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Abstract 

This paper examines a looming reproducibility crisis in the core of the hard sciences. Namely, 

it concentrates on molecular modeling and simulation (MMS), a family of methods that 

predict properties of substances through computing interactions on a molecular level and that 

is widely popular in physics, chemistry, materials science, and engineering. The paper argues 

that in order to make quantitative predictions, sophisticated models are needed which have to 

be evaluated with complex simulation procedures that amalgamate theoretical, technological, 

and social factors – leading to problems with reproducibility. Thus, for methodological 

reasons, the predictive success causes a reproducibility problem. 

 

1 Introduction 

That we live in the age of science is one of the most agreed upon views of what is 

characterizing our times. Scientific knowledge is widely appreciated in society and the 

perceived ongoing progress in science persistently raises the bar of expectations. Prediction is 

the currency in which science fulfills (or has to fulfill) the expectations. Forecasting the 

weather, designing technology, giving policy advice—all sorts of application depend on some 

predictive capacity. What is able to make predictions has got something right and is therefore 

held in high esteem.1 It is all the more annoying when a claim for prediction fails where it was 

                                                             

1 Making this rough sketch of an argument more precise leads to deep and ongoing 

philosophical debates. Prediction somehow is a hard currency, but it does not directly 

translate into truth of a theory or hypothesis. Challenging philosophical issues abound: What 

exactly follows from accurate prediction, if not truth? Furthermore: how can one explain the 

success of a theory that is not true? In what sense is the world welcoming to simplified and 
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taken for granted—and science falls short of expectations. This is the case when even the 

seemingly known outcome of an experiment that has been carried out before cannot be 

predicted. A recent example is the reproducibility crisis in medicine and psychology: when 

targeted studies failed to reproduce a large fraction of published studies, this provoked an 

uproar in the scientific community and the media. A common opinion is that good science can 

show high predictive capability, whereas a science that cannot even reproduce its reported 

results is not science at all. In a highly shortened form: non-R (not reproducible) implies non-

P (no serious prediction). 

This paper tells a very different story: It examines the cost of prediction, i.e., how those 

methods that produce valuable predictions have potential (unwanted) effects. Different from 

most accounts of the reproducibility crisis, which target psychology, medicine, and sociology, 

this paper probes the core of the hard sciences. Namely, it concentrates on molecular 

modeling and simulation (MMS), a family of methods that, very roughly described, predict 

properties of substances through computing interactions on a molecular level and that is 

widely popular in physics, chemistry, materials science, and engineering.2 Put in a nutshell: 

Even the champions of prediction are experiencing problems with reproducibility. The 

fundament is crumbling. Furthermore, it is argued, for methodological reasons, the predictive 

success causes a reproducibility problem. Thus, P implies non-R. 

The claim appears to be hardly acceptable because it indicates a contradiction: P -> non-R -> 

non-P. This paper explains why this assertion is nevertheless reasonable—the logical 

formulation is misleadingly concise. Essentially, molecular simulation cannot maximize 

                                                             

idealized accounts? These questions are often (not always) discussed under the rubric of 

(scientific) realism (see, for a recent example, “the argument from successful theories” in 

Patton 2023, section 4.1 and the literature she cites there.) We will briefly touch upon this 

issue in the concluding section. 
2 This popularity is based not only on the feasibility of making predictions, but also on the 

match with empirically measured data. In general, such agreement provides reasons for 

accepting simulations as a method for making valid predictions (see, e.g. Lenhard 2019). 

Kampouridis (2022) shows the importance of this comparison in the case of quantum 

chemistry. Notably, although simulations match measured data with high precision, this is not 

tantamount to full reproducibility.  
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predictive power and, at the same time, attain full reproducibility. The paper argues that in 

order to make quantitative predictions, sophisticated models are needed which have to be 

evaluated with complex simulation procedures that amalgamate theoretical, technological, 

and social factors – leading to problems with reproducibility. 

Section 2 distinguishes two viewpoints regarding a lack in reproducibility: Is it a crisis 

because something is going seriously wrong in science? Or does such shortcoming merely 

indicate a scientific problem, i.e., something that science normally addresses and solves?3 In 

molecular simulation, the problem is acknowledged, but not perceived as a crisis – just 

something to be solved. Based on recent literature in the field, section 2 discerns two different 

strategies for obtaining a solution. One is “forcing” reproducibility from below, the other 

“smoothing” the problem from above. It is argued that these existing strategies dissolve the 

problem rather than solve it. In general, this is not a bad thing. However, we claim, only a 

third strategy can address the reasons for the problem with reproducibility. Such third strategy 

must be based on a detailed examination of the process of simulation modeling. 

Section 3 contributes to this examination and presents the core of our argument in three steps. 

