
Valuations

October 24, 2014

Jean-Louis Lenard
1

Abstract

Is logic empirical? Is logic to be found in the world? Or is logic rather a

convention, a product of conventions, part of the many rules that regulate

the language game? Answers fall in either camp. We like the linguistic

answer. In this paper, we want to analyze how a linguistic community

would tackle the problem of developing a logic and show how the linguis-

tic conventions adopted by the community determine the properties of the

local logic. Then show how to move from a notion of logic that varies from

community to community to a notion of logic that is in a sense universal.

The framework is conventional up to a point: we have sentences, atomic

and composite, the connectives are interpreted, values are computed, and

the value of a composite sentence is a function of the values of its sub-

sentences. Less conventional is the use of a plurality of truth values, and

the sharp distinction we draw between sentences and statements, in the

spirit of the distinction between propositions and judgments one may �nd

in proof theory.

The linguistic community will face many choices. What are the good

ones, the ones to avoid? Are there, in some sense, optimal choices? These

are the kind of issues we are addressing. Where do we end up? With

some kind of universal bivalent logic, ironically enough. We start from

an arbitrarily large number of truth values, atomic sentences and con-

nectives, construct a generic many-valued logic, recover more or less the

usual results and issues, and, in the end, it all comes down to a positive

bivalent logic with two connectives, `and' and `or', as if logic is nothing

more than a mere accounting of possibilities.

Key words: Many-valued logic, satis�ability, Galois connection, logical con-
nectives, truth, bivalence, universal logic, logic and information, AI.

�How is logical certainty possible?�. That is the question, posed by W.V.
Quine in Carnap and Logical Truth [29]. Is logic empirical [11, 28]? Is logic to
be found in the world? Or is logic rather a convention, a product of conventions,
part of the many rules that regulate the language game? Answers fall in either

1jlouis.lenard@gmail.com

1



camp. We like the linguistic answer: we believe that logic has more to do with
the languages that talk of the actual world than with the actual world itself.
In this paper, we want to analyze how a linguistic community would tackle the
problem of developing a logic and show how the linguistic conventions adopted
by the community determine the properties of the local logic. Then show how
to move from a notion of logic that varies from community to community to a
notion of logic that is in a sense universal. The framework is conventional up to a
point: we have sentences, atomic and composite, the connectives are interpreted,
values are computed, and the value of a composite sentence is a function of the
values of its subsentences. Less conventional is the use of a plurality of truth
values and the sharp distinction we draw between sentences and statements, in
the spirit of the distinction between propositions and judgments one may �nd
in proof theory [25]. In his �rst Sienna lecture [25], Martin-Löf stresses the need
to distinguish two kind of entities:

� ... we have the entities that the logical operations operate on,
which we call propositions, and we have those that we prove and
that appear as premises and conclusion of a logical inference, which
we call assertions. It turns out that, in order to clarify the meanings
of the logical constants and justify the logical laws, a considerable
portion of the philosophical work lies already in clarifying the notion
of proposition and the notion of assertion.�

We are, as Martin-Löf, interested in the meanings of the logical constants and
justi�cations for the logical laws. Our approach is not proof theoretical however;
we concern ourselves with the transfer of information between a speaker and a
listener and reconstruct logical notions from such a perspective. We do not
have per se propositions and assertions here; we have sentences and statements,
sentences as means of expression and statements as means of assertion. Rules of
formation regulate how connectives operate on sentences. A natural language,
English for example, does not typically distinguish statements from sentences:
the utterance �Grass is green and snow is white� may be a statement of fact or
it may be an example sentence given by a teacher to illustrate some �ne points
of grammar. It is left to the context to disambiguate. The languages of interest
in this work are formal languages that distinguish statements from sentences,
that explicit intended assertoric forces. Technically, we consider typed formal
languages with explicit typing annotations (the so-called Church convention for
typed languages [3]). Such languages are robot-friendly and close enough to
natural languages to remain an option for homo sapiens.

Let's agree on some terminology. Hereafter, sentences are means of expres-
sion and the bearers of truth values. A statement2 is a sentence with a truth
value - mathematically, a couple (sentence, value). The members of the linguis-
tic community use statements to assert, to report facts or opinions, to express

2Our usage of the word `statement' is technical - a sentence with a truth value. `Statement'
is meant to connote report of facts or report of opinions, not the content of a sentence, logical
content, judgeable content, or content of any kind. In our framework, both sentences and
statements are �rst and foremost linguistic entities, as are truth values.

2



claims and judgements. Our argument is more transparent, not to mention more
general, with a generic set of truth values, but the wary reader is naturally free
to limit her working set to the traditional {True, False}. Truth values in this
paper are mere tags, linguistic entities, and have no particular metaphysical
implications.

In its attempt to develop a logic, the linguistic community will face many
choices. What are the good ones, the ones to avoid? Are there choices that are,
in some sense, optimal? These are the kind of issues we are addressing. Where
do we end up? With some kind of universal bivalent logic, ironically enough.
Naturam expellas furca, tamen usque recurret, et mala perrumpet furtim fastidia

victrix 3. We start from an arbitrarily large number of truth values, atomic
sentences and connectives, construct a generic many-valued logic, recover more
or less the usual results and issues, and, in the end, it all comes down to a
positive bivalent logic with two connectives, `and' and `or', as if logic is nothing
more than a mere accounting of possibilities.

This paper is a tale of two logics: one based on sentences, the other on
statements. The logic based on sentences is highly relative: its laws change from
community to community, the way identities change from algebraic system to
algebraic system. The logic of statements, on the other hand, is the same for
everybody. It is an universal logic of constraints; it is naturally bivalent, though
not required to be so, and involves two traditional connectives, `and' and `or'.
The main result of this work is a reconstruction of logic and of classical logic
notions from a linguistic perspective, from a formal language perspective strictly
speaking, based on an analysis of the transfer of information between a speaker
and a listener, rather than on a notion of truth or truth transmission. The
analysis of the transfer of information drives our argument and presentation.

