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Abstract The language of entropy is examined for consistency with its mathematics
and physics, and for its efficacy as a guide to what entropy means. Do common de-
scriptors such as disorder, missing information, and multiplicity help or hinder under-
standing? Can the language of entropy be helpful in cases where entropy is not well
defined? We argue in favor of the descriptor spreading, which entails space, time,
and energy in a fundamental way. This includes spreading of energy spatially during
processes and temporal spreading over accessible microstates states in thermody-
namic equilibrium. Various examples illustrate the value of the spreading metaphor.
To provide further support for this metaphor’s utility, it is shown how a set of reason-
able spreading properties can be used to derive the entropy function. A main conclu-
sion is that it is appropriate to view entropy’s symbol S as shorthand for spreading.

1 Introduction

Thermodynamics and statistical mechanics were developed to describe macroscopic
matter. They differ from mechanics, which describes point particles and rigid bodies,
in that they account for internal energy storage modes. Accordingly, a key function
of thermodynamics is internal energy, namely, the average total energy of a system,
including all storage modes. An equally important, but less easily digested, function
is entropy. Perhaps because it can be defined in diverse ways, and its behavior in
thermodynamic systems can be subtle, entropy’s meaning and usefulness have come
into question [1]. A commonly used, but inadequate, language surrounding entropy
contributes to this. Despite its intimate connection with energy, entropy has been de-
scribed as a measure of disorder, multiplicity, missing information, freedom, mixed-
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up-ness, and the like—none of which involves energy explicitly.1 The purpose of the
present article is to discuss how entropy can be related to energy in a qualitative, inter-
pretive way, offering the possibility of an improved understanding and appreciation
of entropy’s generality and value.

1.1 The Disorder Metaphor

The most common metaphor for entropy relates it to disorder. Usage goes back at
least to Boltzmann [2], who wrote, “. . . one must assume that an enormously compli-
cated mechanical system represents a good picture of the world, and that all or at least
most of the parts of it surrounding us are initially in a very ordered—therefore very
improbable—state . . . whenever two or more small parts of it come into interaction
with each other, the system formed by these parts is also initially in an ordered state,
and when left to itself it rapidly proceeds to the disordered most probable state.”

Unfortunately, the term disorder is deficient. First and foremost, there is no general
definition of it in the context of thermodynamics. Dictionary definitions typically
are: Lack of order or regular arrangement; confusion; (in medicine) a disturbance
of normal functioning. “Lack of regular arrangement” has a spatial connotation, and
one can indeed conceive of spatial disorder; i.e., where the positions of particles
lack regularity; and spin disorder, which refers to the degree of non-regularity of up-
down spin orientations. The term confusion can be related to the disorder that some
associate with higher temperatures, often envisaged in terms of increased thermal
agitation. The definition of disorder seems to be variable, depending on the situation,
which makes the term vague and confusing. Burgers [3] observed that disorder “leads
to anthropomorphic forms of reasoning which are often misleading.” Yet physicists
still tend to gravitate toward use of the disorder metaphor.

Another difficulty is that one can be misled by focusing attention on one obvious
type of disorder to the exclusion of important others. For example, this is tempting
in the discussion of spontaneous crystal formation in an isolated, metastable super-
saturated solution. Here a dissolved solid’s concentration exceeds its maximum equi-
librium value and a slight perturbation can trigger crystal formation. From a spatial
viewpoint, there is more order after crystallization, yet the system’s entropy (includ-
ing liquid, solid crystals, and container walls) must increase. The tempting misleading
interpretation that entropy decreases, based on increased spatial order is exacerbated
by the fact that it is possible that temperature has also decreased. To be sure, the
physical phenomena here are not transparent, but the ease of misinterpretation using
the disorder metaphor is noteworthy.

The behavior of some binary liquid crystals clearly illustrate weaknesses with the
disorder metaphor [4]. At one temperature, such a system can be in a nematic phase,
where the rod-like molecules tend to align, but positions show no particular spatial or-
der. For lower temperatures, the system can enter the smectic phase, where molecules
lie in well defined planes, establishing a spatial layering. The increased spatial order

1Some entail energy implicitly. For example, multiplicity refers to the number of accessible energy states
consistent with specified conditions.
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(decreased disorder) does indeed accompany reduced entropy. However, as temper-
ature is lowered further, the system re-enters a nematic phase with increased spatial
disorder, but lower entropy. This shows again that the disorder metaphor can easily
mislead. Generally, an undue focus on configurational entropy (including that associ-
ated with the regularity of positions or alignment of rodlike or polarized molecules),
without giving proper attention to entropy contributions from linear and angular mo-
mentum effects, is a dangerous practice.

Karl Darrow [5] examined examples for which entropy could be associated with
disorder, and observed that disorder is not always useful, as indicated by a free ex-
pansion of a gas in a constant-temperature environment. Entropy increases, but one
cannot unambiguously associate more disorder with the final state. He wrote, “Would
anyone spontaneously say that a gas in a two-liter bottle is more disorderly than the
same gas at the same temperature in a one-liter bottle?” In another discussion of
the free expansion, Bohren and Aldrich [6] write that increased volume only means
increased disorder if “we define this to be so. But if we do, we have defeated our pur-
pose of supposedly explaining entropy as disorder. That is, we have defined disorder
by means of entropy, not the other way around.”

Despite Darrow’s displeasure with some aspects of the disorder metaphor, he used
it subsequently in its variable-definition form and applied it to the zero-temperature
limit: “Zero entropy corresponds to perfect order . . . if two or more types of disorder
coexist each makes to the total entropy a contribution of its own, which vanishes when
it vanishes.” This implies that as entropy approaches zero, all possible forms of disor-
der disappear. Although this circumvents defining disorder for the zero-temperature
limit, it does not provide much help with finite temperature situations, where defini-
tions of various types of disorder would be needed.

The term disorder has been criticized by a variety of others writers, including Din-
gle [7], who described the view that entropy is disorder as “a most inessential visual-
ization which has probably done much more harm than good.” Wright [8] examined
various examples of real phenomena and concluded, “. . . there is no clear correlation
between propositions about entropy and anything intuitively obvious about disorder.”
Lambert [9], critically assessed usage of the disorder metaphor in chemistry text-
books, and has successfully convinced authors of 15 textbooks to remove statements
relating entropy with disorder from new editions of their books.

Upon the death of J. Willard Gibbs, a list of subjects intended for supplementary
chapters to Gibbs’ Equilibrium of Heterogeneous Substances was discovered [10].
One of the topics was “On entropy as mixed-up-ness.” Unfortunately, Gibbs did not
live to bring this to fruition and it is not known just what Gibbs had in mind. Mixed-
up-ness sounds a lot like disorder and Gibbs, who had considerable mathematical
skills, might have been able to solidify its meaning. As it stands, even if one places
value in the disorder metaphor, its current use does not entail specific reference to
energy, the centerpiece of thermodynamics. In this sense, it cannot get to the heart of
the physics.

1.2 Missing Information, Multiplicity, Optiony, Freedom, Unavailability

The metaphor of missing information for entropy is much preferred over disorder.
Edwin T. Jaynes [11], used information theory to develop the full mathematical
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framework of equilibrium statistical mechanics. The missing information metaphor is
well defined and can be quite useful, especially in understanding that descriptions of
macroscopic matter necessarily discard enormous amounts of information about sys-
tem details, working ultimately with a small number of macroscopic variables such as
pressure, volume, and temperature. It does not, however, use space, time, and energy
in a qualitatively useful way, and thus cannot replace the spreading metaphor that is
proposed herein as an interpretive tool.

Related terms are multiplicity [12] or equivalently, optiony [13]. These terms re-
fer to the number of microstates that correspond to a given macrostate. With these
choices, entropy is defined in terms of Boltzmann’s famous S = kB ln(multiplicity) =
kB ln(optiony), where kB is Boltzmann’s constant (the Boltzmann form is discussed
further in Sect. 1.3). The Second Law can then be stated: If an isolated macroscopic
system is permitted to change, it will evolve to the macrostate of largest multiplicity
(or optiony) and will remain in that macrostate.

The metaphor freedom was proposed by Styer [4], who wrote, “. . . the advantage
of the ‘entropy as freedom’ analogy is that it focuses attention on the variety of mi-
crostates corresponding to a macrostate whereas the ‘entropy as disorder’ analogy
invites focus on a single microstate.” Styer also warns of deficiencies in the term
freedom, and suggests that one use both freedom and disorder together to better see
the meaning of entropy. The freedom metaphor was proposed independently by Bris-
saud [14]. Freedom can be related to multiplicity, optiony and missing information,
and has some attractive features.

Finally, there exists a common metaphor that entropy is a measure of the unavail-
ability of energy that can be converted to work in some processes. Because the energy
alluded to is macroscopic energy in this engineering-oriented definition, it cannot
help us understand why, for example, 2 kg of copper has twice the entropy of 1 kg of
copper.

Although the above terms can all be helpful, they do not convey the notions that
thermodynamic processes entail energy spreading and that thermodynamic equilib-
rium is a dynamic equilibrium at a microscopic level.

1.3 The ‘Spreading’ Metaphor

The metaphor of spreading is based explicitly upon space, time, and energy. Space
is intimately involved because energy tends to spread spatially to the extent possible.
For example when hot and cold objects are put in thermal contact, energy spreads
equitably (discussed in Sect. 3) between them. And when an object is in thermal
equilibrium at constant temperature, its quantum state varies temporally as the sys-
tem’s state point spreads over accessible quantum states that are consistent with the
thermodynamic state. Spatial spreading is a helpful interpretive tool for processes
and equilibrium states, and temporal spreading is particularly useful for interpreting
entropy in a particular thermodynamic state.

Clausius came close to using the concept of spreading even before he published his
path-breaking 1865 paper that introduced entropy. In 1862 he proposed a function that
he called disgregation [15]. Clausius pictured molecules as being in constant motion
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and viewed this heat2 as tending to “loosen the connection between the molecules,
and so to increase their mean distances from one another.” Clausius went further in
his 1865 introduction of entropy, writing

S − So =
∫

dQ

T
=

∫
dH

T
+

∫
dZ. (1)

This represents entropy relative to its value (So) in a reference state as the sum of two
terms. In the first, dH is the change in what Clausius called heat content, which we
now call the average kinetic energy as calculated in the canonical ensemble of classi-
cal statistical mechanics. In the second term, dZ is the change in disgregation, which
we now understand [16] comes from the position integrals of the canonical partition
function in classical statistical mechanics. This is consistent with disgregation being
related to what is referred to herein as spatial spreading.

Denbigh [17] used the spreading idea to describe irreversibility, citing three forms
that display divergence toward the future: (i) a branching towards a greater number of
distinct kinds of entities; (ii) a divergence from each other of particle trajectories, or
of sections of wave fronts; (iii) a spreading over an increased number of states of the
same entities. These statements entail space and time and although they do not refer
specifically to energy, they can easily be interpreted in terms of it. Earlier, Denbigh
wrote [18], “As soon as it is accepted that matter consists of small particles which
are in motion it becomes evident that every large-scale natural process is essentially
a process of mixing, if this term is given a rather wide meaning. In many instances
the spontaneous mixing tendency is simply the intermingling of the constituent par-
ticles, as in inter-diffusion of gases, liquids and solids. . . . Similarly, the irreversible
expansion of a gas may be regarded as a process in which the molecules become more
completely mixed over the available space. . . . In other instances it is not so much a
question of a mixing of the particles in space as of a mixing or sharing of their total
energy.” To this it should be added that when particles move and mix, they carry with
them their translational kinetic and stored (e.g., rotational or vibrational) energies;
i.e., they spread their energies and exchange energy with other particles.

While multiplicity, missing information, and the like entail the number of possible
states, the spreading metaphor entails a picture of dynamic equilibrium in terms of
continual shifts from one microstate to another. The difference can be viewed as use
of a noun (multiplicity, information, . . . ) vs. use of a verb (spreading). The spreading
route envisages an active system, where macroscopically invisible energy exchanges
take place—even in equilibrium—while the alternative noun descriptors picture what
is possible, rather than what happens spatially and temporally. The mathematics is
the same for both, but the interpretations differ significantly.

There seems to be a tendency for some people to link uncertainty with disorder.
For example, after a free expansion, the average volume per particle is larger, and
we are less certain about where a particle is at any instant. In this sense, missing in-
formation has increased. Each molecule carries its translational and internally stored
energies to a larger spatial region, but if the gas temperature is unchanged, or has

2This language is obsolete. The term heat is now reserved for energy transfers induced by temperature
gradients.
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decreased, in what sense has the gas become more disordered? Evidently some relate
their own uncertainties about a particles’ whereabouts with the degree of disorder in
the gas itself. The poorly defined term disorder has anthropomorphic underpinnings
that seem to make it acceptable for some to bend its meaning with its use.

The spreading metaphor is powerful, and offers a physically motivated, transpar-
ent alternative to the metaphors discussed above. Styer [4] observed that the most
important failing of “. . . the analogy of entropy and disorder invites us to think about
a single configuration rather than a class of configurations.” The spreading metaphor
addresses this deficiency by focusing on temporal shifts between configurations. In
1996, the spreading metaphor was used to introduce and motivate the development
of thermodynamics pedagogically [19]. In 2002, Lambert [9, 20] argued in favor of
energy-based language to replace the inadequate metaphor of disorder in chemistry
textbooks. The present paper is intended to extend the discussion of the spreading
metaphor for a wider audience of research scientists.

