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Abstract

I argue that, contrary to folklore, Einstein never really cared for
geometrizing the gravitational or (subsequently) the electromagnetic
field; indeed, he thought that the very statement that General Rela-
tivity geometrizes gravity “is not saying anything at all”. Instead, I
shall show that Einstein saw the “unification” of inertia and gravity
as one of the major achievements of General Relativity. Interestingly,
Einstein did not locate this unification in the field equations but in
his interpretation of the geodesic equation, the law of motion of test
particles.
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1 Introduction

What could be more beautiful than the idea that all there is to the world is
geometry? What could cause a bigger sense of wonder than finding out that
something we do not normally conceive as geometrical is exactly that at its
core: a feature of the geometry of space or spacetime. Finally, what could
be clearer than that this is exactly what happens in General Relativity (GR
for short), and that it is what distinguishes GR most clearly from previous
theories of gravity: gravity is being ‘geometrized’. In this spirit, Vizgin
writes:!

The basic feature of general relativity that distinguished it sharply
from all other physical theories, including the first quantum the-
ories, was the inherent idea of the geometrization of a physical
interaction (the gravitational interaction). The interpretation of
the gravitational field as the manifestation of space-time curva-
ture ... was a departure from the traditional theories of physics.

The sceptic of the geometrization programme, on the other hand, is most
prominently represented by Weinberg:?

In learning general relativity, and then in teaching it to classes
at Berkeley and M.I.T., I became dissatisfied with what seemed
to be the usual approach to the subject. I found that in most
textbooks geometric ideas were given a starring role, so that a
student who asked why the gravitational field is represented by a
metric tensor, or why freely falling particles move on geodesics,
or why the field equations are generally covariant would come
away with an impression that this had something to do with the
fact that space-time is a Riemannian manifold.

Of course, this was Einstein’s point of view, and his preeminent
genius necessarily shapes our understanding of the theory he
created. [...] Einstein did hope, that matter would eventually be
understood in geometrical terms [...]. [I believe that] too great
an emphasis on geometry can only obscure the deep connections
between gravitation and the rest of physics.

Even though scholars may disagree on how far the idea of geometrizing
physics can be pursued, both admirers and sceptics agree that Einstein was

"Wizgin [1994], p. xii-xiii.
*Weinberg [1972], p. vii.
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the champion of the programme, that he was the man who ‘geometrized’
gravity and spent the rest of his life trying to do the same with the only
other interaction known at the time, electromagnetism. Indeed, Vizgin and
Weinberg in particular agree on Einstein’s alleged twin goals: geometriza-
tion, which would eventually lead to a unification of all known interactions.

However, note that it is not necessary for the two goals to go hand-
in-hand; special relativistic electrodynamics gives us a unification of electric
and magnetic fields without, it seems, any kind of ‘geometrization’. It clearly
seems possible to unify two physical fields without relating them in any way
to (spacetime) geometry: ‘geometrization’ and ‘unification’ are compatible
but conceptually distinct research goals.

In this paper, I shall show that Einstein saw himself much more as a
traditionalist that as someone who gives a completely new king of gravita-
tional theory via geometrizing gravity. Indeed I will argue that Einstein saw
himself as a traditionalist in two important respects: i.) he thought that
General Relativity was no more and no less geometrical than Maxwell’s the-
ory of electromagnetism; and ii.) that the important achievement of GR
was the advancement of the unification programme in direct continuation of
special relativistic electrodynamics. Einstein thought that the special the-
ory unified electricity and magnetism, the general theory inertia and gravity.
Yet, we shall see that, unbeknown to most scholars, Einstein was emphatic
in his belief that this should not be interpreted as a ‘geometrization’ of grav-
ity, especially if ‘geometrization’ was seen as a reduction of gravity/inertia
to spacetime geometry.

The argument will proceed as follows. Section 2 sets the stage by giv-
ing a series of almost unknown writings of Einstein that show his strong
opposition to interpreting GR as a “geometrization of gravity”. The respec-
tive quotations range from 1925 to the end of the 1940s, i.e. until near the
end of Einstein’s life. Despite of stretching almost the quarter of a century,
the reader may wonder whether Einstein only acquired this opinion at the
beginning of the 1920s, which was a time of conceptual reorientation for Ein-
stein with regard to the interpretation of GR. In section 3, I shall show that
even though Levi-Civita’s and Weyl’s work of giving the modern geometrical
conception of the affine connection only took place in 1917, Einstein had all
the necessary mathematical and conceptual tools for thinking of GR as a
reduction of gravity to geometry, at the latest by 1916. For it will become
clear that already then Einstein thought of the geodesic equation as a ‘gen-
eralized law of inertia’ and of test particles subject to arbitrary gravitational
fields as moving on geodesics. In section 4, I shall argue that nevertheless
FEinstein did not adopt this position. Instead, he saw the geodesic equation
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as manifesting the unification of inertia and gravity in GR, a unification he
saw as very similar to the unification of electric and magnetic fields in spe-
cial relativity. Furthermore, he thought of the geodesic equation as allowing
for an arbitrary split into gravitational terms on the one hand and inertial
terms on the other. However, he also insisted that such labeling, the very
distinction between gravity and inertia in GR, was in principle unnecessary,
even though useful when comparing GR to its predecessor theories. This
conception of unification brought with it a view of ‘gravitational field’ that
allows the attribution of its presence only relative to a given coordinate
System.

That’s the story to be told. Let’s start with the claim that Einstein
geometrized gravity, and see how adamant he was that he did not see his
work in that way.

2 What Einstein did not believe: the geometriza-
tion of gravity

What does it mean to say that GR ‘geometrized’ gravity? Does it just mean
that gravity is described by using particular mathematical tools? Or does it
mean that gravity has been ontologically reduced to (spacetime) geometry
in some sense? In this section, we shall see that Einstein believed that
at best ‘geometrization’ means the former — and is thus trivial — and at
worst it means the latter and is wrong. We shall see that Einstein saw even
Maxwell’s and Hertz’s use of three-vectors as equally geometrical as the use
of metric tensors in GR; and we shall see that Einstein’s opinion on this
stayed unchanged between the formal completion of GR in 1915 and his
autobiographical notes in 1949.

2.1 The Einstein-Meyerson debate: against the reduction of
gravity to geometry

One might think that Einstein was unlikely to think of gravity as reduced
to geometry in GR as long as he thought that the metric field g, itself
was reducible to the relationship between material bodies, i.e., as long as he
believed in various forms of what he called Mach’s principle. However, in
the early 1920s, largely fueled by his debate with Willem De Sitter, Mach’s
principle was facing severe pressure, to the extent that Einstein was forced
to recognise the metric field as a fundamental field in its own right according
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to GR.3 Interestingly, this did not (yet) make Einstein give up on Mach’s
principle, but led him to change the role he attributed to the principle:
he changed its status from a principle that was supposed to hold for GR
as a whole, for every solution to the field equations, to a selection rule by
which physically acceptable field equations should abide. This development
culminated in the Princeton lectures in 1921, and in a series of notes in
which he attacked supposedly ‘Anti-Machian’ papers afterwards.*

Having recognised the metric field as in principle ontologically on a par
with the electromagnetic field (considering both of them as fundamental
fields as far as GR was concerned) made Einstein more and more entranced
with the mission of finding a theory in which both fields would come out
as two aspects of one and the same unified field, just as the electric and
magnetic field had been shown to be aspects of the electromagnetic field.
Many have interpreted this mission as Einstein trying to bestow the ge-
ometrization that the gravitational field had allegedly received in GR on
the electromagnetic field as well. In this section, I shall show that Einstein
did not see GR as a geometrization of the gravitational field, that indeed he
insisted that what the claim even meant was utterly unclear. Consequently,
Einstein did not see the quest for a unified field theory as an attempt to
geometrize both the gravitational and electromagnetic field.

