
Evolving Self-taught Neural Networks:
The Baldwin Effect and the Emergence of Intelligence

Nam Le1

Abstract. The so-called Baldwin Effect generally says how learn-
ing, as a form of ontogenetic adaptation, can influence the process of
phylogenetic adaptation, or evolution. This idea has also been taken
into computation in which evolution and learning are used as compu-
tational metaphors, including evolving neural networks. This paper
presents a technique called evolving self-taught neural networks –
neural networks that can teach themselves without external supervi-
sion or reward. The self-taught neural network is intrinsically moti-
vated. Moreover, the self-taught neural network is the product of the
interplay between evolution and learning. We simulate a multi-agent
system in which neural networks are used to control autonomous
agents. These agents have to forage for resources and compete for
their own survival. Experimental results show that the interaction be-
tween evolution and the ability to teach oneself in self-taught neu-
ral networks outperform evolution and self-teaching alone. More
specifically, the emergence of an intelligent foraging strategy is also
demonstrated through that interaction. Indications for future work on
evolving neural networks are also presented.

1 Introduction

Evolution and learning are two forms of adaptation. The former is
a change at genotypic level of a population, also called phylogenetic
adaptation. The latter is a change at phenotypic level of an individ-
ual as a result of experience with its environment during lifetime.
Thus, learning is a form of lifetime or ontogenetic adaptation. Rea-
sonably, lifetime adaptation takes place at a quicker pace than evolu-
tion, preparing the organism for increasingly uncertain environments
which may require some survival skill that the slower evolutionary
process could not fully offer.

Interestingly, evolution and learning can complement each other
through the phenomenon called the Baldwin Effect [1], [14], which
was first demonstrated computationally by Hinton and Nowlan
(henceforth H&N) [5]. Following this success, there have been quite
a few important studies studying the interaction between learning
and evolution, in evolutionary dynamic optimisation [9], notably in
evolving neural networks [15], and in the NK-Landscape [11]. Re-
gardless of the problem domain and how learning is implemented,
most studies focus on how learning and evolution are combined to
solve an individual problem in a sort-of single-agent environment.
This means each agent has its own problem (though they are copies
of each other) to solve. There is no interactive effect between the
agents and their solutions to each other. This differs greatly in the
case of a multi-agent environment in which agents live in the same

1 Natural Computing Research & Applications Group, University College
Dublin, Ireland, email: nam.lehai@ucdconnect.ie

environment and may have to compete and cooperate in solving their
own problems or problems shared with others.

Although there should possibly be a mixture of flavour, this paper
aims at two main things. First, we present a technique called evolv-
ing self-taught neural networks, or neural networks that can teach
themselves without external supervisory signals. This is an impor-
tant aspect of this contribution. Second, we simulate a multi-agent
foraging world to test the performance of our proposed method and
see the effect of interest. More specifically, we shall be seeing how
evolution and the ability of self-teaching interact with each other in
creating more adaptive and autonomous foraging agents, those that
have little knowledge about the world.

In the remainder of this paper, we initially present some prior
research relating to the Baldwin Effect, including some review on
learning and evolution in neural networks. We then describe the de-
tail of the neural network and the simulation undertaken. The results
from these experiments are analysed and discussed, and finally, con-
clusions and several interesting future research opportunities are pro-
posed.

2 Related Work

2.1 The Baldwin Effect

In nature, the organism with learning ability may be able to learn
some new skill or knowledge to adapt as the environment becomes
harder or unpredictable that what evolution has provided is not suf-
ficient to survive. The Baldwin Effect is often understood as, over
generations, that skill or knowledge becomes innate or closer to be
innate so that the future organism can quickly adapt to the environ-
ment with fewer or even without any learning effort undertaken [17].
This shows how learning, or lifetime adaptation, can influence the
evolutionary pathway of a species.