2 Spreading in Equilibrium Thermodynamic States

2.1 Following Boltzmann’s Lead

Microscopic connections between entropy and spreading can be seen best via the
Boltzmann entropy expression

S = kB lnW(E,V,N), (2)

where kB is Boltzmann’s constant and W(E,V,N) is the number of microstates
that are consistent with total system energy E, volume V , and particle number N .
Classically, W(E,V,N) is an integral over the 6N -dimensional phase space [21],

W(E,V,N) = 1

N !
∫ (

d3q d3p

h3

)N

δ(E − HN), (3)

where HN is the system’s Hamiltonian. The delta function δ(E − HN) restricts
nonzero contributions to the integrals to a 6N − 1 dimensional constant-energy sur-
face. These equations are the basis of the microcanonical ensemble formalism of
statistical mechanics, from which the more widely used canonical, and grand canoni-
cal ensemble formalisms are derived. It is natural to use the fundamentally important
(2) and (3) to introduce the concept of spreading.

The space and momentum integrals run over all possible spatial positions and
momenta for each particle. By varying initial conditions, any point in the phase
space volume W(E,V,N) is accessible.3 The functions W(E,V,N) and S(E,V,N)

therefore increase with E and V , holding the remaining two variables fixed, because
an increase in either of these variables increases the accessible phase space volume.4

3It is implicitly assumed that accessible phase space regions with equal phase space volumes are equally
likely and that equal times are spent in them.
4Changes with N at fixed E and V are more subtle, and we cannot conclude that S(E,V,N) always
increases with N .
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A single system’s phase point traverses the phase space in time as particles move
and exchange energy. This traversal provides a graphic image of a system’s particles
spreading and exchanging energy through space, as time progresses. Energy, space,
and time are all explicitly involved. In this sense, entropy can be thought of as a
spreading function.

In real systems, the total energy is never exactly constant and energy exchanges
with the environment, even if weak, cause continual changes in the system’s mi-
crostate. To address this case, the function W(E,V,N) in (2) can be replaced by
W(E,�E,V,N), the phase space volume of the set of points {q,p} such that

E − 1
2�E < system energy < E + 1

2�E. This is the phase space volume of points
in an energy shell rather than on an energy surface. Here energy exchanges with the
environment cause continual changes in the system’s phase point, in addition to the
constant energy flow envisaged originally.

For a quantum system, W(E,V,N) is the number of quantum states with total
energy E; i.e., the degeneracy of E. In principle, the system can be in any of these
states, or more generally a superposition of them. For an ensemble, if each system’s
state could be measured, one would find many of the possible states. This can be
interpreted as a kind of spreading over the members of the ensemble. For a real system
that interacts with its environment, as in the classical case, the number of states,
W(E,�E,V,N), in the energy interval (E − 1

2�E,E + 1
2�E) can be used. The

interactions induce continual jumps from one quantum state to another, a veritable
‘dance’ over accessible states. This is temporal spreading, and this view provides an
interpretation for a number of familiar properties of entropy.

For example, under given temperature and pressure conditions, the entropy per
particle of monatomic ideal gases tend to increase with atomic mass [19, 22]. This can
be understood because the energy levels of an ideal gas are inversely proportional to
atomic mass and thus are closer together for higher mass atoms. Thus, in any energy
interval �E, there will be more states for gases with higher atomic mass, and more
states over which the dance over accessible states can occur. This increased temporal
spreading over states corresponds to higher entropy.

Another example is a comparison of the entropy per particle S(T ,p,N) of N -
particle monatomic and polyatomic gases at temperature T and pressure p. It is found
that Smono(T ,p,N) ≤ Spoly(T ,p,N). This a consequence of there being more states
in an energy interval �E in the neighborhood of the average system energy because
of the existence of rotations and vibrations in polyatomic molecules. Furthermore,
substances comprised of polyatomic molecules with more atoms/molecule tend to
have higher entropy values [22] for the same basic reason. More degrees of free-
dom lead to more states in a given energy interval. This implies a greater degree of
temporal spreading over microstates and higher entropy.

2.2 Maxwell Momentum Distribution

Spreading can be viewed in various ways, one of which is through the Maxwell
momentum distribution F(p), as illustrated in Fig. 1. Here momenta are separated
into bins, in the spirit of the energy cells used by Boltzmann to enable combina-
toric counting arguments. The momentum distribution is shown rather than the more
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Fig. 1 Probability density of
gas particles as a function of
momentum for three
temperatures

familiar speed distribution because momentum is a more informative variable, con-
taining both speed and mass information—and furthermore, it is the variable used,
along with position, in the phase space. Examination of the curves shows that, as ex-
pected, more higher-momentum bins become significantly occupied as temperature
increases. As gas molecules exchange energy with one another and with container
walls, they shift from bin to bin. This reflects a temporal spreading similar to that
described above in terms of the phase space trajectory for classical systems and for
a dance over discrete energy states for quantum systems. More temporal spreading
over bins at higher temperatures means higher entropy.

2.3 Effects of Interparticle Forces

The existence of interparticle forces can inhibit spreading and lower the value of
W(E,V,N) and thus the corresponding entropy. This effect can be appreciated
by examining a one-dimensional classical harmonic oscillator with energy E =
p2/2m + kx2/2. For fixed energy E, the momentum is bounded by |p| ≤ (2mE)1/2

and the position is bounded by |x| ≤ (2E/k)1/2. The system’s phase space trajectory
is an ellipse and its phase space volume is the ellipse’s circumference. The semi-axes
have lengths (2mE)1/2 and (2E/k)1/2. Although an exact closed form expression for
the circumference does not exist, it is clear that in the limit of zero force constant k,
the circumference approaches infinite length and as k becomes large the circumfer-
ence approaches a minimum for fixed E. Here W(E,V,N) is independent of V , and
N = 1, so the simple argument here along with (2) imply that S is a decreasing func-
tion of k for arbitrarily high and low values. Of course the functions W and S are
of questionable value here, but this example does illustrate how a force can inhibit
spreading.

In classical statistical mechanics, a gas with temperature T , volume V , and par-
ticle number N , has maximum entropy when there are zero interparticle forces; i.e.,
Sideal(T ,V,N) ≥ Snonideal(T ,V,N). To see how this comes about, suppose the sys-
tem has Hamiltonian H = K + Φ , where K and Φ are the kinetic and potential
energies. In the canonical ensemble, the entropy for a system with Hamiltonian H is
SH = kB lnQH + 〈H 〉/T . Here QH = T r[exp(−H/(kBT ))], and for classical sys-
tems, the trace is taken to be the integral operator (h3N !)−1

∫
(d3qd3p)N . For an ideal

gas at the same temperature and volume, the entropy is SK = kB lnQK + 〈K〉/T .



1752 Found Phys (2007) 37: 1744–1766

The Gibbs–Bogoliubov inequality [23], which compares two systems with Hamil-
tonians A and B , is −kBT lnQB ≤ kBT lnQA +Q−1

A T r[(B −A) exp(−A/(kBT ))].
Choosing A ≡ H and B ≡ K , the inequality implies SK −SH ≥ T −1[〈K〉K −〈K〉H ].
In classical statistical mechanics, it is easy to see that 〈K〉K = 〈K〉H , showing that
SK ≥ SH , and thus, as stated above,

Sideal(T ,V,N) ≥ Snonideal(T ,V,N). (4)

Equation (4), derived by Baierlein [24] and generalized by Leff [25], reflects the fact
that position-dependent forces reduce the degree of spatial spreading and the degree
of temporal spreading as particles exchange energy. This occurs in the sense that
correlations exist between the positions of interacting molecules, and these molecules
are not as free to spread their energy as they are in an ideal gas. Equation (4) holds
for charged particles in a magnetic field and for lattices of discrete and continuous
spins [25].

Despite the fact that one can give a plausible argument for (4) to hold in the quan-
tum domain,5 it does not do so in general [26]. A counterexample has been exhibited
for a two-dimensional model of low-density helium monolayers and for ideal quan-
tum gases at sufficiently low temperatures. An interpretation is that this reflects the
existence of effective forces associated with Bose–Einstein and Fermi–Dirac statis-
tics that can offset the effects of electromagnetic intermolecular forces—and thus the
degree of energy spreading. The delicacy of the competition between quantum me-
chanical and electromagnetic forces is evident from the result that (4) is violated in
helium monolayers for low temperatures sufficient for quantum effects to exist, but is
actually satisfied for even lower temperatures.

Additionally, writing E = K + φ, the well known constant-volume heat capacity
relation, kBT 2Cv = 〈(E − 〈E〉)2〉 implies

kBT 2Cv = [〈K2〉 − 〈K〉2] + [〈Φ2〉 − 〈Φ〉2] + 2[〈KΦ〉 − 〈K〉〈Φ〉]. (5)

For position dependent potential energies Φ , in classical statistical mechanics the
last bracket vanishes. The first bracket is kBT 2Cv,ideal, and the middle bracket is
non-negative. Thus we find the pleasing inequality

Cv,nonideal ≥ Cv,ideal. (6)

In essence, the existence of potential energy, in addition to kinetic energy, provides a
second mode for energy storage, increasing the heat capacity. Using (6), constant-
volume integration between specified initial and final temperatures, provides the
constant-volume entropy inequality,

(�Snonideal)v ≥ (�Sideal)v. (7)

5When the ideal gas energy states are highly degenerate, one expects the addition of interparticle forces
to split this degeneracy, and thereby lower the system entropy [24]; i.e., there will be fewer states and
thus less spreading in a given energy interval. Perhaps high enough degeneracy is guaranteed only for
sufficiently high energy states, which dominate only in the classical domain.
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Here is an interpretation of (7) for heating. At higher temperatures, forces become
less effective and spatial spreading in the nonideal gas entropy approaches that for
the ideal gas. Given the initially reduced spatial spreading in the nonideal gas, this
accounts for (7).

2.4 Photon Gas

The photon gas in an otherwise empty container whose walls are at constant tem-
perature T is an interesting system [27]. If the container is a cylinder and one of
the cylinder’s end walls is a movable piston, one can envisage (in principle) starting
out with zero photons, with the piston making contact with the opposite (fixed) end.
If the piston is slowly moved away from the fixed end, photons pour into the con-
tainer from the walls, establishing average photon number N(T ,V ) = rV T 3, with
r = 2.03 × 107 m−3 K−3, at volume V . The photon gas has literally been formed by
movement of the piston, providing space for the photons. The corresponding internal
energy is U(T ,V ) = bV T 4, where b = 7.56 × 10−16 J K−4 m−3. The pressure of the
photon gas at volume V is p = 1

3bT 4 and the work done by the gas in the volume
change from zero to V is W = 1

3bV T 4. The first law of thermodynamics then implies
isothermal heat transfer Q = 4

3bV T 4, and thus the final photon gas entropy is

S(T ,V ) = Q/T = 4

3
bV T 3. (8)

Note that S(T ,V ) ∝ N(T ,V ).

In the process of building the gas, photons and their energies spread throughout
the container, clearly increasing the spatial spreading of energy. Once established, the
dance over accessible states can be understood in terms of the continual absorption
and emission of photons over time. If T is increased, the average number N of pho-
tons increases, which increases the amount of temporal energy spreading associated
with absorption and emission of photons. Additionally, Fig. 2 shows that the entropy
density—namely, the entropy per unit volume, per unit frequency of the photon gas—
changes with temperature in a manner reminiscent of the Maxwell momentum distri-
bution discussed in Sect. 2.2. An increasing number of bins hold significant numbers

Fig. 2 Entropy per unit volume,
per unit frequency of a photon
gas for three temperatures
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of photons at higher temperatures. This implies a greater degree of temporal spread-
ing because of continual absorption and emission of photons and fluctuating numbers
of photons and energy within more bins.

2.5 Thermal Wavelength and Spreading

When (2) is evaluated for a classical ideal gas, and the thermodynamics equation
(∂S/∂E)V = 1/T is invoked, the result obtained in the large N limit is

S(T ,V,N) = NkB [ln(v/λ3) + constant], (9)

with v ≡ V/N , λ = h/(2πmkBT )1/2, the thermal wavelength.
The thermal wavelength can be viewed as the quantum extent of each particle

and λ3 as its quantum volume; i.e., an estimate of the volume of its wave packet. For
v > λ3, v/λ3 is an indicator of the fraction of the container that is “occupied.” Strictly
speaking (9) holds only for v � λ3; i.e., in the classical limit. Equation (9) predicts
that S decreases as T is decreased with v fixed.

