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It is argued that among possible nonlocal hidden-variable theories a particular
class (called here ‘‘crypto-nonlocal’’ or CN) is relatively plausible on physical
grounds. CN theories have the property that (for example) the two photons
emitted in an atomic cascade process are indistinguishable in their individual sta-
tistical properties from photons emitted singly, and that in the latter case the
effects of nonlocality are unobservable. It is demonstrated that all CN theories are
constrained by inequalities which are violated by the quantum-mechanical predic-
tions; these inequalities bear no simple relation to Bell’s inequalities, and an expli-
cit example is constructed of a CN theory which violates the latter. It is also shown
that while existing experiments cannot rule out general CN theories, they do rule
out (subject to a few caveats such as the usual ones concerning the well-known
‘‘loopholes’’) the subclass in which the photon polarizations are linear.
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1. INTRODUCTION

Bell’s celebrated theorem (1) states that, in a situation like that considered by
Einstein et al., (2) which involves the correlation of measurements on two
spatially separated systems which have interacted in the past, no local
hidden-variable theory (or more generally, no objective local theory) can
predict experimental results identical to those given by standard quantum
mechanics. Over the past thirty years a very large number of experiments
have been conducted with the aim of testing the predictions of quantum
mechanics against those of local hidden-variable theories, and while to the



best of my knowledge no single existing experiment has simultaneously
blocked all of the so-called ‘‘loopholes’’ (detector efficiency, random choice
of setting, etc.), each one of those loopholes has been blocked in at least
one experiment (cf., e.g., Weihs et al. (3)). Thus, to maintain a local hidden-
variable theory in the face of the existing experiments would appear to
require belief in a very peculiar conspiracy of nature.

In this paper I argue that, among possible nonlocal hidden-variable
theories, a certain class of theories which I call ‘‘crypto-nonlocal’’ (CN) is
a priori relatively plausible on physical grounds, and then demonstrate that
any theory of this class must likewise give experimental predictions in
conflict with those of quantum mechanics. I also show that, while existing
experimental results are not yet adequate to rule out the whole class of such
theories, they do rule out a certain sub-class of them. For simplicity of
exposition I restrict consideration here to the case of primary experimental
interest, namely the emission of two photons, whose (linear or elliptical)
polarization is to be measured, by an atom in a cascade process. In this
case the defining characteristic of a CN theory is, very crudely speaking,
that the cascade process can be described in terms of the emission of pairs
of photons each of which ‘‘behaves like’’ a photon emitted in a standard
one-photon radiation process, even though the response of (all ) photons to
a detector involves nonlocal effects. More precisely, the ensemble of pairs
of photons emitted in the cascade process can be regarded as a disjoint
union of subensembles corresponding to the emission of two photons, each
of which has a definite polarization vector and behaves (statistically) exactly
as if it had been emitted in a single-photon process. (This is made more
precise in Sec. 2.) Evidently, the most general CN theory would allow the
‘‘constituent’’ photons to be elliptically polarized; it is useful for purposes
of exposition to define a subclass ( let us call it subclass L) in which they are
constrained to be linearly polarized.

The reader might well ask why the whole subject of nonlocal hidden-
variable theories is of any interest. In my view, the point of considering
such theories is not so much that they are in themselves a particularly
plausible picture of physical reality, but that by investigating their conse-
quences one may attain a deeper insight into the nature of the quantum-
mechanical ‘‘weirdness’’ which Bell’s theorem exposes. In particular,
I believe that the results of the present investigation provide quantitative
backing for a point of view which I believe is by now certainly well
accepted at the qualitative level, namely that the incompatibility of the
predictions of objective local theories with those of quantum mechanics has
relatively little to do with locality and much to do with objectivity.

In Sec. 2 I give a more precise definition of the concept of crypto-
nonlocal theory, and introduce the necessary notation (which follows that
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of Bell’s (1) original paper as far as possible). In Sec. 3 I consider an ideal-
ized situation in which polarizers and detectors are 100% efficient, etc., and
show that under those conditions the subclass L of CN theories makes
predictions incompatible with those of quantum mechanics; in Sec. 4
I extend the proof to the whole class of CN theories. In Sec. 5 I give
an explicit example of a (subclass-L) CN theory which violates Bell’s
inequalities and hence is not trivially excluded by existing experiments
(though see below). In Sec. 6 I briefly discuss the experimental situation
and show that while existing experiments cannot exclude general CN
theories, they can (subject to a few subsidiary assumptions) exclude
subclass-L theories. Section 7 discusses the significance of the results.

2. ‘‘CRYPTO-NONLOCAL’’ THEORIES

Consider a source S (in practice an atom, or more precisely, an
ensemble of atoms) which emits two photons 1 and 2 in different directions
in the course of a cascade process. The photons 1 and 2 impinge respec-
tively on polarizers P1 and P2 and, if transmitted, on detectors D1 and D2.
We will use the term ‘‘station 1’’ to denote the combination of the polarizer
P1 and the detector D1 and similarly for ‘‘station 2.’’ We define, as is con-
ventional in the discussion of Bell’s theorem, a variable A which takes the
value +1 (−1) according as the detector D1 does (does not) register the
arrival of a photon; similarly, the variable B takes values +1 (−1) accord-
ing as D2 does or does not register. The output of possible theories of the
emission and detection process (including, of course, the standard quantum-
mechanical theory) is, inter alia, a prediction of the correlation OABP,
which, if everything else is held constant, is expected to be a function of the
way in which the polarizers P1 and P2 are set.