The paper is structured as follows. Section 1 sets the stage. Section 2 in-
troduces the many-valued setting we want to work with and discuss sentence
equivalence. Section 3 moves to a consideration of statements, their reading as
constraints and to a rephrasing of satis�ability as a constraint satisfaction prob-
lem. Sections 3.3 and 3.4 collects a few technical results on Galois connections.
Section 4 is logic from a statement perspective. Section 5 discusses pre-image
analysis, our take on tableau expansion, where two constraint language connec-
tives, `and' and `or', �nd their calling. Section 6 discusses how to improve the
expressivity of the language and section 7 consider normal forms. We conclude
with some clari�cations, limitations, and generalizations.

1 Setting the stage

Reporting

Your name is Alice and you are the famous explorer. The one that crossed the
seas, went on to discover the secrets of the far away lands and came back to
tell stories, one more unbelievable than the other. You may be mostly homo

3Horace, Epistles 1.10.24-25

3



sapiens or you may be a pile of rusty metal modules; our story does not say.
But you can sense your environment and you can talk. As part of a linguistic
community, your means of expression are codi�ed. Your language provides ways
to generate and recognize well-formed sentences: atomic sentences are widely
available, composite sentences are generated at will, their structure is clear and
unambiguous. The stories you tell follow the o�cial format; it is the only way
you have to express yourself, to connect with your audience. In the o�cial
format for stories, all sentences are followed by a value, a truth value, e.g.,

The lord of the land is a two headed goat like creature : true
I lost (5^3 - 12^2 + 4) digits to the blistering cold : (false, impossible)
There are vast gold deposits right under the feet of the natives : hearsay
They have no clue about our land and our ways : unknown
Most natives are either goat like creatures or a cross between a frog and a

lion : no evidence to the contrary
They know the �fth universal law : improbable (p=0.12)
It is as if an English speaker would feel (grammatically) obligated to say

�It is true that the cat is on the mat� rather than �The cat is on the mat� to
assert the fact that, well, the cat is on the mat. In Alice's land, we end up
with stories composed of statements, of judgments, where truth values appear
explicitly. The bewildering array of possible truth values is naturally codi�ed
by the language; there is an o�cial set. How many truth values there are, what
their names are, and how they are related, are all details speci�ed somewhere,
but of no concern to us here. Truth values in our setting are tags that one
attaches to sentences; they are nothing more than the elements of some suitable
sublanguage. Depending on the interpretation, the matter, at hand, they may
be seen as linguistic elements expliciting the assertoric force of a statement,
as traditional logical truth values, Bedeutungen à la Frege, elements of some
arbitrary lattice, signs in a signed tableau expansion [8, 21], or as the possible
displays of a sensor - to mention only a few possibilities.

Alice's language is sophisticated enough for sentences to come in two forms:
atomic and composite. As part of the linguistic convention of the community, the
truth value attached to a composite sentence is computed from the truth values
of its atomic subsentences - a compositionality assumption. A native speaker
has at least two competencies: she is able to generate well-formed sentences and
she is able to correctly value composite sentences.

While on assignment, Alice records her observations in a log book, whose
entries are of the form:

atomic sentence e : truth value b or e : b for short.
The log book records available evidences in the form of valued atomic sen-

tences4. To produce a report, Alice uses the log book entries to compute com-
posite sentence values as needed. Anybody having access to her log book would
be able to reproduce her valuations because the way values are propagated from
the atomic sentences is codi�ed by the language, there is only one correct end

4Anticipating the mathematical representation, a log book is nothing but a partial atomic
valuation.

4



result. Note that, in Alice's world, the value of a composite sentence is never
observed, it is always computed, whereas the value of an atomic sentence is
(mostly) observed, never computed5.

I like to view the situation in terms of a run-of-the-mill cognitive agent. Let's
downgrade Alice to a lowly robot status. The robot has sensors, a whole series
of them; the sensors have names and display values. The log book is a long list
of sensor readings recorded as:

sensor nameX(e) : value b or X(e) : b, Xi : b for short
The raw data may be terabytes of values, billions of pixels, a level of details

that no audience should have to bear. The data may be proprietary or the
customer may be interested only in a few salient results. Instead of sharing its
whole database, our little robot computes the value of some composite quantities
of interest and communicates its �ndings:

(X1 +X5 +X8)/3 : b
F (X4, X8) : b′

This is a report and this is how our little robot talks. The way the values
are computed is known to all parties involved, the raw data may not, and they
are, in general, not present at the report level.

Comments
(1) For Alice the lowly robot, it is presumably the environment, the world,

reality, that dictates the values displayed by the sensors. A more capable cog-
nitive agent such as Alice the explorer is free to attach any value she sees �t to
an atomic sentence. Our linguistic community does not regulate how to valuate
at the atomic level.

(2) How does Alice determine if an atomic sentence is true? That we do not
say, because we do not have to. Our setting nicely dissociates truth determi-
nation and value propagation. How values propagate decides the properties of
the local logic. The particular theory of truth the community may have chosen
to valuate atomic sentences, the veri�cation protocol, or the con�rmation and
falsi�cation criteria adopted, does not a�ect the local logic - and even less the
global one. Logic does not have to be a theory of truth or a theory of truth
transmission. What truth or a truth value is, is not really that relevant to our
reconstruction of logic. That values are propagated, i.e., the compositionality
restriction, is the key assumption.

(3) Given a log book, the speaker is free to choose the sentences she wants
in the report6. What she says, hides, emphasizes is hers to decide. The rest,
however, is convention. The values attached to the sentences appearing in the
report are fully determined by the log book used and the conventions of the
language.

5In principle, not all atomic sentence values have to be observed. Alice may rely on some
particular deductive systems or on some particular scienti�c theories to relate atomic sentence
values. Such capabilities will however not be considered here.

6Would Alice be more of a database, she may alternatively limit herself to answer queries.

5



The listener perspective

Upon reception of the report, what should Bob, the listener, do? Read it,
of course, and then as a competent and responsible member of the linguistic
community, he may feel obligated to:

(1) determine the grammaticality of the report,
(2) determine the satis�ability of the report.
Are all sentences appearing in the report well-formed according to the o�cial

grammar of the language? Yes, proceed to (2). Are all values well computed?
Log book log is said to satisfy report Σ if report Σ can be generated by a
competent speaker starting from log. Given a particular log, there is at most
one value that can be attached to a sentence e; either log does not provide
enough information or the computation can proceed and will terminate. Report
Σ is said to be satis�able if at least one log book satis�es Σ.