The idea that learning can influence evolution in Darwinian frame-
work was discussed by psychologists and evolutionary biologists
over one hundred years ago through ‘A new factor in evolution’ [1],
[17]. However, it gradually gained more attention since the clas-
sic paper in 1987 by the British Cognitive Scientist Geoffrey Hin-
ton and his colleague Steven Nowlan at CMU ([5]). Hinton and
Nowlan (henceforth H&N) demonstrated an instance of the Bald-
win effect in a computer simulation. They used a Genetic Algorithm
to evolve a population in a Needle-in-a-haystack landscape showing
that learning can help evolution to search for a solution when evolu-
tionary search alone is ineffective. Through the Baldwin-like effect
in H&N’s simulation, the correct behaviour (solution) can gradually
emerge by the interaction between learning and evolution, but cannot
happen by both learning or evolution alone [5].



The model developed by Hinton and Nowlan, though simple, is
interesting, opening up the trend followed by a number of research
papers investigating the interaction between learning and evolution.
Following the framework of Hinton and Nowlan, there have been
a number of other papers studying the Baldwin effect in the NK-
fitness landscape – a ‘tunably rugged‘ fitness landscape. Problems
within that kind of landscape are shown to fall in NP-completeness
category. Several notable studies of the Baldwin effect in the NK-
model include work by Giles Mayley [11] in which the Baldwin Ef-
fect was shown to occur as learning can guide evolution to cope with
the rugged fitness landscape.

2.2 Learning and Evolution in Neural Networks

Following the work of Hinton and Nowlan [5], There have also been
several studies on the topic of learning and evolution in Neural Net-
works. Notable studies include [6] in which the authors used a ge-
netic algorithm to evolve the initial weights of a digit classifier neural
network which then can be learned by backpropagation. They found
that if the amount of learning is used properly, learning can take ad-
vantage of starting weights produced by evolution to further the clas-
sification performance.

Todd and Miller [20] proposed an imaginary underwater environ-
ment in which each agent in one of the two feeding patches, and has
to decide whether to consume substances floating by, without any
feedback given to an individual agent that could be used to discrim-
inate between food and poison. Each agent uses its neural network
to associate the colour (red or green) and the substance (food or poi-
sion). Hebbian learning [4] in combination with evolution was shown
to do better than both evolution and learning alone in this scenario.

Nolfi and his colleagues made a simulation of animats, or robots,
controlled by neural networks situated in a grid-world, with discrete
state and action spaces [15]. Each agent lives in its own copy of
the world, hence no mutual interaction. The evolutionary task is to
evolve action strategies to collect food effectively, while each agent
learns to predict the sensory inputs to neural networks for each time
step. Learning was implemented using backpropagation based on the
error between the actual and the predicted sensory inputs to update
the weights of a neural network. It was shown that learning to pre-
dict can enhance the evolutionary search, hence increasing the per-
formance of the robot.

Generally learning in neural networks can be thought of as part
of neural plasticity. There have been some other ideas, like evolving
local learning rules to update the weights [2], evolution of neuromod-
ulation which facilitates the information transfer between neurons in
hopes of creating meta-learning [3]. Please refer to [18] for more re-
cent studies on evolving plastic neural networks. In short, most of
the work use disembodied and unsituated neural networks in single-
agent environment, having no mutual interaction as they solve their
own problems, having no effect on other’s performance.

In this paper, we propose a neural architecture called self-taught
neural networks – neural networks that can teach themselves without
an external teacher or reward. This differs greatly from traditional
supervised learning in which a learning machine is provided with la-
bels served as the external teacher. This technique also differs from
reinforcement learning in which a learning agent has a reward pro-
vided by its external environment. Indeed, the agent controlled by the
self-taught network can perform learning on its own without external
reward. This type of network can be considered sort-of intrinsically
motivated, hence the agent controlled by the network. Moreover, the
self-taught network can both learn (self-teaching) and evolve. We

shall be seeing how learning and evolution interact with each other
in producing self-taught neural networks in later sections.

Second, we simulate a situated multi-agent system – a system con-
taining multiple situated agents living together and doing their tasks
while competing with each other. Each agent is controlled by a neu-
ral network but situated (and has a soft-embodiment). This means, the
way an agent acts and moves in the world affects the subsequent sen-
sory inputs, hence the future behaviour of that agent. Our simulations
are described in the following section.

3 Simulation setup
This section describes the detail of the simulated world containing
foods and agents as well as the neural network architecture used to
control the agent moving and foraging in the world.