Commonly, the effects of temperature change are viewed in terms of momentum,
but (9) suggests a very different view of the situation [19]. Suppose the total spatial
volume V is divided into M = V/λ3 cells, each the size of a wave packet. An atom
can spread its energy to any of the M cells. The particles behave as independent enti-
ties, with negligible quantum interference if M � N ; i.e., λ3 	 v. As T is lowered,
M decreases and the number of accessible cells becomes smaller, reducing the degree
of energy spreading in the sense that it becomes more likely, and eventually, neces-
sary that some cells contain more than one particle. Increasing the temperature leads
to the opposite conclusion, namely, the amount of energy spreading increases. All of
this is consistent with the expected inequality, (∂S(T ,V,N)/∂T )V > 0.

Although (9) and the cell picture above hold for non-interfering particles only—
i.e., for λ3 	 v, the thermal wavelength concept is valid for all temperatures. As T is
lowered and λ increases, it becomes more likely that two or more particles will have
overlapping wave packets; i.e., for M < N , some cells must be occupied by more than
one particle. Let To denote the temperature at which λ3 = v. At this temperature there
are as many wave packet-sized cells as particles. As T is lowered below To, quantum
interference builds, as illustrated symbolically in Fig. 3, and extreme quantum effects
become possible. Such effects are expected for

T < To = h2

2πmkBv2/3
. (10)

Bose–Einstein condensation is an extreme low-temperature behavior that has been
verified experimentally [28]. Einstein’s treatment of the ideal B-E gas shows a phase
transition for any specific volume v at the critical temperature Tc,BE such that λ3

c/v =
2.612 [29]. This condition is consistent with expectations; i.e., Tc < To. Specifically,

Tc,BE = h2

2πmkB(2.612)2/3v2/3
= 0.53To. (11)
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Fig. 3 Symbolic representation of particle wave packets for higher temperatures, where λ3 	 v and lower
temperatures, where λ3 ≈ v. The rectangular boundaries represent spatial regions within the fluid (not the
full container volume). The thermal wavelength λ does not become of macroscopic size until T is well
below temperatures that have been reached in any laboratory

The main point here is that the growth of the thermal wavelength at low tempera-
tures restricts spreading, albeit with some quantum subtleties.6,7 The reduced spatial
spreading signals reduced entropy and as T decreases toward absolute zero spatial
spreading and entropy approach zero.

Although λ → ∞ as T → 0, in actual experiments λ does not become of macro-
scopic size until T is lower than temperatures that have been reached in any lab-
oratory. For example, in the neighborhood of helium’s lambda point, 2.7 K, where
extreme quantum behavior is observed, λ3/v ≈ 3 (remarkably close to the condition
for B-E condensation in an ideal gas) and λ ≈ 5 × 10−10 m.

Nothing in our discussion of thermal wavelength restricts it to systems satisfying
B-E statistics, and it should apply equally well to Fermi–Dirac statistics. In particular,
(10) should still hold. For an ideal gas with spin 1/2 particles, which satisfies F-D
statistics, the Fermi temperature is [29]

TF = h2

2πmkBv2/3

(
3π1/2

8

)2/3

= 0.76To. (12)

Thus the Fermi temperature, below which extreme quantum effects occur, does in-
deed lie in the region where such effects are expected, based upon thermal wavelength
considerations—and inspired by the spreading metaphor.

In summary, the view of inhibited spatial spreading as temperature is lowered and
thermal wavelength increases is consistent with known behavior of entropy decreas-
ing toward zero with decreasing temperature.

2.6 Free and Non-Free Expansions

The free expansion, which was alluded to earlier, is conceptually simple, but it illus-
trates profound truths about entropy. In its most basic form, it entails a container with

6One subtlety is that λ3 does not represent a rigid volume; it is only an indicator of the range over which
quantum interference becomes strong.
7S. Chu argued that B-E condensation can be viewed in terms of increased particles wavelength; Amer-
ican Institute of Physics Symposium: Diverse Frontiers of Science, May 3, 2006, Washington, DC. This
provided the impetus for addressing low temperature ideal gases in this section.
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insulating walls and total volume 2V . A partition separates the container into left and
right chambers, each with volume V . There is a gas in the left chamber and the right
chamber is devoid of matter. The insulation is breached briefly while the gas tem-
perature T is measured. The thermometer is removed and the insulation is replaced.
The partition is then removed quickly enough that few collisions with gas molecules
occur during the process; i.e., removal does not disturb the gas measurably and the
internal energy change of the gas is zero: �E = 0. According to the discussion in
Sect. 2, the phase space volume has increased and thus the entropy has increased,
because gas energy has become spread over a larger spatial volume.

If the gas is ideal and is in the classical region of temperature and density, its
temperature does not change. If interparticle forces exist, the temperature can either
decrease or increase, depending on its initial temperature [30]. There exists an inver-
sion temperature TI that is similar to the more well known inversion temperature for
Joule throttling processes. For temperatures above TI , the gas temperature increases
in a free expansion. At temperatures below TI , the gas temperature decreases. Typi-
cally, TI is higher than is encountered under most experimental conditions and free
expansions normally lead to cooling. Helium has TI ≈ 200 K, so for a free expansion
beginning at room temperature, helium’s temperature rises, giving a further contribu-
tion to gas entropy’s increase. The crux of the matter is this: If the gas particles have
sufficiently high kinetic energies, they can get close enough to other particles that
the average force is repulsive. In this case, expansion to a larger volume diminishes
this effect and reduces the average potential energy, which demands a concomitant
average kinetic energy increase to assure that �E = 0.

In terms of spreading, when the average force between molecules is repulsive,
spatial spreading is enhanced and this adds to the effect of the volume increase.
Thus larger entropy changes are expected, consistent with an increased volume plus
a higher temperature. In the more common situation, when the average force between
molecules is attractive, spreading is constrained and this reduces the net amount of
spatial spreading. This is consistent with the effect of increased volume being par-
tially offset by a temperature decrease. Because temperature changes experienced
in free expansions are relatively small, all free expansions lead to a net increase in
spatial spreading and thus entropy.

To close this section, consider an isothermal expansion of a classical fluid, for
which [31, 32],

(�Snonideal)T ≥ (�Sideal)T . (13)

A spreading interpretation is that interparticle forces in the nonideal system constrain
spreading and depress entropy. In an expansion, the average interparticle distance
between gas particles lessens, spreading is less constrained, and ultimately—for large
enough volume—approaches the degree of spreading of an ideal gas. The left side of
(13) exceeds the right side because of the initial depressed degree of spreading at
smaller volume, where interparticle forces are strongest on average.

2.7 Mixing of Gases

Consider two gases, each with N molecules, initially in separate but equal volumes
V separated by a central partition, as shown in Fig. 4(a). The entire system has tem-
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Fig. 4 (a)–(b) Process I:
Mixing of two ideal gases (black
and empty circles) under
classical conditions, each
initially in volume V and finally
sharing volume 2V . (b)–(c)
Process II: Isothermal
compression to volume V

perature T . If the partition is removed, the gases spontaneously mix together, there is
no temperature change, and the entropy change is

�S =
{

2NkB ln 2 for distinguishable gases,

0 for identical gases.
(14)

For distinguishable molecules, process I yields the standard “entropy of mix-
ing”, (15). Despite its name, this entropy change actually comes from the expan-
sion of each species; i.e., �SI = NkB ln 2 + NkB ln 2 = 2NkB ln 2. Process II,
Fig. 4(b), (c), is an isothermal compression of the container in (b), so �SII =
−2NkB ln 2. In the latter process, energy spreading is negative for the gas, with pos-
itive energy spreading occurring in the constant-temperature environment, which re-
ceives energy. Thus

�Stotal = �SI + �SII = 0 for distinguishable particles. (15)

Here is an energy spreading interpretation. For distinguishable gases, energy
spreads from volume V to 2V by each species in process I, accounting for �SI =
2NkB ln 2. Note that upon removal of the partition, the energy spectrum of each
species becomes compressed because of the volume increase and, most important,
spreads through the entire container. That is, energy states of “black” particles exist in
the right side as well as the left, with a corresponding statement for “white” particles.
In process II, each species gets compressed from 2V to V , so �SII = −2NkB ln 2.
In configuration (c), each species spreads energy over volume V , just as in (a), con-
sistent with the overall result �Stotal = 0.

For indistinguishable molecules (black circles become white) in process I there is
no change in energy spreading because the lone species energy was already spreading
energy in both chambers, and �SI = 0.8 In process II, the lone species is compressed
from 2V to V , so

�Stotal = �SII = −2NkB ln 2 for indistinguishable particles. (16)

8In Fig. 4(a), the N particles on the left and N particles on the right have identical energy spectra. In
Fig. 4(b), the 2N particles have a single, compressed spectrum because of the volume increase. In this
view, the result in (15) is not apparent.
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In (c), 2N molecules of the lone species spread energy over volume V , while in (a),
N molecules of the species spread energy over volume V and another N mole-
cules spread energy over a different volume V . Thus, there is more spreading of
the given species and higher entropy in (a), consistent with �Stotal = �SI + �SII =
−2NkB ln 2.

2.8 Metastability, Frozen-in States, and Maxwell’s Demon

It has been assumed throughout that internal energy spreading proceeds unimpeded in
macroscopic systems, consistent with existing external constraints. However, in some
cases there exists internal metastability, which inhibits full spreading of energy over
space and energy modes. This occurs in the cooling of some materials toward 0 K.
For example, glycerin can be cooled to low temperatures without it becoming a solid.
A consequence is that near absolute zero supercooled glycerin’s entropy exceeds the
value of solid glycerin at the same temperature. For the supercooled “glassy liquid,”
full energy spreading to the cold surroundings has not occurred and the substance is
in an internal metastable state, which could be destroyed—with a concomitant energy
transfer to the surroundings—by a small perturbation. This situation is commonly de-
scribed in terms of the glassy liquid being “more disordered” than the corresponding
solid. The latter description hides the important point that energy interactions within
the glycerin are too weak to achieve full spreading—i.e., thermal equilibrium—on
the time scale of the experiments. Put differently, the lowest possible energy state has
not been reached.

An interesting situation exists where states are “frozen in,” and in this case, it
is used to good advantage. A digital memory maintains a state (e.g., magnetization
“upward”) because of the existence of strong internal forces. In the simplest possible
case, one can envisage a single particle in a double potential well, say with occupation
of the left well denoting a “one” and occupation of the right well denoting a “zero.”
Once a particle is in one of the wells, a central potential barrier prevents passage to
the other well under normal temperatures. To erase such a memory one must either
lower the central barrier or raise the particle temperature so that the particle has no
left-right preference.

Rolf Landauer addressed the issue of memory erasure in 1961 [33] and concluded
that erasure of one bit at temperature T requires dissipation of at least energy kBT ln 2
to the environment, with entropy change �(Ssystem + Ssurroundings) ≥ kB ln 2. This
result, commonly called Landauer’s Theorem, has been used to argue that memory
erasure “saves” the second law of thermodynamics from the mischief of a Maxwell’s
demon. The simplest way to understand this is through an ingenious model proposed
by Szilard [34–37]. He envisaged the hypothetical one-particle heat engine illustrated
in Fig. 5.

Insertion of a partition leaves the particle either on the left or right. With infor-
mation on which side it resides, one would know how to configure a pulley system
and external weight pan to enable the “gas” to do work lifting the weight pan. Once
this is done the partition is unlocked, becoming a frictionless, movable piston, and
the gas can do external work W = kB ln 2 as the gas volume is doubled, lifting the
weight pan. Strictly speaking, to keep the process slow and reversible, grains of sand
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Fig. 5 Szilard one-particle gas
engine, as described in the text

can be removed from the weight pan and deposited on shelves (not shown) as the gas
pressure decreases. Replenishment heat energy Qin = kBT ln 2 would come in from
the surroundings, through the container walls and to the particle itself. Measurement
of the particle’s location after partition insertion could be done in principle by a tiny
intelligent being, namely, one with great microscopic observation skills, speed, and a
memory. This constitutes what has come to be called a Maxwell demon [37].

After this work is done, the pulley system and partition are removed and the gas
is in its initial state. A weight has been lifted and the environment has lost some
energy because of the energy transfer to the container, and the particle. In essence,
heat has been converted to work and, ignoring the demon’s memory, it appears that
the second law of thermodynamics has been violated, albeit on a microscopic scale.
But, as pointed out first by Penrose [38] and independently by Bennett [39], the state
of the demon’s memory cannot be ignored.

In Fig. 5(a)–(d), the state of the demon’s memory (RAM) is shown in the small
upper right box. It is initially neutral (N, which can be either R or L), but after mea-
surement, it is R (for right side in this example). After the cycle is run, the memory
must be brought back to its initial, neutral state; i.e., its memory must be erased and
the initial memory state restored, in order to do complete entropy bookkeeping. Ac-
cording to Landauer’s theorem, erasure will send at least energy Qerasure ≥ kBT ln 2
to the surroundings. The latter energy (at least) replenishes the surroundings, and the
work needed to effect memory erasure “pays” for the lifted weight’s gravitational po-
tential energy increase. Assuming thermodynamics ideas can be sensibly applied at
this microscopic level, and that Landauer’s theorem holds, the second law is saved.

In terms of the spreading metaphor, without accounting for the demon, the sur-
roundings would have suffered negative energy spreading because of its loss of en-
ergy. Because there is no energy spreading associated with ideal frictionless macro-
scopic work, this signals a net entropy drop for the isolated system of Szilard engine
plus surroundings. But after erasure of the memory the situation is very different:
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There is a non-negative net change in energy spreading and no violation of the sec-
ond law.