Of course, Bob could judge the report relative to any set of criteria and
challenge it on various grounds. He may believe the report. He may �nd it
useful. He may appreciate the way the report was put together and the amount
of work and skill that went into it. The typesetting or the cover may be par-
ticularly pleasing. He may remember the admonitions of Grandfather to never
believe anything with an o�cial stamp or, contrariwise, the cautionary tales of
his teachers, to only trust refereed reports. Alice the explorer may be known in
the community for her colorful and fanciful testimonies. Or he may simply ig-
nore the report because its �ndings are inconvenient. Bob's state of mind, biases
and prejudices are not of interest here. How Bob's predispositions, conception
of the world, past experiences, or intentions may in�uence his opinion of Alice's
work would be a fascinating digression, but well beyond the con�nes of our little
analysis. We will not even allow Bob to challenge the entries of Alice's log book.
He did not go with Alice on her far-reaching exploration of the world; he has
no basis to challenge the veracity of her atomic statements, notwithstanding
his preconceptions of how the world is or what the sensors should display. Our
limited listener can check however if the report follows the conventions of the
linguistic community and use in any way he sees �t the information disclosed
by the report.

How should Bob determine satis�ability? The language does not say. An-
other linguistic community may provide rules to determine satis�ability but not
this one. Bob is left to his sagacity and his understanding of how the language
works. How Bob comes up with a log book that satis�es report Σ is up to
him. Yet, once the claim is made that a particular log satis�es Σ, anybody can
check the claim. It is a simple matter of value propagation. Bob's predicament
is however far from hopeless, for his language is simple enough to ensure that
satis�ability can always be determined by checking a �nite number of log book
candidates.

6



The local logician

Our basic setting has one last character: Uncle George, the logician. What
is a logician you may ask? Speakers and listeners are a dime a dozen in any
linguistic community. Who needs a logician to be a competent speaker or a good
listener? As long as Alice can follow the linguistic conventions, her reports will
be well-formed and well-valued. She can generate complex sentences at will,
value them correctly, follow all the rules of the language, tell her stories, spin a
tale as well as anybody. And with su�cient diligence and determination, Bob
can check the grammaticality and satis�ability of any report.

Alice and Bob need a logician as much as they need a grammarian. For the
sake of de�nitiveness, let's agree that a grammarian is someone who studies the
grammatical features of naturally occurring languages and of not so naturally
occurring languages, provides ways to approach such endeavors, and comes up
with formal languages that have suitable properties including simple construc-
tion and recognizability. Likewise, a logician studies the logical properties of
languages, provides ways to approach such endeavors, and comes up with for-
mal languages that have suitable properties including easy determination of
values and satis�ability7.

Our local logician George would like to understand the language of his lin-
guistic community. In particular, he would like to know:

(1) Which two sentences end up with the same value regardless of the log
book used?

(2) Which two reports are equivalent in the sense that if one is satis�ed by
a log book the other is too?

Eventually, he wants to be able to:
(1) Streamline means of expressions and means of reporting by providing

normal forms.
(2) Easily recognize tautological and contradictory reports.
(3) Provide improvements on the existing linguistic conventions.
George's working language is not going to be Alice's language. If he wants

to talk about the logical properties of Alice's language, he needs a suitable
medium, a metalanguage so to speak. George may �nd the use of a mathematical
framework propitious. And so will we.

2 Logic at the sentence level

2.1 The means of expression

Without restricting ourselves much, let's assume, for de�nitiveness, that the
language of our linguistic community is a many sorted term language L. What
we have in mind is a formal language built from a set of atoms, a ∈ Atoms(L),
and a set of connectives, c ∈ Conn(L), as is customary in logic, universal

7Any realistic account of what logicians do would have to mention 'validity of argument',
'logical consequence', 'proof theory', and so on. We have tailored the de�nition to our needs.
Our approach is purely semantical.

7



algebra or programming language theory [13, 16, 7, 2, 18]. Connectives are
typed, c : (T1, T2, . . .→ Tm), so are atomic terms, (a) : T .

New terms are built and types are propagated according to the grammar of
the language, speci�ed for example by some formation rules, one per connective:

e1 : T1, e2 : T2, . . . , c : (T1, T2, . . .→ Tm)

(c e1 e2 . . .) : Tm

The types of a many sorted language have typically no particular structure8.
They are sorts, T ∈ Sort(L). The formation rules ensure that all terms of the
language are typed, and that the type associated with a well-formed term is a
sort. By default, we will use the familiar S-expression format to display terms,
e.g., (c e1 (c′ e3 e2)), allowing for in�x, post�x, mix�x, or other variants.

We are not assuming the sorts to be distinct. It is perfectly �ne to assume
that all the T 's are the same, would one want to work in a monosorted setting.
In the case of a single sort language, the grammar of the language simpli�es to
a consideration of arities, e.g. in BNF style,

e := (a) | (c1 e) | (c2 e e) | . . .
This is the kind of term language one typically encounters in the �rst few

chapters of a logic textbook, e.g.,
e := (a) | (¬ e) | (∧ e e) | (∨ e e) | . . . | (� e ) | (♦ e)
For predicate logic, it is more convenient to use a term language with at

least two sorts, e.g., one sort for propositions and one for individuals.
The set of terms of a many sorted term language L is canonically endowed

with a structure of term algebra. The elements of Conn(L) are connectives, i.e.,
linguistic entities, not algebraic operations. Nonetheless, one may associate an
algebraic operation, Γc, with each connective and view the formal language L
as an algebraic system if so inclined. Let's denote by L(T ) the terms of L that
have type T . And let's denote by A(L) the term algebra associated with the
formal language L, i.e., (L(T ), )T∈Sort(L) � (Γc, )c∈Conn(L)

9.
If connective c has type (T1, T2, . . . , Tn → Tm), then operation Γc takes in n

arguments, the �rst one from set L(T1), the second from L(T2),.., the last one
from L(Tn), and returns a term from L(Tm), or Γc : L(T1), L(T2), . . . , L(Tn)→
L(Tm) with

Γc(e1, e2, . . . , en) = (c e1 e2 . . . en)
The operation is reversible, technically, Γc is injective.

Comments
(1) For us, a term is more a tree than a string. What its exact mathematical

representation is in this mathematical framework depends on the details of the
mathematical representation used, e.g., a tuple, a partial order, a graph, or
some categorical theory construct. We omit the details; they play no role.

