part of the attraction of Shepard’s
(1987b) theory is that it assumes well-defined representational
structures, their number game demonstrates the need for richer
representational possibilities. By modeling stimulus representa-
tions in terms of prior distributions across an unconstrained hy-
pothesis space, t&g develop an approach that may be sufficiently
sub-conceptual (Smolensky 1988) to act as a useful unifying frame-
work.

The price of (representational) freedom, however, is eternal
(complexity) vigilance. The representational flexibility of the hy-
pothesis space approach demands that the complexity of the 
representations be controlled. In the absence of some form of Oc-
cam’s Razor, there is a danger that arbitrary stimulus representa-
tions can be constructed to solve particular problems, without
achieving the substantive interpretability, explanatory insight, and
generalizability that is the hallmark of good modeling.

What is required is a method for imposing priors on a hypoth-
esis space that satisfy representational constraints in a parsimo-
nious way. Following t&g, it seems plausible that representa-
tional constraints could be internalized through evolution, or
learned on the basis of interaction with the world. Any source of
information that offers adaptive advantage provides a candidate
for representational refinement. The important point is that the
representational priors must accommodate the constraints at an
appropriate level of generality. Representations fail to serve their
adaptive purpose if they do not generalize, and do not allow what
has been learned (or internalized) in the past to be brought to bear
on present concerns.

t&g are certainly aware of this challenge, as their discussion of
the origin of representational priors indicates. Their general notion
of developing a “vocabulary for a variety of templates” to tackle the
challenge is an intriguing and promising one. One of the funda-
mental tools needed to pursue this undertaking, however, is a mech-
anism for assessing the complexity of arbitrary hypothesis space rep-
resentations, and t&g are comparatively silent on this issue.

Fortunately, there are grounds for optimism. The Bayesian frame-
work adopted by t&g is well suited to addressing issues of model
complexity (Kass & Raftery 1995), and there have been recent 
attempts to develop Bayesian complexity measures for multidi-
mensional scaling, additive clustering, and other approaches to
stimulus representation subsumed under the hypothesis space ap-
proach (Lee 1999). The additive clustering analysis (Lee 2001) is
particularly promising in this regard, since it gives measures that
are sensitive to the “functional form” component of representa-
tional complexity (Myung & Pitt 1997), as will surely be required
for the general hypothesis space approach. Indeed, given the for-
mal correspondence between t&g’s Bayesian model and Tver-
sky’s (1977) ratio model, and the close relationship of the ratio
model to the contrast model that underpins additive clustering,
some of the groundwork has already been laid.

In terms of stimulus generalization and concept learning, the
model developed by t&g constitutes an impressive extension of
Shepard’s (1987b) approach, particularly through the introduc-
tion of the size principle. Their Bayesian formulation seems to
capture important capabilities of human learning that are not 
obviously present in discriminative learning models such as AL-
COVE (Kruschke 1992).

One issue that t&g do not substantially address is representa-

tional adaptation resulting from learning. A fundamental problem
for any adaptive system with a memory is: how should established
representations be modified on the basis of experience? The
Bayesian account of concept learning involves the interaction 
of data-driven (perceptive) and knowledge-driven (apperceptive)
components, and so is well placed to deal with this issue. Studies
of learned categorical perception that measure the effects of con-
cept learning on human mental representations (Goldstone et al.
2001) could provide one source of empirical data to guide theo-
retical development.

Ultimately, addressing the issue of adaptation requires an un-
derstanding of the way in which perceptive and apperceptive pro-
cesses interact across different learning episodes and time scales.
The Bayesian concept learning model modifies its representations
to learn a particular concept from a small number of stimuli, but
the permanence of these modifications is not clear. If a new con-
cept is subsequently learned across the same stimulus domain,
what is the effect of previous learning? Do the priors on the hy-
pothesis space revert to their original state, or do they assume a
different distribution that is partly influenced by the learned 
concept? In some cases, it seems likely that the representations
will be unchanged. It would come as no surprise if human perfor-
mance on repeated versions of the number game were shown to
be independent of each other. For particularly salient concepts, or
for conceptual relationships that are continually reinforced over
time, however, there is a much stronger argument for change. On
evolutionary time scales, the argument that representations have
adapted in response to ancestral experience is compelling. Ex-
tending the Bayesian model of concept learning to balance the use
of representations in learning with the use of learning in repre-
sentation-building should be a focus of future research.

Finally, it may be worth some effort exploring the relationship
between the Bayesian approach of t&g, and the “fast and frugal”
approach to cognitive modeling (Gigerenzer & Todd 1999b). In
discussing a related Bayesian model of prediction (Griffiths &
Tenenbaum 2000), the same authors have argued that humans do
not actually perform the Bayesian calculations specified by their
model, but instead apply a simple heuristic that approximates the
outcomes of these calculations. It would be interesting to know
whether t&g hold the same view in relation to their model of con-
cept learning and, if so, what sorts of heuristics they believe are
likely to be involved.
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Abstract: Shepard claims that “evolutionary internalization of universal
regularities in the world” takes place. His position is interesting and seems
plausible with regard to “default” motion detection and aspects of colour
constancy which he addresses. However, his claim is not convincing with
regard to object recognition.
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shepard makes a convincing case for “evolutionary internaliza-
tion of universal regularities in the world” with regard to “default”
motion detection and to the aspects of colour constancy he ad-
dresses. His (provisional) attempt to apply the same principles to
object recognition is not convincing. (I address the first five para-
graphs of the sect. 1.10, “Formal characterization of generaliza-
tion based on possible kinds.”)
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