The section first introduces molecular dynamics (MD), a principal member in the family of 

MMS. MD is a computational method that builds on Newtonian mechanics and statistical 

thermodynamics. It models the interaction between particles and employs the computer to 

calculate the resulting interactions between very many particles, thus obtaining predictions of 

how substances behave. The argument does not strongly depend on choosing MD; any other 

member of MMS (like Monte Carlo) would yield similar results. Moreover, the case arguably 

generalizes to a much larger area of simulation modeling. One big advantage of MD is that 

one can discuss the case while largely avoiding technical apparatus. The second step reports 

from a study (Schappals et al. 2017) that indicates gaps in reproducibility. This study did not 

follow one of the solution strategies, forcing or smoothing, but rather asked: to what extent do 

simulation experiments yield reproducible results when the same theoretical model is used by 

different groups that work at different locations with different software implementations that 

run on different computers? This study design invites to analyze the steps between a (given 

and fixed) theoretical model and the simulation results. Nobody would expect that the 

simulations come out identically, but they diverge in an interesting way beyond statistical 

                                                             

3 According to Thomas Kuhn (1970), problem (or puzzle) solving is the way in which normal 

science makes progress. 
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uncertainty, and thus invite an examination into the reasons for larger-than-expected non-

reproducibility.  

The third step undertakes this examination. Here, we connect to and build on existing 

literature in the philosophy of simulation modeling that has studied how simulation modeling 

extends and also transforms older conceptions of theoretical and mathematical modeling 

(Humphreys 2004, Winsberg 2010, Gramelsberger 2011, Lenhard 2019, among others). One 

important methodological twist that makes our approach feasible is the close cooperation 

between simulation practitioners and philosophers. The upshot is that further unpacking the 

modeling process is not (or need not) getting lost in technical detail, but rather yields new 

insights into how epistemological, methodological, and social factors interact in the problem 

of reproducibility. 

The concluding section 4 argues for the claim that the problem with reproducibility points 

toward a crisis, namely an identity crisis of simulation models. According to the normal 

standpoint, the identity of a simulation model is founded in the theoretical model. 4 However, 

the analysis in section 3 shows how predictions result are influenced by a plethora of 

intertwined factors. In effect, the predictions arise from how theory, computational 

technology, and a host of variable factors in computational processing work together. 

Moreover, it is hardly possible to trace the role of these factors separately. Thus, the identity 

of a simulation model seems to have a somewhat disconcerting—and philosophically 

challenging—holistic character. 

Finally, we take a look beyond our case study and toward machine learning with deep neural 

networks. There, parameterization is taken to the extreme, maximizing predictive capacity. In 

line with our study of molecular modeling and simulation, the cost of prediction seems to 

surface in a repeatedly observed non-robustness of the predictions. 

 

2 Crisis or (normal) problem? 

                                                             

4 We leave aside cases where a theoretical model does not exist, or at least does not play an 

important role, like in many agent-based simulations that model actions and interactions of 

agents without starting from a more general theoretical description (Epstein and Axtell 1996, 

Wise 2004). 
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Reproducibility is firmly accepted as a basic condition for science. From a historical 

perspective, it is a hard-won condition. It comprises an institutional component, because the 

very point of reproducibility is that it does not hinge on single gifted persons, rather is of a 

systematic and communal character. Different scientists at different locations, pursuing the 

same experiments get the same results.5 What counts as the “same” experiments is not 

obvious. Neither is what counts as the “same” results. They usually are not identical, but 

coincide in the sense of some statistical measure. In general, evidence counts as scientific 

only when it is reproducible. By implication, if it is not reproducible, it is not scientific. This 

rule is not as strict as it looks from the outset, because whether something is reproducible—or 

can be made so with a bit more time and effort—can be a delicate question. Consequently, a 

failure in reproducibility may be perceived either as a challenge, i.e. a problem to be solved, 

or as a crisis. 

The reproducibility (or: replication)6 crisis arrived with a splash in the (scientific as well as  

popular) media in the 2010s when an increasing number of meta-scientific studies indicated 

that reported results from a number of scientific studies could not be replicated.7 Focusing on 

psychology and medicine, one prominent contribution is Open Science Collaboration (2015) 

where a large number of expert groups made an orchestrated effort to replicate over hundred 

psychological studies—and was successful only in 39%. What followed were pleas to the 

ethics of researchers, but also to “Open Science”.8 In short, respected scientific fields that 

                                                             

5 Moreover, a goal can also be to confirm a result  or phenomenon by different experiments. 
6 The terminology (reproducibility – replicability – repeatability) is infamously confused. 

Different scientific disciplines follow different conventions, cf. Pleisser 2018, NASEM 2019. 

To avoid the discussion about what term is appropriate in what situation, we stick to 

reproducibility and use it in a fairly generic fashion, specifying the meaning where necessary. 

7 A much-cited pioneer is John Ioannidis with his 2005 essay “Why most published research 

findings are false.” The tag as a “crisis” was added by Pashler and Harris 2012. The 

replication crisis even has an entry in wikipedia. 
8 Atmanspacher and Maasen edited the volume Reproducibility. Principles, Problems, 

Practices, and Prospect (2016) that discusses a range of related topics from a sociological and 

science studies point of view. The report Reproducibility and Replicability in Science 
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emulated the research methodology and publishing policies of the “hard” sciences, faced 

unanticipated problems. The ensuing debate about the reasons that led to the lack in 

reproducibility identified a number of (possibly) contributing factors. Sometimes the 

publication had not fully accounted for the actual complexity of the study, various sorts of 

biases might have played a role, or even outright fraud. Or even more distressing, the crisis 

might teach a lesson not about mistakes, but rather about the regular quality and 

trustworthiness of scientific findings. 