8The linguistic community may enjoy much richer languages and elaborate type systems.
Except for the added technicalities and the more complex notation, our analysis unfolds in
similar ways.

9The caret indicates concatenation of the two families. This is the operation one needs to
recover a tuple, the usual notation for an algebraic system.

8



(2) Whenever convenient either technically or philosophically, we will assume
that Atoms(L) and Conn(L) are �nite. The reader could also assume that the
complexity of the terms is limited in some ways (e.g., by requiring the height of
a term to be less than 1000), allowing him or her to work with a �nite corpus,
but we will not. Our �nitistic qualms are not that extreme.

(3) With these assumptions, the only source of in�nity in this work is the
ever-expanding formal language, a set in becoming if any.

2.2 H-interpretation and the propagation of values

Let's associate with each sort T a range of values, B. The set B may be a range
of truth values10. It may also be understood as nothing more than the set of
values a sensor may display. And with each connective c : (T1, T2, . . . → Tm),
let's associate an algebraic operation Hc : (B1, B2, . . .→ Bm) of matching type.

An assignment is an element of the cartesian product (×)a∈Atom(L)Ba. An
assignment assigns to each atomic term (a) a value. Notation: the set of all
assignments is Asg(L,H), Asg(L,H) = (×)a∈Atom(L)Ba.

An assignment, let's say α, is a function de�ned on the atomic terms. We
want to extend α to all the terms of the language. There are quite a few ways of
getting there. The value associated with composite term (c e1 e2 . . .) relative to
assignment α may be computed by �ring the computation rules that correspond
to the formation rules of the language:

e1 : b1, e2 : b2, . . . , c : (B1, B2, . . .→ Bm)

(c e1 e2 . . .) : Hc(b1, b2, ...)

This is a bottom-up computation: the values are propagated from the leaves
to the root.

More traditionally, let's de�ne by structural recursion the value of term e at
assignment α, val(e, α),

val((a), α) = α(a)
val((c e1 e2 . . .), α) = Hc(val(e1, α), val(e2, α), ...)
Whenever convenient, we will lighten the notation to val(α)(e), valα(e) or

even val(e). And extra sets of parenthesis will be elided, e.g., val(a) rather than
val((a)).

Comments
(1) All computations are �nite even if the sets Atom(L), Conn(L), or BT

are not - because a term has only so many connectives.
(2) All computations are done within the algebraic system H(L), i.e., within

(BT , )T∈Sort(L) � (Hc, )c∈Conn(L).
(3) Technically, val(α) is a morphism of algebraic systems, val(α) : A(L)→

H(L). We could as well have de�ned val(α) as the morphism that canonically
extends the function α:

10The elements of B may be seen as some kind of generalized bits, hence the adopted
notation, b ∈ B.

9



(val(α) ◦ Γc)(e1, e2, . . . , en) = Hc(val(α)(e1), val(α)(e2), ...)
or,
val(α) ◦ Γc = Hc ◦ val(α)⊗

(4) The computation of values does not have to be bottom-up. The values
do not have to be propagated from the leaves to the root. One could easily
switch to a top-down computational scheme, working for example with a stack
of function calls or generating goals and subgoals.

(5) To keep the number of assignments �nite and the operations Hc �nitely
presentable, one can always assume the sets BT �nite.

(6) The couple (L,H) may be seen as an interpreted language.

2.3 The equivalence of two terms

Terms e1 and e2 of L are said to be (L,H)-equivalent, e1 '(L,H) e2 or, for short,
e1 ' e2, if the computation of values always ends up with valα(e1) and valα(e2)
equal, i.e.,
∀α, valα(e1) = valα(e2)
With the sets BT and Atom(L) �nite, the quanti�cation is over a �nite

number of assignments. The binary relation ' is an equivalence relation on
terms compatible with the formation rules of the language, i.e., ' is a con-
gruence on A(L). Terms e1 and e2 are equivalent if their associated functions,
val(e1) : Asg(L,H)→ B and val(e2) : Asg(L,H)→ B, are equal on Asg(L,H),
val(e1) = val(e2). The quotient algebraic system A(L)/ ' is the Lindenbaum-
Tarski algebra of the local logic. Note that ' is typed.

The study of the properties of the congruence ' is a study of the algebraic
system H(L), in particular, a study of its identities.

2.4 Polynomial terms

With any term e of L, one may associate a polynomial term P (e), a polynomial11

of H(L):
P (c e1 e2 . . .) = (Hc P (e1)P (e2) . . .)
P (a) = (a)
Note that the atoms of L play now the role of polynomial variables and the

names of the operations of H(L) are used as connectives - leaving as usual to
the context the delicate task of disambiguating the various usages.

The value of polynomial term P (e) at α, val(P (e), α), is de�ned as for the
case of a general term:

val(P (c e1 e2 . . .), α) =val((Hc P (e1)P (e2) . . .), α)

=Hc(val(P (e1), α), val(P (e2), α), . . .)

val(P (a), α) =α(a)

11For us, a linguistic entity on a par with a term, not a function, though it is straightforward
to view a polynomial as a function on assignments - see below.

10



where the interpretation of polynomial term connective Hc is the operation
Hc. The function P (e) associated with the polynomial term P (e) is P (e) :
Asg(L,H)→ Be where P (e)(α) = val(P (e), α). Two polynomials are equivalent
if they are equal when seen as functions. Note that val(P (e), α) = val(e, α)
or, as functions, P (e) = val(e). (L,H)-computing with L-terms is computing
with H(L)-polynomials. Algebraic equivalence of terms is functional equality
of polynomials is equality of functions:

e1 ' e2 ⇔ ∀α, valα(e1) = valα(e2) ⇔ ∀α, P (e1)(α) = P (e2)(α) ⇔
P (e1) = P (e2) ⇔ val(e1) = val(e2)

Comment: Polynomial terms may be represented mathematically in many
ways. We have adopted a version that �ts our framework nicely. We could
relate in a somewhat similar way H(L)-polynomials and A(L)-polynomials. If
we were looking for logical forms, A(L)-polynomials would �t that role just �ne,
though adding variables to the language L would be more transparent.