In the context of the present discussion it is necessary to be rather
explicit as to what we mean by ‘‘polarizer’’ (analyzer). For the sake of
simplicity of exposition let us for the moment assume that the polarizers
(and detectors) subtend zero solid angle at the source and are located on
the positive and negative z-axes. Moreover let us for the present consider
only ideally efficient linear polarizers (for the more general case see below,
and Sec. 4). Then, most generally, a ( linear) polarizer is some physical
object (e.g., a calcite crystal) whose orientation is characterized by some
real unit vector c which can lie in any direction in the xy-plane and which
has the following property: If behind the polarizer we place a detector, and
in front of it a suitably specified source of light (which in general might
include other ‘‘polarizers’’) and if, holding everything else fixed, we rotate
the polarizer (i.e., the vector c) in the xy-plane, then the number of counts
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recorded in the detector, divided by the number recorded when the
polarizer is absent, is equal to the quantity (e · c)2, where e is a fixed real
vector lying in the xy-plane. If we were being less self-conscious, we should
of course express this result by saying ‘‘the probability of a photon with
linear polarization e passing a detector set with its transmission axis in
direction c is (e · c)2.’’ Note that this thought-experiment therefore also
provides an implicit definition of what we mean by ‘‘a beam (ensemble) of
photons with (linear) polarization e.’’ In the language introduced above, we
can say that for such a beam OAP, the ensemble average of the quantity A,
is proportional to 2(e · c)2 − 1 (it is equal to it if and only if the detector is
100% efficient).

The above discussion is easily extended to the case of less than ideal
efficiency, and general (elliptical) polarization. For nonideal polarizers the
number of counts recorded in the detector, divided by the number when the
polarizer is absent, is given by Em+(EM − Em)(e · c)2, when EM and Em are
respectively the maximum and minimum transmittances of the polarizer.
This statement is a definition of EM and Em as well as (implicitly) of the
notion of ‘‘a beam of photons with polarization e;’’ it should be carefully
noted that since the definition is framed directly in terms of the number of
counts recorded in the detector, we do not have to assume that the proba-
bility of a photon being counted is independent of whether or not it has
passed a polarizer, and moreover the quantities EM and Em are, strictly
speaking, properties of the whole arrangement (polarizer plus detector) and
not of the polarizer alone. However, it is of course an experimental fact
that a very large class of detectors yields, for a given polarizer, the same
value of the transmittances.

The case of general (elliptical) polarization is handled by allowing the
vectors c and e to be complex quantities, and replacing (e · c)2 by |(e* · c)|2.

Let us now return to the consideration of the correlation observed in a
two-photon cascade process. To simplify the discussion I shall assume for
the rest of this and the next section that not only the polarizers but also the
detectors are ideally efficient, that they are located on the ± z axis and
subtend zero angle at the source, and also (except when otherwise stated)
that all photon polarizations are linear, and hence specified by real vectors
lying in the xy-plane. Then the settings of the (linear) polarizers P1 and P2

are specified by real unit vectors a and b in the xy-plane; the vector a cor-
responds to the axis of maximum transmittance (what we called c above)
for polarizer P1, and b has a similar meaning for P2. Then the observed
correlation OABP of the counts in the two detectors will be a function of a
and b; let us write, as is conventional

OABP — P(a, b). (2.1)
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For a given type of cascade process quantum mechanics makes unam-
biguous predictions for P(a, b) (see, for example, Belinfante (4)). In particu-
lar, for a 0+

Q 1−
Q 0+ cascade (the type used in most experiments on Ca)

the prediction is

PQM(a, b)=2(a · b)2 − 1 — cos 2f, (2.2)

when f is the angle between a and b, while for a 1−
Q 1−

Q 0+ cascade (the
type used in experiments on Hg) the sign of the right-hand side of (2.2) is
reversed.

Let us now turn to a discussion of possible hidden-variable theories of
the emission and detection process. A general hidden-variable theory may
be characterized by the following properties:

1. Each pair of photons emitted in the cascade of a given atom is
characterized by a unique value of some (possibly very compli-
cated) set of ‘‘hidden’’ variables which we schematically label l.

2. In a given type of cascade process occurring under given physical
conditions at the source, the ensemble of pairs of emitted photons
is determined by a unique, reproducible statistical distribution of
the values of l which we describe by a normalized distribution
function r(l). The form of the function r(l) depends only on
conditions in the neighborhood of the source, and in particular is
independent both of the polarizer settings a, b and of the outputs
of D1 and D2.

3. For a given pair, the value of the quantities A defined above
(i.e., whether or not the photon ‘‘1’’ in question is counted in the
detector) is determined by the values of a, b, and l, and possibly
also by the value of B; similarly, the value of B is determined by
a, b, l and possibly also by the value of A. Conditions (1)–(3)
imply for the measured correlation P(a · b) the result

P(a, b)=F
N

dp(l) r(l) A(a, b, l : B) B(a, b, l : A), (2.3)

where N denotes the complete space of l.

Local hidden-variable theories must satisfy also two further conditions:

4.

A(a, b, l : B)=A(a, b, l), B(a, b, l : A)=B(a, b, l), (2.4)
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i.e., the outcome of the measurement of A is independent of the
outcome at the distant station 2 and vice versa (‘‘outcome-inde-
pendence,’’ cf. Jarrett (5)).

5.

A(a, b, l)=A(a, l), B(a, b, l)=B(b, l), (2.5)

i.e., the outcome of the measurement of A is independent of the
setting b at the different station 2 and vice versa (‘‘setting-inde-
pendence’’).

As is well known, any theory which satisfied all the conditions (1)–(5) must
predict inequalities for P(a, b) which are violated by quantum mechanics
(Bell, (1) Clauser et al. (6)). Moreover, these inequalities are almost certainly
violated by existing experimental results (Clauser and Shimony, (7) Weihs et
al. (3)). Thus it seems very unlikely that a theory which is to give agreement
with experiment can maintain all of conditions (1)–(5).