However, the common perception of the crisis is that fields, which aspire to be on a par with 

the “hard” sciences, fail to live up to their claim. Consequently, the predictive capabilities of 

those fields involved in the crisis are called into doubt—whereas both reproducibility and 

predictive capacity of the hard sciences remain unquestioned. This does not mean there would 

be no problems with reproducibility.9 Such problems exist and are acknowledged, but they 

count as normal problems to be addressed, not as crisis—as, for instance, the NASEM (2019) 

report of the American Academies illustrate. 

Many scientific fields have recognized that reproducibility emerges as a new problem in the 

context of computational methods. In this regard, molecular simulation is a typical case. From 

here onward, we focus on this case. Two aspects feature prominently in the discussion about 

ongoing digitization. The first issue is the status of data. Data about properties of materials are 

a typical and central part of scientific results. Such data are gathered in large data bases. New 

data from experiments (that normally involve computational models, too) are checked 

whether they fit to existing data, in the sense of reproducing these data in a statistically 

acceptable way (cf. Cummings et al. 2009, Brennecke et al. 2019). The second issue is about 

formulating conditions so that simulated data can claim to be (at least) on a par with 

experimental data (Kofke 2016). 

A third aspect is currently gaining momentum. It is concerned with the side of modeling and 

simulation. There, the reproducibility problem is whether simulations themselves are 

reproducible. The current paper focuses on this problem. In the literature, one can discern two 

                                                             

(NASEM 2019) documents that the issue has arrived in the highest echelons of scientific 

institutions. 
9 One can think of high energy physics where there might exist only one laboratory that is 

able to conduct certain experiments. These experiments are seen as reproducible in principle, 

whereas in practice, they are not. 
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strategies for solving the reproducibility problem. Lejaeghere et al. (2016, 2020), Mueser et 

al. (2017), or Wan et al. (2021) approach the problem “from above”. They define test cases 

and then organize large community efforts that study these cases through extensive 

simulation. Participating groups use those models and software they are specialized in. The 

overall study then observes whether the various results give a coherent picture in the limits of 

some statistics. This approach can paint an overall picture where the various simulations 

deliver predictions that are reasonably close to each other. In other words, this approach 

documents to what extent simulations reproduce other simulations (in the test case and in 

statistical limits), without taking care of different modeling assumptions and implementations 

on a finer scale. This approach can signal a green light, but cannot provide reasons for where 

reproducibility is getting into trouble.10 Thus, the strategy can be called “smoothing from 

above”. 

A second solution strategy approaches the problem from the opposite side, forcing “from 

below”. This strategy is looking for an institutional solution, a standardization of methods that 

prescribes the way simulation studies should be done so that they can be reproduced. The 

proposed measures include publishing the code (open science, transparency), and tying 

simulations to a controlled software environment, thus unifying the proliferation of current 

models, softwares, and computers. These measures approach the problem from below and try 

to nail down all conditions in sufficient detail so that simulation studies can implement all 

conditions of an earlier study and then reproduce the results of this study. A considerable 

movement has emerged that contributes to this strategy (Thompson et al. 2020, Abraham et 

al. 2019, Horsch et al. 2020, Gygli and Pleiss 2020). The goal is to reproduce the very same 

simulation experiment, or to make a published simulation study reproducible in principle. 

Hence the problem of reproducibility is seen from a somewhat narrow perspective, forcing 

reproducibility from below, whereas the question what happens when different simulations 

                                                             

10 The big model comparison projects in climate science (a central part of the IPCC reports) 

take place in a similar situation. Different institutions and centers contribute extensive studies, 

all in a specified test bed, but each center using its own circulation model. In this way, one 

can diagnose the extent of agreement, which is important. But if differences occur, it proves 

hard or impossible to attribute the differences to particular causes/ modeling assumptions (cf. 

Winsberg and Lenhard 2010). In this setting, reproducibility means that different approaches 

to the same task are in mutual agreement.  
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evaluate (in the technical sense of assigning the numbers under specific conditions) the same 

theoretical model is slipping out of sight. 

Both strategies dissolve the problem rather than they solve it, because they either find that 

there is no problem (strategy 1), or they avoid the problem (strategy 2). In general, this is not 

a bad thing (the problem is gone). However, in our particular case, insight into the 

epistemology of modeling would be suppressed. Neither of the two strategies can serve the 

claim of our paper, i.e., that increasing predictive capacity is a reason for problems with 

reproducibility. The argumentation for the claim requires a different setting. The guiding 

question is to which extent simulation experiments produce reproducible results when the 

same theoretical model is simulated at different locations (institutions) from different groups 

through different software implementations that run on different machines. The variations that 

matter are those that are caused by modeling steps in between the theoretical model and the 

simulation result. Only on this level can one identify reasons for problems with 

reproducibility and find arguments about the limitations of reproducibility. 