The most interesting aspect of this problem is the situation just before memory
erasure. The environment still has less entropy than it had initially, the weight has
been lifted, and the memory state is either R or L. The question is: at this point in
time, is the second law intact? For this to be so, an entropy of (at least) kB ln 2 must
be attributable to the memory. Because the memory’s bit state is “frozen in,” there
is zero spreading over the R and L states; the memory is either in one or the other.9

From a spreading viewpoint, the second law is violated just prior to erasure, but is
saved by the erasure process.

In contrast, a missing information view leads to assignment of entropy kB ln 2
based upon the absence of information about the bit state of the memory. Similarly, an
algorithmic information view leads to the same entropy for the memory, based upon
the number of bits of information needed to specify its state [40]. The dichotomy
between the spreading and information theory approaches is notable. Related diffi-
culties have generated criticisms of arguments that the second law can be saved by
memory erasure for the Maxwell’s demon conundrum [41, 42].

Finally, it is observed that the validity of Landauer’s theorem, and indeed the sec-
ond law itself, has come in question for small or mesoscopic systems under extreme
quantum conditions [1, 43–47]. These are beyond the scope of this article.

3 Seeking a Spreading Function

We have argued that entropy is a function that represents a measure of spatial spread-
ing of energy and a temporal spreading over energy states. In this section, we indicate
how one can arrive at entropy by seeking a function that is a measure of spreading.
The value of this exercise is that it demonstrates the richness and depth of the spread-
ing metaphor. Typically, existing constraints restrict the spreading of energy spatially.
Examples of such constraints are an insulating wall, immovable partition, non-porous
wall, open electrical switch, and electric or magnetic shielding.

Processes that increase energy spreading are driven by gradients—e.g., of tem-
perature, pressure, or chemical potential. Removal of such a constraint will lead to
increased energy spreading that proceeds so as to decrease the gradient(s). It has
been said [48] that “nature abhors a gradient,” and indeed, all changes in the degree
of spreading are driven by gradients. Examples are replacing an insulating wall with
a conducting one (in the presence of a temperature gradient), making an immovable
wall movable (in the presence of a pressure gradient), and removal of a non-porous
partition (when there is a chemical potential gradient).

Consider an energy exchange between two identical macroscopic bodies that are
initially at different temperatures. The higher temperature body has larger internal
energy, and the energy exchange allows the energy to become distributed equitably.
Symmetry dictates that the final internal energies be equal. Evidently, energy spreads

9It is assumed that the thermodynamic entropy, and concomitant spreading, associated with the memory’s
other degrees of freedom, have not changed throughout the engine’s operation.
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over space maximally. If it spreads less than maximally, the lower temperature body
would end with a temperature below the other body, and if it spread ‘too much,’
the initially lower temperature body would become the higher temperature one—and
such configurations are equivalent to the less than maximal ones that were discussed
already.

Does a spreading function exist for this two body system? That is, can energy
spreading be quantified? We require that a bona fide spreading function, which we
call J , have the following properties. In essence, these are postulates that are deemed
reasonable for such a function.

1. For a homogeneous body, J is a function of the system’s energy E, volume V ,
and particle number N . Rationale: These are common thermodynamic variables,
for one-component systems.

2. At uniform temperature, J is an increasing function of energy E. Rationale: More
energy means there is more energy to spread and thus more spreading.

3. For a body made of the same material, but with twice the volume and energy, the
value J is double that of the original body; i.e., J (2E,2V,2N) = 2J (E,V,N).
This requires the degree of spreading to double when twice the energy spreads
over twice the number of particles occupying twice the volume. A generalization
is that for any real β ≥ 0, J (βE,βV,βN) = βJ (E,V,N), which is the property
called extensivity.10 Rationale: Clearly there should be more spreading for β > 1,
and it is reasonable that, for example, doubling E,V,N also doubles J (E,V,N).
Halving E,V,N would give half as much spreading, and so forth.

4. For two systems, labeled a and b, Ja+b = Ja(Ea,Va,Na) +Jb(Eb,Vb,Nb). Ra-
tionale: We require that the spreading function be additive, as are internal energy,
volume, and particle number themselves. This is based on the belief that spreading
effects on boundaries of systems a and b are negligible, being overwhelmed by
the spreading over volumes. It is assumed that particles interact via short-range
interatomic and intermolecular forces.

5. Ja+b is maximal at equilibrium.11 Rationale: Spreading continues until equilib-
rium is reached and cannot become larger. This will become more clear in the
following example.

Using a symmetry argument, the assumed existence of maximum spatial spreading
at equilibrium for identical systems demands that if the initial body energies are Ea

and Eb > Ea , then the final energy of each is

Ef = 1

2
(Ea + Eb). (17)

According to postulate 4, after equilibration,

Ja+b = Ja(Ef ) +Jb(Ef ) = 2J (Ef ), (18)

10Systems with long-range forces—e.g., gravitational and electric—do not satisfy the extensivity condi-
tion and the framework here does not apply to such systems.
11The development here is for equilibrium states only. It is not known if a generalization of the spreading
picture to nonequilibrium states is possible.
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Fig. 6 Spreading function
J (E,V,N) as a function of E

for two identical system with
initial energies Ea and Eb , and
final energy Ef for each

and postulate 5 demands that

Ja+b(Ef ) = 2J (Ef ) ≥ J (Ea) +J (Eb) with Ea ≤ Ef ≤ Eb. (19)

Expression (19) defines a concave function, and the temperature equilibration process
looks as shown in Fig. 6. In the final state, the value of J is the same for each body
and, of course, all derivatives are the same. Figure 6 shows that although systems
a and b each experience the same magnitude energy change, concavity assures that
system a has a greater increase in its spreading function than system b.

Now consider two bodies of the same material, one (system a) of which has twice
the volume and particle number of the other (system b), with total energy Ea + Eb =
E. Suppose the two bodies each have equal initial energies: Ea,i = Eb,i = E/2. We
expect system a’s initial temperature to be lower than system b’s, given that is has
the same energy as the smaller system b. When the two systems are put in thermal
contact with one another, energy will spread until it is shared equitably by the two
subsystems, namely, with final energies Ea = 2E/3 and Eb = E/3. A bit of mathe-
matics shows that this is consistent with Ja+b being maximized; i.e., equitable energy
sharing occurs when the total spreading function is maximized relative to the existing
constraint Ea + Eb = E. Specifically,

(∂Ja/∂Ea)|Ea=2E/3 = (∂Jb/∂Eb)|Eb=E/3. (20)

This analysis can easily be extended to system a being β times larger than
the otherwise identical system b. After equilibration, the final energies will be
Ea,f = βE/(β + 1) and Eb,f = E/(β + 1), with (∂Ja/∂Ea)|Ea,f =βE/(β+1) =
(∂Jb/∂Eb)|Eb,f =E/(β+1). Again, this maximizes Ja+b . More generally, for any two
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Fig. 7 Spreading functions J (E,V,N) vs. E for two different materials. Initially, the systems have the
same energy E, and (∂Ja/∂Ea)|Ea=E > (∂Jb/∂Eb)|Eb=E . Concavity guarantees that the only energies
for which an infinitesimal variation of Ea and Eb with Ea + Eb fixed gives dJ = 0 are Ea,f and Eb,f ,
at which (∂Ja/∂Ea)|Ea=Ea,f

= (∂Jb/∂E)|Eb=Eb,f

different systems, of different types and/or sizes, maximization of spreading leads to
the following generalization of (20),

(∂Ja/∂Ea)|Ea=Ea,f
= (∂Jb/∂Eb)|Eb=Eb,f

(21)

which determines Ea,f and Eb,f = E −Ea,f . Here, we assume, based on the pattern
seen above, that equitable energy sharing occurs when spreading is maximized.

Figure 7 shows how the spreading functions and the equilibration process might
look for two different-sized and/or different type systems that begin with equal en-
ergies and then share energy until thermal equilibrium exists. Given the above dis-
cussion and the observation, using Fig. 7, that (∂Ja/∂Ea)|Ea=E > (∂Jb/∂Eb)|Eb=E

it is suggestive that ∂J /∂E is inversely related to temperature. The simplest such
relationship is

(∂J /∂E)V,N = 1/T . (22)

With this definition, ∂J /∂E decreases and T increases as energy increases for each
system. Furthermore, Ja increases more than Jb decreases, consistent with the total
spreading function J = Ja +Jb increasing to a maximum at equilibrium.

For a constant-volume heating process that proceeds along a given J curve,
dE = δQ, where δQ is the (inexact) heat differential. Equation (22) implies that
dJ = dE/T ≡ δQ/T , in analogy with the Clausius entropy form dS = δQ/T .
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Thus, with the temperature definition (22), the spreading function J shares the im-
portant mathematical property dJ = δQ/T with entropy S. More connections be-
tween J (E,V,N) and S(E,V,N) can be made, and the interested reader is directed
to Ref. [19] for further details. The main conclusion is

J ←→ S. (23)

Entropy has properties of a spreading function and, in turn, one can use expected
properties of a spreading function to obtain the entropy function.

4 Concluding Remarks and Questions

Although entropy is intimately related to the second law of thermodynamics, it is
also true that the well known statements of the second law by Clausius and by Kelvin
and Planck neither use nor require the entropy concept. Čápek and Sheehan [1] have
pointed out that most current challenges to the second law entail heat and work, rather
than entropy. Further, they wrote, “Entropy remains enigmatic. The more closely
one studies it, the less clear it becomes. Like a pointillism painting whose meaning
dissolves into a collection of meaningless points when observed too closely, so too
entropy begins to lose meaning when one contemplates it at a microscopic level.”

The scope of this article is highly limited, being directed primarily at developing
the spreading metaphor as an interpretive tool. It is by no means clear whether the
spreading concept can developed more fully mathematically, for example, for sys-
tems not in thermodynamic equilibrium. Were that possible, one might hope for a
way to address non-equilibrium entropy. Similarly it is not clear if the spreading con-
cept can be usefully extended to non-extensive systems characterized by long-range
gravitational and/or electric forces.

Questions abound. Can improved language help to clarify the meaning and im-
prove the utility of entropy and, if so, can the spreading metaphor help in this regard?
Can the spreading metaphor be helpful when S is not well defined? Can this metaphor
shed light on situations where the second law of thermodynamics is suspected of be-
ing, or is shown to be, violated? Can the spreading concept be used in combination
with one or more other metaphors—e.g., multiplicity and/or missing information—to
provide a more complete qualitative description of entropy? It is hoped that time will
bring answers to these questions.

Acknowledgements I thank Frank Lambert for stimulating discussions and ideas during the last several
years, which rekindled my interest in entropy, its language, and understanding.
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Discussions of the foundations of statistical mechanics, how they lead to thermodynamics, and the
appropriate definition of entropy have occasioned many disagreements. I believe that some or all of
these disagreements arise from differing, but unstated assumptions, which can make opposing
opinions difficult to reconcile. To make these assumptions explicit, I discuss the principles that have
guided my own thinking about the foundations of statistical mechanics, the microscopic origins of
thermodynamics, and the definition of entropy. The purpose of this paper will be fulfilled if it paves
the way to a final consensus, whether or not that consensus agrees with my point of view. © 2011
American Association of Physics Teachers.
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I. INTRODUCTION

“Nobody really knows what entropy really is.”
—John von Neumann1

Since I began speaking and publishing on the relation be-
tween statistical mechanics and thermodynamics in general
and the meaning of entropy in particular,2–7 I’ve encountered
a diversity of opinion among experts that is remarkable for a
field that is well over a century old. Most colleagues with
whom I have discussed the matter have indicated that they
believe their views are essentially the same as those of the
majority of physicists. However, when we discuss details,
opinions turn out to be quite diverse and, at times,
contentious.4,8

The following is a partial list of opinions I have encoun-
tered in the literature and in discussions with other scientists:

• The theory of probability has nothing to do with statistical
mechanics.

• The theory of probability is the basis of statistical mechan-
ics.

• The entropy of an ideal classical gas of distinguishable
particles is not extensive.

• The entropy of an ideal classical gas of distinguishable
particles is extensive.

• The properties of macroscopic classical systems with dis-
tinguishable and indistinguishable particles are different.

• The properties of macroscopic classical systems with dis-
tinguishable and indistinguishable particles are the same.

• The entropy of a classical ideal gas of distinguishable par-
ticles is not additive.

• The entropy of a classical ideal gas of distinguishable par-
ticles is additive.

• Boltzmann defined the entropy of a classical system by the
logarithm of a volume in phase space.

• Boltzmann did not define the entropy by the logarithm of a
volume in phase space.

• The symbol W in the equation S=k log W, which is in-
scribed on Boltzmann’s tombstone, refers to a volume in
phase space.

• The symbol W in the equation S=k log W, which is in-
scribed on Boltzmann’s tombstone, refers to the German
word “Wahrscheinlichkeit” �probability�.

• The entropy should be defined in terms of the properties of
an isolated system.

• The entropy should be defined in terms of the properties of
a composite system.