As early as 1925 Einstein insisted, explicitly, that his work should not
be understood as reducing physics to geometry, either his work on GR or his
(and Weyl’s and Eddington’s) work on a unified field theory of gravitation
and electromagnetism. The passage can be found in a review of Emile
Meyerson’s book ‘La déduction relativiste’.> The review was written in
German by Einstein, and then translated into French by A. Metz, as solicited
by Meyerson, and eventually published as Einstein and Metz [1928]. An
English translation was published only as late as 1985, as an appendix to a
translation of Meyerson’s book. The point regarding ‘geometrization’ is the
main critical point in an otherwise rave review by Einstein. Also, it gives
what may be the clearest explication of Einstein’s opposition to the idea
of ‘reducing physics to geometry’, although we shall see similar statements
from the 1930s and 1940s below. So the passage merits being quoted in its

3See e.g. Einstein [1920].

“See Einstein [1922¢], Einstein [1922b] and Einstein [1922a] and the annotation of
these articles in Vol. 13 of the Collected Papers of Albert Einstein (CPAE for short); and
compare Hoefer [1994], Hoefer [1995], and Renn [2007].

®Meyerson [1925]. See Zahar [1980, 1987] for details on Meyerson’s philosophy of
science.
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entirety:6

Meyerson sees another essential correspondence between Descartes’
theory of physical events and the theory of relativity, namely the
reduction of all concepts of the theory to spatial, or rather geo-
metrical, concepts; in relativity theory, however, this is supposed
to hold completely only after the subsumption of the electric field
in the manner of Weyl’s or Eddington’s theory.

I would like to deal more closely with this last point because
I have an entirely different opinion on the matter. I cannot,
namely, admit that the assertion that the theory of relativity
traces physics back to geometry has a clear meaning. One can
with better justification say that, with the theory of relativity,
(metrical) geometry has lost its special status vis-a-vis regular-
ities which have always been denoted as physical ones. FEven

5If not otherwise indicated, translations are either mine or, in the case where Einstein
articles have already been published in the translation volumes of the CPAE, those of the
translation volumes, sometimes with minor modifications. In the case where the German
originals are already available in the CPAE, I do not reproduce them in the footnotes.
The passage in the main text is my translation of part of Doc. AEA 91-248 of the Albert
Einstein Archives (AEA for short): ‘In Descartes’ Theorie des physikalischen Geschehens
sieht Meyerson noch eine wesentliche Gemeinschaft mit der Relativitdtstheorie, ndmlich
die Zuriickfiihrung aller Begriffe der Theorie auf raumliche bew. Geometrische Begriffe;
bei der Relativitatstheorie soll dies allerdings erst nach Einordnung des elektrischen Feldes
nach Art der Weylschen bezw. Eddington Theorie vollsténdig zutreffen. Auf diesen let-
zteren Punkt mochte ich naher eingehen, weil ich hier entschieden anderer Meinung bin.
Ich kann namlich nicht zugeben, dass die Behauptung, die Relativitatstheorie fiihre die
Physik auf Geometrie zuriick einen klaren Sinn habe. Ueberhaupt Man kann mit mehr
Recht sagen, dass die Relativitdtstheorie es mit sich gebracht habe, dass die (metrische)
Geometrie ihre gegeniiber den Gesetzmaéssigkeiten, welche man stets als physikalische
bezeichnet habe, in der Relativitétstheorie ihre Sonderstellung eingebiisst habe. Auch
vor Aufstellung der Relativitdtstheorie war es ungerechtfertigt, die Geometrie gegeniiber
der Physik als eine Lehre “a priori” zu betrachten. Dies kam nur daher, dass man meist
vergessen hatte, dass die Geometrie die Lehre von den Lagerungsmoglichkeiten starrer
Korper sei. Geméss der allgemeinen Relativitatstheorie bestimmt der metrische Tensor das
Verhalten der Masskorper und Uhren sowie die Bewegung frei beweglicher Koérper bei Ab-
wesenheit elektrischer Wirkungen. Dass man diesen metrischen Tensor als “geometrisch”
bezeichnet hangt einfach damit zusammen, dass das betreffende formale Gebilde zuerst in
der als “Geometrie” bezeichneten Wissenschaft aufgetreten ist. Dies rechtfertigt es aber
keineswegs, dass man jede Wissenschaft, in welcher jenes formale Gebilde eine Rolle spielt,
als “Geometrie” bezeichnet, auch dann nicht, wenn man sich bei der Veranschaulichung
vergleichsweise jener Vorstellungen bedient, welche man aus der Geometrie gewohnt ist.
Mit &hnlicher Argumentation hétten Maxwell und Hertz die elektromagnetischen Gle-
ichungen des Vakuums als “geometrische” bezeichnen kénnen, weil der geometrische Be-
griff des Vektors dabei in diesen Gleichungen auftritt.’
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before the proposal of the theory of relativity it was unjustified
to consider geometry vis-a-vis physics as an “a priori” doctrine.
This occured only because it was usually forgotten that geometry
is the study of the possible positions and displacements of rigid
bodies. According to the general theory of relativity the met-
ric tensor determines the behavior of the measuring rods and
clocks as well as the motion of free bodies in the absence of
electrical effects. The fact that the metric tensor is denoted as
“geometrical” is simply connected to the fact that this formal
structure first appeared in the area of study denoted as “geom-
etry”. However, this is by no means a justification for denoting
as “geometry” every area of study in which this formal structure
plays a role, not even if for the sake of illustration one makes
use of notions which one knows from geometry. Using a similar
reasoning Maxwell and Hertz could have denoted the electro-
magnetic equations of the vacuum as “geometrical” because the
geometrical concept of a vector occurs in these equations.

After pointing out that he does not think that GR and/or unified field
theories are about “geometrizing” things, Einstein comes to what he thinks
unified field theories are about. After a gap of only one sentence he adds:”

Thus, what is essential about Weyl’s and Eddington’s theories
on the representation of the electromagnetic field is not that
they have incorporated the theory of this field into geometry,
but that they have shown a possible way to represent gravita-
tion and electromagnetism from a unified point of view, whereas
these fields entered the theory as logically independent structures
beforehand.®

Of course, this is not at all how Weyl himself saw his theory;’ he saw

"“Das wesentliche der Theorien von Weyl und Eddington zur Darstellung des elektro-
magnetischen Feldes liegt also nicht darin, dass sie die Theorie dieses Feldes der Geometrie
einverleibt haben, sondern dass sie einen moglichen Weg gezeigt haben, Geemetrie Grav-
itation und Elektromagnetismus unter einem einheitlichen Gesichtspunkt darzustellen,
wéahrend vorher jene Felder als logisch voneinander unabhéngige Gebilde in die Theorie
eingingen.’

8For more on Einstein’s programme of a unified field theory of gravitation and elec-
tromagnetism see Vizgin [1994], van Dongen [2004], Sauer [2009], Goenner [forthcoming]
and van Dongen [2010].

9Eddington is a more complicated case; see Goenner [2004], section 4.3 and Ryckman
[2012], section 5, for details.
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his theory as achieving both geometrization and unification and saw the two
aims as intimately related. In 1918, he wrote about his theory:!°

[A] geometry comes about, which, if applied to the world, sur-
prisingly explains not only the gravitational phenomena but also
those of the electromagnetic field. According to the theory thus
coming into existence, both emanate from the same source; in-
deed, in general one cannot divide gravitation and electricity
without arbitrariness.