3.1 The Simulated World of Foods and Agents
Suppose that 20 agents situate in a continuous 640x640 2D-world,
called MiniWorld, and they have to find resources to feed them-
selves to survive. There are 50 food particles in the world. Each food
particle is represented by a square image with size 10x10. Each agent
in MiniWorld also has a squared body of size 10x10. Agents and
foods are initially located at separate regions in MiniWorld depend-
ing on the world map. We use two world maps (map A, and map B)
in our simulations as described as follows:

Let’s denote width and height the width and the height of Mini-
World. Initially, in both maps, all agents are located around the vicin-
ity of radius 40 (4 times the size of an agent) around the point
(width/4, height/4) (the central point of the top left quarter, as
shown in Figure 1).

Foods in map A have horizontal and vertical dimensions randomly
chosen in ranges (width ∗ 5/8, width ∗ 7/8) and (height ∗ 1/8,
height ∗ 3/8), respectively. The food region in map A is the square
that has the same central point as the top right quarter, and each
side of that square has the length of width/4. In map B, the food
has its horizontal and vertical dimensions randomly chosen in ranges
(width ∗ 5/8, width ∗ 7/8) and (height ∗ 5/8, height ∗ 7/8), ac-
cordingly. The food region in map B is the square that has the same
center as the bottom right quarter, and each side of that square has
the length of width/4. Two world maps are visualised in Figure 1
(Please note that dim green lines are sketched only for the purpose
of visualising the world map of foods and agents, MiniWorld is a
continuous world, not grid-like). Through the visualisation, it can be
temporarily seen that map B is likely to be more difficult than map A
since the food source is further to reach.

Initially agents is located far from the food source so that they
have to forage to find the food source, to feed themselves. When an
agent’s body happens to collide with a food particle, the food particle
is eaten, the energy level of the agent increases by 1, and another
food piece randomly spawn in the same region but at a different
location. The collision detection criterion is specified by the distance
between the two bodies (of the agent and of the food). The agent
body somehow affects how the agent senses and acts in MiniWorld.
By the re-appearance of food, the environment changes as an agent
eats a food.

One property of MiniWorld is it has no strict boundary, and we
implement the so-called toroidal – this means when an agent moves
beyond an edge, it appears in the opposite edge.

Each agent has a heading (in principle) of movement in the envi-
ronment. Rather than initialising all agents with random headings, to



Figure 1. MiniWorld – The environment of agents and food, 640x640.

make it more controllable, all the agents are initialised with a hori-
zontal heading (i.e. with 0 degree). This somewhat explains the pur-
pose of the design of map A and map B. In map A, all agents are
initially born with a tendency to move forwards the food source. On
the contrary, the agent in map B is born with a wrong direction to
the food source. This clearly shows that map B is more difficult than
map A. Agents in map B should have to acquire correct foraging
behaviour to find the food source first, not to say they have to com-
pete with each other for the energy. This is to say, agents in map B
should develop a form of intelligent foraging to effectively seek for
resources.

In our simulation, we assume that every agent has a priori ability
to sense the angle between its current heading and the food if appear-
ing in its visual range. The visual range of each agent is a circle with
radius 4. Each agent takes as inputs three sensory information, which
can be the binary value 0 or 1, about what it sees from the left, front,
and right in its visual range. If there is no food appearing in its visual
range, the sensory inputs are all set to 0. If there is food appearing
on the left (front, or right), the left (front, or right) sensor is set to 1;
otherwise, the sensor is 0.

Let θ (in degree) be the angle between the agent and the food par-
ticle in its visual sense. An agent determines whether a food appears
in its left, front, or right location in its visual range be the following
rule: 

15 < θ < 45 => right

θ ≤ 15 or θ ≥ 345 => front

315 < θ < 345 => left

We let all agents live in the same MiniWorld. They feed for their
own survival during their life. The more an agent eats, the less the
chance for others to feed themselves. This creates a stronger com-
petition in the population. When an agent moves for foraging, it
changes the environment in which other agents live, changing how
others sense the world as well. This forms a more complex dynam-
ics, even in simple scenario we are investigating in this paper.

