A TURING MACHINE FOR
EXPONENTIAL FUNCTION f(x,y) = ¥

PEDRO LEMOS

Centre for Logic, Epistemology and the History of Science (CLE-Unicamp)

Contact: pedromendeslemos@gmail.com

This is a Turing Machine which computes the exponential function f(x,y) = XV,
where X, y € N. Instructions format and operation of this machine are intended to best
reflect the basic intuitions and conditions outlined by Alan Turing in his On
Computable Numbers, with an Application to the Entscheidungsproblem (1936), using a
version in essence due to Kleene (1952) and Carnielli & Epstein (2008). Hence, a
complete instruction will consist of a quadruple (qi, S, Op, q;), where q;i is the current
state, S € {0, 1} is the current symbol (read by the head), Op € {1, 0, R, L} is an
operation, and @j is the new state. This machine is composed by 4 basic task machines:
one which checks if exponent y is zero, a second which checks if base x is zero, a third
that is able to copy the base, and a fourth able to multiply multiple factors (in this case,
tactors will be all equal). They were conveniently separated in order to ease the
reader’s task to understand each step of its operation. We adopt the convention that a
number N is represented by a string of n+1 symbols “1”. Thus, an entry (X, y) will be
represented by two respective strings of x+1 and y+1 symbols “1”, separated by a
single “0” (or a blank), and as an output, this machine will generate a string of x¥+1
symbols “1”. Some instructions are followed by a brief description of what’s going on.
This machine can be tested on the internet. We adapted the instructions to a particular
tormat, so it could be implemented on a java based TM emulator. These are presented
right after our TM instructions.

(I) MACHINE (A) — The Zero Exponent Checker

g1 1 R qi1— Head passes through the base
qiOR q2
q2 1 R q3— Checks if exponent is zero

|—> g3 0 1 q4 — Exponent is zero, it erases the exponent and writes 1, resulting string “...11...”

qs 1 L qs
q4 0L g5
g5 1 O g5 — Starts to erase the base
g5 0 L ge
g6 1195
g6 00 q7

q7 0 R q7
q7 1 1 qes — Halts the machine in standard position, that is, in the leftmost
symbol “1” of the string



|—> g3 1 1 gqs — Exponent is not zero, goes back to base and implements Machine (B)
gs1 L gs
qs 0 L qo

(II) MACHINE (B) — The Zero Base Checker

qe 1 L quo
L q10 0 R q11 — Base is zero, erases the exponent and halts in standard position
qi1 1 R qn
qi1 O R qi2
qiz 1 0 qi2
qiz O R qis3
qis11que
q13 0 0 q14
q14 0 L qu4
qi4 1 1 ges

— 10 1 1 q15 — Base is not zero, goes to the rightmost “1” of exponent and implements
Machine (C)

qi5 1 R qis
q15 0 R qis
qis 1 R qis
q160 L q17

(I1I1) MACHINE (C) The Base copier

q17 1 L qis— First this machine checks if exponent is, or has reached, number 1. If it has just
started, and it finds out 1, it enters state qi9, and erases exponent. If it verifies it
has not reached string “..0110..”, this stage will work until exponent is reduced to
number 1.

qis 1 L qi

|—> q19 0 R g37 — Exponent is, or has reached, number 1. It now erases exponent.

qs71 0 qgs7

q37 0 R gss

gss 1 0 qsg

q39 0 L g3

q39 1 1 q40 — Exponent is now erased and the head is positioned on the rightmost
“1” of the rightmost factor (This is the moment when we have y
copies of the base, and we can implement Machine (D), the
multiplier of multiple factors).



|—> q19 1 R q20 — Exponent is not, or hasn’t reached, number 1; Goes back to the rightmost
“1”, and starts (or continues) to copy the base
qz20 1 R qa1

g21 1 0 q21 — This is the moment when we erase a symbol “1” of the exponent, move the head to
the leftmost copy of the base, and duplicate it. If we have just started, our own

base will be the “leftmost copy”, otherwise, the head will move until it reaches the
leftmost copy of the base, and replicate it.

q21 0 L 22

qzz2 1 L qae
qz2 0 L g3 4-‘
q23 1 1 q22 — Every time it finds a string, the head passes through it

q23 0 1 g24 — We found the leftmost copy, the head writes a symbol “1”, so it knows where
the new copy should be written.

q24 1 R q24
q24 0 R q25
q25 1 R q26 — Notice that when returning to the string which is being copied, it first tests if

it was already reduced to a single symbol “1”. If this is the case, then it starts
to rewrite the symbols which were erased from the original string

qze 1 1 q27 — Implements, or continues, the process of erasing symbols
q271 R qo7
q27 0 L qas
gzs 1 0 qgs
q28 0 L q29
q29 1 L q29
gz9 0 L g30
gso 1 L gso
q30 0 0 qz3

L 26 0 1 g31 — It found a single “1”, starts rewriting the symbols, and then goes
back to the exponent

qs1 1 R g3z
qs2 0 0 q26
q32 1 L gss

q33 1 0 qgss

9330 R q 34

g34 1 R qs4
|;(p,i0Rq35 4“
qs5 1 1 qgs4

qs5 0 L g3e
q36 0 L q17- Back to exponent, enters state qi7 to verify if it was reduced to number 1