• Thermodynamics is only valid in the “thermodynamic
limit,” that is, in the limit of infinite system size.

• Thermodynamics is valid for finite systems.
• Extensivity is essential to thermodynamics.
• Extensivity is not essential to thermodynamics.

This remarkable diversity of opinion has an interesting
consequence. When people discuss the foundations of statis-
tical mechanics, the justification of thermodynamics, or the
meaning of entropy, they tend to assume that the basic prin-
ciples they hold are shared by others. These principles often
go unspoken, because they are regarded as obvious. It has
occurred to me that it might be good to restart the discussion
of these issues by stating basic assumptions clearly and ex-
plicitly, no matter how obvious they might seem. This paper
is a start in that direction.

There are two possible reactions to the principles I put
forward. A reader might agree with them. In that case, we
would have a firm basis on which to proceed. Or, a reader
might take issue with one or more. In that case, we would
know where the conflict lies, which would give us a good
chance of resolving points of disagreement. In either case,
we should be able to make progress toward arriving at a
consensus, which is the goal of this paper.

Because my topic is limited to macroscopic measurements
of macroscopic systems, I will discuss what I understand
those terms to mean in Sec. II. In this paper I will put for-
ward 12 principles based on the concept of macroscopic
measurements that have led me to advocate the use of Bolt-
zmann’s 1877 definition of the entropy11 over other defini-
tions that are often found in textbooks.

II. MACROSCOPIC SYSTEMS

In this paper I am concerned with the question of how to
describe the observed behavior of macroscopic systems. The
concept of macroscopic frames all of my arguments, so it is
important to make clear at the outset how I define it. A mac-
roscopic system contains a large number of particles, and a
macroscopic measurement is limited in its resolution. These
two features are closely related, in that what can be regarded
as a large number depends on the resolution of the macro-
scopic measurements.

The reason for specifying a large number of particles is
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that the quantities of interest in thermodynamics are collec-
tive variables, such as the energy or the number of particles
in a system. The relative statistical fluctuations of such quan-
tities are generally inversely proportional to the square root
of the number of particles. If the statistical fluctuations are
much smaller than the resolution of the macroscopic mea-
surements, they can be ignored; the average values obtained
from statistical mechanics then give a description of the ex-
pected results of the experiment.

In the late 19th century, when Boltzmann and Gibbs did
their seminal work, the existence of atoms had not been
proven. The idea of experimentally observing atomic behav-
ior was scarcely considered. Now, it is possible to obtain
images of microscopic structure with atomic resolution. Nev-
ertheless, I am restricting my attention in this paper to mac-
roscopic measurements that cannot discern microscopic be-
havior in order to discuss the emergence of a thermodynamic
description from statistical mechanics.

In the remainder of the paper I will give the rationale for
each of the principles I have followed, and I will show how
they lead to the adoption of Boltzmann’s 1877 definition of
the entropy in terms of the logarithm of the probability of
macroscopic states for a composite system.

III. PROBABILITY OF MACROSCOPIC STATES

Principle 1: Probability theory is necessary for a theoret-
ical description of macroscopic behavior.

The first—and most fundamental—principle is that the ba-
sis for obtaining a description of a macroscopic system from
microscopic laws of motion is given by probability theory. In
any experiment �real or gedanken�, the system is in some
specific microscopic state �quantum or classical� at any given
instant. That microscopic state is a property of the system,
independent of measurement.

The most immediate consequence of the limited resolution
of macroscopic measurements is that it severely restricts our
knowledge of the microscopic state of a system. We cannot
determine the microscopic state experimentally—we can
only eliminate microscopic states that are not consistent with
our macroscopic observations.

The limitations on our knowledge bring us to the distinc-
tion between reality and our knowledge of reality. The reality
is the microscopic state of the system at any given time. Our
knowledge of reality consists of the information we obtain
from macroscopic measurements and the conclusions we are
able to draw from that information. We can only construct a
representation or description of the behavior of the system;
we cannot know the microscopic state of a system from mac-
roscopic measurements.

In quantum systems our knowledge is even more limited.
For example, except for eigenstates, which have probability
zero, the energy is not even determined uniquely by the mi-
croscopic state, so it cannot be a property of the system
independent of measurement.

The most useful method I know for describing limited
knowledge is Bayesian probability theory,9 which led me to
the first principle.

After deciding to use probability theory, there remains the
choice of which probability distribution to use. The most
reasonable choice would seem to be the simplest that is con-
sistent with what we know from macroscopic observations.
Therefore, I take the probability distribution �a Baysian prior
or model probability� to be uniform in phase space for iso-

lated classical systems �subject to constraints on the total
energy and the restriction of the particles to certain volumes�,
and correspondingly uniform over microscopic states of
quantum systems. The logical consequences of such prob-
ability distributions are known to lead to predictions that
agree with experiment, which is comforting.

Principle 2: Probability theory is sufficient for a theoreti-
cal description of macroscopic states.

In one sense, the introduction of probability distributions
very nearly completes the theory of many-body systems.
Little else is essential. The concepts of entropy, free energy,
etc. are extremely convenient, but they are not absolutely
necessary. We could calculate anything and everything about
the behavior of macroscopic systems without ever mention-
ing them.

This principle is very important because it implies that
however we define concepts like entropy and free energy in
statistical mechanics, the consequences of the definitions
must be consistent with the predictions of probability theory
if they are to have the properties required by thermodynam-
ics.

IV. COMPOSITE SYSTEMS

Principle 3: Statistical mechanics and thermodynamics
must predict the properties of composite systems.

An essential part of statistical mechanics and thermody-
namics is the analysis and prediction of the behavior of com-
posite systems. A simple isolated system in equilibrium does
not do anything macroscopically measurable. You can’t even
make an experimental determination of its temperature with-
out putting a thermometer in contact with it, and then you
have a composite system.

A simple container full of gas must also be regarded as a
composite system if we want to investigate questions such as
whether the density of the gas is uniform. Without concep-
tually dividing the system into smaller subsystems, we can-
not discuss density variations.

An important feature of a composite system is that it can
have internal constraints between its subsystems. The release
of internal constraints can lead to measurable changes, which
can be predicted by statistical mechanics and thermodynam-
ics.

Although I don’t expect serious disagreement on this prin-
ciple, it does lead to a different emphasis than the usual
textbook discussion. It is common to define thermodynamic
functions for isolated systems and only much later consider
equilibrium in composite systems. I believe that because of
the crucial importance of composite systems, they should
play a leading role in the development of statistical mechan-
ics and thermodynamics.

Section V will discuss the measurement of extensive pa-
rameters, which are quantities that are proportional to how
much of something there is in a system. Examples include
the energy and the number of particles. The prediction of the
measured values of extensive parameters is a key step in
linking statistical mechanics to thermodynamics.

V. PREDICTIONS OF THERMODYNAMIC
QUANTITIES

Principle 4: The values of extensive parameters that maxi-
mize the probability predict the results of measurements of
those parameters for composite systems in equilibrium.
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This principle provides the key link between statistical
mechanics and thermodynamic measurements.

When a constraint in a composite system is released, mea-
surable quantities can change. As an example, consider a
composite system consisting of two subvolumes separated by
a partition, each containing some amount of the same type of
ideal gas. Each subvolume contains on the order of 1020

particles, and our measurement apparatus can resolve the
density of the gas to an accuracy of about 10−5. If a hole is
punched in the partition, the density of the gas in each sub-
volume will go to approximately the same value, within fluc-
tuations of the order of 10−10. Because the fluctuations are
much smaller than the resolution of our measurement appa-
ratus, we can take the location of the maximum of the prob-
ability distribution to predict the experimental outcome. This
feature strongly supports Principle 2; probability theory is
sufficient to predict macroscopic behavior.

Similar examples can be given for releasing constraints on
the energy �using walls that conduct heat� or volume �using a
freely moving piston to separate the subvolumes�. In each
case the probability distribution is very narrow, so that the
fluctuations cannot be observed by macroscopic measure-
ments. The extremely small relative fluctuations of macro-
scopic observables are so universal that, in the 19th century,
many of Boltzmann’s opponents didn’t believe in their exis-
tence.

Although nonequilibrium behavior after the release of
constraints is both interesting and important, the discussion
here is limited to equilibrium states, which are discussed in
Sec. VI.

VI. EQUILIBRIUM

Principle 5: A macroscopic equilibrium state is defined by
two properties: the probability of macroscopically observ-
able changes is extremely small, and there is no macroscopi-
cally observable flux of energy or particles. �This property
distinguishes equilibrium from steady state.�

There might be some disagreement on this point. There is
a substantial literature in statistical mechanics that makes the
fundamental assertion that equilibrium is defined by a par-
ticular “equilibrium probability distribution” in phase space
�or Hilbert space�.

In my opinion, such a view is a serious error, primarily
because the probability distribution of the microscopic states
is not macroscopically observable. We use probability theory
because we cannot discern microscopic states; we certainly
cannot measure the relative frequency with which they occur.

If we limit the definition of equilibrium to behavior that
can be observed, it follows that there are many probability
distributions that all make the same predictions.10 The sim-
plest probability distribution is the uniform distribution, but
it is not unique.

It is traditional to define a number of thermodynamic func-
tions to facilitate the analysis of macroscopic systems in
equilibrium. Although Principle 2 implies that these func-
tions are not absolutely necessary, they are such convenient
descriptions of macroscopic behavior that it would be unrea-
sonable to do without them. Their general nature is discussed
in Sec. VII.

VII. THERMODYNAMIC PREDICTIONS

Principle 6: The predictions of statistical mechanics and
thermodynamics are representations or descriptions of a sys-
tem based on the extent of our knowledge.

This principle again reflects the distinction between reality
and our knowledge of reality, between properties of a system
and a description or representation of measurable quantities
based on our limited knowledge.

As an example of this distinction, consider again a com-
posite system consisting of a box containing a gas, with a
partition dividing the box into two equal subvolumes. The
partition has a small hole in it, so that molecules of the gas
can move between the two subvolumes. At any instant of
time, there is some specific number of particles on each side
of the partition. Thermodynamics predicts a number of par-
ticles that give the same density on both sides of the parti-
tion. The predicted number turns out to agree with experi-
ment to within the limited resolution of macroscopic
measurements. For this reason, thermodynamics provides a
very useful description of the behavior of a macroscopic sys-
tem.

In contrast, the actual number of particles on each side of
the partition at any instant cannot be the number that is pre-
dicted. The actual number is not determined for quantum
systems without measurement, and even for classical sys-
tems, it fluctuates with time. The predicted number is a de-
scription based on our knowledge and is constant in time. It
is very useful for human purposes, but it is not a real prop-
erty of the system.

It is sometimes claimed that the predicted number of mol-
ecules in each subvolume is a real property of the system if
we regard it as an average over the course of an experiment.
How long would the observation time have to be for such a
claim to be true? Consider an open system with about 1020

particles in equilibrium and a corresponding statistical uncer-
tainty of about 1010 particles. To reduce the statistical uncer-
tainty of the mean to about one particle, we would need at
least 1020 independent observations. If the correlation time
for the system is about 1 ms, this would take 1017 s, which is
comparable to the age of the universe. Even with such a long
observation time, we would still not have an exact result
because the average number of particles is generally not an
integer. For any reasonable experiment during the lifetime of
a physicist, the prediction of thermodynamics is in error by
an enormous number of particles and should not be confused
with the actual number of particles.

For the same reasons, the energy, the entropy, and the
associated free energies are thermodynamic descriptions
rather than real properties of a macroscopic system. The en-
tropy is actually defined at a higher level of abstraction than
the energy or the number of particles. That is the subject of
Sec. VIII.

The distinction between real properties of a system and
our knowledge of the system might seem philosophical and a
bit pedantic, but it greatly clarifies some issues that might
otherwise be rather puzzling.

VIII. ENTROPY

This section considers the controversial question of what
“entropy” means and how to define it. Principle 7 is based on
the most important of the thermodynamic properties of the
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entropy,2,12 which leads to both the thermodynamic condi-
tions for equilibrium and the second law of thermodynamics.

Principle 7: The primary property of the entropy is that it
is maximized in equilibrium.

Because the macroscopically observable behavior of an
isolated system in equilibrium does not change with time, the
maximization of the entropy cannot be applied to a simple
system. It can be applied to a composite system: simply re-
lease a constraint and see what happens. If the definition of
the entropy is correct, the location of the maximum of the
entropy should predict the observed equilibrium values of
extensive macroscopic observables.

Principle 7 also leads directly to the second law of ther-
modynamics. If the entropy is always maximized in equilib-
rium for a composite system, then the change in entropy after
a constraint is released cannot be negative.

If we compare Principle 7 with the predictions of probabil-
ity theory, we see that the location of the maximum of the
entropy must always coincide with the location of the maxi-
mum of the probability distribution.

An immediate consequence of Boltzmann’s 1877 defini-
tion of the entropy as the logarithm of the probability distri-
bution for macroscopic observables is that the location of the
maximum of the entropy always coincides with the equilib-
rium values of those macroscopic observables. If any other
definition is used, it requires a separate demonstration to
show that it also predicts these values correctly.