For present purposes I define a ‘‘nonlocal hidden-variable theory’’
as one in which conditions (1)–(4) are maintained (with one proviso; see
below) but condition (5) is relaxed. To be sure, it is by no means obvious
that this is the most plausible modification one could make, or indeed that
it is not somewhat artificial; cf. Sec. 7. There has been some discussion of
nonlocal theories, defined as above, in the literature; in particular, Garuccio
and Selleri (8) show that if one imposes various (alternative) conditions then
such a theory will still satisfy Bell’s inequality and related ones. These
conditions are formulated directly in terms of the effect of the nonlocality
on the correlations, and although they are formally perhaps the simplest
one could think of it is not clear whether they have any intuitive physical
justification. On the other hand, if one allows the nonlocality in the detec-
tion process, i.e., the function A(a, b, l), B(a, b, l), to be totally arbitrary
in character one gets nothing useful (in particular, it is always possible to
reproduce the results of quantum mechanics by suitable choices of the
functions A and B (Bell (1)). I shall therefore seek a physical motivation for
restricting the class of nonlocal theories in a nontrivial way. To obtain the
desired motivation, let us first enquire why it is that to many physicists
all nonlocal hidden-variable theories are a priori implausible. Apart from
an ingrained prejudice in favor of a local description (which, however, is
outraged to at least an equal extent by quantum mechanics itself ) the
following consideration is probably at least subconsciously important:
From the point of view of the system which performs measurements on
photon 1 (that is, the polarizer P1 and detector D1) the polarizer P2 is a
physical object which is part of the distant environment. But in physics we
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are normally accustomed to require some positive reason before we accept
a particular part of the environment as relevant to the outcome of an
experiment. Now the polarizer P2 is nothing more than (e.g.) a calcite
crystal, and nothing in our experience of physics indicates that the orienta-
tion of distant calcite crystals is either more or less likely to affect the
outcome of an experiment than, say, the position of the keys in the
experimenter’s pocket or the time shown by the clock on the wall; in par-
ticular we know no special causal influence propagating from P2 (as dis-
tinct from the rest of the environment, which for brevity we label E) to P1,
and to assume any such special influence would seem to attach a special
importance to the fact that P2, as distinct from E, has been set up with the
particular purpose of measuring correlations with P1. Such a principle
would seem either to call into question our normal ideas about causality
and the so-called ‘‘arrow of time’’ (cf. Costa de Beauregard (9)) or introduce
a bizarrely anthropomorphic element into physics. Such consequences are
too radical to be easily stomached by most physicists. It is probably this
line of thinking which sometimes leads people to describe theories which
allow the variable A to depend on the setting of the distant polarizer b as
well as on a and l as ‘‘conspiratorial.’’

If one wishes to meet this objection while at the same time keeping the
consequent radical revisions of basic concepts to a minimum, then the
natural way to do it is to deny that there is in fact anything ‘‘special’’ about
P2 as distinct from the rest of the environment, E. In other words, we
suppose that nonlocality is actually a quite everyday and universal feature
of the world; we should in fact strictly speaking write not A=A(a, b, l : B)
but

A=A(a, b, c, d,..., l : B), (2.5a)

where c, d,... are quantities which schematically describe the behavior of E.
Such a statement, moreover, should naturally apply not only to measure-
ments of photon polarizations but to any kind of measurement whatsoever.

At this point I shall rather arbitrarily assert assumption (4) (outcome
independence). The reason for doing it this not so much that it is particu-
larly ‘‘natural’’ (after all, the outcome at the distant station is just one more
variable characterizing the overall ‘‘environment’’!) but is a purely practical
one; if one relaxes (4) it appears unlikely (though I have no rigorous proof )
that one can prove anything useful at all, and in particular it appears very
likely that one can reproduce the quantum-mechanical results for an arbi-
trary experiment. Assuming that one has indeed invoked assumption (4),
Eq. (2.5a) is modified to

A=A(a; b, c, d,..., l), (2.5b)
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where of course the list c, d,... does not include the distant outcome B.
(Of course, in the single-photon case to be discussed below, since in general
there is no ‘‘distant station,’’ the dependence not only on B but also on b
trivially vanishes.)

Clearly, Eq. (2.5b) must be supplemented by extremely strong con-
straints if it is not to violate our normal, ‘‘common-sense’’ expectations
that the results of measurements are reproducible and do not depend on
arbitrary parts of the environment. The most natural supplementary pos-
tulate is that the forms of the distribution of hidden variables, r(l), which
we are likely to meet with in ordinary life are just such as to guarantee this
result, i.e.,

Ā(a, b, c, d,...) — F r(l) A(a; b, c, d,..., l) dl=Ā(a). (2.6)

Let us in particular consider the ensemble which we would normally
characterize as ‘‘a beam of photons with polarization e.’’ In a hidden-vari-
able theory this will be characterized by some distribution r(l) of the
hidden variables, and we then postulate, in accordance with the discussion
at the beginning of this section, that it has the property (for ideal detector
efficiency)

Āe(a; b, c, d,...)=2(e · a)2 − 1 — Ā(e, a), (2.7)

i.e.,

F re(l) A(a : b, c, d,..., l) dl=2(e · a)2 − 1. (2.8)

It is, of course, an experimental fact that such ensembles can be prepared,
and in the present context it is not an entirely trivial remark that, in prin-
ciple at least, they can be prepared by direct manipulation of atomic states
involved, without the need of inserting an intermediate polarizer between
the source and P1. (For example, if one’s source is a solid with crystal-field
anisotropy, photons of a given frequency will have a polarization vector
along a given axis). To the extent that we employ only linear polarizers, all
our experimental results on single beams can be explained by assuming that
the photon beams we deal with are mixtures of ‘‘pure’’ beams with the
property (2.7).

Let us now consider the case in which two photons (or, more precisely,
an ensemble of photon pairs) are emitted and may be detected by appara-
tus 1 and 2 with polarizer settings a and b, as above. (From now on we
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drop the explicit reference to the rest of the environment, since it is not
relevant to our argument; all the expectation values discussed below are
assumed independent of c, d,...). We may note in passing that the photons
examined in a ‘‘single-beam’’ experiment very often are indeed emitted in
conjunction with other photons of different frequency and polarization,
although of course we do not usually go to the trouble of inserting
polarizer P2 and detector D2 unless we are interested in measuring correla-
tions in the second beam. We assume that we may (but, of course need
not) measure any or all of the expectation values Ā, Ba, and AB, the last
being a correlation between the responses of the two detectors. Let us con-
sider three cases, describing them as we normally would (again we assume
ideal detector efficiency):

(1) Emission of two photons of definite polarizations u, v, by two
different (and by assumption ‘‘uncorrelated’’) atoms. In a hidden-
variable theory we would describe this by some distribution
ru, v(l) of the hidden variables, and the natural assumption,
which is (presumably!) consistent with existing experiments is

Ā(u, v, a, b) — F ruv(l) A(abl) dl=2(u · a)2 − 1=Ā(u, a),
(2.9a)

Ba(u, v, a, b) — F ruv(l) B(abl) dl=2(v · b)2 − 1=Ba(v, b),
(2.9b)

AB(u, v; a, b)=Ā(u, a) BF(v, b), (2.10)

where

AB(u, v; a, b) — F ruv(l) A(abl) B(abl) dl, (2.11)

i.e., there is no correlation between the counts in detectors D1

and D2.