This quotation is from one of two papers Weyl wrote on the matter in
1918; this paper was directed at physicists. In the companion paper, aimed
primarily at mathematicians, Weyl makes particularly clear what he means
by ‘the source’ from which both gravity and electromagnetism emanate:!!

In this theory everything real, everything that exists in the world,
is a manifestation of the world-metric; physical concepts are
none other than geometrical ones.'?

Weyl clearly thought of gravitational and electromagnetic phenomena as
reduced to the geometry of spacetime in his theory. Einstein did not agree,
neither with regard to GR nor with regard to any unified field theory. And
he was very insistent on the point, as is shown by his correspondence with
Meyerson directly after sending him the draft of his review.

OWeyl [19184d], p.30: ‘[K]ommt eine Geometrie zustande, die iiberraschenderweise, auf
die Welt angewendet, nicht nur die Gravitationserscheinungen, sondern auch die des elek-
tromagnetischen Feldes erklirt. Beide entspringen nach der so entstehenden Theorie aus
derselben Quelle, ja im allgemeinen kann man Gravitation und Elektrizitdt gar nicht in
willkirloser Weise voneinander trennen’.

"Weyl [1918b], p. 2: ‘Nach dieser Theorie ist alles Wirkliche, das in der Welt vorhanden
ist, Manifestation der Weltmetrik; die physikalischen Begriffe sind keine anderen als die
geometrischen.’

121t is important to note that when Weyl speaks of ‘the world-metric’ or ‘the metric of
spacetime’, he is not referring to a metric tensor field g, as we know it from (pseudo-
)Riemannian geometry. He refers to what he regards as a generalisation of the concept
of a metric obtained in his theory. Given that endowing spacetime with a metric tensor
would allow for distant comparison of the lengths of vectors, Weyl took as the fundamental
building blocks of his geometry a conformal structure and a conception of length transfer,
thereby forbidding any distant comparison. Together, these two structures define an
equivalence class of pairs [gu., Q,], where every g,., is a metric tensor (in the classical
sense) and every @, a length connection, which together make it possible to define a
unique affine connection. Weyl thus regarded the equivalence class [gu., Q)] (rather than
any of its members) as ‘the metric of spacetime’. For more on Weyl’s theory see e.g.
Vizgin [1994], Scholz [2001] and Goenner [2004].
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Einstein had invited Meyerson to accompany the review with notes of his
own, in which he could reply to the points made by Einstein. After Meyerson
had sent Einstein the French translation of the German manuscript and his
answers to the few points of criticism to be found in the review, Einstein
seemed convinced that Meyerson was in the right across the board — in all
respects but one. He wrote:'3

Your remarks would in principle make it necessary for me to
rewrite my review, especially because it seems I did not char-
acterise correctly your standpoint regarding the relationship be-
tween the theory of relativity and earlier physics. However, with
regard to the second point, the one about “geometrization”, I
have not changed my mind. I still think that here the word
“geometrical” is not saying anything at all.

FEinstein emphasized that Meyerson’s comments on his review did not
change his mind about the fact GR should not be seen as a continuation
of Descartes’ programme of reducing physics to geometry, and that indeed
the theory should not be seen as more geometrical than, e.g., Newtonian
gravitation theory or Maxwellian electrodynamics. He would not change his
mind on the issue in the years to come either.

In his autobiographical notes, Einstein wrote:'4

One is struck [by the fact] that the theory (except for the four-
dimensional space) introduces two kinds of physical things, i.e.,

13Einstein to Meyerson, 21 August 1927, Doc. AEA 67-694: ‘Thre Bemerkungen wiirden
es nun eigentlich notig machen, meine Besprechung neu abzufassen, insbesondere deshalb,
weil ich Thre Auffassung der Stellung der Relativitatstheorie gegeniiber der fritheren Physik
wohl nicht ganz richtig charakterisiert habe. Ueber den 2. Punkt der “‘Geometrisierung”’
habe ich allerdings meine Meinung nicht gedndert. Ich denke immer noch, dass hier das
Wort “geometrisch” vollig nichtssagend ist.’

141 changed the translation of the Schlipp volume by replacing ‘inconsistent’ by the
weaker ‘incoherent’; which is closer to Einstein’s original word ‘inkonsequent’. I also
replaced ‘intrinsically different’ by ‘essentially different’, which seems closer to Einstein’s
‘wesensverschieden’. The original (Einstein [1949], p.555/56) reads: ‘Es fallt auf, dass
die Theorie (ausser dem vierdimensionalen Raum) zweierlei physikalische Dinge einfiihrt,
namlich (1) Massstdbe und Uhren, (2) alle sonstigen Dinge, z.B. das elektromagnetische
Feld, den materiellen Punkt etc. Dies ist in gewissem Sinne inkonsequent; Massstébe
und Uhren miissten eigentlich als Losungen der Grundgleichungen ... dargestellt werden,
nicht als theoretisch selbststindige Wesen. [...] [Es bestand die] Verpflichtung, [diese
Inkonsequenz] in einem spéteren Stadium der Theorie zu eleminieren. Man darf aber die
erwihnte Siinde nicht so weit legitimieren, dass man sich etwa vorstellt, dass Abstédnde
physikalische Gegensténde seien, wesensverschieden von sonstigen physikalischen Grossen
(“Physik auf Geometrie zuriickfiihren” etc.)”
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(1) measuring rods and clocks, (2) all other things, e.g., the
electro-magnetic field, the material point, etc. This, in a cer-
tain sense, is incoherent; strictly speaking measuring rods and
clocks would have to be represented as solutions of the basic
equations..., not, as it were, as theoretically self-sufficient enti-
ties.!> [There was the] obligation, however, of eliminating [this
incoherence| at a later stage of the theory. But one must not
legalize the mentioned sin so far as to imagine that intervals are
physical entities of a special type, essentially different from other
physical variables (“reducing physics to geometry”, etc.).

An even stronger late statement, which mirrors almost verbatim Ein-
stein’s statement in the Meyerson review 23 years earlier, can be found in a
letter from Einstein to Lincoln Barnett from June 19, 1948:16

I do not agree with the idea that the general theory of relativity is
geometrizing Physics or the gravitational field. The concepts of
Physics have always been geometrical concepts and I cannot see
why the g field should be called more geometrical than f.[or]
i.[nstance] the electromagnetic field or the distance of bodies
in Newtonian Mechanics. The notion comes probably from the
fact that the mathematical origin of the g;; field is the Gauss-
Riemann theory of the metrical continuum which we are wont
to look at as a part of geometry. I am convinced, however, that
the distinction between geometrical and other kinds of fields is
not logically founded.

In the draft, Einstein writes first ‘...that the distinction between geomet-
rical and other kinds of fields cannot be upheld’ (kann nicht aufrecht erhalten

5Note that this was Weyl’s answer to Einstein’s criticism of his (Weyl’s) unified field
theory, see Einstein [1918a].

Doc. AEA 6-58. The English version quoted below is the one actually sent; it differs
from the German draft in some points: ‘Ich kann nicht mit der weitverbreiteten Auffas-
sung ilibereinstimmen, dass die allgemeine Relativitatstheorie die Physik ‘geometriziere’.
Die Begriffe der Physik sind namlich von jeher ‘geometrisch’ gewesen, und ich kann nicht
sehen, warum das g;x-Feld ‘geomtrischer’ sein soll als das elektromagnetische Feld oder
die Distanz von Korpern in Newtons Mechanik. Wahrscheinlich stammt die Ausdruck-
sweise aus dem Umstand, dass das g;,-Feld seinen mathematischen Ursprung (Gauss, Rie-
mann) Begriffen entstammt, die man als geometrisch zu betrachten gewohnt ist. Genauere
Uberlegung zeigt aber, dass die Unterscheidung zwischen geometrischen und anderen Feld-
begriffen sich nicht aufrecht-erhaltentisst objektiv begriinden lasst.’
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werden) and then strikes it out to write the above.l”

In sum, we find that Einstein did not change his mind on the issue. But
what exactly did he oppose, and why?