The automatic agreement of the predictions of Boltz-
mann’s definition of the entropy with the correct equilibrium
values of macroscopic observables makes it the natural
choice. It might be possible to define the entropy differently,
but the predictions of any alternative definition must be iden-
tical to those of Boltzmann’s definition in terms of the loga-
rithm of the probability.

Principle 7 completes what I regard as a convincing argu-
ment in favor of Boltzmann’s 1877 definition of the entropy.

The remainder of the paper takes up issues that are asso-
ciated with the concept of entropy. Their purpose is both to
introduce the remaining principles that have guided my
thinking on these issues and to complete the picture pre-
sented so far.

IX. ADDITIVITY

Principle 8: Additivity is essential to any consistent defi-
nition of the entropy of a system with short-ranged interac-
tions between its particles.

In thermodynamics it is generally assumed that the en-
tropy of a composite system is given by the sum of the
entropies of the subsystems. This property is known as “ad-
ditivity.”

For Boltzmann’s 1877 definition of the entropy, the valid-
ity of the assumption of additivity is based on the short range
of molecular interactions, which is much smaller than the
dimensions of the system. Only a very small fraction of the
particles in one subsystem interact with those in another sub-
system, so that the sum of all such interaction energies is still
relatively small. If the direct interactions between sub-
systems can be neglected, the entropy satisfies additivity.

As an aside, using Boltzmann’s definition of the entropy
suggests the alternative of referring to this property as “sepa-
rability,” because the entropy of a composite system is de-
fined first.

If we were to use a definition of the entropy that did not
satisfy additivity and nevertheless wanted to have correct
results for composite systems, we could assign an arbitrary
function—or simply the value zero—as the entropy of any
subsystem. The entropy of a composite system could then be
obtained by adding an extra term to recover the Boltzmann
expression. It is possible to create such a formalism, but
none of the usual expressions for temperature, pressure, or
chemical potential in terms of partial derivatives of the en-
tropy would be necessarily valid. Without additivity, we
would not have thermodynamics as we know it.

The importance of additivity probably would go without
saying if it were not for a suggestion that an otherwise in-
correct definition of the entropy might be saved by an extra
term for composite systems.8 I don’t see any virtue to such a
procedure, and I stand by Principle 8.

X. THE THERMODYNAMIC LIMIT

The thermodynamic limit is defined as the infinite-size
limit of the ratios of extensive quantities—ratios such as the
energy per particle U /N or the particle density N /V. The
advantage of taking the limit of infinite size is that uncertain-
ties in these ratios go to zero because the relative fluctuations
are generally proportional to 1 /�N.

Principle 9: The thermodynamic limit is not required for
the validity of thermodynamics.

To judge from some textbooks, this principle might be the
most controversial of the ones discussed in this paper.

However, the thermodynamic limit is misnamed. It is not
essential to the foundations of thermodynamics. It cannot be
essential if we are to apply thermodynamics to real systems,
which are necessarily finite. We never do experiments on
infinite systems. If thermodynamics worked only for infinite
systems, it might still be interesting as mathematics, but it
would be irrelevant as science.

The thermodynamic limit is mathematically convenient
for certain problems. Phase transitions, for example, only
exhibit nonanalytic behavior in the thermodynamic limit,
which makes for a much cleaner mathematical description.
Nevertheless, the thermodynamic limit should not play any
essential role in the foundations of statistical mechanics and
thermodynamics.

XI. DISTINGUISHABILITY AND
INDISTINGUISHABILITY

Principle 10: “Indistinguishability” is a property of micro-
scopic states. It does not depend on experimental resolution.

In my opinion, this principle should be an obvious conse-
quence of the definitions found in any textbook on quantum
mechanics. However, I have had enough arguments about it
to know that it is far from obvious.

The definitions of distinguishability and indistinguishabil-
ity are simple: �1� If the exchange of two particles in a sys-
tem results in a different microscopic state, the particles are
distinguishable. �2� If the exchange of two particles in a sys-
tem results in the original microscopic state, the particles are
indistinguishable. �For fermions, two states are usually re-
garded as identical if they differ only by an overall minus
sign.�

The definition of indistinguishability does not have any-
thing to do with the interactions between particles. It is pos-
sible in either quantum or classical physics for two distinct

345 345Am. J. Phys., Vol. 79, No. 4, April 2011 Robert H. Swendsen



states to have the same energy. Nevertheless, if the micro-
scopic state is different after the exchange of two particles,
those particles are distinguishable.

Unfortunately, “distinguishable” is sometimes confused
with what might be called “observably different.” Two par-
ticles are observably different if exchanging them alters the
properties of the system in a way that is observable. Clearly,
if particles are observably different, they must be distin-
guishable. In contrast, particles can be distinguishable with-
out their exchange producing any observable differences.

A simple example of this distinction is provided by a mix-
ture of 3He and 4He. It would not be possible for a macro-
scopic measurement to detect the difference in the micro-
scopic states that would result from exchanging a single 3He
atom with a single 4He atom. Nevertheless, there would be a
difference in the microscopic states, and the two isotopes of
helium are not mutually indistinguishable.

The term “identical particles” is often used as a synonym
for indistinguishable particles. This use has the unfortunate
consequence that a model of classical distinguishable par-
ticles with identical properties might be mistaken for a model
of indistinguishable particles.

The concept of indistinguishability is foreign to classical
mechanics. Consider the trajectory of an isolated classical
system in phase space �the 6N-dimensional space defined by
the positions and momenta of all particles in the system� in
which the microscopic state is described by a point. If two
particles are exchanged at a given time, the trajectory be-
comes discontinuous. The exchange of particles has resulted
in a different microscopic state, regardless of whether the
Hamiltonian gives the same energy for the two microstates.

In quantum mechanics N-particle states of indistinguish-
able particles are characterized by a wave function that has
been symmetrized �or antisymmetrized� by summing over all
permutations of the particles, with a change in sign for each
permutation for fermions, or without a change in sign for
bosons.

A classical system of indistinguishable particles can be
described by the same procedure. The microscopic state of a
classical system of indistinguishable particles would be de-
scribed by the N! points in phase space found from the set of
all permutations of the particles. The trajectory �or trajecto-
ries� of the set of N! points is clearly unaffected by the ex-
change of any two particles at any point in time.

The idea of representing a classical state by N! points in
phase space is a bit odd, but that is because indistinguish-
ability is not a classical concept. However, if indistinguish-
ability is to be imposed on a classical system, this represen-
tation seems to be the most reasonable way of doing it.

Many textbooks claim that classical systems with distin-
guishable and indistinguishable particles are described by
different expressions for the entropy. However, it is straight-
forward to demonstrate that the macroscopic properties of a
classical system are exactly the same whether the particles
are distinguishable or indistinguishable.2 Since the macro-
scopic behaviors of classical systems with distinguishable
and indistinguishable particles are the same, it seems natural
that their entropies should also be the same, which leads to
my next principle.

Principle 11: Systems with identical macroscopic proper-
ties should be described by the same entropy.

Boltzmann’s 1877 definition of the entropy gives the same
expression for the entropy for classical systems with either

distinguishable or indistinguishable particles.2 The tradi-
tional definition in terms of a volume in phase space, which
is often erroneously attributed to Boltzmann,5 gives different
expressions, at least one of which must clearly be incorrect.
The worst failings of the traditional definition of the entropy
for a system of distinguishable particles are that it violates
the second law of thermodynamics and makes incorrect pre-
dictions for equilibrium with respect to the exchange of par-
ticles between subsystems.2

The error in the traditional definition of the entropy of a
classical system of distinguishable particles also has the con-
sequence that it predicts that the entropy of an ideal gas is
not extensive. This problem is not really fundamental, but it
has bothered people. And it leads to the next principle.

XII. EXTENSIVITY

Principle 12: Extensivity is not essential to thermodynam-
ics.

Extensivity is the property that the macroscopic observ-
ables of a system are all directly proportional to its size. This
property implies that ratios, such as U /N, V /N, and S /N, are
all independent of the size of the system. In many textbooks,
extensivity is taken to be a fundamental postulate of
thermodynamics.12 It is certainly convenient mathematically,
because it leads directly to the Euler and Gibbs–Duhem
equations. It is an appropriate assumption when the physical
properties of a material are being investigated, and the sur-
face or interface contributions can be neglected.

However, real systems have surfaces and interfaces, which
are important topics of research. Because the surface-to-
volume ratio changes with the size of the system, real sys-
tems are not extensive, and the deviations from extensivity
can be very important. For example, a real gas in a real
container will usually be adsorbed to some extent on the
inner walls of the container. At low temperatures, the fraction
of adsorbed molecules can be quite large, which is exploited
in the construction of cryopumps.

To describe the thermodynamics of a surface, we must be
able to describe the thermodynamics of a nonextensive sys-
tem and extract the parts of the free energy, etc. that are not
directly proportional to the size. Therefore, statistical me-
chanics and thermodynamics must be applicable to nonex-
tensive systems.

Recognizing that extensivity is not an essential property of
thermodynamic systems is important in deciding on an ap-
propriate definition of entropy. Some colleagues claim that a
definition of entropy that gives a demonstrably incorrect ex-
pression can be made acceptable by imposing extensivity
with an additional term of the form −kB ln�N!�. However,
because thermodynamics should also correctly describe non-
extensive systems, that is, systems with entropies that cannot
be made extensive by a term that depends only on N, such a
correction is not feasible.

There is also another difficulty in trying to impose exten-
sivity on the fundamental definition of the entropy. If the
system under consideration contains more than one kind of
particle, the criterion of extensivity is ambiguous. For ex-
ample, suppose we have a gas mixture of distinguishable
particles, with NA particles of type A and NB particles of type
B. The common textbook definition of the entropy as the
logarithm of a volume in phase space gives an answer that is
not extensive �and incorrect for other reasons2�. We might try
to impose extensivity with the addition of either
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−kB ln�NA !NB!� or −kB ln��NA+NB�!�. The first choice is the
one we want, of course, but the criterion of extensivity does
not eliminate the second. If this path were to be taken, at
least one more principle would have to be invoked to obtain
an unambiguous definition.

Although extensivity is a useful assumption when analyz-
ing the properties of a material, rather than a system with
surfaces, it is not essential to either thermodynamics or sta-
tistical mechanics, and should not be included as part of the
definition of entropy.

XIII. CONSEQUENCES OF THE 12 PRINCIPLES

The principles I have given have led me to the conclusion
that Boltzmann’s 1877 definition of the entropy as the loga-
rithm of the probability of macroscopic states for composite
systems is superior to any other proposed definition. In par-
ticular, it is superior to a definition in terms of a volume in
phase space that is often found in textbooks for classical
statistical mechanics.

If the principles I have presented in this paper are correct,
any other valid definition of entropy must turn out to be
equivalent to defining entropy in terms of probability.

XIV. GIBBS’ PARADOX

Alternatives to Boltzmann’s 1877 definition of the entropy
have led to problems that have been debated for over a hun-
dred years. The debate has centered on Gibbs’ paradox,
which refers to a set of old problems in statistical
mechanics.13 The two main problems concern the properties
of the entropy of systems of distinguishable particles. In my
opinion, they are both easy to resolve on the basis of the
principles I have given.

A. Extensivity

The first version of Gibbs’ paradox concerns the properties
of the entropy as defined in terms of the logarithm of a vol-
ume in phase space. Boltzmann’s 1877 definition in terms of
the logarithm of the probability of a composite system does
not have this problem.

If U is the energy, V is the volume, and N is the number of
particles, the volume in phase space �often denoted by ��
consists of all points for which N particles are in a container
of volume V with a total energy less than or equal to U. For
an ideal gas, this volume is given by

� = VN �3N/2

��3N/2 + 1�
U3N/2. �1�

If the entropy is defined in terms of the logarithm of this
volume in phase space,

S� = k ln � , �2�

Stirling’s approximation gives an expression for the entropy
of the form

S��U,V,N� = NkB�3

2
ln�U

N
� + ln V + ln X	 , �3�

where X is a constant that can be calculated from Eq. �1�.
This expression for the entropy, Eq. �3�, is not extensive.

As explained in Sec. XII, I do not regard the lack of exten-

sivity as a problem in itself. However, Eq. �3� leads to a
violation of the second law of thermodynamics.6 That is a
problem!

Consider an ideal gas of N particles in a volume V, and
assume that the entropy before inserting the partition is given
by Eq. �3�. Now insert a partition that divides the system into
two equal volumes. The total entropy after inserting the par-
tition is given by twice the entropy of a system half the size
of the original one,

2S��U/2,V/2,N/2�

= 2
N

2
kB�3

2
ln�U/2

N/2� + ln�V

2
� + ln X	 . �4�

The change in S� is

�S� = 2S��U/2,V/2,N/2� − S��U,V,N� = − NkB ln 2. �5�

The decrease in entropy predicted by the entropy in Eq. �3�
violates the second law of thermodynamics as expressed in
the Clausius inequality,14

�S � 

i

f �Q

T
, �6�

where i and f refer to the initial and final macroscopic states,
before and after inserting the partition. Because �Q=0 while
the partition is being inserted, the Clausius inequality is vio-
lated by Eq. �5�. This violation eliminates a definition of the
entropy in terms of the logarithm of a volume in phase space
from consideration as the entropy of a classical gas.6

Boltzmann’s definition of entropy in terms of the loga-
rithm of the probability gives exactly the same result for
classical particles whether they are distinguishable or not,2

SB�U,V,N� = NkB�3

2
ln�U

N
� + ln�V

N
� + ln X	 . �7�

Because Eq. �7� for the entropy does not violate the second
law of thermodynamics, there is no paradox and no problem.