 

3 Our case: molecular dynamics and a round robin study 

In many fields of science and engineering, simulation modeling starts from a theoretical 

mathematically formulated model. The latter is then said to be evaluated by simulation 

experiments, i.e., values assigned through simulation runs under specific conditions. These 

experiments “live” on simulation models. Many practitioners assume that these simulation 

models give an accurate picture of their theoretical starting point (in the limits of controlled 

approximation and statistics).11 We take a practice-oriented stance: Whether the simulations 

give in fact accurately picture their theoretical model is a question not of philosophical or 

technical definitions, but rather of actual scientific practice. 

                                                             

11 Work on the epistemology of simulation repeatedly has sent warning signals. This work has 

brought to the fore that the relationship between theoretical model and simulation is a 

complicated, though philosophically highly interesting one, cf. the monographs Humphreys 

2004, Winsberg 2010, Weisberg 2013, Morrison 2015, Lenhard 2019 that take different, 

though related stances. 
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Our analysis proceeds in three steps. Firstly, we briefly introduce Molecular Dynamics (MD), 

which is a simulation technique that investigates properties of materials12 by the following 

straightforward recipe. Model the interaction of particles via classical mechanics and observe 

the time evolution of the system, then extract properties of interest from these simulations. 

MD simulations numerically solve the Newtonian equations of motion simultaneously for all 

particles. The scope and precision of predictions made MD a popular tool in science and 

engineering. Secondly, we discuss results from a round robin study that assigned the task of 

simulating one and the same model to different expert groups, working at different locations 

and with their own implementations (Schappals et al. 2017). This study reports problems with 

reproducibility that were not anticipated by the practitioners and that pose a serious challenge. 

Thirdly, we analyze the factors that contribute to this problem. The main suspect is an over-

simplified picture of the process that leads from the mathematical model to the simulation 

outcome. Only through analyzing all modeling steps that lead from the theoretical model to 

the concrete implementation, can one find out the reasons for the reproducibility limits as well 

as their delineation. 

 

3.1 A Primer to Molecular Dynamics 

Molecular modeling is based on the fundamental idea that macroscopic behavior of matter 

results from the interaction between small particles. Since Greek atomism, this idea found 

varying expressions. However, it was a way for explaining observed material properties, 

whereas prediction remained out of the question.  

Such prediction became feasible in the process of mathematization and mechanization that 

shaped modern science (Dijksterhuis 1961). After Newton’s theory of gravitation had 

provided an example of striking predictive capacity (based on particles and forces), Laplace 

framed a program according to which this approach should be emulated in all of physics (Fox 

1990).13 Laplace is famous for refining the mathematical apparatus for celestial mechanics. 

And he famously had high expectations. According to him, the physical dynamics of the 

                                                             

12 In addition, MD can also be used to study nanoscopic processes based on the knowledge of 

the properties of the materials - an application that we have not included in our discussion, as 

it would not change the picture. 
13 Obviously, the historical process cannot even roughly be captured by jumping from hero to 

hero over centuries. 
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universe can be fully predicted if only one knows the acting laws between particles, the 

starting conditions and one is able to solve (integrate) the Newtonian equations for all 

particles of the universe simultaneously. Of course, he was fully aware that the necessary 

mathematical capabilities were beyond the reach of human beings, rather called for a 

superhuman power, the later so-called Laplacian demon. Nevertheless, prediction, even a 

dream of perfect prediction, had become a topic that could be discussed in the context of a 

mathematical-scientific method. 

We jump forward again. With the computer as instrument, molecular modeling and 

simulation became feasible.14 MMS is a family of methods that combines Newtonian 

mechanics with statistical physics and computational methods. Molecular Dynamics (MD) is 

arguably that member of MMS with the closest kinship to the Laplacian idea. The basic recipe 

is simple: one models the interaction of the particles via classical forces and then computes 

the resulting behavior by numerically solving a large number of differential equations. In a 

way, MD employs the computer to emulate the Laplacian demon.15 

The recipe is simple, its execution is not. We provide a sufficient feeling for the (relevant and 

non-technical) intricacies by describing the first step, namely modeling the most basic 

component of interaction. The go-to real substance is the noble gas argon. The atoms of argon 

are spherical and the only relevant forces between them are those resulting from repulsion and 

                                                             

14 In the early 20th century, quantum theory made it clear that the interaction of very small 

entities, like electrons forming a bond, cannot be described by classical forces. However, the 

quantum theoretical treatment of systems with many molecules remains largely intractable 

even with the computational power that is available today. Molecular modeling occupies the 

space in between (sub-)atomistic quantum mechanics and continuum mechanics where the 

discrete nature of the molecules can be neglected. On prediction and computation in quantum 

chemistry, see Kampouridis’s chapter in this volume and also Johnson and Lenhard (2024, 

chapter 4). 
15 For an early history from a practitioners’ perspective, see Battimelli et al. (2020). 

Rowlinson (2004) covers the long-term perspective on “coherence”, starting from Laplace, 

with a wealth of scientific literature. 
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dispersive attraction.16 In principle, all argon atoms in a many-particle system interact, but 

computing this turns out to be basically infeasible. A common simplification is to assume that 

the interactions in the system can be represented by pair-interactions, i.e. that it is sufficient to 

consider only interactions between two partners (which are then assumed to be independent of 

what the other atoms do). 