2.2 Analysis of the debate

The above quotations show that Einstein did not believe in there being an
interesting distinction between a purely mathematical sense of ‘geometrical’
and a supposedly more substantive sense many would like to draw between
the status of, say, the geometry of a phase space and that of spacetime. For
Einstein, there is no interesting distinction between the two cases — the use
of a vector in classical electromagnetic theory is as ‘geometrical’ as the use
of a metric tensor in GR. Thus, according to Einstein, the manifold claims
that GR teaches us the important lesson that ‘gravity is geometry’,'® that
‘gravity is a manifestation of spacetime curvature’,!® or that in GR gravity
is ‘geometrized’®® are just “nichtssagend” — they are uninformative, they
do not teach us anything interesting about the theory or about the world.
Consequently, Einstein would probably not have been surprised at Cartan’s
managing to formulate Newtonian gravitation theory as a ‘geometrized the-
ory’?! by expressing Newtonian gravity in terms of metric and curvature
tensors. For Einstein, it never was the message of GR that it did some-
thing new in relating gravity to geometry; GR did not do anything new at
all there, it just used mathematical methods to represent gravity that were
equally geometrical or ungeometrical as the representation of the gravita-
tional field by scalars or vectors in pre-GR theories. Indeed, this seems quite
in line with Trautmann’s definition of ‘geometric object’; he sets out to de-
fine the term in such a way that it “includes nearly all the entities needed
in geometry and physics”.?? However, describing something in geometrical
terms should not be misunderstood as reducing something (ontologically) to
geometry.

That for Einstein there is a clear distinction between the two possibilities
is connected to what Einstein takes the term ‘geometry’ to refer to. In the

7The idea that the metric field in GR is just a field ‘like any other’ rather than being
special because of its alleged ‘geometrical significance’ has more recent proponents as well;
see in particular Brown [2007], chapter 9, and Brown [2009]. Compare also Anderson
(1999].

8Hartle [2003], p.13

YMisner et al. [1973], p. 304

20Reichenbach [1957], p. 256

*'Malament [20120]

22Trautman [1965], p.84-5; compare also Anderson [1967] pp.14-16.



2 WHAT EINSTEIN DID NOT BELIEVE 12

1925 quotation from the Meyerson review, Einstein states that geometry
“is the study of the possible positions and displacements of rigid bodies”,
and that thus geometry should never have been regarded as an a priori
discipline.??

This definition of geometry already occurs four years earlier, in a text
from December 1919 / January 1920, which Einstein had intended as an arti-
cle for Nature, telling the story of how he recalled the historical development
of both special and general relativity.?*

The systematic decoupling of basic geometrical concepts (straight
line, distance etc) from the bodies of experience, of which they
are abstract representations, must not let us forget that in the
end geometry is supposed to tell us about the behavior of the
bodies of experience. If there were no practically rigid bod-
ies that can be brought into congruence with one another, we
would not speak of the congruence of distances, triangles, etc. It
is clear that for the physicist geometry becomes meaningful only
as he associates bodies of experience with those basic concepts,
for example by associating the concept of distance with a practi-
cally rigid body with two markings. Vice Versa, this association
makes Euclidean geometry a science of experience in the truest
sense, just like mechanics. The sentences of geometry can then
be confirmed or falsified, just like the sentences of mechanics.

Geometry defined as the science of possible displacements of rigid bodies
is not easily carried over from the Euclidean geometry of space to the ge-
ometry of (possibly curved) spacetime. Indeed, in the 1925 quotation from
the Meyerson review, Einstein claims that the only reason we call metric
tensors geometrical is that they were first used in the context of that area of
study which we originally called ‘geometry’. And Einstein calls for caution
regarding calling these tensors ‘geometrical’ once we leave that original area
of study. Given that this development had already taken place, Einstein
effectively diagnoses that the use of ‘geometry’ has become so broad that

2 This is clearly directed against Kantian and Neo-Kantian voices which had come up
in defense against first special and then general relativity, and which were particularly
strong in the 1920s. For details, see Hentschel [1990], section 4.1, Ryckman [2012], section
3 and Ryckman [2005].

24See Vol. 7, Doc. 31 CPAE. As Janssen [2012], p.160, states, the article was “but was
withdrawn in the end and replaced by a much shorter and less informative piece”, which
appeared in Nature instead. Compare also similar statements in Einstein [1921].
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stating that something has been ‘geometrized’ is just not saying anything
— it is nichtssagend.

Once this diagnosis has been made, Einstein could have just shrugged
his shoulders and said that he does not really care about whether GR is seen
as geometrizing gravity or not. The reason why he did care is that people
who see GR as geometrizing gravity (like Meyerson, Weyl and Vizgin) see
this as a profound statement — not as a statement about the mathematical
language GR uses to describe gravity but as a reductionist claim: gravity
has allegedly been reduced to geometry. We see the opposition to such
reductionist claims (and to the claim that this reduction is the novel feature
of GR) in each and every one of the above Einstein quotations. The reason
that Einstein opposed this view is that he thought that it diverted attention
from what really was the important message of GR. We shall return to the
latter point in section 4; for now let us look to see if Einstein could have
endorsed the reductionist claim in all its sophistication.

3 What Einstein could have believed: gravity re-
duced to inertia

Let us pause for a moment to see what ‘reducing gravity to an aspect of
spacetime structure’ could mean in GR. Arguably the most promising way
to explicate this statement comes via relating gravity to inertial structure
and in turn to spacetime structure. The Newtonian conception of inertial
motion is that bodies move inertially if they are subject to nothing but
space(time); in particular, they are not subject to forces. In GR, particles
subject to gravity move on geodesics, the direct generalisation of straight
lines. From here, it is only a small step to regard the motion of particles
subject to gravity as inertial motion, and thus gravity as reduced to inertial
structure. Given that inertial/geodesic structure is a particular aspect of
the structure of spacetime (its affine structure), ‘reduction of gravity to
inertia’ can be seen as a special case of ‘reduction of gravity to spacetime
structure’.?’ Could Einstein have interpreted GR in this way? If so, by when
could he have done it, and why did he not do it?

It has sometimes been claimed that before Levi-Civita’s and Weyl’s
reconceptualisation of the affine connection in terms of parallel transport in
1917 and 1918,26 Einstein could not have seen GR as ‘properly’ geometrizing

ZWald [1984], p. 67, for example, seems to see GR as doing exactly that.
#63ee Levi-Civita [1917] and Weyl [1918D).
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gravity.?” However, it seems that this opinion at least partly rests on not
clearly distinguishing between using geometrical language in physics (which
for Einstein included vectors as much as metrics) on the one hand and onto-
logically reducing physics to spacetime geometry on the other; i.e., showing
that gravity is ‘just an aspect of spacetime structure’.

In this section, I shall show that i.) already starting in 1913 Einstein
saw the extremisation of the line element as describing “straight and uniform
motion” and, following a result by Planck from 1906, saw it as the relativistic
counterpart of Newton’s law of inertia; ii.) Einstein saw these equations
as describing the motion of test particles both in the absence and in the
presence of gravity; iii.) by 1916 at the latest Einstein was aware of the
idea (presented to him by Friedrich Kottler) that gravity should be seen as
reduced to inertia because particles subject to gravity can be described as
moving inertially; iv) Einstein rejected this interpretation of GR. Thus, by
the end of this section we shall see that by 1916 at the latest Einstein had all
the necessary mathematical and conceptual tools to see gravity as reduced
to inertia in GR, and indeed to see reduction to inertia as identical to or a
special case of reduction to spacetime geometry. Still, he did not adopt this
position. In the following section, we shall then see what Einstein believed
instead, what he thought the main message of GR was, given that it was
not one of reduction of gravity to inertia/geometry.