(IV) MACHINE (D) — The Multiplier of Multiple Factors

q40 1 L q40 — Checks if there is a string to multiply.
q40 0 L qa1

qs1 0 0 ge5

ge5 0 R ge5

ge5 1 1 gqe6 — Machine halts

qsa1 1 1 q42 — There is a string to multiply, the head will now find the leftmost factor, and
writes a symbol “1” just left to that factor, separated by a single “0”, where we
leave the product
qs2 1 L qa2
qs2 0 L gas
qa3 1 1 qa2
q43 0 1 qu4
q44 1 R qua
q44 O R qu45
gas 1 1 qaa
q45 0 L que
q46 0 L q46

q46 1 L qa7 — Now it will test if the multiplier has reached number zero. Notice that, differently
from Machine (C), which checks if exponent has been reduced to “...11...”, this
machine checks for a zero, this happens because each symbol of the multiplier
makes a copy of the factor, and leaves the whole product in the leftmost string,
thus erasing both the multiplier and the factor that is being multiplied.

— q47 0 R g61 — Multiplier string has reached number zero

ge1 1 0 gez
ge2 0 L gez
ge2 1 0 ge3 — Starts to erase the factor that has been multiplied
ge3 0 L qe4
gesa 1 1 gez
ge4 0 L q40 — Back to state quo, to check if there is a string to multiply, or if we have
reached the desired result

L q47 1 R qus - Multiplier string has not reached “...1...”, so it starts (or continues) to multiply
the factor in its left
q48 1 0 qas — Erases a symbol from the Multiplier
qss 0 L qa9
q49 1 L qa9
q49 0 L gs0

g50 1 0 gs0 — Erases “1” from the factor and writes a symbol “1” in the product string
q50 0 L g51
q51 1 L gs1
bil 0L q527
gs2 11 gs1
g52 0 R g67 — Found where the product string is



67 0 1 g53
{ g53 1 R g53 — Now the head moves right, until it reaches the factor that is being

multiplied.
g53 0 R gs4

gs4 1 1 gs3
q54 0 L gs55
gs5 0 L gs55

”»

gs5 1 L gs6 — Tests if multiplied factor has been reduced to “...1...
|—> gs6 1 R q50 — Back to state gso

gs6 0 R g57 - Factor has been reduced to “...1...”, starts rewriting the symbols it has
erased.

a57 1 R gss
gs8 0 1 g57
gss 1 L gs59
g59 1 0 gs9
g59 0 R qgeo
geo 1 R qe0
ge0 0 L q46 Back to state qus, and test if Multiplier has been reduced to “...1...

”»

(V) Instructions to implement this TM on the internet.

The quadruples of this machine were adapted to test it, using an emulator. You first
need to access the following link: http://ironphoenix.org/tril/tm/ . Then in “Load
new program”, select “Subtracter” and click on “Load new Program”; then click on
“Clear Program” and erase the input in the box “Initial characters on tape”. Now put
your entry in “Initial characters on tape” like this: type x+1 symbols “1”, followed by
“_”, and y+1 symbols “1” to represent xv; for example, for 2%, we type “111_1111"
(without quotation marks). Then set “Initial tape position” in maximum position, that
1s, “29950”. Now you only have to copy instructions below, paste it into

“Programming” box, click on “Install Program” and “Start” the machine.

ANN=V VYV

I =1 =
= Al

NNOOoO oAb~ WN-=-

A

NO OO OO PR, DDWN-_2 -


http://ironphoenix.org/tril/tm/

166 1
1
1

©O© 0 00

1
<
<

oo 00 W N

9110<
10 11>
11111 >
11 12>
12112
12 13>
131121
13 _14
14 14 <
14 166 1
101151
15115>
15 16>
16116 >
16 17<
17118 <
18119 <
19 37>
37137 _
37 38>
38139
39 39«<
391401
19120 >
20121 >
21121 _
21 22<
22122<
22 23<
231221
23 241
24124 >
24 25>
25126 >
26127 1
27 127 >
27 28<
28128 _
28 29<
29129<
29 30<
30130<
30 23
26 311
31132>
32 26
32133<
33133 _
33 _34>
34134 >
34 35>



351341
35_36<
36 _17<
40140<
40 41<
41 65 _
65 _65>
65166 1
411421
42142<
42 43 <
431421
43 441
44 1 44 >
44 45>
45144 1
45 46<
46 46 <
46 147 <
47 61>
61162
62 _62<
62163 _
63 _64<
64 162 1
64 40<
47 148 >
48 148 _
48 49<
49149<
49 50<
50150 _
50 _51<
51151<
51 _562<
521511
52 67>
67 _531
53 153>
53 54>
54 1531
54 55<
55 55<
55156 <
56 150 >
56 _ 57>
57 158 >
58 571
58 159 <
59159 _
59 60>
60 160 >
60 _46 <