However, what is the adequate mathematical form of the pair potential?17 Finding suitable 

forms is far from trivial, even for the simple example of argon, the ansatz can be formulated 

in various ways; but all of them contain parameters that have to be fitted to data. The most 

popular ansatz for doing this is the Lennard-Jones potential, named after the pioneer of 

quantum chemistry, Sir Lennard-Jones (1894-1954).18 It is given in Equation (1) that we 

display because readers can grasp how it serves the argument without needing any expertise 

for actually handling such expressions. This potential consists in the superposition of two 

exponential terms, the one (with the exponent m) controls how quickly the repulsive force 

rises when bringing two particles closely together, the other term (with the exponent n) 

expresses how quickly the attracting force decreases with increasing distance between the 

particles (r denotes the distance between them). 

 

  푉(푟) = 4휖[(?
?
)? − (?

?
)?]       (1) 

 

Lennard-Jones proposed the exponents m = 12 for the repulsive term and n = 6 for the 

attractive term as adequate choices (Lennard-Jones 1931). Basically, he chose n = 6 because 

                                                             
16 This attractive force is also called the van der Waals force. By the way, Primo Levi begins 

his celebrated The Periodic Table (1975) with equating his family with argon because of their 

reluctant and weak interaction with the outside world. 

17 Usually, the potential energy is modeled and the force is obtained by derivation. Hence the 

pair potential gives the force acting between these pairs. 

18 For a historical study of philosophical transformations linked to methods of computation 

along the case of the Lennard-Jones potential, see Lenhard, Stephan, and Hasse (in 

preparation). 
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Fritz London (1930) had calculated this exponent from quantum theoretical considerations.19 

More precisely, London had examined hydrogen and calculated from the Schrödinger 

equation that the van der Waals force between two atoms decays with the sixth power of the 

distance between the atoms. After setting n = 6, Lennard-Jones tried a small number of 

choices for the exponent m, with 12 fitting best (to data of argon). Having made these choices, 

the Lennard-Jones (12,6) potential has two remaining adjustable parameters (ε and σ), see 

figure 1. These parameters have physical meaning20, but this meaning is not independent from 

the parameterization schema, i.e., they cannot be measured or otherwise assessed 

independently of the entire parameterization schema. The parameter values are fitted to data 

for argon21, more precisely: they are chosen according to the overall fit to training data.22 The 

ansatz only becomes a model of argon after fitting its parameters to data for argon. 

Consequently, the resulting numbers will depend on the choice of that data and the way the fit 

is carried out. 
 

 

                                                             

19 Rowlinson (2002) provides a wealth of original literature on the development. 

20 The parameter ε corresponds to the “depth of the potential well” (see figure 1) and σ to the 

particle size. 
21 Commonly, experimental data are used for this purpose. An alternative is using quantum 

chemical data for the interaction energies of argon atoms to determine the numbers for these 

parameters. See, among others, Jäger et al. 2009. 

22 A useful differentiation is between training data and test data. The former are used for 

adjusting the parameters, the latter then determine how good the predictions of the (adjusted) 

model are. 
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Figure 1. Graph of the Lennard-Jones potential function: Intermolecular potential energy  as a function 

of the distance of a pair of particles. The graph shows the“ potential well”, i.e., a favored distance 

between two particles where attracting and repelling forces are in balance. As the particles also have 

kinetic energy and are not locked in this position, they move continuously, which is known as 

Brownian motion. 

 

In MD, like generally in MMS, potentials are used like building blocks. There are different 

model building blocks that are put together to create a model of a complex structure. Lennard-

Jones put together just two blocks to create his famous model, one for repulsion and one for 

dispersion. Add a dipole, and you will get another, more complex model, known as the 

Stockmayer potential, which has three parameters (σ, ε and the dipole moment). It is also 

common to combine several Lennard-Jones sites to describe chain-like molecules. However, 

for modeling more complex molecules, other types of interactions may become important. In 

general, one distinguishes between intermolecular interactions (between different molecules) 

and intramolecular interactions between the atoms inside a molecule, e.g., different types of 

vibration such as stretching, bending, or torsion. All these interactions are usually described 

by their potential energy, i.e., described by a potential.  

 V =  Vintra + Vinter         (2) 

  Vintra = Vstretching + Vbending + Vtorsion + … 

  Vinter = Vrepulsion + Vattraction 

   Vattraction = VvanderWaals + Vpolar + … 

The different contributions are then simply summed up and build the force field that expresses 

the total potential energy of the (model) system. 