(2) Emission of two photons of definite polarization u, v by the same
atom (e.g., in a cascade process in a solid). Since the photons
emitted in this kind of situation seem, as far as we know, to
behave individually exactly like those emitted incoherently (case 1),
it is natural to postulate Eq. (2.9) again in this case. However, it
is not immediately obvious that we should also postulate (2.10);
this is a matter for experiment, and I suspect that there have been
rather few experiments in which (2.10) has been tested (if indeed
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there have been any). However that may be, let us go on to
case (3).

(3) Emission of two photons of ‘‘indefinite’’ polarization. This is
precisely the situation which occurs in cascade processes in atoms
of the type discussed in this paper. Within the context of a hidden-
variable theory (as distinct from quantum mechanics) it is natural
to regard the total ensemble as the disjoint union of subensembles
corresponding to case (2), where we constrain the subensemble
averages to obey (2.9) but not necessarily (2.10).

The above considerations lead us naturally to define a certain class
of nonlocal hidden variable theories, which I shall call ‘‘crypto-nonlocal’’
(CN), as follows. (I change the notation here slightly: ruv(l) Q guv(l).) The
ensemble of pairs of photons is a disjoint union of subensembles charac-
terized by distribution functions guv(l) which have the property (2.9) (but
not, in general (2.10)). That is, we can write

r(l)=FF F(u, v) guv(l) du dv, (2.12)

F
N

guv(l) dl=FF F(u, v) du dv=1, (2.13)

guv(l) \ 0, F(u, v) \ 0, (2.14)

and so

P(a, b) — OABP=FF F(u, v) AB(u, v; a, b) du dv, (2.15)

where AB(u, v; a, b) is given by (2.11) (but in general does not satisfy
(2.10)). Here and in the following I use pointed brackets to indicate the
average over the whole ensemble and bars for the subensemble averages.

It should be pointed out that assumption (2.9) actually constrains the
value of the ensemble averages OAP, OBP; since any sum of expressions of
the form (u · a)2 with different u can be written as a(e · a)2+b, where e is a
fixed unit vector, it follows that there exists some aŒ and e such that

OAP=aŒ[2(e · a)2 − bŒ]. (2.16)

This constraint is of course automatically satisfied by the experimental dis-
tributions with which we are familiar (given, as always, ideal detectors);
aŒ may of course be zero.
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In the above discussion we have explicitly assumed that the suben-
sembles described by guv(l) correspond to linear photon polarizations u, v.
This is clearly insufficiently general; in fact, what we have just defined is
the ‘‘subclass L’’ of crypto-nonlocal hidden-variable theories. To obtain a
general CN theory, it is necessary to allow the subensembles to describe
general (elliptical) photon polarizations. This can be done simply by
allowing the vectors gu and v to be complex unit vectors in the xy-plane,
and generalizing the right-hand side of (e.g.) Eq. (2.9a) to read 2 |u* · a|2 − 1,
where the vectors ab are now also in general complex, corresponding to
polarizers set to accept a given elliptical polarization.

The fundamental result of this paper is that once the subensemble dis-
tribution functions guv(l) — Puv(l) are constrained to satisfy (2.9) (or its
generalization), the values of P(a, b) predicted by any nonlocal hidden-
variable theory of the type described are incompatible with those predicted
by quantum mechanics. This is proved for subclass L in the next section
and for the general case in Sec. 4.

3. INCOMPATIBILITY OF SUBCLASS—L THEORIES WITH
QUANTUM MECHANICS

The subclass (L) of nonlocal separable hidden-variable theories cor-
responding to linear photon polarizations is defined by the postulates
(Eqs. (2.13), (2.11), and (2.9)):

P(a, b)=FF F(u, v) AB(u, v; a, b) du dv, (3.1)

AB(u, v; a, b) — F guv(l) A(a, b, l) B(a, b, l) dl, (3.2)

Ā(u, v; a, b) — F guv(l) A(a, b, l) dl=2(u · a)2 − 1, (3.3a)

Ba(u, v; a, b) — F guv(l) B(a, b, l) dl=2(v · b)2 − 1, (3.3b)

where u, v, a, b are real vectors lying in the same plane and where the
weight functions guv(l) and F(u, v) are positive and satisfy the normaliza-
tion conditions

F guv(l) dl=FF F(u, v) du dv=1, (3.4)
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and A(a, b, l) and B(a, b, l) are functions taking the values ± 1. We will
show in this section that Eqs. (3.1)–(3.4) predict inequalities for P(a, b)
which are violated by the quantum-mechanical expressions, e.g., Eq. (2.2).

Although the theorem to be proved is of course independent of the
precise definition of the integrals du and dv, it is convenient to have a
standard definition. Since u and v are real unit vectors in the xy-plane, they
are characterized by a single angle, say hu and hv, relative to some standard
reference axis. We therefore define

du —
dhu

2p
, dv —

dhv

2p
, (3.5)

where the factor (2p)−1 is included for convenience.
The proof is based on the following simple observation. Let C, D be

quantities which can take the values ± 1 only and let Ca, Da be their averages
with respect to some positive normalized weight function; let CD similarly
be the average of this product. Then, by explicitly invoking the fact that
the number of cases corresponding to a particular outcome (e.g., C=+1,
D=−1) cannot be negative, we can easily demonstrate the inequalities:

−1+|Ca+Da | [ CD [ 1 − |Ca− Da |. (3.6)

We apply this result to the variables A and B, with weight function guv(l)
as in Eqs. (3.2) and (3.3). We then insert the resulting inequalities in (3.1);
since F(u, v) is by hypothesis positive, we get

−1+2 FF du dv F(u, v) |(u · a)2+(v · b)2 − 1|

[ P(a, b) [ 1 − 2 FF du dv F(u · v) |(u · a)2 − (v · b)2|. (3.7)

Let us now introduce angles ha and hb characterizing the orientation of
a and b, and further define

t —
ha+hb

2
, j — ha − hb,

Y —
hu+hv

2
, q — hu − hv.