The default velocity (or speed) for each agent is 1. Every agent has
three basic movements: Turn left by 9 degrees and move, move for-
ward by double speed, turn right by 9 degrees and move. For simplic-
ity, these rules are pre-defined by the system designer of MiniWorld.
We can imagine the perfect scenario like if an agent sees a food in
front, it doubles the speed and move forward to catch the food. If the
agent sees the food on the left (right), it would like to turn to the left
(right) and move forward to the food particle. The motor action of an

Figure 2. Agent situated in an environment seeing food

Figure 3. Neural network controller for each situated agent. Connection
weights can be created by evolutionary process, but can also be changed

during the lifetime of an agent.

agent is guided by its neural network as described below.

3.2 The neural network controller

Each agent is controlled by a fully-connected neural network to de-
termine its movements in the environment. What an agent decides
to do changes the world the agent lives in, changing the next sen-
sory information it receives, hence the next behaviour. This forms a
sensory-motor dynamics and a neural network acts as a situated cog-
nitive module having the role to guide an agent to behave adaptively,
or Situated Cognition even in such a simple case like what is present-
ing in this paper. Each neural network includes 3 layers with 3 input
nodes in input layer, 10 nodes in hidden layer, and 3 nodes in output
layers.

The first layer takes as input what an agent senses from the
environment in its visual range (described above). The output
layer produces three values as a motor-guidance for how an agent
should behave in the world after processing sensory information.
The maximum value amongst these three values is chosen as a
motor action as whether an agent should turn left, right, or move
forward (as described above). All neurons except the inputs use
a sigmoidal activation function. All connections (or synaptic



Figure 4. Self-taught neural network.

strengths) are initialised as Gaussian(0, 1). These weights are first
initialised as innate, or merely specified by the genotype of an agent,
but also have the potential to change during the lifetime of that agent.

The architectural design of neural network controller is visualised
in Figure 3. In fact, the neural architecture as shown in Figure 3 has
no ability to learn, or to teach itself. In the following section, we
extend this architecture to allow for self-taught learning agents.

3.3 The Self-taught neural architecture

To allow for self-taught ability, the neural controller for each agent
now has two modules: one is called Action Module, the other is
called Reinforcement Module. The action module has the same net-
work as previously shown in Figure 3. This module takes as inputs
the sensory information and produces reinforcement outputs in or-
der to guide the motor action of an agent. The reinforcement module
has the same set of inputs as the action module, but possesses sep-
arate sets of hidden and output neurons. The goal of reinforcement
network is to provide reinforcement signals to guide the behaviour
of each agent. The topology of a neural network in this case is visu-
alised in Figure 4.

The difference between the output of the reinforcement module
and the action module is used as the error of the output behaviour of
the action module. That error is used to update the weights in action
modules through Backpropagation [16]. Through that learning pro-
cess, the action module approximates its output activation towards
the output of the reinforcement module. In fact, the reinforcement
and the action modules are not necessary to have the same topology.
For convenience, in our simulation we allow the reinforcement mod-
ule possesses the same neuronal structure as the action module, but
has 10 hidden neurons separate from the hidden neurons of the action
module, hence the connections. The learning rate is 0.01.

In the following sections, we describe simulations we use to inves-
tigate the evolutionary consequence of lifetime learning.

3.4 Simulation 1: Evolution alone (EVO)
In this simulation, we evolving a population of agents without learn-
ing ability. The neural network controller for each agent is the one
described in Figure 3. The genotype of each agent is the weight ma-
trix of its neural network, and the evolutionary process takes place
as we evolve a population of weights, a common approach in Neu-
roevolution (NE) [21].

Selection chooses individuals based on the number of food eaten
in the foraging task employed as the fitness value. The higher the
number of food eaten, the higher the fitness value. For crossover, two
individuals are selected as parents, namely parent1 and parent2.
The two selected individuals produce one offspring, called child.
We implement crossover as the more the success of a parent, the
more the chance its weights are copied to the child. The weight
matrices of the child can be simply described as the algorithm below.