Once the force field is defined, the forces acting on the particles and the resulting motion can 

be simulated. Much like in Laplace’s vision, except that the mathematical tools for solving the 

equations changed drastically. A large number of equations are numerically solved for the 

next (little) time step and then the procedure is repeated. Conceptually, this is a 

straightforward extension of the argon case. The main task of the simulation is to generate a 

sufficient number of representative configurations of the system to enable a meaningful 

determination of average properties. Such properties then can be compared to measurable 

macroscopic properties. In this way, one can achieve practically useful predictions (see, e.g., 

Eckl et al. 2008). 
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3.2 A round robin study 

Overall, MD is a machinery for prediction. The target properties can be on the atomistic level, 

or on the macroscopic level. For the latter, statistical mechanics is used to compute 

macroscopic properties from atomistic configurations. In principle, one can determine any 

(thermodynamical) property of bulk material, or properties at the interface between different 

phases of materials. Additionally, one can model and predict nanoscale processes, like heat 

and mass transfer or nucleation, i.e., processes where quantum effects do not play a major 

role. This extremely wide applicability is driving the uptake of MD in various scientific and 

engineering disciplines as the prediction generator of choice. The primer to MD in section 3.1 

pointed out that MD works with severe simplifications and also relies on parameterizations, 

including the adjustment of parameters. An obvious philosophical question is the extent to 

which MD models adequately represent their target domains.23 

This paper does not address issues of representation and adequacy. We focus on the 

mathematical and computational part, or better: on the modeling process that leads from the 

mathematically formulated theoretical model (like equation (1) in the case of argon) to the 

simulated properties of a substance. According to a common view, the mathematical model 

determines the simulation outcome (in the limits of approximation and statistics). 

Consequently, the simulation is fully reproducible (again, in the limits of approximation and 

statistics). 

We question this standard view. If the mathematical model does not determine the outcome of 

the simulation, reproducibility becomes an empirical question.24 The question is relevant but 

tricky to answer. It is relevant, because the analysis promises new insights into computational 

modeling, especially into how epistemological and social aspects are intertwined. The 

question is a tricky one, because sufficiently documented examples of practical cases whose 

analysis contributes to answer the question are rare. 

However, we are able to report about a scientific (engineering thermodynamics) case study in 

which the authors were involved (Schappals et al. 2017). It was a round robin study (different 

groups from different laboratories report to a central coordinating instance). The guiding 

question of this study was to what extent simulation experiments provide reproducible results 

                                                             

23 About two decades ago, philosophical assessments of the then current nanotechnology hype 

discussed such questions intensely, see for instance Baird et al. (2004). 

24 Very relevant literature in philosophy of simulation will be addressed later. 
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when the same theoretical models are simulated at different locations by different groups 

using different implementations on different computers. 

The mathematical model was clearly specified for all participating groups. One task was to 

compute the density (a simple property) of n-Butane (a standard substance) at various given 

temperatures and pressures. Five experienced simulation groups took part (four universities 

and one Fraunhofer institute).25 

In the round robin study, the participating groups received the task from a central instance to 

where they reported back their results (hence the name round robin), however, without 

communicating among each other. In the first round, the simulated densities varied so widely 

that they were clearly worthless as predictions. It turned out that these large deviations were 

mostly (albeit not always) due to simple mistakes such as mistyping values. On the one hand, 

this sort of error is independent of the modeling process. On the other hand, this sort of errors 

might occur regularly in science when users handle complex codes in the error-prone way that 

is so characteristic of human beings – and they work on predictions in fields where it is hard 

to test the results independently. After some rounds with short qualitative feedback of the 

central instance, results were obtained that looked much better, see Figure 2. 
Figure 2. Different symbols correspond to different groups that usually worked with different codes. 

Results are so close that symbols overlap. 

 

However, a closer inspection of the final results gives a less clear picture. This is illustrated, 

like under a magnifying glass, in Figures 3+4. Here, for two temperatures, the relative 

                                                             

25 Each group used the same three very common tool boxes to build the concrete force fields: 

OPLS (Jorgensen et al. 1984), TraPPE (Martin et al. 1998), and OPLSAmber (with stretching 

vibration, Jorgensen et al. (1984), Weiner et al. (1984). 
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deviations between the results from the different groups are displayed (the reference was the 

average value of all results). In such an analysis, one cannot expect perfect agreement (on the 

contrary: a perfect agreement could even indicate fraud by copying results of others). 

However, one would expect an agreement of the results within their error bars. 

  

 

Figure 3. Results from different groups and codes for temperature 92 Kelvin, including 
statistical uncertainties. 

 

 

      

Figure 4. Results from different groups and codes for temperature 248 Kelvin, including 
statistical uncertainties. 

 

The results of the different groups come with statistical error bars. One can observe that the 

deviations between the results of the groups are larger than the statistical uncertainty of the 
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predictions. In other words, there are systematic differences. The groups did not fully 

reproduce (in the limits of statistics) the results of the others – even after the considerable 

effort of the iterations in the round robin study. 

 

3.3 Analyzing the finding 

In a nutshell, we argue that the transformation process from the well-defined mathematical 

model to the result of a simulation comprises many steps. This section points out that 

technological, epistemological, and social aspects are interwoven in these steps. As a 

consequence, the executable object on a given computer that produces the simulation 

outcome26 is merely vaguely defined and partially opaque to the users.27 Yes, any two groups 

from the round robin study started from the same relatively simple mathematical model. 

Nevertheless, simulating this model involves a series of mutually interacting steps and each 

group took their own pathway. Given that these steps matter for the outcome, two simulations 

by different groups will in general produce different results. 