(3.8)
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Expressing the inequalities (3.7) in terms of these angles and using standard
trigonometric identities, we obtain (writing P(a, b) — P(t, j))

−1+2 FF
dY

2p
F

dq

2p
F(Y, q) |cos 2(t − Y)| |cos(j − q)|

[ P(t, j) [ 1 − 2 F
dY

2p
F

dq

2p
F(Y, q) |sin 2(t − Y)| |sin(j − q)|. (3.9)

Now let us integrate the inequalities (3.9) over t and then perform the
Y-integration. We use the fact that

F |cos 2(t − Y)|
dt

2p
=F |sin 2(t − Y)|

dt

2p
=

2
p

, (3.10)

and define

F P(t, j)
dt

2p
— Pa(j), (3.11)

F F(Y, q)
dY

2p
— r(q), (3.12)

so that from (3.4), r(q) is a normalized weight function:

F r(q)
dq

2p
=1. (3.13)

Then we have

−1+
4
p

F
dq

2p
r(q) |cos(j − q)| [ Pa(j) [ 1 −

4
p

F
dq

2p
r(q) |sin(j − q)|. (3.14)

Now we add and subtract the inequalities (3.14) for Pa(j) and Pa(jŒ), and
use the fact that

|sin(j − q)|+|sin(jŒ − q)| \ |sin(j − jŒ)|, (3.15a)

|cos(j − q)|+|cos(jŒ − q)| \ |sin(j − jŒ)|, (3.15b)

|sin(j − q)|+|cos(jŒ − q)| \ |cos(j − jŒ)|. (3.15c)
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In this way we obtain our final inequalities for a subclass-L theory:

|Pa(j)+Pa(jŒ)| [ 2 −
4
p

|sin(j − jŒ)|, (3.16a)

|Pa(j) − Pa(jŒ)| [ 2 −
4
p

|cos(j − jŒ)|, (3.16b)

where Pa(j) is defined by Eq. (3.14). The inequalities (3.16) are clearly
violated by the quantum-mechanical expression (2.2) (for which Pa(j) —

P(j)=cos 2j); e.g., (3.16a) is violated for j=0 and jŒ small. Thus the
incompatibility is proved.

4. INCOMPATIBILITY OF GENERAL CNHV THEORIES WITH
QUANTUM MECHANICS

It is clear that the arguments of the last section fail as soon as we
allow the pair-wise emitted photons to have general (elliptical) polariza-
tions. In fact, if we simply consider an ensemble which is the disjoint union
of two subensembles, in one of which both photons are right-circularly
polarized and in the other both left-circularly polarized, then not only do
we reproduce the quantum-mechanical predictions for correlations of cir-
cular polarization (for a 0+

Q 0+ transition) but the result of the general-
ization of the arguments of Sec. 3 for correlations of linear polarization is
completely vacuous. Thus it is clear that any useful generalization of these
arguments must refer to measurements of ‘‘nontrivially elliptical’’ (i.e.,
neither circular nor linear) components of polarization.

While it would be perfectly possible to carry out the required general-
ization explicitly in terms of (complex) polarization in the transverse plane,
one’s grasp of the geometrical structure underlying the argument is much
assisted by performing the well-known mapping of this problem on to that
of a spin- 1

2 particle. In such a mapping a general state of linear polarization
corresponds to an eigenstate of s̃ · n̂ where the (real) unit vector n̂ is
restricted to lie in the xy-plane, while arbitrary elliptical polarization cor-
responds to an arbitrary direction of n̂ (circular polarization corresponding
to n̂=± ẑ. The natural definition of the quantity A of Sec. 2 is now the
value of the projection s̃ · â(=± 1), so that the quantum-mechanical expec-
tation value of OABP analogous to (2.2) is now cos j(— a · b) rather than
cos 2j; similarly, for a ‘‘subclass-L’’ CNHV theory (in which all the rele-
vant spins are constrained to lie in the xy-plane) all angles in the argument
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of Sec. 3 are simply replaced by half-angles, so that (e.g.) the analog of
Eq. (3.16a) is

|Pa(j)+Pa(jŒ)| [ 2 −
4
p

|sin(j − jŒ)/2|, (4.1)

and so on.
Consider now a general CNHV theory in the ‘‘spin- 1

2’’ representation,
so that the ‘‘spins’’ u, v of the pairwise emitted particles (as well as the
measurement axes a, b) are allowed to be in arbitrary directions. Quite
generally, the analog of Eq. (3.7) in the spin- 1

2 representation is

−1+2 FF du dv F(u, v) |(u · a)+(v · b)|

[ P(a, b) [ 1 − 2 FF du dv F(u, v) |u · a − v · b|. (4.2)

Let us now choose a specific plane (which we can without loss of gen-
erality take to be the xy-plane) and constrain the real unit vectors a, b to lie
in this plane. Let lz — (1 − (u · ẑ)2)

1
2 and ms — (1 − (v · z)2)

1
2 be the magnitu-

des of the projections of u and v respectively on this plane. Then it is clear
that for any particular values of the lz and mz we can generalize each step
of the argument of Sec. 3; for example, the generalization of Eq. (3.14)
consists in the replacements

|cos(j − q)| Q (S2
z cos2{(j − q)/2}+D2

z sin2{(j − q)/2})
1
2, (4.3a)

|sin(j − q)| Q (S2
z sin2{(j − q)/2}+D2

z cos2{(j − q)/2})
1
2, (4.3b)

where Sz and Dz are defined by

Sz — 1
2 (lz+mz), Dz — 1

2 (lz − mz). (4.4)