Algorithm 1 Crossover
1: function CROSSOVER(parent1, parent2)
2: rate = parent1.fitness/parent2.fitness comment: fitness ratio
3: child.weights = copy(parent2.weights)
4: for in ∈ len(child.weights) do
5: if random() < rate then
6: child.weights[i] = parent1.weights[i]
7: end if
8: end for
9: end function

Once a child has been created, that child will be mutated based on
a predefined mutation rate. In our work, mutation rate is set to 0.05.
A random number is generated, if that number is less than mutation
rate, mutation occurs, and vice versa. If mutation occurs for each
weight in the child, that weight is added by a random number from
the range [-0.05, 0.05], a slight mutation. After that, the newly born
individual is placed in a new population. This process is repeated un-
til the new population is filled 100 new individual agents. No elitism
is employed in our evolutionary algorithm.

The population goes through a total of 100 generations, with 5000
time steps per generation. At each time step, an agent does the fol-
lowing activities: Perceiving MiniWorld through its sensors, comput-
ing its motor outputs from its sensory outputs, moving in the environ-
ment which then updates its new heading and location. In evolution
alone simulation, the agent cannot perform any kind of learning dur-
ing its lifetime. After that, the population undergoes selection and
reproduction processes.

3.5 Simulation 2: Evolution of Self-taught agents
(EVO+Self-taught)

In this simulation, we allow lifetime learning, in addition to the evo-
lutionary algorithm, to update the weights of neural network con-
trollers when agents interact with the environment. We evolve a pop-
ulation of Self-taught agents – agents that can teach themselves. The
self-taught agent has a self-taught neural network architecture as de-
scribed previously and shown in Figure 4. During the lifetime of an
agent, the reinforcement modules produce outputs in order to guide
the weight-updating process of the action module. Only the weights
of action modules can be changed by learning, the weights of rein-
forcement module are genetically specified in the same evolutionary
process as specified above in Evolution alone simulation.



We can interpret this scenario as an agent has an ability to produce
reinforcement signals to guide itself. It is evolution that produces
these reinforcement signals, or the desire to external stimuli (the sen-
sory inputs in this case), for every agent. In other words, it is evo-
lution that provides the self-teaching ability for each agent. This is
how evolution influences learning. And more than this, it is learning
during the lifetime that changes the fitness of each agent, hence the
fitness landscape which then affects the evolutionary process. This is
the interaction between learning and evolution which is being inves-
tigated in this paper.

We use the same parameter setting for evolution as in EVO simula-
tion above. At each time step, an agent does the following activities:
Perceiving MiniWorld through its sensors, computing its motor out-
puts from its sensory outputs, moving in the environment which then
updates its new heading and location, and updating the weights in
action module by self-teaching. After one step, the agent updates its
fitness by the number of food eaten. After that, the population under-
goes selection and reproduction processes as in Evolution alone.

Remember that we are fitting learning and evolution in a Dar-
winian framework, not Lamarckian. This means what will be learned
during the lifetime of an agent (the weights in action module) is not
passed down onto the offspring.

3.6 Simulation 3: Self-taught agents alone
(Self-taught-alone)

We conduct another simulation in which all agents are self-taught
agents – having self-taught networks that can teach themselves dur-
ing lifetime. What differs from simulation 2 is that at the begin-
ning of every generation, all weights are randomly initialised, rather
than updated by an evolutionary algorithm like in simulation 1. The
learning agents here are initialised as blank-slates, or tabula rasa,
having no predisposition to learn or some sort of priori knowledge
about the world. The reason for this simulation is that we are curi-
ous whether evolution brings any benefit to learning in MiniWorld.
In other words, we would like to see if there is a synergy between
evolution and learning, not just how learning can affect evolution.

Experimental results are presented and discussed in the following
section.

4 Results and Analysis
4.1 Learning Facilitates Evolution
First we look at the performanace of the first two simulations, EVO
and EVO+Self-taught. All results are averaged over 30 independent
runs.

Figure 5 depicts the dynamics of fitness over generations, while
Figure 6 presents a statistical comparison of the best and average
fitness over runs. A similar trend can be observed is that all exper-
imental settings have higher performance in map A than in map B.
This is understandable as map B has been shown more difficult to
forage than map A.