B. Continuity

Another problem, which is also known as Gibbs’ paradox,
concerns the desire for continuity as the interactions between
particles in a system go continuously from being measurably
different to being the same for all particles.

For example, consider a classical ideal gas with NA par-
ticles of type A and NB particles of type B. All particles of a
given type have the same properties, but these properties are
different for type A and type B particles. The entropy of this
system differs from the entropy of an ideal gas of N=NA
+NB particles of a single kind by the amount

�S = − kB�NA ln�NA

N
� + NB ln�NB

N
�	 � 0. �8�

Equation �8� is the well-known entropy of mixing.
The concern is that as the differences in the properties of

the two types of particles vanish, the entropy of the system
changes discontinuously by the entropy of mixing given in
Eq. �8�.

First of all, it is quite possible for the interactions between
particles to be essentially identical, but to still be able to
separate them in some way—using differences in diffusion
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rates for different isotopes, for example. In that case, the
entropy would not change discontinuously as the differences
in the interactions vanish.

However, suppose all differences in interactions, masses,
etc. could be made to go continuously to zero. At some point,
the differences would become smaller than the resolution of
our experiments. Nevertheless, at any level of difference in
the interactions, we either would or would not be able to
measure the difference.

If the entropy were a property of the system �reality�—
instead of a description of the system �representation of our
knowledge�, as argued in Sec. VII—a discontinuity of the
entropy would be strange. However, the entropy is given by
the probability, which is, in turn, related to our knowledge of
the system. There is no problem with our description �or
knowledge� of a system changing discontinuously when our
information changes discontinuously. If we cannot determine
experimentally that there are two different types of particles,
then a description that lumps them together will still be cor-
rect. Common practice lumps the various isotopes of an ele-
ment together for most thermodynamic applications. Al-
though different isotopes are clearly distinguishable, the
macroscopic predictions are not affected.

The problem of continuity is often expressed in terms of a
continuous change from distinguishable to indistinguishable
particles. However, such a change is intrinsically discontinu-
ous and does not occur simply because the interactions be-
tween the particles become identical.

XV. SUMMARY

I have put forward 12 principles that have led me to con-
clude that Boltzmann’s 1877 definition of the entropy in
terms of the logarithm of the probability of macroscopic
states of composite systems is superior to all other options.

It would be too much to hope that my arguments will find
universal agreement. However, I hope that further discus-
sions will be clarified by an improved understanding of one
point of view. Those who might have different points of view
have the opportunity to express which of the principles they
object to and present their own alternatives.

The issues I have discussed have been the subject of dis-
agreements for well over a century. It might be that, in the

end, the conclusions of the scientific community deviate
from the principles I have listed here. However, the purpose
of this paper will be fulfilled if it paves the way to a final
consensus.

ACKNOWLEDGMENTS

I would like to thank Roberta Klatzky for her insightful
comments. I would also like to thank the anonymous review-
ers for their particularly helpful critiques.

a�Electronic mail: swendsen@cmu.edu
1John von Neumann in a conversation with Claude Shannon. Quoted by
M. Tribus and E. C. McIrvine “Energy and information �thermodynamics
and information theory�,” Sci. Am. 225, 179–188 �1971�.

2R. H. Swendsen, “Statistical mechanics of classical systems with distin-
guishable particles,” J. Stat. Phys. 107, 1143–1166 �2002�.

3R. H. Swendsen, “Statistical mechanics of classical distinguishable par-
ticles,” Computer Simulation Studies in Condensed Matter Physics XV,
edited by D. P. Landau, S. P. Lewis, and H. B. Schüttler �Springer-Verlag,
Berlin, 2003�.

4R. H. Swendsen, “Response to Nagle’s criticism of my proposed defini-
tion of the entropy,” J. Stat. Phys. 117, 1063–1070 �2004�.

5R. H. Swendsen, “Statistical mechanics of colloids and Boltzmann’s defi-
nition of the entropy,” Am. J. Phys. 74, 187–190 �2006�.

6R. H. Swendsen, “Gibbs’ paradox and the definition of entropy,” Entropy
10, 15–18 �2008�.

7R. H. Swendsen, “Footnotes to the history of statistical mechanics: In
Boltzmann’s words,” Physica A 389, 2898–2901 �2010�.

8J. F. Nagle, “Regarding the entropy of distinguishable particles,” J. Stat.
Phys. 117, 1047–1062 �2004�.

9See, for example, P. M. Lee, Bayesian Statistics: An Introduction, 3rd ed.
�John Wiley & Sons, Hoboken, NJ, 2009�.

10R. H. Swendsen, “Explaining irreversibility,” Am. J. Phys. 76, 643–648
�2008�.

11 L. Boltzmann, “Über die Beziehung zwischen dem zweiten Hauptsatze
der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung
respektive den Sätzen über das Wärmegleichgewicht,” Wien. Ber. 76,
373–435 �1877�; Ludwig Boltzmann, Wissenschaftliche Abhandlungen
�Chelsea, New York, 1968�, Vol. 2, pp. 164–223 �reprint�.

12H. B. Callen, Thermodynamics and an Introduction to Thermostatistics,
2nd ed. �Wiley, New York, 1985�.

13J. W. Gibbs, Elementary Principles of Statistical Mechanics �Yale Uni-
versity Press, New Haven, 1902�; Elementary Principles of Statistical
Mechanics �Dover, New York, 1960� �reprint�.

14C. M. Van Vliet, Equilibrium and Non-Equilibrium Statistical Mechanics
�World Scientific, Singapore, 2008�, p. 14.

348 348Am. J. Phys., Vol. 79, No. 4, April 2011 Robert H. Swendsen



Enhancing the understanding of entropy through computation

Trisha Salagarama)

Department of Physics, University of Pretoria, Pretoria 0001, South Africa

Nithaya Chetty
Department of Physics, University of Pretoria, Pretoria 0001, South Africa and National Institute for
Theoretical Physics, Johannesburg 2000, South Africa

(Received 28 January 2011; accepted 19 July 2011)

We devise an algorithm to enumerate the microstates of a system comprising N independent,

distinguishable particles. The algorithm is applicable to a wide class of systems such as harmonic

oscillators, free particles, spins, and other models for which there are no analytical solutions, for

example, a system with single particle energy spectrum given by e(p,q)¼ e0(p2þ q4), where p and

q are non-negative integers. Our algorithm enables us to determine the approach to the limit N !
1 within the microcanonical ensemble, and makes manifest the equivalence with the canonical

ensemble. Various thermodynamic quantities as a function of N can be computed using our

methods. VC 2011 American Association of Physics Teachers.

[DOI: 10.1119/1.3623416]

I. INTRODUCTION

Entropy is critical to the understanding of statistical
physics. However, students have difficulty conceptualizing the
meaning of the entropy. Entropy is often presented as a mea-
sure of the randomness of a system. Therefore, Monte Carlo
methods are an obvious way for studying the entropy.1–4

In this paper, we approach the entropy by computing the rel-
evant statistical quantities directly. Our starting point is the
enumeration of microstates. This enumeration quickly becomes
a challenge because we have to cope with integers that increase
exponentially with the system size, and become larger than the
largest integer that can be addressed by a computer. A related
problem is that the computational time for the obvious brute-
force method scales exponentially with the system size, which
makes it difficult to study the system for large N.

We devise a hierarchy of algorithms to enumerate the
microstates of a system comprising N independent, distin-
guishable particles. The algorithms are applicable to a wide
class of problems such as harmonic oscillators with single
particle energy e(p) ! p and non-relativistic particles in one
dimension with e(p) ! p2, where p is a non-negative integer.
In the microcanonical ensemble our algorithms enable us to
determine the approach to the limit N! 1, and show the
equivalence with the canonical ensemble.

We discuss different algorithms, which show students dif-
ferent ways of solving the same problem, with some methods
being exponentially more efficient than others. Our presenta-
tion encourages students to think carefully about the manner
in which the enumeration of microstates can be done, and
helps students appreciate how an algorithm, even though
mathematically correct, can be impractical.

For small N a plot of the entropy S versus the internal
energy E is jagged and thus not differentiable, which makes
the temperature T of the system ill-defined because

1

T
¼ @S

@E

� �
N;V

: (1)

We show that a plot of S versus E converges to a smooth, dif-
ferentiable form for which the temperature is numerically
better behaved, which is consistent with the fact that temper-

ature of an isolated system makes sense only in the thermo-
dynamic limit.

The subject of the enumeration of states is well estab-
lished.5 Analytical expressions for the number of micro-
states, X(N,E), with total energy E, exist only for a small
number of problems such as a system of N independent har-
monic oscillators and a system of N free particles. In this
case Stirling’s approximation is applicable and enables the
derivation of closed form analytical results. For a wide range
of other problems, similar analytical solutions do not exist,
and numerical methods are needed.

Moore and Schroeder6 considered a system of harmonic
oscillators and noted that the results become cumbersome
with E more than about 200 energy units and overflow errors
occur if there N is more than a few thousand. Prentis and Zai-
niev7 considered systems in the large N limit. In our work,
we compute X(N,E) recursively for N¼ 1,2,3,…,Nmax, where
Nmax can be made sufficiently large to see convergent results.
Our algorithm is numerically stable, and the results are
achievable in realtime on a desktop computer.8

II. THE COUNTING OF MICROSTATES

We consider an isolated system consisting of N identical
non-interacting particles with a single-particle energy given by

eðp; qÞ ¼ e0ðp2 þ q4Þ; (2)

where p and q are non-negative integers. We wish to deter-
mine the total number of microstates X(N,E) accessible to
the system with total energy E. As far as we know, no analyt-
ical solution for X(N,E) is available for this model. Figure 1
shows the single particle spectrum. X(N,E) depends on
whether the particles are distinguishable or not, and whether
they are bosons or fermions. The model is non-trivial
because of the presence of degeneracies, for example,
e(1,0)¼ e(0,1)¼ e0, and because the energy levels are not
evenly spaced, which makes computing X(N,E) nontrivial.

Given X(N,E) the entropy is given by

SðN;EÞ ¼ kB ln XðN;EÞ; (3)

where kB is the Boltzmann’s constant.
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A. Pen-on-paper solution

To start with, it is useful to list the system microstates for a
small number of particles with a single-particle energy given
by Eq. (2). For example, for N¼ 3, and E¼ 20e0, the
microstates can easily be listed. Let (pi, qi) be the quantum
labels for the ith particle, then the system microstates
(p1,q1;p2,q2;p3,q3) for indistinguishable spinless particles
(bosons) are (2,2;0,0;0,0), (1,2;1,1;0,1), (1,2;1,1;1,0),
(4,1;1,1;0,1), (4,1;1,1;1,0), (4,0;2,0;0,0), (4,0;1,1;1,1),
(0,2;2,0;0,0), (0,2;1,1;1,1), (3,1;3,1;0,0), (3,1;3,0;0,1),
(3,1;3,0;1,0), (3,1;2,1;2,1), (3,0;3,0;1,1), i.e., there are 14
microstates for indistinguishable particles. From these states
we can readily infer the corresponding number of microstates
for distinguishable particles using the combinatorial factors,
for example (2,2;0,0;0,0)! 3 complexions for distinguishable
particles, (1,2;1,1;0,1) ! 6 complexions for distinguishable
particles, etc. It can therefore be deduced that there are a total
of 66 microstates for distinguishable particles, i.e.
X(3,20e0)¼ 66. Going through this exercise leaves one with
the distinct impression that it is very cumbersome to try to
solve this problem using “pen-on-paper” for a large number
of particles. An efficient computational algorithm is needed.

B. A brute-force computational method

For distinguishable particles the simplest method involves
N nested do-loops, each over the list of single particle energy
levels. This method scales exponentially with N. Neverthe-
less, this method is instructive because it lets students appre-
ciate the rapid increase in X(N,E) with N, and the
corresponding exponential increase in computational time.
Figure 2 shows a graph of ln t versus N, where t is the com-
putational time8 taken to compute X(N,E) for N¼ 2,3,4, and
5 and E¼ 500e0. The graph shows that t ! ekN, where

k¼ 4.61. We conclude that it would take several million
years to consider only a moderate number of particles.

C. A recursive algorithm for X(N,E)

For fixed total energy E, we consider a system of N distin-
guishable particles composed of a subsystem of (N� 1) par-
ticles with X(N� 1,E�E0) microstates and a subsystem of
one particle with X(1,E

0
) microstates (see Fig. 3). In this con-

text X(1,E0) is the degeneracy of the single particle levels
with energy E0 �E. X(N,E) is constructed by summing the
number of ways in which the subsystem of (N� 1) particles
can be configured with energy E�E0 weighted by the degen-
eracy of the single particle level with energy E0, that is,

XðN;EÞ ¼
XE

E0¼0

XðN � 1;E� E0ÞXð1;E0Þ: (4)

Equation (4) is the basis of a recursive algorithm, which can
be programmed straightforwardly. X(1,E0) can be con-
structed simply and from X(1,E0), X(N,E) may be calculated
recursively for N¼ 2,3,4,….