3.1 The geodesic equation as the equation of motion of test
particles subject to gravity

Already in the first papers in which Einstein starts making use of the metric
tensor to give an account of gravitation, he is at pains to establish the status
of the geodesic equation as describing the motion of particles as “straight
and uniform” (geradlinig und gleichformig) even when subject to gravity.
This would lead him to call the geodesic equation a “generalised law of
inertia”; redefining inertial paths such that the category includes motion
under the influence of gravity.

The story begins in the Entwurf paper, Einstein and Grossmann [1913].
In section 1 of the physical part, written by Einstein alone, he states that
already according to special relativity, the equation of motion of a point
particle not subject to forces follows from extremising the line element:

(5/d3:5{/ V—da? — dy? — d22 + 2di2} =0 . (1)

*"See e.g. Reich [1992, 1994], and Stachel [2007].
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In a footnote, Einstein pointed out that this had already been shown by

Planck [1906]. In this paper, Planck’s sole aim had been to find the rela-
tivistic counterpart of Newton’s first law of motion (i.e., the law of inertia),
and he arrived at § [ ds = 0. Einstein now stated that this equation “says
nothing else but that the material point moves in a straight and uniform
line” .28:
Thus, by 1913 at the latest Einstein clearly follows Planck in seeing
equation (1) as the relativistic law of inertia. In the Entwurf paper, he
then turns to the equivalence principle, and states that as a consequence
of the latter he found that in his scalar theory of gravitation (in which the
scalar field ¢ represents both the gravitational potential and the local speed
of light) the equation of motion for force-free point particles also applies
to point particles moving in a static gravitational field, as described by
that theory; the difference being that in this case ¢ varies with the spatial
coordinates in a given coordinate system.??

Already in a note added in proof to Einstein [1912], Einstein had stated
that equation (1) gives the equation of motion of point particles “not subject
to external forces”.3® Thus, it was clear that already in 1912, before even
embarking on a metric theory of gravitation, Einstein thought of (static)
gravitational fields not as invariant force fields diverting particles from in-
ertial motion.3! Already, in 1912, he thought of equation (1) as describing
inertial motion on the one hand, and as describing motion in the presence
of (static) gravitational fields on the other.

The natural follow-up question is: what happens if we consider the mo-
tion of point particles in the presence of general, non-static gravitational
fields? In section 2 of the Entwurf paper, Einstein takes the variational
principle (1) as a starting point and argues that for non-static gravitational
fields, too, we should expect equation (1) to give the equation of motion

*Einstein and Grossmann [1913], p. 4.

29For more on this theory, see the editorial note “Einstein on gravitation and relativity:
the static field”, p. 122-128 of Vol. 4 CPAE, and Norton [1995], section 5.1; for a
reconstruction of the theory using modern differential geometry see Norton [1989b], section
3.

30See Einstein [1912], p. 458.

31In section 4, we shall see that this did not stop Einstein from making sense of the
attribution of gravitational forces as coordinate-dependent assertions; for him, stating that
particles in gravitational fields move on geodesics was completely compatible with saying
that in a given coordinate system the presence of gravitational forces can be asserted.
Indeed, as Norton [1989b] pointed out, the possibility of asserting the presence or absence
of gravitational forces depending on the coordinate system chosen was the conceptual core
of the equivalence principle in Einstein’s mind.
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for point particles. The only difference is that now the line element on the
left-hand side of the equation has to be that defined by a general metric ten-
sor g,,; the first time Einstein introduces the latter in a published article.32
About three months after submitting the Entwurf paper, Einstein submit-
ted a paper to the 85th conference of the German Society for Scientists and
Physicians, in which he became even more explicit:3

A free mass point moves in a straight and uniform line according
to equation [(1)], where

ds® = Zguydazudx,,
nv

. [...] In general, every gravitational field is going to be defined
by ten components g,,,,, which are functions of 1, 2, 3, 4. The
motion of the material point will always be governed by equa-
tions of this form.

Thus, it is clear that already in 1913 Einstein saw the variational prin-
ciple (1) as describing inertial motion, asserting that point particles would
move in this fashion both when not subject and when subject to gravita-
tional fields. In Einstein [1914], Einstein then used the term “geodesic”
for the first time to describe the lines arising from equation (1). He ex-
plicitly states, again, that they describe the motion of particles in arbitrary
gravitational fields:34

In §2 it has already been shown that the motion of a material
point in a gravitational field takes place according to the equation
¢ [ ds = 0. Thus, from a mathematical point of view the motion

32Note that in section 4 (p.10) of the Entwurf paper Einstein points out, also for the
first time, that for the special case of a dust energy-momentum tensor the equations
of motion for a single point particle (i.e. one element of the dust) follow from energy-
momentum conservation. This remark presents the first instance of what would later
be called the geodesic theorem: the possibility of deriving the equations of motion from
energy-momentum conservation, given certain conditions on the energy-momentum ten-
sor (and, in theories like the final version of GR where energy-momentum conservation is
implied by the field equations, eventually from the latter). The most general version of
the theorem to date has been provided by Ehlers and Geroch [2004]. For historical dis-
cussion see CPAE V7, p.453, endnote 6; Havas [1989] and Kennefick [2005]; for systematic
discussions see Malament [2012a] and Weatherall [2011].

33Finstein [1913], p. 1256. See Norton [1995], section 5.2 for an analysis of the transition
to the Entwurf theory).

34 Einstein [1914], p.87.
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of a point corresponds to a geodesic line in our four-dimensional
manifold. [...] In the original theory of relativity, those geodesic
lines for which ds?> > 0 correspond to the motion of material
points; those for which ds?> = 0 correspond to light rays. This
will also be the case in the generalized theory of relativity.

Most of Einstein’s work in 1915 focused on finding the field equations
governing the gravitational field; this culminated in his finding what became
known as the Einstein field equations in November 1915.3% After this feat
was accomplished, Einstein could take a deep breath, and work on what
would become his first major review article about the finalised theory of
general relativity. In this treatise, he returns to the question of the equations
of motion in an arbitrary gravitational field:3

According to the special theory of relativity, a freely moving
body in the absence of external forces moves in a straight and
uniform line. This also holds for the general theory of relativity
for part of the four-dimensional space, in which the coordinate
system K can be chosen such that the g,, have the special
constant values [d,,]. If we consider this motion in an arbitrarily
chosen coordinate system K, then judged from within K; the
body moves ... in a gravitational field. ... With regard to
Ky, the law of motion is a fourdimensional straight line, i.e.,
a geodesic line. Since the geodesic line is defined independently
of the system of reference, the equation describing this line will
also be the equation of motion of the material point with regard
to Kl,

d?x dzx,, dx
T — 1—\7' 7/1 14 2
ds? "o ds ds (2)

We now make the very natural assumption that this generally
covariant system of equations determines the motion of the point
in gravitational fields also in the case that no reference system K
exists with respect to which special relativity holds with respect
to a finite space.?”

35See Stachel [1989], Norton [1984], Renn and Sauer [2006], Janssen and Renn [2006],
Renn [2007] and Janssen [2007] for the details of the tale of this grand journey.

36Einstein [19164], p.801-802.

3"For a rational reconstruction of Einstein’s conception of reference systems and relative
spaces, see Norton [1989b], section 3.