2.5 Functionally complete interpretation

With any term e of L, one may thus associate a function on assignments,
val(e), P (e) : Asg(L,H)→ Be, α 7→ val(e, α). The function val sends Term(L),
Term(L) =

⋃
T∈Sort(L) L(T ), into

⋃
T∈Sort(L)(Asg(L,H) → BT ). An interpre-

tation H is said to be function on assignments complete, or functionally com-
plete, if all functions on assignments, f : Asg(L,H) → BT , are representable
by polynomial terms,
∀f : Asg(L,H)→ BT , ∃e ∈ L(T ), f = P (e)
Functionally complete interpretations are naturally quite nice to work with;

they provide maximal expressivity from a function on assignment point of view.
There is no feature12 the speaker cannot express.

Comment: The usual notion of functional completeness pertains to algebraic
systems; all operations13 on the carrier set are required to be representable as
polynomial functions. The two notions are quite close though not identical.

2.6 Examples

2.6.1 Classical propositional logic, the bivalent case: Boolean valu-
ations.

Consider the single sort term language L, with one unary and two binary con-
nectives,

e := (a) | (¬ e) | (∧ e e) | (∨ e e),
and the classical algebraic system B or ({0, 1},	,⊗,⊕). The operations of

B are the customary Boolean operations: negation, product, and sum on two
elements.

12`feature' as understood in data analysis, let's say.
13An n-ary operation may be seen as an unary function on n-ary tuples. Relative to a ranking

of the atoms, a su�ciently long tuple is an assignment (modulo some typing constraints),
tuple ◦ ranking = assignment, and an assignment is a tuple of length #Atoms(L) , tuple =
assignment ◦ ranking(−1).

11



Relative to B, a connective c of L is said to be a⊗-connective or a conjunction
if Hc = ⊗, similarly, connective c is a ⊕-connective or a disjunction if Hc = ⊕
and a negation if Hc = 	. A language may have in general many conjunctions,
disjunctions, and negations; it makes little di�erence to its logical properties.

With the habitual interpretations H∧ = ⊗, H∨ = ⊕ and H¬ = 	, one
recovers the laws of classical propositional logic as algebraic equivalence of terms,
e.g., (e1 ∧ e2) ' (e2 ∧ e1), (e ∧ e) ' e, or ¬¬e ' e .

The function val(e) sends Atoms(L) → B into B, val(e) : (Atoms(L) →
B)→ B.

2.6.2 Propositional logic, the N-valued case: Post valuations

The language is the same, e := (a) | (¬ e) | (∧ e e) | (∨ e e), the interpretation is
di�erent [33]. Consider the algebraic system ({0, 1, . . . , N − 1}, C,min,max),
where {0, 1, . . . , N−1}, N ≥ 1, is ordered as usual, max and min are binary op-
erations that pick respectively the maximum and the minimum of two elements
and C is an unary operation that cycles through the elements:

C(x) = (x+ 1)mod(N) or C(0) = 1, C(1) = 2, ..., C(N − 1) = 0
Take H∧ = max, H∨ = min and H¬ = C.
Some laws of classical propositional logic are still present, e.g., (e1 ∧ e2) '

(e2∧e1) or (e∧e) ' e, some take a new form, e.g., e∨¬e∨¬¬e∨. . .∨(¬¬ . . .¬e) '
e′ ∨¬e′ ∨¬¬e′ ∨ . . .∨ (¬¬ . . .¬e′), some are no more, e.g., e∧¬e ' e′ ∧¬e′ does
not correspond to any polynomial identity unless N ≤ 2.

The function val(e) sends Atoms(L) → N into N , val(e) : (Atoms(L) →
N)→ N .

2.6.3 Modal valuation, the Boolean algebra with operators version
[6, 19]

Consider the term language,
e := (a) | (¬ e) | (∧ e e) | (∨ e e) | (� e ) | (♦ e),
and a set W , the set of worlds, assumed �nite for computational reasons.

The power set of W is canonically endowed with a Boolean algebra structure.
Let's add to that Boolean algebra two unary operations, m : ℘(W ) → ℘(W )
and l : ℘(W ) → ℘(W ), typically a closure operator and an interior operator.
Relative to that algebraic system, the set of worlds associated with a modal
sentence is de�ned recursively by:

val((a), α) = α(a)
val((¬ e), α) = W − val(e, α)
val(e1 ∧ e2, α) = val(e1, α) ∩ val(e2, α)
val(e1 ∨ e2, α) = val(e1, α) ∪ val(e2, α)
val((� e), α) = l(val(e, α))
val((♦ e), α) = m(val(e, α))
The function val(e) sendsAtoms(L)→ ℘(W ) into ℘(W ), val(e) : (Atoms(L)→

℘(W ))→ ℘(W ).

12



2.6.4 Predicate logic [19, 1]

Consider a set of variables, V ar = {x, x′, ...}, a language of formula,
e := (a) | (¬ e) | (∧ e e) | (∨ e e) | (∀x e ) | (∃x e) | (∀x′ e ) | (∃x′ e) | . . . ,
and a set D, the domain of quanti�cation. Consider the set of object assign-

ments, V ar → D. We want to interpret a formula as a function, a function from
the set of object assignments, V ar → D to a set L. If the range L is the binary
set {0, 1}, the interpretation is a characteristic function, hence a subset. Let's
focus on the binary case, and, for computational reasons, let's assume that V ar
and D are �nite.

The algebraic system of interest is the Boolean algebra with operators,
(℘(V ar → D),∩,∪, {,mx, lx,mx′ , lx′ , . . .) where the operationsmx, lx,mx′ , lx′ , . . .,
are particular cylindri�cation operators.

. . .
val((∀x e ), α) = lx(val(e, α))
val(((∃x e ), α) = mx(val(e, α))
. . .
The function val(e) sends Atoms(L) → ((V ar → D) → L) into ((V ar →

D)→ L), in the binary case, Atoms(L)→ (℘(V ar → D)) into ℘(V ar → D).
Comment: If we rank the variables, an assignment is also a tuple and, after

removing the extraneous dimensions, we recover a traditional interpretation -
the extension of a predicate as a set of tuples.

2.6.5 Functional Programming

A value can also be a term, in which case, a valuation becomes a term language
translation, a function from terms to terms. The initial interpretation associates
the operation Γc with the connective c, or Hc = Γc. The algebraic system
A(L) is the �nest interpretation one may invoke. A(L)-valuations are term
substitutions.

