Skip to main content
Log in

On the Actual Impact of Deterministic Chaos

  • Published:
Synthese Aims and scope Submit manuscript

Abstract

The notion of (deterministic) chaos is frequently used in an increasing number of scientific (as well as non-scientific) contexts, ranging from mathematics and the physics of dynamical systems to all sorts of complicated time evolutions, e.g., in chemistry, biology, physiology, economy, sociology, and even psychology. Despite (or just because of) these widespread applications, however, there seem to fluctuate around several misunderstandings about the actual impact of deterministic chaos on several problems of philosophical interest, e.g., on matters of prediction and computability, and determinism and the free will. In order to clarify these points a survey of the meaning variance of the concept(s) of deterministic chaos, or the various contexts in which it is applied, is given, and its actual epistemological implications are extracted. In summary, it turns out that the various concepts of deterministic chaos do not constitute a “new science”, or a “revolutionary” change of the “scientific world picture”. Instead, chaos research provides a sort of toolbox of methods which are certainly useful for a more detailed analysis and understanding of such dynamical systems which are, roughly speaking, endowed with the property of exponential sensitivity on initial conditions. Such a property, then, implies merely one, but quantitatively strong type of limitation of long-time computability and predictability, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Adams, E., W. F. Adams, W. Kühn, W. Rufeger, and H. Spreuer: 1993, ,Computational Chaos May Be Due to a Single Local Error', Journal of Computational Physics 104, 241–50.

    Article  Google Scholar 

  • Agnes, C. and M. Rasetti: 1991, ,Undecidability of the Word Problem and Chaos in Symbolic Dynamics', Il Nuovo Cimento 106B, 879–907.

    Google Scholar 

  • Alekseev, V.M. and M. V. Yakobson: 1981, ,Symbolic Dynamics and Hyperbolic Dynamic Systems', Physics Reports 75, 287–325.

    Article  Google Scholar 

  • Arnold, V. I. and A. Avez: 1968, Ergodic Problems of Classical Mechanics, W. A. Benjamin, New York.

    Google Scholar 

  • Banks, J., J. Brooks, G. Cairns, G. Davis, and P. Stacey: 1992, ,On Devaney's Definition of Chaos', American Mathematical Monthly 99, 332–34.

    Article  Google Scholar 

  • Başar, E. (ed.): 1990, Chaos in Brain Function, Springer, Berlin.

    Google Scholar 

  • Başar, E. and G. Roth: 1996, ,Ordnung aus dem Chaos: Kooperative Gehirnprozesse bei kognitiven Leistungen', in Küppers, pp. 290–322.

  • Batterman, R. W.: 1991a, ,Randomness and Probability in Dynamical Theories: On the Proposals of the Prigogine School', Philosophy of Science 58, 241–63.

    Article  Google Scholar 

  • Batterman, R. W.: 1991b, ,Chaos, Quantization, and the Correspondence Principle', Synthese 89, 189–227.

    Article  Google Scholar 

  • Batterman, R. W.: 1993, ,Defining Chaos', Philosophy of Science 60, 43–66.

    Article  Google Scholar 

  • Batterman, R. W.: 1996, ,Chaos: Algorithmic Complexity vs. Dynamical Instability', in Weingartner and Schurz, pp. 211–35.

  • Bennetin, G., L. Galgani, A. Giorgilli, and J.-M. Strelcyn: 1984, ,A Proof of Kolmogorov's Theoremon Invariant Tori Using Canonical Transformations Defined by the Lie Method', Il Nuovo Cimento 79, 201–23.

    Google Scholar 

  • Blum, L., M. Shub, and S. Smale: 1989, ,On a Theory of Computation and Complexity over the Real Numbers: NPCompleteness, Recursive Functions and Universal Machines', Bulletin of the American Mathematical Society 21, 1–46.

    Google Scholar 

  • Buzug, T.: 1994, Analyse chaotischer Systeme, B.I.-Wissenschaftsverlag, Mannheim.

    Google Scholar 

  • Casati, G. and B. Chirikov (eds.): 1995, Quantum Chaos. Between Order and Disorder, Cambridge University Press, Cambridge.

    Google Scholar 

  • Costa, N. C. A. da and F. A. Doria: 1995, ,Gödel Incompleteness, Explicit Expressions for Complete Arithmetic Degrees and Applications', Complexity 1, 1–16.

    Google Scholar 

  • Coven, E., I. Kan, and J. A. Yorke: 1988, ,PseudoOrbit Shadowing in the Family of Tent Maps', Transactions of the American Mathematical Society 308, 227–41.

    Article  Google Scholar 

  • Dürr, D., S. Goldstein, and N. Zanghi: 1992, ,Quantum Chaos, Classical Randomness, and Bohmian Mechanics', Journal of Statistical Physics 68, 259–70.

    Article  Google Scholar 

  • Düsberg, K. J.: 1995, ,Deterministisches Chaos: Emige wissenschaftstheoretisch interessante Aspekte', Journal for General Philosophy of Science 26, 11–24. Duke, D. and W. Pritchard (eds.): 1991, Measuring Chaos in the Human Brain, World Scientific, Singapore.

    Google Scholar 

  • Elbert, T., W. Lutzenberger, B. Rockstroh, P. Berg, and R. Cohen: 1992, ,Physical Aspects of the EEG in Schizophrenics', Biological Psychiatry 32, 595–606.