3 WHAT EINSTEIN COULD HAVE BELIEVED 18

Einstein says that with respect to a coordinate system in which the
metric is Minkowskian locally, i.e. in which no gravitational fields are judged
to be present, a particle moves on a straight line, “i.e. a geodesic line”.
He then points out that even if one goes to a coordinate system in which
a gravitational field is judged to be present, in which g,, has arbitrary
components, the particle will still move on a geodesic; and that we should
assume the geodesic equation to govern the motion even if non-vanishing
components of the Riemann tensor cannot be neglected in an arbitrarily
small but finite neighborhood of the point.3®

To summarize: by 1916 at the latest Einstein saw the geodesic equation
as representing i) inertial motion and ii) motion subject to gravity. Did he
make the step to seeing gravity as a reduction to inertia?

3.2 Kottler and the generalised law of inertia

Already in 1916 Einstein was presented with the idea that either gravity
diverts particles from inertial paths and is thus a dynamical force field, or
bodies move on inertial paths (for Einstein: geodesics) even when subject
to gravity, and thus gravity is reduced to inertial structure.

The distinction, and the challenge to choose, came to Einstein in the form
of an article published by the Viennese mathematical physicist Friedrich
Kottler. Kottler had written his Habilitation in mathematics on the appli-
cation of tensor calculus to relativity theory — in 1912, before Grossmann
and Einstein started to use the formalism in the construction of the Entwurf
theory.?? In 1916, Kottler wrote two articles that were bound to draw Ein-
stein’s attention: he claimed that in GR Einstein had effectively abandoned
his own equivalence principle and reintroduced gravitational forces as “real”
forces, whereas in Kottler’s view the equivalence principle required them to
be regarded as inertial forces. Kottler starts out by carefully distinguishing
between a dynamical and a kinematical conception of gravity:*"

38This is what the final sentence of the above quote amounts to, as elaborated by
Einstein in a footnote.

398ee Call No. 14-329 EA for a Curriculum Vitae written by Kottler himself around
1938, when Einstein helped him to leave Vienna and emigrate to the US.

4OKottler [1916], p.955-956: ‘Einstein hat seither die Aquivalenzhypothese aufgegeben.
Die Griinde liegen im wesentlichen in einer besonderen Auffassung ihrer Ergebnisse durch
ihn, die darauf hinauslauft, den Kréften des Gravitationsfeldes einen selbststdndigen
Charakter zu geben, wahrend hier die Bewegung im Gravitationsfeld als kraftefrei ange-
sehen werden soll, also das Tragheitsgesetz abgedndert und die Gravitation als reine
Tragheitserscheinung gedeutet wird. Diese Auffassung scheint mir die strenge Konse-
quenz der Aquivalenzhypothese und daher nur gleichzeitig mit ihr verwerflich. [...] Der
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Since then, Einstein has abandoned the equivalence hypothesis.
The reasons lie primarily in a particular perception of its results,
which amounts to giving an independent existence to the forces of
the gravitational field. Here, motion in a gravitational field will
be seen as force-free. Thus, the law of inertia must be changed
and gravitation be seen as a purely inertial phenomenon. This
perception seems to me a strict consequence of the equivalence
hypothesis; and thus can only be abandoned together with the
latter. [...] The prime difference [of my approach as compared
to Einstein’s| is one of principle: the kinematical, rather than
dynamical, conception of gravity.

Kottler essentially interpreted Einstein’s talk of gravitational forces, and
his quest for finding an expression for gravitational energy, as Einstein going
back to Newton’s conception of gravity: inertial motion is motion on straight
lines and gravity is a dynamical force (field) diverting particles from iner-
tial paths. Kottler saw himself as generalising the law of inertia such that

gravitational forces count as inertial forces:*!

The difference of this interpretation as compared to Einstein’s
has a kinematical rather than dynamical conception of gravity
as its consequence; i.e., in place of the force field we introduce
a modification of the Galileian law of inertia. The force-free
point does not move in a uniform and straight line anymore, it
moves on a curved and non-uniform line... . As paradoxical as
it may seem: only this seems to be the consistent conception
of Einstein’s equivalence! Indeed, if the cause of the equality of
gravitational accelerations for all masses is a kinematical one,
then gravity itself has to be of a kinematical origin, i.e. it must
be an inertial phenomenon!

This seems pretty much in line with the modern conception that par-
ticles under the influence of gravity move inertially and thus gravitational

wesentliche Unterschied [zu Einstein] ist ein prinzipieller: die erwahnte kinematische, nicht
dynamische Auffassung der Gravitation. ’

HKottler [1916], p.961: ‘Die ... erwidhnte Verschiedenheit der hiesigen Interpretation
von der Einsteinschen hat dann eine kinematische an Stelle der dynamischen Auffassung
der Schwere zur Folge, d.h. an Stelle des Kraftfeldes tritt eine Abdnderung des Galileis-
chen Tragheitsgesetzes; nicht mehr gleichférmig und geradlinig bewegt sich der kréaftefreie
Punkt, sondern krummlinig und ungleichférmig ... . So paradox es scheint: erst dies
scheint die konsequente Fassung der Einsteinschen Aquivalenz! In der Tat, wenn die Ur-
sache der Gleichheit der Schwerebeschleunigung fiir alle Massen kinematisch ist,so muf]
die Schwere selbst kinematischen Ursprungs, d.i. Tragheitserscheinung, sein! ’
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phenomena are reduced to inertial structure.*> Most importantly, Kottler
explicitly claims the law of inertia should be changed so that motion in
gravitational fields counts as inertial, unforced motion. Thus, it seems that
here at the very latest, Einstein was presented with the possibility of saying
that since particles move on geodesics even under the influence of gravity
and since the geodesic equation is the new law of inertia, gravity should
be seen as reduced to inertia. This within Einstein’s grasp the possibility
of endorsing the idea that GR reduces gravitational phenomena to inertial
structure and thus to spacetime geometry.

Whether Einstein identified ‘reduction to inertial structure’ with (a spe-
cial case of) ‘reduction to geometry’ we cannot know for sure, although it
seems plausible. What we do know is that Einstein opposed the idea that
gravity should be seen as ‘reduced to inertia’ in GR, just as he opposed
the idea that it should be seen as ‘reduced to geometry’. It is clear that
Einstein could have endorsed the line of thought that because the geodesic
equation (2) describes test bodies moving in the presence of a gravitational
field, the latter cannot be seen as a force field but must instead be seen as
an aspect of spacetime structure, namely inertial structure. If movement in
a gravitational field is described as a generalisation of inertial motion, is it
not clear that thus the gravitational field cannot be a force field, defined as
that which diverts particles from inertial motion?

This was not Einstein’s view. He could have endorsed it, as it was avail-
able for him to do so. Yet he did not adopt it, for the simple reason that
he believed something else instead. He believed that even though a particle
moves on a geodesic both in the absence and in the presence of a gravi-
tational field, a coordinate system can be chosen such that the connection
components I'V, ; vanish or appear, and thus a gravitational field appears
or disappears given a certain choice of coordinates.*3> As we shall see in the
next section, this view is, for Einstein, intimately related to the principle
of equivalence of inertia and gravity, and to the unification of inertia and
gravity achieved in GR.

12Note that it is not clear whether Kottler thinks of the ‘curved and non-uniform’ lines
he introduces as the new inertial paths as geodesics; after all, a major difference between
Kottler’s approach in this paper as compared to Einstein’s is that he tries to get along
without non-Euclidean geometry. In Kottler [1918] he would change his approach.