Using (3.15a–c) (with the obvious ‘‘half-angle’’ replacements) plus the
easily proved result that if for positive quantities a, b, c, d, p, q, the
inequalities a+c \ p and b+d \ q are satisfied, then (a2+b2)

1
2+(c2+d2)

1
2

\ (p2+q2)
1
2, we find that the contribution (call it Pa(j : lz, mz)) of the

subensemble of pairs with the specified values of lz, mz to the correlation
Pa(j) satisfies the inequalities (the generalization of (3.16a, b))
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|Pa(j : lz, mz)+Pa(jŒ : lz, mz)| [ W(lz, mz) 12 −
2
p

(l2
z +m2

z )
1
2 |sin(j − jŒ)/2|2 ,

(4.5a)

|Pa(j : lz, mz) − Pa(jŒ : lz, mz)| [ W(lz, mz) 12 −
2
p

(l2
z +m2

z )
1
2 |cos(j − jŒ)/2|2 ,

(4.5b)

where the quantity

W(lz, mz) — F
dhu

2p
F

dhv

2p
F(u, v) (4.6)

is the ‘‘weight’’ of this subensemble in the complete ensemble. It is now
obvious (since the statement |a| [ b is simply equivalent to the pair of
statements a [ b, −a [ b!) that we can integrate (4.5) over lz and mz to
obtain the final result for the experimentally measurable correlations Pa(j)

|Pa(j)+Pa(jŒ)| [ 2 −
2
p

(l2
z +m2

z )
1
2 |sin(j − jŒ)/2|, (4.7a)

|Pa(j) − Pa(jŒ)| [ 2 −
2
p

(l2
z +m2

z )
1
2 |cos(j − jŒ)/2|, (4.7b)

where the bar indicates an average over the whole ensemble of emitted
pairs.

The crucial point, now, is that the inequalities (4.7) must hold for an
arbitrary plane. Let us then (for example) consider the inequality (4.7a), set
jŒ — 0 and take the vector a and b defining j to be first rotated relative to
one another around the z-axis and then around the x-axis: let us take the
angles of rotation to be equal but for clarity denote them by jz and jx

respectively. Since by the above inequalities we have (l2
z +m2

z )
1
2+(l2

x+m2
x)

1
2

\ `2, we find by adding the relevant forms of (4.7a) the inequality

Pa(jx)+Pa(jz) [ 2 −
2 `2

p
{|sin j/2|}, (4.8)

where j — jx — jz. (Needless to say, more general inequalities can be
proved, but are not needed for our purposes.)

Finally, in order to transcribe the result (4.8) back into the ‘‘polariza-
tion’’ language, it is necessary to define an angle corresponding to the
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‘‘ellipticity difference’’ between two possible elliptical polarizations corre-
sponding to the two analyzers. For our purposes it is sufficient to assume
that the relevant polarizations both have the form cos hj a+i sin hj b
(j=1, 2), where a and b are a particular pair of real mutually orthogonal
unit vectors lying in the xy-plane; then the angle in question is just
jel — h1 − h2. As in Sec. 3, we continue to define j, for a case in which the
polarizations are real, as the angle between them. Then the transcription of
the inequality (4.8) is

Pa(j=q)+Pa(jel=q) [ 2 −
2 `2

p
|sin q|, (4.9)

when as previously the bar over P indicates an average over the relevant
‘‘center-of-mass’’ angle (thus, in the case of elliptical polarizations, over the
variable 1

2 (h1+h2)). On the other hand, the quantum-mechanical predic-
tion for the LHS of (4.9) for a 0+

Q 1−
Q 0+ transition is

PaQM(j=q)+Pa(ju=q)=2 cos 2q, (4.10)

which is clearly incompatible with (4.9) over a finite range of small but
nonzero q. This completes the proof that no theory of the CNHV class can
give experimental predictions consistent with those of quantum mechanics.

5. AN EXPLICIT EXAMPLE OF A NONTRIVIAL CN THEORY

The above results on general CN theories naturally say nothing about
whether or not the theory in question satisfies Bell’s inequalities. However,
if it does, then the whole exercise is somewhat pointless since any such
theory is already made very difficult to maintain by existing experiments.
It is therefore important to demonstrate the existence of ‘‘nontrivial’’ CN
theories, that is, theories which violate Bell’s inequalities and hence cannot
be mimicked by any local hidden-variable theory. It is immediately clear
that a necessary (but by no means sufficient) condition for a CN theory to
be nontrivial is that the subensemble averages fail to satisfy the condition
AB=Ā · Ba; for if they do satisfy it, then the predictions are identical
to those given by a quantum-mechanical mixture of states with definite
photon polarizations, and the results of such a theory can in turn be
reproduced by a local hidden-variable theory. In this section I construct an
explicit example of a nontrivial (subclass-L) CN theory; like most such
examples, it has a somewhat artificial appearance.
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As the set of hidden variables we take unit vectors l, lŒ, m, and n lying
in the xy-plane. We define angle variables as follows:

q — 2 cos−1 l · m, qŒ — 2 cos−1 lŒ · n, (5.1a)

h — 2 cos−1 m · a, hŒ — 2 cos−1 v · b, (5.1b)

t — 2 cos−1 l · a, tŒ — 2 cos−1 lŒ · b, (5.1c)

with sign conventions defined so that

t — h+q, tŒ — hŒ+qŒ. (5.2)

As before the angle between the polarizer settings a and b is denoted by f.
The normalized distribution function guv(l) for the subensemble charac-
terized by u and v is

guv(l)=1
2 d(m − u) d(n − v) d(q − qŒ) cos q, |q| [ p/2

=0, |q| > p/2, (5.3)

in an obvious notation. (In this section, in contrast to Sec. 3, we define the
integrals over unit vectors to correspond to (e.g.) > dh rather than > dh/2p.)
We also write

F(u, v)=(2p)−1 d(u − v). (5.4)

We first write down a simple local hidden-variable theory for this model,
denoting the relevant values of A(a, b, l) and B(a, b, l) by A0(a, l),
B0(b, l). We simply put

A(a, b, l) — A0(a, l)=sgn(p/2 − t),

B(a, b, l) — B0(b, l)=sgn(p/2 − tŒ).
(5.5)

Substituting (6.5) and (6.3) into the definitions of A, etc., it is easy to show
that

Ā(u, a)=cos h=2(u · a)2 − 1, (5.6a)

Ba(v, b)=cos hŒ=2(v · b)2 − 1, (5.6b)

in agreement with (2.9) and

AB=1 − |cos h − cos hŒ|. (5.7)

1486 Leggett



Hence, from (3.1), (5.3), and (5.4), we have

P(a, b) — OABP=1 −
4
p

|sin f|, (5.8)

which evidently satisfies both Bell’s inequalities and the inequalities (3.16)
as of course it should.