The transformation of expressions is functional programming forte. For ex-
ample, working with S-numerals, a coarse but useful characterization of a term
is its connective height,

val(a) = 0
val(c e1 e2 . . .) = 1 +max(val(e1), val(e2), . . .)
The connective structure of a term is already a less coarse characterization,

it erases all information at the leaves, leaving only the connective skeleton,
val(a) = (0)
val(c e1 e2 . . .) = Γc(val(e1), val(e2), . . .)
where 0 is some distinguished atom. The connective structure of a term

is a term language transliteration, a particularly transparent valuation. Many
transformations of expressions in functional programming are straightforward
valuations.

The function val(e) sends Atoms(L)→ Terms(L′) into Terms(L′), val(e) :
(Atoms(L)→ Terms(L′))→ Terms(L′).

13



2.6.6 Typing as valuation [26, 3]

In a typed language, types may be, among other things, propagated or inferred.
Example: Applicative language, i.e., a term language with a single binary

connective (.),
val(· e1 e2) = val(e1) ∗ val(e2) = (A→ B) ∗A = B
An assignment is now a typing assignment and propagation of values is

propagation of types 14. The closeness of typing and valuation is naturally not
fortuitous. They both propagate, going up the parse tree. A type and a value15

can both be seen as the coarsening of a term: a type is also a collection of its
inhabitants and a value is, in the preimage sense, a collection of terms. The
move is the same: a partitioning of a set of terms resulting in a coarser picture
and a loss of information.

2.6.7 Statistical reduction of experimental data

Consider a language of arithmetical expressions
e := (Xi) | (plus e e) | (times e e) | ((1/n) e )
and the �eld of rational numbers as intended interpretation. The valuation

scheme is naturally
val((Xi), α) = α(Xi)
val((plus e1 e2), α) = val(e1, α) + val(e2, α)
val((times e1 e2), α) = val(e1, α) ∗ val(e2, α)
val(((1/n) e ), α) = (1/n) ∗ val(e, α)
A report may now includes a variety of statistical quantities, exploratory

data analyses, estimators, e.g.,
val((meanX1X2X3X4 ), α) = (1/4)∗(val(X1, α)+val(X2, α)+val(X3, α)+

val(X4, α))
Naturally, the statistical reduction of a set of data or data analysis is not

traditionally within the province of logic, but from our point of view we are
merely propagating values. Broadly speaking, the construction of a report is
nothing more than a repackaging of information.

2.7 Conclusion

(1) The linguistic community settles on a many sorted language and an inter-
pretation. The elements of the language are seen in the light of their algebraic
denotata. A term of the language is reduced to a (polynomial) function on
assignments; two terms are equivalent, e1 ' e2, if their associated functions
are equal. The congruence ' tells the speaker which two sentences have the
same meaning, i.e., play the same role within the interpreted language, within a
report, and opens the door to a normalization of the means of expression, e.g.,
sum of products in classical propositional logic.

14And type inference is satis�ability determination.
15`value' as used in this paper, not as used in type theory contexts.

14



The (L,H)-equivalence of two sentences is a key notion in classical logic.
The congruence is fully determined by the choice of an interpretation, i.e., by
the algebraic system H(L). And that choice is to a large extent arbitrary. It
is an agreement, a convention of the linguistic community. Logical results as
e1 ' e2 are relative to the choice made.

(2) Modern logic quickly moves from computation within a single algebraic
system to the representation of equivalence relations, consequence relations,
and classes of sentences by classes of algebraic systems, in general, by classes of
models.

e1 '(L,H) e2 ⇔ ∀H ∈ H, e1 '(L,H) e2

If the class of algebraic systems H is equationally de�ned, we get a particu-
larly nice congruence '(L,H). Alternatively, the linguistic community may spec-
ify the operative congruence by listing a few primitive identities or the operative
consequence relation by listing a few sequents and sequent operations. Mathe-
matically, the way to go, but our linguistic community just want to compute.
They have no particular congruence, consequence relation, or set of sentences
to represent. They just have a single algebraic system relative to which they
compute the values of composite sentences.

(3) The congruences '(L,H) and '(L,H) are relations on sentences, state-
ments have not yet entered the fray.

(4) There is room to argue that some algebraic systems are natural choices16,
that some operations are logical and some are not. Where should the line
between logical values and non-logical values be drawn, if at all? Where should
the line between logical operations and non-logical operations be drawn, if at all?
Criteria of logicality vary [22, 30, 32, 31]. We have no need for a demarcation line
here; logicality criteria will not be discussed much further - see however section
7.4: Distinguished value reexpression. Not to mention, once we have the two
statements connectives `and' and `or', sentence connectives become redundant -
see for example section 7.1: An accounting of possibilities, there are no sentence
connectives in a list of alternatives.

(5) At this point, a many-valued logic framework would introduce a set
of designated values and a notion of validity, logical entailment, and logical
equivalence, relative to that set [20, 24]. Alternatively, it may consider an order
on the values, e.g., H(L) as a lattice, and compare functions, in particular
polynomial functions, hence sentences, using that order [12]. Either way, one
recovers a logical formalism. We are not taking these roads. A listener needs
to be able to assess satis�ability. A study of the satis�ability of reports is what
we are after; a welcome outcome is yet another instance of a logical formalism.

A focus on information transfer, an assumption of compositionality, and
a distinction between means of expression and means of assertion, gives us a
plurality of logics, a plurality of logical formalisms. In this paper, we have
emphasized two of them for they are, in the context of the paper, the most
natural to us. But others are possible and are common place; logical entailment

16Functionally complete algebraic systems are particularly interesting as far as expressivity
is concerned

15



constructed relative to a set of distinguished values is a perfectly adequate in-
stance of logical entailment. How these di�erent versions of logical entailment
are related is discussed in section 7.6: Logical notions by hook or by crook.

(6) Diagrams and functors. Although we have developed the theory along
traditional lines using algebraic systems and morphisms, this mathematical for-
malism does not really do justice to the simplicity of the situation. We really
have only three structures - a term language, a term algebra, and an algebraic
system - and a morphism. Terms upon substitutions move from one structure to
another. A computer science perspective17 or a category theory perspective may
help: a term is a diagram with a tree structure, its leaves labeled by elements
of Atom(L) and its internal nodes labeled by connectives. It is transparent to
replace the content of the nodes and computation is propagation along edges.
A polynomial term is now nothing more than the connectives replaced by oper-
ation names; a polynomial term may be seen as a kind of partial computation.
Such a framework clearly separates form and content, and would be a good �t
for a streamlined and more visual presentation of logic at the sentence level.