How each type of experimental setup performs compared to each
other? First we look at the dynamics of the number of food eaten.
It can be seen that EVO+Self-taught outperforms EVO alone in all
maps with respect to both the best and average fitness. Specifically,
by looking at the performance on map A we see that the best agent
in EVO+Self-taught, on average, eats around 40 food particles more
than the best agent in EVO alone. Additionally, the average agent in
EVO+Self-taught eats around 40 food items more than the average
agent in EVO alone. This means, as a whole, the EVO+Self-taught

Figure 5. Comparison of eating ability. a) Top: Map A b) Bottom: Map B

system has around 800 energy (each food item accounts for 1 energy)
higher than the EVO system alone.

Looking at the performance on map B, it is interesting to see that
while the EVO+Self-taught system still can forage for foods, the
EVO system cannot eat any food at all.

Please recall the description of our learning agents as well as the
map B. Every learning agent is born with an initial horizontal heading
that may be changed when the agent experiences the world through
its senses and motors. The more the agent encounters, the more likely
the agent can change its subsequent movements, hence its heading.
However, in map B the food source is located far from the agent, at
first, and far from the initial heading of every agent. This means that
each agent with its innate ability and horizontal heading cannot move
along the correct direction to the food source. After being born, they
move horizontally as designed. Importantly, because of the inability
to learn to change the behaviour during lifetime, every agent in EVO
moves based on its innate behaviour. This explains why the EVO
alone system cannot forage and eat food.

Conversely, the self-taught agent can still eat food in map B. One
plausible explanation for this is the effect of learning through self-
teaching on evolution as follows. Like in EVO alone, every self-
taught agent is initially born with a wrong direction to the food
source. However, with the ability to teach oneself by leveraging the
difference between the action and the reinforcement modules, the
weights of the action module of some agent may have been changed
during lifetime by backpropagation algorithm. It is this process that
may have changed the movement of some agent, make it more ran-
dom at first (like performing a random search in the movement space,
rather than going in one direction). By doing some random move-
ment, there may have been some agent that somehow could reach
the food source (e.g. by any kind of luck). Because of this, the agent



Figure 6. Boxplot. a) Top: Map A b) Bottom: Map B.

that can reach the food source has a higher chance of being selected
to produce offspring the for next generation. Thus, its genetic in-
formation is more likely to proliferate. It is important to note that
the genetic information of each self-taught learning agent consists of
not only the initial weights for the action module but also the ini-
tial weights for the reinforcement module. Thus, when an agent is
selected for reproduction, its self-teaching ability is likely to be also
promoted at later generations.

The boxplots in Figure 6 present some statistical results on the
best and the average fitness over 30 runs. we can easily see the same
effect as presented above in both map A and map B. The advantage
of EVO+Self-taught over EVO alone is statistically significant.

We can claim that he combination of learning in the form of self-
teaching and evolution increases the adaptivity of the population
measured by the number of food eaten in any case.

4.2 Is That the Baldwin Effect?
We have seen how learning during lifetime facilitates the evolving
population of self-taught agents, having higher performance in a
multi-agent environment compared to EVO alone. One curious ques-
tion here is whether the Baldwin-like Effect has occurred?

This is why we conduct the third simulation in which the neural
networks of self-taught agents are all randomly initialised, without
the participation of evolution. It can be observed in Figure 5 and
Figure 6 that in both map A and B, the population of randomly self-
taught agents has lower performance than that of EVO+Self-taught,
especially when it comes to the performance of the whole popula-
tion (average fitness in our scenario). The difference is statistically

significant as shown in Figure 6.
It is also interesting that in our simulation, the blank-slate popula-

tion by self-teaching cannot outperform the EVO alone in the easier
map A, but has little advantage over the EVO alone in the harder case
(map B) when the EVO alone cannot search for any food.

It is plausible here to conclude that learning, as a faster adaptation,
can provide more adaptive advantage than the slower evolutionary
process when the environment is dynamic like in MiniWorld. How-
ever, it is evolution that provides a good base for self-taught agents
to learn better adaptive behaviours in future generations rather than
learning as blank-slates in Random-Self-taught population. This can
also be explained by the understanding of the Baldwin Effect, or
the synergy between evolution and learning. Through the evolution-
ary process, some priori-knowledge about the environment can be
encoded in the neural networks controlling agents. Agents having
priori-knowledge, or predisposition to learn adaptive behaviours in
our scenario, can learn faster and learn more adaptively than blank-
slate agents. This is the Baldwin-like Effect – the interplay between
learning and evolution.