430nly as late as 1915 had Einstein started to see the connection components I”,, as
the representative of the gravitational field rather than the derivatives of the metric: see
Renn and Sauer [2006] and Norton [2007] for details.
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4 What Einstein did believe: unification of grav-
ity and inertia

In section 2 I argued that Einstein did not believe that gravity is reduced
to geometry according to GR. In section 3, I showed that Einstein could
well have defended this position by 1916 at the latest for he had linked
inertial motion to geodesic motion on curved surfaces and saw the geodesic
equation as describing the motion of test particles subject to gravity. If
it was still needed, Kottler even gave him the last piece by claiming that a
generalization of the law of inertia requires that gravity be seen as reduced to
inertia. The reason that Einstein did not believe in the geometrization of the
gravitational field (understood as reducing gravity to spacetime geometry)
as a consequence of all this was that he did believe in something else instead,
something we want to investigate in this section.

In short, we shall see that Einstein believed i) that the geodesic equation
shows that inertia and gravity are unified in GR, analogous to the unification
of electric and magnetic fields in special relativistic electrodynamics; ii) that
a result of this unification is that the existence of gravitational fields (in
contrast to gravitational-inertial fields) becomes coordinate-independent.

Given what we saw in the previous section, it may not be surprising that
Einstein did not see himself well represented in Kottler’s characterisation
of him as having given up the equivalence principle and having described
gravity as a force diverting particles from inertial motion. However, he also
does not follow Kottler in seeing gravity as reduced to inertia; Einstein
refused to make this last step. Indeed, he rejected the very distinction with
which Kottler confronted him: either gravity is a dynamical force diverting
particles from inertial motion, or it is an inertial phenomenon itself. Einstein
wrote: 44

Kottler complains that with regard to the equations of motion

0 (3)

P, | B deadrs
ds? v [ ds ds

I interpreted the second term as the representative of the in-
fluence of the gravitational field on the point mass, whereas |
interpret the first term as, so to speak, the representative of
Galileian inertia. This, he claims, would introduce “real gravita-
tional forces”, which is supposed to contradict the spirit of the

“Einstein [1916b], p. 641.
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equivalence principle. To this I answer that this equation is, as
a whole, generally covariant, and thus consistent with the equiv-
alence hypothesis. The labeling of the terms I introduced does
not really matter though and was only meant to accommodate
our physical habits of thinking. This is also true, in particular,

for the COHCthS
V,ua { v }

(components of the gravitational field) and t2 (energy compo-
nents of the gravitational field). The introduction of these la-
bels is in principle unnecessary, but for the time being they do
not seem worthless to me, in order to ensure the continuity of
thoughts... .

Here, Einstein gives two reasons for rejecting Kottler’s claim that by
naming the two terms occurring in equation (3) ‘inertia’ and ‘influence of
the gravitational field’, respectively, he had given up on the equivalence
principle. First, that the equivalence principle must be fulfilled in the the-
ory because of the latter’s general covariance. Note that earlier in the pa-
per Einstein had claimed that the equivalence principle is a special case of
general covariance (which he saw as the mathematical counterpart of the
general principle of relativity). After Kretschmann [1918], Einstein [19185]
started to distinguish carefully between the equivalence principle, the rela-
tivity principle, and Mach’s principle; thus, Einstein’s reasoning here would
not go through after 1918, when the equivalence principle stopped being
a (straightforward) consequence of general covariance in Einstein’s mind.*®
However, for our purposes Einstein’s second reason for rejecting Kottler’s
claim is much more important than the first, and, in contrast, it could be
defended even today. Einstein points out that the labeling of the two terms
of the geodesic equation (3) as ‘inertial” and ‘gravitational’, respectively, was
unnecessary, only meant to accommodate our ‘habits of thinking’ (formed,
presumably, by Newtonian theory). Einstein effectively states that the very
distinction between ‘gravity’ and ‘inertia’ is useful only for relating the the-
ory to its predecessor theories; it is not a distinction from within the theory
itself. Put differently, if one just looks at the theory without relating it
to predecessor theories, there is no need whatsoever to distinguish ‘inertial
terms’ and ‘gravitational terms’ in the geodesic equation.

Before the above quotation Finstein rejected Kottler’s idea that the grav-
itational field is only ‘kinematically determined’, precisely by pointing out

45See Norton [1999] and Hoefer [1995, 1994] for details.
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the limits of the equivalence principle: he states that only homogeneous
gravitational fields can be transformed away and substituted by wuniform
accelerations, but not arbitrary gravitational fields: “Thus, a ‘kinematical,
not dynamical interpretation of gravitation’ is not possible”.6 However,
neither does Einstein subscribe to what Kottler had called the dynamical
interpretation: the option that gravity is a force field diverting particles from
inertial paths. Einstein wants to hold the middle ground: particles move on
geodesics in the presence of arbitrary gravitational fields. And indeed, as
Kottler had stated, the law of inertia has to be generalised to include motion
in gravitational fields. But for Einstein that does not mean that gravity is
reduced to inertial structure; instead, the very distinction between gravity
and inertia breaks down. As we will see below, Einstein would soon speak
of inertia and gravity having been unified, just as electricity and magnetism
had been unified before.

This line of thought becomes most clear in the Princeton lectures from
1921, which would later be published as the ‘The Meaning of Relativity’ in
English and as ‘ Vier Vorlesungen tiber Relativitdtstheorie’ in German. After
having shown that the components of the connection become the Newtonian
gravitational field in the Newtonian limit, Einstein goes on with a description
of how the geodesic equation links inertia and gravity:4":

Formally, the unity between inertia and gravity is expressed by
the fact that the entire left side of

Pz, | [ofi) dra dig _
ds? v [ ds ds

0

is tensorial (with respect to arbitrary coordinate transforma-
tions), whereas the two terms separately are not. In analogy
to the Newtonian equations one would have to view the first as
an expression for inertia, the second as an expression for the
gravitational force.

Note that, just as in his answer to Kottler, Einstein only introduces the
labels of an ‘inertial term’ and a ‘gravitational term’ as an “analogy” to
Newtonian theory, and only after having pointed towards the “unity” of
inertia and gravity, expressed by the tensorial nature of the two terms in
the geodesic equation taken together, but not separately.

“CEinstein [19160], p. 640.
“TEinstein [1922¢], p.51.
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What is the nature of this unification as Einstein saw it? Is it just
like the unification of electric and magnetic fields in special relativity? Or
is it a different kind of unification? In Einstein’s mind, the unification
was very similar indeed, as the December 1919 / January 1920 text on the
development of relativity shows. There, he recalls the magnet-conductor
thought experiment described in the first paragraph of his 1905 paper on
special relativity, from which he concludes:*®

The existence of the electric field is a relative one, depending
on the state of motion of the coordinate system used; only the
electric and magnetic field together can be attributed a kind
of objective reality, independent of the state of motion of the
observer, i.e. of the coordinate system.

Einstein then describes how he worked on a review article of special
relativity in 1907,%° and links the above realisation regarding the electric
and magnetic field to another thought experiment regarding inertia and
gravity:50:

Then I had the most fortunate thought of my life in the following
form: The gravitational field only has a relative existence in a
manner similar to the electric field generated by electro-magnetic
induction. Because for an observer in free-fall from the roof of a
house, there is during the fall — at least in his immediate vicinity
— no gravitational field. Namely, if the observer lets go of any
bodies, they remain, relative to him, in a state of rest or uniform
motion, independent of their special chemical or physical nature.

Taken together with the quotation from the Princeton lectures one year
later, where Einstein spoke of the “unity between inertia and gravity” as
expressed by the fact that the inertial and the gravitational term of the
geodesic equation transform as tensors only together, just as the E and B
fields do not transform as (4-dimensional) tensors while the electromagnetic
field F},,, does, Einstein seems to think of inertia and gravity as having been
unified in GR in quite the same way that electricity and magnetism had
been unified in SR.

Of course, suspicion may seem in order regarding whether or not Einstein
was right about this last point; arguably, the analogy is not a complete one.