A plot of the entropy per particle, s¼ S/N, versus e¼E/N,
the energy per particle is presented in Fig. 4 for N¼ 3–10
particles, and compared with the result calculated in the ca-
nonical ensemble (see the Appendix) which is in the thermo-
dynamic limit. For these small values of N, the plots are not
smooth, which makes the temperature ill-defined.

Fig. 1. The single particle energy spectrum e(p,q)¼ e0(p2þ q4) where p and

q are non-negative integers.

Fig. 2. Graph of lnt versus N, where t is the computational time in seconds

and N is the number of particles. The points are for N¼ 2, 3, 4, and 5.

Fig. 3. The system comprising N particles with energy E.
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By using Eq. (4), we are able to compute X(N,E) for large
values of N. By using a desktop computer,8 we find that
Nmax� 200. The computational time is of the order of
minutes. For N greater than� 200, the largest number
addressable by the computer9 is exceeded, resulting in over-
flow errors.

Figure 5 shows a plot of s versus e. The result for N¼ 200
has not yet converged to the result for N!1. The deviation
for s is of order 1% for e¼ 10e0. An improved algorithm is
needed.

A small improvement in the algorithm can be achieved by
counting states in terms of r, which is the smallest real num-
ber that is addressable by the computer. This procedure
results in a normalized number of states accessible to the sys-
tem ~XðN;EÞ, where ~XðN;EÞ ¼ XðN;EÞrN . The advantage of
counting in terms of r is that a higher value of N is achieva-
ble before ~XðN;EÞ exceeds the largest number addressable
by the computer. By using this method, the maximum num-
ber of particles that we were able to consider is Nmax� 500.
The computational time is of the order of minutes. The result
for N¼ 490 in Fig. 5 is improved compared to the value for
N¼ 200, but still has not converged compared with the result
for the limit N!1. The deviations for s are of order 0.5%
for e¼ 10e0.

D. A recursive algorithm for the entropy S(N,E)

The solution to this problem can be found by realizing that
we are interested in the entropy S(N,E) rather than X(N,E)
itself. We rearrange Eq. (4) as

XðN;EÞ ¼XðN� 1;EÞ Xð1;0ÞþXðN� 1;E� 1Þ
XðN� 1;EÞ Xð1;1Þ

�

þ� � �þ XðN� 1;0Þ
XðN� 1;EÞXð1;EÞ

�
; (5)

which gives the following recursive algorithm for the
entropy

SðN;EÞ ¼SðN� 1;EÞ þ kB ln
XE

E0¼0

exp

1

kB
SðN� 1;E� E0Þ � SðN� 1;EÞð Þ

� �
Xð1;E0Þ:

ð6Þ

Working directly with S(N,E) rather X(N,E) is much more
manageable computationally. For the range of N and E that
we considered, we did not exceed the maximum number
addressable by the computer. The computational time for
N¼ 2000 and E¼ 2� 104e0 is of the order of a day. The
result for N¼ 2000 in Fig. 5 is similar to the N ! 1 limit.
The deviations for s are less than 0.1% for e¼ 10e0.

The complexity of the problem is illustrated by consider-
ing the individual terms in the summation of Eq. (4). In Fig.
6 we have plotted X(1,E0) as a function of E0. The curve is
discrete because X(1,E0) is the degeneracy of the single parti-
cle levels with energy E0. We have normalized
X(N� 1,E�E0) by X(N� 1,E) for numerical convenience
and plotted X(N� 1,E�E0)/X(N� 1,E) and [X(N� 1,E � E0)/
X(N� 1,E)]X(1,E0) in Fig. 7 as a function of E0 for
E¼ 2� 104e0 and N¼ 2000. The curve of X(N� 1,E�E0)
versus E0 is smooth and reflects the convergence of all inten-
sive macrostate variables such as s, the chemical potential l,
and the temperature T.

X(N,E) is constructed by summing over terms of the form
of the product of X(N – 1,E – E0) with X(1,E0). These contri-
butions are distinctly discontinuous, and rapidly decreasing
as a function of E0 as seen in Fig. 7. Figure 7 shows how the
microscopic structure of the system underpins its macro-
scopic properties, even in the limit N!1.

III. THE HEAT BATH

The only contributions to X(N,E) come from terms for
which X(1,E0)= 0. Therefore, the subsystem of (N – 1) par-
ticles can only attain energy E – E0 if X(1,E0) = 0. This state-
ment holds for any value of N and, in particular, as N!1.

However, the main contributions to the summation in Eq.
(4) come from terms close to E0 ¼ 0 for which the subsystem
of (N – 1) particles has an energy close to E. Hence, all but
the low energy single particle states are suppressed. In the
large N limit, we may view the system of N particles as being
composed of one particle in thermal equilibrium with the
(N – 1) particle subsystem, and the latter may therefore be
viewed as a heat bath. This picture enables us to arrive at the
Boltzmann distribution and understand the relation with the
canonical ensemble. These observations have important

Fig. 4. Entropy per particle versus the energy per particle for N¼ 3–10 dis-

tinguishable particles. N increases from bottom to top. The result for N !
1 is included (top curve) for comparison.

Fig. 5. Entropy per particle s versus e for N¼ 200, 490, and 2000 compared

with the result for N!1.
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implications for the determination of the temperature of the
system.

A simple way to determine the temperature as a function
of e is to apply Eq. (1) to the curve of s(e). A more interest-
ing way to extract the temperature which shows the equiva-
lence of the microcanonical ensemble with the canonical
ensemble is now presented. Following Eq. (6) we have plot-
ted in Fig. 8, the quantity

D ¼ 1

kB
½SðN � 1;E� E0Þ � SðN � 1;EÞ� (7)

for N¼ 2000 as a function of E0 for E¼ 2� 104e0.
As expected, D is negative and linear for small values of

E0. The curve becomes more negative for higher values of
E0, which corresponds to the suppression of the higher
energy single particle states. This behavior for higher values
of E0 is intriguing, and we are not aware that it has been
noted before. For small E0 we may model this curve by

D ¼ �bE0; (8)

so that Eq. (6) may be expressed as

SðN;EÞ ¼ SðN � 1;EÞ

þ kB ln
X1
E0¼ 0

expð�bE0ÞXð1;E0Þ: (9)

This form works for the higher energy states as well, which
are suppressed even further than what the linear relation in
Eq. (8) implies. The upper limit in the summation in Eq. (9)
has therefore been replaced by1 with no change to the final
result. The quantity b is a function of E and emerges here sim-
ply from the linear fit to the low energy data in Fig. 8. This
observation establishes the equivalence with the canonical en-
semble for which b is identified with the inverse temperature
b¼ 1/kBT, and z(T) with the single-particle partition function

z ¼
X1
E0¼0

expð�bE0ÞXð1;E0Þ: (10)

IV. THE CHEMICAL POTENTIAL

Because Eq. (4) corresponds to systematically increasing
N one particle at a time, a natural thermodynamic quantity to
consider is the chemical potential, which is defined as

l ¼ @E

@N

� �
S;V

: (11)

Because it is difficult to numerically keep the entropy fixed,
it is more useful to consider the quantity

� l
T
¼ @S

@N

� �
E;V

: (12)

Because dN¼ 1, we may write

� l
T
¼ SðN;EÞ � SðN � 1;EÞ; (13)

Fig. 6. The number of microstates X(1,E0) for 0�E0 � 100e0. Its discrete

structure means that the terms in Eq. (4) are nonzero only when X(1,E0) is

nonzero.

Fig. 7. Plot of X(N – 1,E – E0)=X(N – 1,E) versus E0 (black curve) and [X(N
– 1,E – E0)=X(N – 1,E)]X(1,E0) versus E0 (circles), where 0�E0 � 2� 104e0

and N¼ 2000.

Fig. 8. Plot of D¼ (1=kB)[S(N – 1,E – E0) – S(N – 1,E)] as a function of E0

for E¼ 2� 104e0 and 0�E0 � 2� 104e0. The curve is linear for low values

of E0. The dashed curve is the linear region extrapolated to E0 ¼ 2� 104e0 to

show the decrease of D for higher values of E0, corresponding to the suppres-

sion of the higher energy single particle states. The linear region of the

curve has a slope equal to �0.0638e0
�1, which we identify as �b according

to Eq. (8).
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which can be evaluated using Eq. (6). The differentiation in
Eq. (12) requires that the total energy E be kept constant.
However, if we keep E constant in Eq. (13), E=N ! 0 as N
!1. In this case s! 0 as N!1, and Eq. (13) converges
to zero. This result is correct but not useful. It is more in-
structive to keep the energy per particle fixed in Eq. (13),
and so that the correct convergence properties of �l=T will
be found. We leave this problem as an exercise for the
reader.

A second subtle point related to the chemical potential in
Eq. (13) is that the left-hand side of Eq. (13) is manifestly in-
tensive, whereas the right-hand side appears to be extensive.
This can be resolved by investigating the chemical potential
using the following scaling argument. Let s(e) be the entropy
per particle in the thermodynamic limit. Then

SðN;EÞ ¼ NsðE=NÞ: (14)

The application of Eq. (12) to Eq. (14) gives

� l
T
¼ sðeÞ � e

dsðeÞ
de

: (15)

To demonstrate the versatility of our method, we have plot-
ted Eq. (15) for a system of harmonic oscillators as a func-
tion of N to test the convergence of �l=T (see Fig. 9). The
plot is done at constant e¼ 10e0. The result for the chemical
potential calculated using Eq. (15) converges to the analyti-
cal result for large N. The percentage difference for
N¼ 2000 is 0.1%.

APPENDIX: THE CANONICAL ENSEMBLE

We have compared our results for various properties for
distinguishable particles in the microcanonical ensemble for
finite N with equivalent results in the canonical ensemble

which are, by definition, in the thermodynamic limit. The
relevant expressions for the canonical ensemble are given
here.

The single-particle partition function z(a) for the model
described in Eq. (2) is given by

zðaÞ ¼
X1
p¼0

expð�ap2Þ
X1
q¼0

expð�aq4Þ; (A1)

where p and q are non-negative integers, and

a ¼ e0

kBT
(A2)

is dimensionless and is a measure of the inverse temperature.
z(a) as a function of a can be computed numerically.

The Helmholtz free energy per particle f(a) in units of e0

is given by

f ðaÞ ¼ � 1

a
ln zðaÞ; (A3)

and the average energy per particle e(a) in units of e0 is given
by

eðaÞ ¼ � d

da
ln zðaÞ: (A4)

We calculate the average entropy per particle in units of kB

from

sðaÞ ¼ a½eðaÞ � f ðaÞ�: (A5)

Equation (A5) enables us to plot, for example, the entropy per
particle versus the energy per particle at the same value of a.

Another useful result is the expression for the chemical
potential in units of e0 which is given by l¼ f(a).
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Fig. 9. Plot of �l/T as a function of the number of harmonic oscillators, N,

at fixed energy per particle equal to 10e0. The result for N !1 limit for l
at the same energy per particle is plotted for comparison. The analytical

expression for N!1 is �l/T¼ kBln(eþ 1).
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The Microcanonical Entropy model computes the entropy S(N,E) of an isolated system of N identical non-interacting quan-
tum particles with single-particle energy e given by

� p; q ¼ e0 ðpn þ qnÞ

Where the exponents n and m can be varied and units are chosen such that e0¼ 1. A second window shows the single particle
states with energy less than the system energy E.

http://www.compadre.org/osp/items/detail.cfm?ID=11380

The Microcanonical Entropy model is the third in a hierarchy of computational models that demonstrate the computational
difficulty of directly calculating the system’s microstates X(N,E). The Brute Force Microstates model computes the number of
microstates using N nested loops, each over the list of single particle energy levels. This results in a computational scheme
that scales exponentially with the system size.

http://www.compadre.org/osp/items/detail.cfm?ID=11353

The Recursive Microstates model computes the number of microstates and the entropy per particle using a recursive algo-
rithm that depends only on X(N-1,E) and X(1,E) . This algorithm is fast but the model’s long integer arithmetic fails for mod-
erate system size if the number of microstates X(N,E) exceeds the maximum value of the long integer data type 263 -1.

http://www.compadre.org/osp/items/detail.cfm?ID=11381

The three OSP entropy models are supplemental simulations for the paper by Trisha Salagaram and Nithaya Chetty and
have been approved by the AJP editor. Partial funding for the development of these models was obtained through NSF grant
DUE-0937731.

Wolfgang Christian, Trisha Salagaram, and Nithaya Chetty

1132 Am. J. Phys., Vol. 79, No. 11, November 2011 T. Salagaram and N. Chetty 1132

http://www.compadre.org/osp/items/detail.cfm?ID=11380
http://www.compadre.org/osp/items/detail.cfm?ID=11353
http://www.compadre.org/osp/items/detail.cfm?ID=11381