4.3 The Emergence of Intelligent Foraging

Interestingly, it is not just the performance but also the emergence of
foraging behaviour – what can be called intelligent in this sense.

Figure 7 depicts the emergence of an intelligent foraging be-
haviour over time. Due to scope of this paper we only report
the emergence on the harder map, where only one system – the
EVO+Self-taught has shown a dominant performance.

As we can see in the first two images in Figure 7, at earlier gen-
erations the population cannot find the way to reach the food source.
Some might have moved in some random orientation rather than just
following the horizontal direction. In the two following images, we
can see that after several generations some agents appeared to find a
way to reach the food source, while the rest was still unable to forage
correctly, moving randomly but getting better.

In the second-last image, we observe that most agents have found
the way to reach the food source except for one agent. However, the
last image shows the whole system could reach the food source. They
stayed there and competed for resources. All agents seem to know
where to forage as a whole. Remember that, every agent in our Mini-
World does not have any idea about the location of the map (very
simple sensory inputs) as well as the location of other agents. How-
ever, at the end of the day they still can reach the food source. This
intelligence is the emergence through the interaction between evo-
lution and self-teaching in the evolution of their brains, or neural
networks.

5 Conclusion and Future Work

In this paper, we have presented a technique called Evolving Self-
taught Neural Networks, and simulated a foraging task in a multi-
agent system. Experimental results have shown that the proposed
technique which combines evolutionary search and self-teaching in
neural networks can enhance the system, better than evolution and
self-teaching staying in isolation. An intelligent foraging behaviour
is shown to emerge from the interaction between evolution and self-
teaching. Self-teaching ability can help an agent better adapt to its
environment, changing the subsequent evolutionary pathway of a
species. Evolution is shown to provide more adaptive self-taught
agents in future generations, better than learning as blank-slates.



Figure 7. The Emergence of Intelligent Foraging Strategy over Time, by
EVO+Self-taught on map B.(Video provided below)

There are quite a few avenues for future research building-on this
study. We can complexify MiniWorld by including more objects like
obstacles, more substances with negative rewards (poison) to make
the learning task more complex, hence the intelligence required. We
are curious to see how the evolved self-teaching ability can better
promote the system in more complex environments.

The computational method is simple enough to illustrate the idea,
but still has some indications. The idea of self-taught neural networks
can be powerful when there is no external supervision (or label pro-
vided from external data). This opens a way to produce autonomous
intelligence, which might open a route to AGI – Artificial General
Intelligence. The algorithm and technique used in this paper can also
be a potential technique to solve unsupervised learning, or learning
with limited label data (weak supervision, especially in reinforce-
ment learning and games. We are curious whether evolution can pro-
vide a better base to learn than learning as blank-slates like what was
claimed by DeepMind in games [13]. Indeed, the shallow network
used in this paper does not restrict the application of the core philo-
sophical idea into deep neural networks, as long as we can combine
evolutionary search and the idea of self-taught neural architecture by
employing variants of gradient-based learning.

There is some limitation that should not be neglected, including
the use of a fixed neural architecture. One plausible solution could
be evolving both the weights and the topology of a neural network
[19]. This is an interesting pathway for future work if we can evolve
variable self-supervised neural architecture which can be an intrinsi-
cally general neural learner.

Delving a little deeper into lifetime learning, this category can be
subdivided into asocial (or individual) learning (IL) and social learn-
ing (SL). Each is a plausible way for an individual agent to acquire
information from the environment at the phenotypic level. SL has
been observed in organisms as diverse as primates, birds, fruit flies,
and especially humans [8]. Self-teaching can be considered an in-
dividual learning process which updates the behaviour of a single
agent. The relationship between individual and social learning has
raised some important scientific curiosity as whether the organism
should rely on social or individual information [7], [10], [12, 11]. So-
cial learning may offer another way to propose where the reinforce-
ment signal comes from. If it learns from observing other agents,
then the self-learning could proceed from imitation learning. Future
work will investigate this line of research and see if the presence of

social learning could result in a more complex intelligent behaviour.