This analysis ties in with a strong direction in the philosophy of modeling and simulation. 

Almost from the beginning, the role of models was seen as a main factor when determining 

what characterizes simulations.28 We agree with this line of thinking. Yes, models act as 

“autonomous agents” in Morrison’s apt phrase (1999). In our simple example, the model 

consists of a mathematical equation (1) and the parameters. However, this does not determine 

                                                             

26 If one calls this object the simulation model, one should keep in mind that there now are 

two types of model in play. The mathematical model (allegedly) represents some facet of the 

world, while the simulation model represents the mathematical model. 
27 The difference between user and developer is not clear-cut. Those who use simulations to 

make predictions, even if they rely on existing software packages, often add some developing 

work, too. At the same time, even a developer of some part of the software is normally also a 

user of other parts. 
28 Here is a small selection, spanning 20 years: Winsberg observed that simulation is 

“sanctioning models” (1999), Humphreys (2004) detailed a schema for computational 

modeling, including computational templates, Morgan (2003) and Keller (2003) argue about 

model-based experiments, Tal (2013) and Morrison (2015) examined how measurement 

interacts with (computer) models, and Lenhard (2019) analyzes simulation models as a 

special type of mathematical models. 
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the result, because a host of specifications of the steps that need to be taken to retrieve the 

simulation results from the mathematical model is missing, defying the apparently simple 

mathematical form of the model. Figure 5 gives a preliminary schema of the modeling steps 

involved starting from a given theoretical model xmod up to the output xsim of the simulation. 

Figure 5. Steps in simulation modeling. It is a long way from the mathematical model (left) to the 

actual simulation result (right). 

 

There are no claims about the completeness of the schema. One goal a schema like that in 

figure 5 serves is to question the thesis that the mathematical model determines the simulation 

outcome and that, therefore, the latter is reproducible. The simulations of the groups in the 

round robin study of Schappals et al. differed in basically all points mentioned in the vertical 

columns of Figure 5. The question then is whether these differences matter. The round robin 

study suggests: yes. 

Here is not the place to discuss all factors. A few remarks might suffice. 

(1) In MD, researchers model the behavior of molecules by a large number of particles that 

interact according to certain rules (force fields). How many particles should they model? Are 

1.000, 10.000, 100.000, or 1 million particles sufficient?29 Obviously, this number has to be 

                                                             

29 Those are typical numbers used in different types of MD simulations. All of them are very 

low compared to the Avogadro number 6.022 x 1023. 
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assigned before the algorithm can start. It is an assumption that cannot be justified based on 

the mathematical model. It is a pragmatic assumption, depending also on technological and 

social factors.30 Not every part of a simulation (in the expanded picture) can be theoretically 

motivated. 

(2) As a rule, deviation between theoretical and simulated behavior, i.e. between xmod and x sim, 

is considered unwanted. However, normally xsim is the only result that is accessible, because 

the behavior of xmod can often not be determined without carrying out the simulation – or is 

only known for special cases. This initially motivates the use of simulation – and also shows 

how important the reproducibility of xsim is, or how painful the lack of it is. Typically, 

simulation parameters of various sorts take on a crucial role.31 Basically, all entries in figure 5 

come with one or several simulation parameters, for instance, governing how a real number is 

represented in a numerical algorithm. Ideally, the simulation parameters should not influence 

the outcome. However, in practice this is hard (or impossible) to achieve. Importantly, the 

overall behavior is influenced by all simulation parameters jointly, i.e., is conditional on the 

entire parameterization. Any differences in parameter settings at one spot will lead to, or 

might be compensated by, differences in other spots. Thus, how one parameter is related to 

model behavior is depending on the other parameters in a highly complex way, effectively 

turning the influence of parameterization into a holistic function (see Hasse and Lenhard 

2017, Lenhard and Hasse 2023 for an account of adjustable parameters that foster the 

argument). 

(3) The third remark exemplifies the mutual influence of epistemic, technological, and social 

factors. In the round robin study, commercial software with proprietary code did not perform 

well. Initially, commercial codes were included in the study, and yielded poor results in the 

                                                             

30 In general, a user will try to specify this number in such a way that a further increase will 

not alter the results significantly. However, other issues come into play: large particle 

numbers lead to lower statistical errors, but they also increase the computational effort. Hence 

compromises need to be made, and these compromises will depend on different factors such 

as the available computer, the maximal time for the simulation run that is still acceptable - or 

even the CO2 emission of the simulation. 

31 These simulation parameters should be distinguished from the model parameters. In our 

example above, σ and ε are the (adjustable) model parameters. However, the round robin 

study assumed the theoretical model (including these parameters) as fixed and given. 
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first round. It turned out that debugging the runs was only partially possible by the users, as 

often input from the company's experts, who have access to the code and details of the 

realization of the simulation, would have been required. This input could not be obtained in 

reasonable time. Furthermore, such support is generally expensive. Even having access to the 

source code, however, may not lead to a quick solution. One would first have to become 

acquainted with important parts of the code. Typical MD codes have more than 100,000 lines, 

corresponding to about 10 books, with 250 pages each. People who have ever tried to 

understand the logic behind code written by someone else, are immediately aware how big the 

problem is. One indication is that manuals of common software packages have often a 4-digit 

number of pages and, still, there are few manuals that contain all relevant information. 