3 Statements

3.1 Weighted terms, log books, reports

Let's forget about sentences and structure for a while and let's consider state-
ments and reports18. Hereafter, we will represent statements mathematically
by couples, by elements of

⋃
T∈Sort(L) L(T )×BT , or ST (L,H). A statement is

a sentence with a value, sterm for short, that we will display as `(e, b)', as `e : b'
or equivalent.

Notation: If s = (e, b), then its term is trm(s) = e and its value is wgt(s) = b.
A log book is a partial assignment: a set of sterms is a log book if all its

terms are atomic and a given atomic term appears at most once. A set of
sterms is a report if a given term appears at most once - nothing more than a
functional set of couples. Let's denote the set of all reports by Rep(L,H). One
may view a report as a partial function, a partial element of (×)e∈Term(L)Be,
i.e., an element of (×)e∈L′Be for some L′ ⊆ Term(L). Rep(L,H) is partially
ordered by inclusion and is closed under intersection

Mathematically, we are moving away from a study of algebraic systems such
as A(L) and H(L) and toward a study of posets. The vocabulary, tools and
imagery will shift accordingly.

For simplicity, let's start by assuming that log books and reports are �nite.

17Abstract datatypes, functional languages, semantics of programming languages.
18Actually, we want to be able to work at both levels: sentences for compositionality and

statements for satis�ability.

16



3.2 The satis�ability problem

Given an assignment α and a few terms, it is a simple matter of computation to
produce a report. Consider an assignment α and a set of terms L′, the report
obtained by propagating the values according to the interpretation H will be
denoted by repH(L′, α) or variants thereof where

repH(L′, α) = {(e, val(e, α)) | e ∈ L′} = val(α)/L′

Propagating values is simple; the converse is, however, less so19. Consider
a report Σ and its associated set of terms trm(Σ) or L′, to solve the equation
rep(L′, α) = Σ for α is the satis�ability problem20. We'll say assignment α
satis�es report Σ, Sat(α,Σ), if α is a solution of the equation.

More terminology. Let's consider all the assignments that satisfy a report,
Asg(Σ) or sol(Σ),

Asg(Σ) = sol(Σ) = {α| rep(trm(Σ), α) = Σ}
If Asg(Σ) is empty, we say that Σ is unsatis�able, if not, Σ is satis�able. If

all assignments satisfy Σ, the report is tautologous.
The satis�ability problem is a constraint satisfaction problem. A report

plays the role of a set of constraints, and a satisfying assignment is a solution to
the constraints. We have a set of trees with values at their tips, and we inquire
about values at the leaves that upon propagation could reproduce the values at
the tips.

How do we tackle the satisfaction problem?
1. We could solve one tree at a time and collect the common solutions,

Asg(Σ) =
⋂
s∈ΣAsg(s) - a divide and conquer approach.

2. We could go through all the assignments, one assignment at a time,
compute the values at the tips, and compare with the constraints - an exhaustive
search algorithm.

3. We could transform the set of constraints, possibly one constraint at
a time, into an equivalent problem easier to solve - the motivation behind a
tableau expansion, see below.

There are many ways to solve a set of constraints. Is there an optimal
way? What is a good quanti�cation of the quality of an approach? How do we
compare two approaches? This is a theory of algorithms. Computability theory
and modern logic share many issues and tools. We will not concern ourselves
too much with such computability issues however, our focus is on satis�ability
per se, not satis�ability optimality.

Note that solving constraints is solving polynomial equations (in algebraic
system H(L)),

val(e, α) = b ⇔ P (e)(α) = b
If the mathematical reader recognizes a few algebraic geometric notions here

and there, it should be no surprise, for we are, at the end of the day, dealing
with nothing more than solutions of polynomial equations.

19In the same way that solving a polynomial equation is less direct than computing the
value of a polynomial at a given assignment.

20We will not dwell here on the important di�erence between proving the existence of a
solution and constructing a solution. And we will not mention the P 6= NP angle either.

17



3.3 Some properties of sol

We are collecting here a few properties of the function sol : Rep(L,H) →
℘(Asg(L,H)). The reader familiar with the theory of Galois connections and
its use in logic can safely skip this section and the next.

As a function, sol associates set of assignments with set of sterms, sol :
Rep(L,H)→ ℘(Asg(L,H)).21

1. sol is a map between two posets.
2. Less constraints, more solutions, sol is antitone
Σ1 ⊆ Σ2 ⇒ sol(Σ1) ⊇ sol(Σ2)
3. The solutions of Σ1 ∪ Σ2 are the solutions common to Σ1 and to Σ2,
sol(Σ1 ∪ Σ2) = sol(Σ1) ∩ sol(Σ2)
4. And since a report is the union of singletons, we recover
sol(Σ) =

⋂
s∈Σ sol(s)

5. The assignment α is also a report and sol(α) = {α}. Singleton solutions
are representable in the world of reports. The situation is however di�erent
for sets of solutions, e.g., {α, α′, α′′}, and that is the crux of the matter (see
maximal expressivity section).

6. A minimal report - in the sense of inclusion and ignoring the empty
report, a lattice atom- is a singleton {s} or {e : b}, a minimal report with
atomic term would be a singleton {(a) : b} and sol({(a) : b}) = {α |α(a) = b},
i.e., a cylindrical set of solutions.

7. An empty report does not say much, sol(∅) = Asg(L,H), all assignments
remain possible.

8. The maximal reports - in the sense of inclusion - are the in�nite reports22

rep(L,α), one per α, rep(L,α) = val(α). Note that an in�nite report such as
rep(L,α) says the same thing as the �nite report α, sol(α) = sol(rep(L,α)) =
{α}

9. sol is an antitone semi-lattice morphism,
sol : (Rep(L,H), ∪, ∅)→ (℘(Asg(L,H)), ∩, Asg(L,H))
10. At some point, the �niteness restriction on reports becomes a liability.