    Article  Google Scholar 

  • Fabian, T. and M. Stadler: 1992, ,Applying Chaos Theory to Delinquent Behavior on Psychosocial Stress Situations', in: F. Lösel, D. Bender, and T. Bliesner (eds.), Psychology and Law, de Gruyter, Berlin, pp. 55–61.

    Google Scholar 

  • Haken, H.: 1983, Synergetics: An Introduction. Nonequilibrium Phase Transitions and SelfOrganization in Physics, Chemistry, and Biology, Springer, Berlin.

    Google Scholar 

  • Kruse, P., M. Stadler, B. Pavlekovic, and V. Gheorghiu: 1992, ,Instability and Cognitive Order Formation: Self Organization Principles, Psychological Experiments, and Psychotherapeutic Interventions', in: W. Tschacher, G. Schiepek, and E. J. Brunner (eds.), Selforganization and Clinical Psychology, Springer, Berlin, pp. 102–17.

    Google Scholar 

  • Küppers, G. (ed.): 1996, Chaos und Ordnung. Formen der Selbstorganisation in Natur und Gesellschaft, Reclam, Stuttgart.

    Google Scholar 

  • Leiber, T.: 1996a, Kosmos, Kausalität und Chaos. Naturphilosophische, erkenntnistheoretische und wissenschaftstheoretische Perspektiven, Ergon Verlag, Würzburg.

    Google Scholar 

  • Leiber, T.: 1996b, ,Chaos, Berechnungskomplexität und Physik: Neue Grenzen wissenschaftlicher Erkenntnis?', Philosophia Naturalis 33, 23–54.

    Google Scholar 

  • Li, T.-Y. and J. Yorke: 1975, ,Period Three Implies Chaos', American Mathematical Monthly 82, 985–92.

    Article  Google Scholar 

  • Lichtenberg, A. J. and M. A. Liebermann: 1983, Regular and Stochastic Motion, Springer, New York.

    Google Scholar 

  • Lorenz, E. N.: 1989, ,Computational Chaos – A Prelude to Computational Instability', Physica D35, 299–317.

    Google Scholar 

  • Mainzer, K.: 1997a, Thinking in Complexity. The Complex Dynamics of Matter, Mind and Mankind, (3rd ed.) Springer, Berlin.

    Google Scholar 

  • Mainzer, K.: 1997b, Gehirn, Computer, Komplexität, Springer, Berlin.

    Google Scholar 

  • Monteiro, T. S.: 1994, ,Chaos in Atomic Physics', Contemporary Physics 35, 311–27.

    Google Scholar 

  • Moreh, J.: 1994, ,Randomness, Game Theory and Free Will', Erkenntnis 41, 49–64.

    Article  Google Scholar 

  • Nicolis, G.: 1996, ,Natural Laws and the Physics of Complex Systems', in Weingartner and Schurz, pp. 36–9.

  • O'Connor, P., S. Tomsovic, and E. J. Heller: 1992, ,Semiclassical Dynamics in the Strongly Chaotic Regime: Breaking the Log Time Barrier', Physica D55, 340–57.

  • Ornstein, D. S.: 1974, Ergodic Theory, Randomness, and Dynamical Systems, Yale University Press, New Haven.

    Google Scholar 

  • Ornstein, D. S. and B. Weiss: 1991, ,Statistical Properties of Chaotic Systems', Bulletin of the American Mathematical Society 24, 11–116.

    Article  Google Scholar 

  • Peitgen, H.-O., H. Jürgens, and D. Saupe: 1992, Bausteine desChaos – Fraktale, KlettCotta and Springer, Stuttgart and Berlin.

    Google Scholar 

  • Peitgen, H.-O., H. Jürgens, and D. Saupe: 1994, Chaos – Bausteine der Ordnung, KlettCotta and Springer, Stuttgart and Berlin.

    Google Scholar 

  • PourEl, M. B. and J. I. Richards: 1989, Computability in Analysis and Physics, Springer, Berlin.

    Google Scholar 

  • Shields, P.: 1973, The Theory of Bernoulli Shifts, University of Chicago Press, Chicago.

    Google Scholar 

  • Skarda, C. and W. Freedman: 1987, ,How the Brain Makes Chaos in Order to Make Sense of the World', Behavioral and Brain Sciences 10, 161–95.

    Article  Google Scholar 

  • Tabor, M.: 1989, Chaos and Integrability in Nonlinear Dynamics. An Introduction, John Wiley, New York.

    Google Scholar 

  • Thomas, H. and T. Leiber: 1994, ,Determinismus und Chaos in der Physik', in: K. Mainzer, W. Schirmacher (Hrsg.), Quanten, Chaos und Dämonen. Erkenntnistheoretische Aspekte der modernen Physik, B.I.-Wissenschaftsverlag, Mannheim, pp. 147–207.

    Google Scholar 

  • Verstraeten, G.: 1991, ,Some Critical Remarks Concerning Prigogine's Conception of Temporal Irreversibility', Philosophy of Science 58, 639–54.

    Article  Google Scholar 

  • Weingartner, P. and G. Schurz (eds.): 1996, Law and Prediction in the Light of Chaos Research, Lecture Notes in Physics, Vol. 273, Springer, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leiber, T. On the Actual Impact of Deterministic Chaos. Synthese 113, 357–379 (1997). https://doi.org/10.1023/A:1004944713074

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004944713074

Keywords

Navigation