Now we introduce nonlocal effects, as follows. Let us consider for the
moment only, values of a and b which are sufficiently close together, say

|f| [ p/4. (5.9)

Consider values of m (which, by (5.3) and (5.4) is identical to n for all cases
with non-zero weight) such that the angles h and hŒ(— h+2f) have the
same sign (say for definiteness positive) and are both non-zero and less
than p/2. Then there exists a range of angle q (which by (5.3) is identical to
qŒ for cases of interest) such that (a) the weight function guv(l), Eq. (5.3),
is not identically zero, and (b) when we make the substitution q Q −q

(reflection in the m-axis) both A0 and B0 (Eq. (5.5)) change sign, say from
negative to positive. The limits of this range are p/2 and the greater of
p/2 − h, p/2 − hŒ. (The reader many convince him/herself of the truth of
these statements by drawing a diagram: it is recommended to draw it so
that all angles correspond to the double angles defined in (5.1), when of
course the angle between a and b in the diagram will be 2f rather than f.)
Call this range C, and call its mirror image in the m-axis C2 .

Now let us consider the effect of replacing (5.5) by the explicitly
nonlocal postulates

B(a, b, l) — B0(b, l), (5.10)

A(a, b, l) — A0(a, l) if q ¥ C or C2 , (5.11)

A(a, b, l) — K(a, b, l) A0(a, l) if q ¥ C or q ¥ C2 , (5.12)

where K(a, b, l) — K(a, b, m : q) is an arbitrary function taking values ± 1
subject to the condition

K(a, b, m : q) — K(a, b, m : −q). (5.13)

Since the replacement q Q −q preserves the statistical weight guv(l), it is
immediately obvious that the condition (5.13) guarantees that the sub-
ensemble average Ā is unchanged; since from (5.10) Ba is obviously also
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unchanged, the theory defined by (5.10)–(5.13) has by construction the CN
property. However, the value of AB is clearly changed from (5.7): the
change is always negative, and its maximum possible value (correspond to
K(abl)=−1 for all q in C) is given by

|dmax(AB)(u, v : a, b)|=2 F
C

guv(l) dl+2 F
C2

guv(l) dl

=2 F
C

cos q dq=2(1 − max(cos h, cos hŒ)). (5.14)

It is easily verified that formula (5.14) holds also when h and hŒ are both
negative (and |h|, |hŒ| < p/2). For simplicity we assume that K(a, b, m : q)
—+1 when either h or hŒ is greater than p/2. Then substituting (5.14) into
(3.1) and using (5.4), we find that the maximum (negative) deviation of
P(a, b) — OABP from its value (5.8) is

|dmaxP(a, b)|=
1
2

−
2 |f|

p
−

cos 2f

p
. (5.15)

Since it is clearly possible to choose K(a, b, l) in an arbitrary way to
produce negative dP(a, b) with any magnitude less than (5.15), we can
write (choosing K(a, b : l) — K(a, b, l))

P(a, b) — P(f) — Pa(f)=1 −
4
p

|sin f| − f(f) 31
2

−
2 |f|

p
−

cos 2f

p
4 , (5.16)

where f(f) is an arbitrary function such that 0 [ f(f) [ 1. (We recall that
in the above formula |f| is restricted to be less than p/4: for other values
we assume for simplicity that all nonlocal effects vanish, i.e., Eqs. (5.5) still
hold.) It is obvious that by a suitable choice of f(f) we can violate Bell’s
inequalities. For example, choose f(f)=0 for |f| < E, f(f)=1 for |f| > E,
where E is some small angle. Then Bell’s original inequality, which in this
case takes the form

1+P(2f) − 2P(f) \ 0, (5.17)

is clearly violated if |f| < E, 2 |f| > E and E is chosen sufficiently small. (On
the other hand, it can be checked that (5.16) does satisfy the inequalities
(3.16).) Thus the theory constructed above is indeed a nontrivial CN
theory.
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6. THE EXPERIMENTAL SITUATION

While most existing experiments on the polarization correlations of
photon pairs emitted in atomic cascade decays measure the correlation
of linear polarizations, there are a few (e.g., Torgerson et al. (10)) which
examine the circular-polarization correlations. However, to the best of my
knowledge there is no single experiment to date which measures the cor-
relations in a general ‘‘nontrivially elliptical’’ basis. Consequently, it is
impossible to use existing experimental data in conjunction with the results
of Sec. 4 to exclude theories of the general CNHV class.

It is however interesting to enquire what the situation is with respect
to the ‘‘subclass-L’’ theories discussed in Sec. 3. Since this subclass was
defined primarily for pedagogical reasons and there is no particular a priori
reason to think of it as especially plausible, there would seem no great
point in spending a lot of time here on the complications (most but not all
of which are analogous to those discussed in detail in the context of exper-
imental tests for Bell’s theorem by Clauser and Horne (11)), which arise in
the comparison of the predictions of Sec. 3 with real experiments. I there-
fore simply state the following without proof:

1. The problem of imperfect detector efficiency can be handled by
making ‘‘no-enhancement’’ assumptions similar to those of Clauser
and Horne. (11)

2. The effect of imperfect polarizer efficiency can be treated exactly,
and shown to result in the replacement of formulae (3.16b) by a
pair of slightly weaker inequalities; of various possible alternative
forms of the latter, the simplest is

|Pa(j)+Pa(jŒ)| [ 2 − (4o/p) |sin(j − jŒ)|, (6.1a)

|Pa(j) − P(jŒ)| [ 2 − (4o/p) |cos(j − jŒ)|, (6.1b)

where the parameter o is defined in terms of the transmittances of
the jth polarizer for polarization parallel (perpendicular) to the
nominal ‘‘transmission’’ axis by the formula

o — 1
2 (e1

M+e2
M − e1

m − e2
m) (M 1). (6.2)

In practice, o is so close to 1 in recent experiments that the
correction expressed by (6.1a, b) to the results of Sec. 3 is very
small.