Software, including issues like maintenance and institutional access, has been identified as a 

crucial problem by practitioners, even as a potential “nightmare” (Miller 2006). Moreover, 

software has also been identified as a widely neglected topic for philosophical, historical, and 

sociological research (Wieber and Hocquet 2020, Hocquet and Wieber 2021, Lenhard 2014). 

In conclusion, our argument is this. In order to make quantitative predictions of relevant 

quantities, one needs complex models, which have to be evaluated with complex procedures. 

These in turn can be considered “autonomous” steps, requiring the specification of parameters 

(or degrees of freedom). There are so many of them, and they interact, so that no one can 

claim to have an overview of everything. Thus, striving to improve the predictive power of 

the mathematical model requires to enter the thicket of simulation. The round robin study 

illustrated that the unavoidable differences in how different groups specify their simulation 

leads into problems with reproducibility. In short, these problems with reproducibility are a 

cost of prediction. 

 

4 The identity crisis of models – the crumbling foundation of reproducibility 

Up to here, the issue of reproducibility occurred as a problem, something science addresses 

during its normal business hours. And not something that signals a crisis. This final section 

argues that there is a crisis on the level of models, namely an identity crisis. In normal 

parlance, it is the model that achieves a prediction (through simulation methods). Or rather, 

with a philosophical touch, it is the theoretical content of the model that allows to make 

predictions. However, triggered by the expanded picture of the simulation process (figure 5—

and constructing the initial mathematical model is not even part of the picture), one might ask: 

What is it that actually achieves the predictions? The mathematical model is but one 

component. Breeding toward prediction creates a lot of slightly different types of simulations. 
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All these types achieve prediction with the help of mathematical tools. But being 

mathematical does not imply being general and being reproducible.  

It is crucial to differentiate this point of view. The theoretical model is formulated 

mathematically. This is an entity of great generality and apparently also of perfect 

reproducibility. However, getting out predictions from this entity requires a host of further 

steps that have a somehow (surely not completely) mathematical character, too. If one 

includes these steps, then problems with reproducibility are imminent, as section 3 has shown. 

It seems fair to attribute the predictive success to the simulation, i.e. the overall outcome after 

all steps in figure 5 leading to xsim. In a way, the entirety of these steps is a necessary 

extension of the mathematical model. Let us call the entire chain depicted in Figure 5 the 

simulation model. But the identity of this simulation model is not entirely determined through 

theoretical components. Rather, it comprises parameterizations, software codes, etc. 

Moreover, these components do not add up in a modular way where their function remains 

discernible and separable. Instead, it is a convoluted process that connects the mathematical 

model with the simulation result. For instance, assigning one simulation parameter value 

might depend on prior adjustments of how the code numerically handles discretization. And 

vice versa. Holism is an alternative notion that captures the situation.  

An additional, though related, aspect is opacity. The notion of epistemic opacity plays a 

prominent role in the philosophy of simulation and there exist different variants of opacity.32 

The holistic nature of the simulation process—a result of complexity like explained in remark 

(2) of section 3.3 above—makes it hard to attribute features of simulation behavior to features 

of the simulation model. In this sense, opacity is the flip side of holism. In a different sense, 

the users of the simulation have only incomplete access to the simulation model when certain 

model features are realized in a specific way in a given code (but differently in another), but 

parts of the code are proprietary, or the code is large and not well documented. 

In sum, the simulation model is (partially) holistic and opaque. Hence it is not 

straightforward, and maybe not possible at all, to tell and define what this model is. As the 

very brief analysis in section 3.3 indicated, this identity crisis comes from combined 

technological, epistemological, and social reasons. 

Is the identity crisis really a crisis? Well, we do not insist on a strong claim here. At least, the 

fuzzy and complex identity of the simulation model causes problems with reproducibility. 

                                                             

32 According to Humphreys (2009), demarcates simulations philosophically. 
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The entire argumentation ran along the case of MD, an instance of “hard” science with strong 

theoretical fundament, formal methods, and precision measurements. Certainly, the findings 

generalize to a wider field of computational approaches—or should generalize if our claims 

hold water. A recently extremely prominent class of examples is (deep) machine learning. It is 

an extreme case of parameterization. State of the art deep neural networks use billions of 

adjustable parameters. These networks can produce astoundingly good predictions. At the 

same time, they exhibit an irritatingly small robustness. For example, their predictions might 

depend on the random initialization of the model before it learns from (large amounts of) 

training data, or from minor distortions in the training data. If so, reproducing the results is 

extremely difficult. Furthermore, many of these models evolve in continuous training and 

previous versions generally cannot be retrieved, so that a reproduction is impossible for 

technical reasons alone. These networks are bred for one particular purpose—prediction. 

While they excel there, issues like robustness and reproducibility are compromised. In this 

way, the curious situation of P -> non-R arises. Thus, this sort of compromise should 

definitely be counted among the perils of prediction. 
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