48Vol. 7, Doc. 31 CPAE, p.265.
“Einstein [1907].
50Vol. 7, Doc. 31. CPAE, p.265.
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After all, saying that a tensor F),, represents the unified electro-magnetic
field for which we then find field equations is not the same as saying that
the tensor making up the left hand side of the geodesic equation (in its
coordinate-independent form v#V,v") represents the unity of inertia and
gravity — for which we then don’t go on to search for field equations. The
analogy would have been more complete if Einstein had claimed that the con-
nection IV, represents the gravitational-inertial field,?! for this is the (non-
tensorial) field which the Einstein equations govern. Instead, Einstein claims
that the connection I'V,, represents the coordinate-dependent gravitational
field (more on this below), and the tensor v#V,v” the full gravitational-
inertial field of which I'V,, is the gravitational part. Thus, Einstein locates
the unity of inertia and gravity entirely in a mathematical object occuring
in the equation of motion of test particles, rather than in a mathematical
object occuring in the field equations, as in the case of F},, and the Maxwell
equations. However, just as the split between electric and magnetic fields,
the split between gravity and inertia in equation (3) is coordinate-dependent
given Einstein’s labeling of gravitational and inertial terms in (3).

FEither way, our main line of investigation here is historical: find out
what Einstein did think on the relationship between inertia and gravity as
compared to electricity and magnetism; leave aside considerations of what
he maybe should have thought.

So let us now bring the two strands together: Einstein’s interpretation
of the geodesic equation as giving the equation of motion of test particles in
the presence of gravitational fields on the one hand, and his claim that the
unity of inertia and gravity is expressed in the tensorial nature of combined
inertia and gravity terms in the geodesic equation.

At the beginning of the fourth Princeton lecture, Einstein starts the
discussion of the motion of point masses, and we see him using language
similar to Kottler [1916] when stating that in GR the law of inertia has to
be generalised by generalising the concept of a straight line:%?

According to the principle of inertia, the motion of a material
point in the absence of forces is straight and uniform. In the
fourdimensional continuum of special relativity, this is a real
straight line. The natural, i.e. the simplest, generalisation of the
straight line making sense in the conceptual scheme of the general
(Riemannian) theory of invariants is the straightest (geodesic)
line.

' This position is advocated e.g. by Ehlers [1973] and Giulini [2002].
*2Einstein [1922¢], p. 51.
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Following this, he links the generalised law of inertia to the equivalence
principle and thereby relates inertia and gravity:

Following the equivalence principle, we will have to assume that
the motion of a material point subject only to inertia and gravity
is described by the equation

dzx“ u drg drg
%o 035 _ 4
ds? T ap ds ds (4)

Indeed, this equation becomes that of a straight line if the com-
ponents I', ;. of the gravitational field vanish.

Einstein then shows that in the Newtonian limit the geodesic equation be-
comes

dSL‘M . 0 Y44
iz 6:@( 2) 5)

where 744 is defined by
Juv = 5/ﬂ/ + Yuv

Following this, he points out a link between the geodesic equation and the
Newtonian equation of motion for particles subject to gravitational fields:

This equation [5] is identical with Newton’s equation of motion
of a point in a gravitational field if one identifies —%* with the
gravitational potential. ... One look at equations [4] and [5]
shows that the quantities I'” ,; play the role of the field strength

of the gravitational field. These quantities are not tensorial.

Here we see Einstein making precise what he had alluded to in his answer
to Kottler: the labeling of the two sets of terms in the geodesic equation as
‘inertial’ and ‘gravitational’, respectively, comes about only by comparing
the theory to Newtonian theory; more precisely, by comparing the New-
tonian limit of GR with the Newtonion equation of motion of a point in
a gravitational field. In a way, there is no reason even to distinguish be-
tween gravity and inertia in GR unless one is concerned with comparing it
to Newtonian theory (or, indeed, special relativity).

We found that i.) Einstein thought of the geodesic equation in GR as
a generalisation of the law of inertia; ii.) in which inertia and gravity were
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unified so that iii.) the very labeling of terms as ‘inertial’ ‘gravitational’
becomes in principle “unnecessary”, even if useful when comparing GR to
Newtonian theory. Finally, we found that Einstein saw the status of the
gravitational field I'V, ; as quite analogous to that of the electric field E in
special relativistic electrodynamics: their attribution only makes sense rela-
tive to a chosen coordinate system. Michel Janssen has recently investigated
this relativity of the gravitational field in detail, and sees the arbitrariness
of the inertia/gravity split as the main difference between GR and other
theories:

[W]hile the slide into general covariance turns the relativity of
non-uniform motion of space-time coordinate systems into a fea-
ture general relativity shares with older theories, it does not so
trivialize the relativity of the gravitational field. Even in gen-
erally covariant reformulations of these older theories, there will
be an inertial field and a gravitational field existing side by side.
The unification of these two fields into one inertio-gravitational
field that splits differently into inertial and gravitational compo-
nents in different coordinate systems is one of Einstein’s central
achievements with general relativity.

To sum up, Einstein did not accept that gravity must either be a force
field, or an aspect of spacetime structure. He did not believe that either
one of the two options needs to be true, or that denying the truth of one
implies the truth of the other. Indeed, we saw that for Einstein gravity is
a force field in a different sense from that envisaged by modern authors: it
is a frame-dependent force field. Thus, asserting that gravity is a force field
for Einstein does not imply that it diverts particles from inertial motion: all
motion in gravitational fields is motion on geodesics, and if a body moves
on a geodesic in one frame of reference, it does so in all frames. Even so,
every frame of reference chosen involves an arbitrary split, making part of
the trajectory ‘inertial’ and part of it ‘gravitational’. However, Einstein
saw this labeling as ultimately unnecessary — unnecessary but useful for
certain purposes, especially the comparison between GR and its predecessor
theories. Finally, Einstein saw the arbitrariness of this split as the expression
of having unified inertia and gravity in the general theory of relativity.

%3 Janssen [2012], p.162
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5 Conclusion

In the introduction, I took a quotation from Vizgin which pointed to (some
kind of) geometrization as being what “distinguished [GR] sharply from
all other physical theories”. We have seen that for Einstein the important
achievement of GR was not geometrization of gravity but unification of grav-
ity and inertia. Furthermore, Einstein did not see this as something that
“distinguished [GR] sharply from all other physical theories”; he saw his
theory in direct continuation of previous unificationary successes, especially
of the unification of electric and magnetic fields in special relativistic elec-
trodynamics. As in many other respects, while almost everybody else saw
Einstein as a revolutionary, he saw himself as a traditionalist.

We also saw that Einstein could well have argued, by 1916 at the latest,
that GR shows that gravity is reduced to inertial structure and thus ulti-
mately to spacetime geometry. Could he have thought that GR both unifies
gravity and inertia and reduces them to spacetime structure? Of course he
could have; indeed, that was Weyl’s interpretation of GR: unification wia
reduction to spacetime structure. But for Einstein, it might have been a bit
like not wanting to eat pudding because he had already had a big entrée for
dinner. It’s not that it’s impossible to eat both — it’s not even impossible
to eat both of them at once. It’s just that eating one may make you find
the other one less attractive: you just don’t have any appetite for it, and
maybe you find pudding dubious from the start. Einstein certainly thought
of ‘geometrization’ as dubious, of ‘unification’ as the ultimate goal. Other
people may want to eat both dishes at once, even identify what you see as
two kinds of dish as, in fact, one and the same kind (‘the best main meal is a
big pudding’) or see one as a necessary consequence of the other (‘no dinner
without pudding’). Again, for Weyl and those of like mind unification and
geometrization went hand in hand: the former was a consequence of the
latter. But not for Einstein: unification was all he wanted.
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