3. Apart from the above two complications, which are of course
familiar from the Bell’s theorem context, there is a third problem
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which does not exist there: namely, in formula (3.16a, b) the
quantity Pa(j) is defined as the average of Pa(j, t) over the ‘‘center-
of-mass’’ coordinate t, and such an average is not measured in
existing experiments, which typically work at one or a few values
of t. The simplest way of dealing with this complication is to
make the explicit assumption (which is certainly consistent with
existing experiments) that P(j, t) is in fact independent of t, so
that Pa(j) in (3.16a, b) may be replaced by P(j). We will moreover
assume that P(−j)=P(j).

Given the assumptions listed under (1) and (3) above, and neglecting
for simplicity the small difference between i and 1, we can (for example)
set, in (3.16a), j=p/8, jŒ=−p/8, and in (3.16b) j=p/8, jŒ=3p/8, and
in this way attain the prediction, valid for any subclass-L CNHV theory.

g — 3P(p/8) − P(3p/8) [ 4(1 − `2/p) 5 2 · 2. (6.3)

This inequality is clearly violated by (for example) the experimental
result quoted in Weihs et al., (3) which corresponds to g=2.73 ± 0.02. Given
the value of o (\ 0.96) in this experiment, the corresponding correction
increases the RHS of the inequality (6.3) only to less than 2.3, so one can
conclude that with the above assumptions the experiment rules out subclass-
L CNHV theories by many standard deviations.

7. DISCUSSION

In this paper I have argued that among the general class of nonlocal
hidden variables of a certain subclass, which I have called ‘‘crypto-non-
local’’ (CN) is relatively plausible. (The ‘‘relatively’’ is stressed: I am not
arguing that the absolute plausibility of any nonlocal theory is particularly
high!.) These theories have the advantage that (a) no special role is assigned
to the distant measuring apparatus as distinct from the rest of the distant
environment (b) nevertheless, the nonlocality is guaranteed, by construc-
tion, to be unobservable in the simplest experiments (those involving single
beams of photons). I have then shown (Secs. 3 and 4) that such theories
cannot give predictions in agreement with those of quantum mechanics
(and incidentally shown (Sec. 6) that with a few plausible subsidiary
assumptions existing experiments conclusively refute theories of the ‘‘sub-
class-L’’ type).

To discuss the significance of these results it is convenient to imagine
that a test of quantum mechanics (QM) against general CN theories has
been carried out, with one of the two results: (a) the experimental data are
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consistent with the predicted inequalities for a CN theory and hence violate
the QM predictions (b) the experimental data agree with QM and therefore
rule out the whole class of CN theories. (The third possibility, that the data
agree neither with QM nor with CN theories, is of no interest for the
present discussion.)

In the case of result (a), which most physicists would no doubt think
a prior very unlikely, it would of course immediately become a matter of
prime interest whether or not observable effects of nonlocality are confined
to the very special types of situation met with in atomic cascade precesses
and similar events (positron annihilation, KKa production, etc.)—roughly
speaking, those situations for which one can construct the ‘‘EPR paradox.’’
(Einstein et al. (2)), and which in quantum mechanics have to be described
by nonfactorizable two-particle wave functions. It would in fact then be of
considerable interest to re-examine the data (if there is any!) on correlations
in the situations labeled type (b) in Sec. 2—that is, cases where, for
example, two photons are radiated in succession by the same atom, whose
intermediate state is however known. In this case quantum mechanics pre-
dicts that the wave function of the photon field is a simple product, and
hence that there should be no correlations in the joint counting rate
regarded as a function of the polarizer settings: in the language of Sec. 2 we
predict Eq. (2.10). In principle it would be possible to adapt existing exper-
iments on atomic cascades to this purpose, by applying a magnetic field to
the source, passing the emitted photons through a wavelength (not a polar-
ization) filter and then measuring the correlations in (say) linear polarization.

In the case of the (expected) result (b), what would we have learned
about quantum mechanics? In the first place, note that whereas it is pos-
sible to regard the locality assumption required for Bell’s theorem as a
special (and particularly plausible) case of the more general assumption of
non-contextuality (cf. Sec. V of Bell, (12) and also Kochen and Specker (13)),
the results proved in this paper do not rely on this property; in fact, the
class of hidden-variable theories whose incompatibility with QM is proved
is explicitly ‘‘contextual’’ (Belinfante (4)). So the relaxation of the noncon-
textuality condition does not necessarily allow the results of QM to be
reproduced by a hidden-variable theory, provided that we replace it by
some other physically plausible constraint. Secondly, the above results yield
strong support to the contention made by, for example, Garuccio and
Selleri (8) that the crucial element in the incompatibility between local
hidden-variable theories and QM really has rather little to do with the
locality condition but a lot to do with the idea of the super position
principle in QM.

Finally, it should, of course, be emphasized that if one wishes to
maintain some kind of objectivity principle (cf. Clauser and Horne (11)) in
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the face of Bell’s theorem, it is by no means obvious that the most natural
way to do so is to modify the postulates (1)–(4) of Sec. 2 in the way done
here (that is, to reject only postulate 4). It might, for example, be thought
at least as plausible a priori to reject the second postulate, and in particular
to allow the hidden-variable distribution r(l) to depend on the settings a
and b of the polarizers. Whether any nontrivial results could be obtained
under this assumption is a question I have not so far investigated.

It is a pleasure to dedicate this paper to David Mermin on the occa-
sion of his retirement, and to wish him many more happy years of (unoffi-
cial!) activity in physics.
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