REFERENCES
[1] J. Mark Baldwin. A new factor in evolution. The American Naturalist,

30(354):441–451, 1896.
[2] Samy Bengio, Yoshua Bengio, Jocelyn Cloutier, and Jan Gecsei. On

the optimization of a synaptic learning rule. In D. S. Levine and
W. R. Elsberry, editors, Optimality in Biological and Artificial Net-
works. Lawrence Erlbaum, 1995.

[3] Kenji Doya. Metalearning and neuromodulation. Neural Networks,
15(4):495 – 506, 2002.

[4] D.O. Hebb. The Organization of Behavior: A Neuropsychological The-
ory. A Wiley book in clinical psychology. Wiley, 1949.

[5] Geoffrey E. Hinton and Steven J. Nowlan. How learning can guide
evolution. Complex Systems, 1:495–502, 1987.

[6] Ron Keesing and David G. Stork. Evolution and learning in neural
networks: The number and distribution of learning trials affect the rate
of evolution. In NIPS 1990, 1990.

[7] Kevin N. Laland. Social learning strategies. Learning and Behavior,
32:4–14, 2004.

[8] N. Le, M. O’Neill, and A. Brabazon. The baldwin effect reconsidered
through the prism of social learning. In 2018 IEEE Congress on Evo-
lutionary Computation (CEC), pages 1–8, July 2018.

[9] Nam Le, Anthony Brabazon, and Michael O’Neill. How the “baldwin
effect” can guide evolution in dynamic environments. In Theory and
Practice of Natural Computing, pages 164–175. Springer International
Publishing, 2018.

[10] Nam Le, Michael O’Neill, and Anthony Brabazon. Adaptive advantage
of learning strategies: A study through dynamic landscape. In Anne
Auger, Carlos M. Fonseca, Nuno Lourenço, Penousal Machado, Luı́s
Paquete, and Darrell Whitley, editors, Parallel Problem Solving from
Nature – PPSN XV, pages 387–398, Cham, 2018. Springer International
Publishing.

[11] Nam Le, Michael O’Neill, and Anthony Brabazon. Evolutionary con-
sequences of learning strategies in a dynamic rugged landscape. In
Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO ’19, Prague, Czech Republic, 2019 forthcoming. ACM.

[12] Nam Le, Michael O’Neill, and Anthony Brabazon. How learning strate-
gies can promote an evolving population in dynamic environments. In
IEEE Congress on Evolutionary Computation, CEC 2019, Wellington,
New Zealand, 10-13 June 2019 forthcoming. IEEE Press.

[13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu,
Joel Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, An-
dreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie,
Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level con-
trol through deep reinforcement learning. Nature, 518(7540):529–533,
feb 2015.

[14] C. L. Morgan. On modification and variation. Science, 4(99):733–740,
nov 1896.

[15] Stefano Nolfi, Domenico Parisi, and Jeffrey L. Elman. Learning and
evolution in neural networks. Adaptive Behavior, 3(1):5–28, 1994.

[16] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams.
Learning representations by back-propagating errors. Nature,
323(6088):533–536, oct 1986.

[17] George Gaylord Simpson. The baldwin effect. Evolution, 7(2):110, jun
1953.

[18] Andrea Soltoggio, Kenneth O. Stanley, and Sebastian Risi. Born to
learn: The inspiration, progress, and future of evolved plastic artificial
neural networks. Neural Networks, 108:48–67, dec 2018.

[19] Kenneth O. Stanley, Bobby D. Bryant, and Risto Miikkulainen. Evolv-
ing adaptive neural networks with and without adaptive synapses. In
Proceedings of the 2003 Congress on Evolutionary Computation, Pis-
cataway, NJ, 2003. IEEE.

[20] Peter M. Todd and Geoffrey F. Miller. Exploring adaptive agency ii:
Simulating the evolution of associative learning. In Proceedings of
the First International Conference on Simulation of Adaptive Behavior
on From Animals to Animats, pages 306–315, Cambridge, MA, USA,
1990. MIT Press.

[21] Xin Yao. Evolving artificial neural networks. Proceedings of the IEEE,
87(9):1423–1447, Sep. 1999.