It is true that Alice will never produce more than a �nite number of statements
and restricting oneself to �nite sets is philosophically appealing, but mathe-
matically the restriction is awkward. The set of sterms rep(L,α) is not a re-
port, though it should, and if we want to work with families of reports, e.g.,
sol(

⋃
i Σi) =

⋂
i sol(Σi), the set of sterms

⋃
i Σi is not necessarily a report ei-

ther per our present de�nition. To extend the function sol from Rep(L,H) to
℘(ST (L,H)), from �nite reports to arbitrary set of sterms, is not mathemati-
cally di�cult: we just need to agree that for any set of sterms S but the empty
one, sol(S) =

⋂
s∈S sol(s), and for the empty set, sol(∅) = Asg(L,H). We loose

the computational angle but gain in mathematical convenience.
11. Let's work with arbitrary set of sterms.

21We may view an assignment as a report hence sol(Σ) as a subset of Rep(L,H): reduced
to its bare bones, sol is a function from a set S to power set ℘(S′), S′ ⊆ S.

22An in�nite report is not per our present �niteness restrictions a report - see below however.

18



12. If sol(S) = ∅, S is said to be unsatis�able, otherwise satis�able. One
expects most sets, �nite or in�nite, to be unsatis�able.

13. The set of all solutions sets has a simple structure and that is a key point:
all solution sets are generated by generalized intersection from the solution sets
of single statements sol(s), s ∈ ST (L,H), except possibly the full solution set
Asg(L,H), since, by de�nition, sol(S) =

⋂
s∈S sol(s).

14. If Asg(L,H) is �nite, the situation is even simpler: the set of all solution
sets is also �nite.

3.4 The Galois connection between solutions and constraints

The binary relation `assignment α̌ satis�es statement š', or Sat, generates a
Galois connection23 [5, 14, 10]. In term of Formal Concept Analysis [17], we
have an incidence on Asg × ST . The associated polarities are:

sol : ST → ℘(Asg), sol(s) = {α|Sat(α, s)}
ctr : Asg → ℘(ST ), ctr(α) = {s|Sat(α, s)}
and are suitably extended to sets of statements and sets of assignments:
sol(S) = {α| ∀s ∈ S, Sat(α, s)} =

⋂
s∈S sol(s)

ctr(A) = {s| ∀α ∈ A, Sat(α, s)} =
⋂
α∈A ctr(α)

sol collects the solutions to a set of constraints and dually ctr collects the
constraints that are satis�ed by a set of assignments. Notation: solIm =
{sol(S)|S ⊆ ST} and ctrIm = {ctr(A)|A ⊆ Asg}. The collection of state-
ments ctr(A) is the theory of the set A.

1. The power sets ℘(Asg) and ℘(ST ) are Boolean algebras, posets under
inclusion.

2. sol and ctr are antitone
3. If one de�nes Sat(A,S) as ∀(α, s) ∈ A × S, Sat(α, s), we recover24 the

usual characterization of an antitone Galois connection.
A ⊆ sol(S) ⇔ Sat(A,S) ⇔ A× S ⊆ Sat ⇔ S ⊆ ctr(A)
4. S ⊆ (ctr ◦ sol)(S) and A ⊆ (sol ◦ ctr)(A)
5. (ctr ◦ sol)(ctr(A)) = ctr(A) and (sol ◦ ctr)(sol(S)) = sol(S)
6. The operators 〈〉H : ℘(ST ) → ctrIm with 〈S〉H = (ctr ◦ sol)(S) and

〈〉H : ℘(Asg)→ solIm with 〈A〉H = (sol ◦ ctr)(A) are expansive, monotone and
idempotent. They are closure operators.

7. The sets of images solIm and ctrIm are closure systems on Asg and ST
respectively - from Asg = sol(∅) and ST = ctr(∅) and closure under intersection,⋂

i∈I sol(Si) = sol(
⋃
i∈I Si)⋂

i∈I ctr(Ai) = ctr(
⋃
i∈I Ai)

8. Comparison of closure operators:
〈S〉H = (ctr ◦ sol)(S) =

⋂
{X ∈ ctrIm |S ⊆ X}

〈A〉H = (sol ◦ ctr)(A) =
⋂
{X ∈ solIm |A ⊆ X}

9. The sets of images {sol(S)|S ⊆ ST} and {ctr(A)|A ⊆ Asg} are complete
lattices under

23There are many Galois connections in Logic.
24Proof: An exercise in quanti�er permutation, ∀α ∈ A, ∀s ∈ S, ...⇔ ∀(α, s) ∈ A× S, ...⇔
∀s ∈ S, ∀α ∈ A, ...

19



∧
i∈I sol(Si) =

⋂
i∈I sol(Si)∨

i∈I sol(Si) =
⋂
{X ∈ solIm| ∀i ∈ I, sol(Si) ⊆ X} = (sol◦ctr)(

⋃
i∈I sol(Si))∧

i∈I ctr(Ai) =
⋂
i∈I ctr(Ai)∨

i∈I ctr(Ai) =
⋂
{X ∈ ctrIm| ∀i ∈ I, ctr(Ai) ⊆ X} = (ctr◦sol)(

⋃
i∈I ctr(Ai))

10. The sets of images {sol(S)|S ⊆ ST} and {ctr(A)|A ⊆ Asg} are isomor-
phic as complete lattices25 with ctr : solIm→ ctrIm and sol : ctrIm→ solIm
as morphism. From,⋂

i∈I sol(Si) = sol(
⋃
i∈I Si) = sol ◦ ctr ◦ sol(

⋃
i∈I Si) = sol(

∨
i∈I Si)

hence
sol(

∨
i∈I ctr(Ai)) =

∧
i∈I sol(ctr(Ai))

and∨
i∈I sol(ctr(Ai)) = sol◦ctr(

⋃
i∈I sol(ctr(Ai)) ) = sol(

⋂
i∈I(ctr◦sol◦ctr(Ai)) )

hence
sol(

∧
i∈I ctr(Ai)) =

∨
i∈I sol(ctr(Ai))

11. A formal concept is a couple (sol(S), ctr(sol(S)) ), alternatively (sol(ctr(A)), ctr(A) ).
The set of all formal concepts, Concept(L,H), is canonically endowed with a
complete lattice structure.

12. The lattice of formal concepts, the lattice of solution sets, and the lattice
of ctr-images are isomorphic as complete lattices.

Galois connection wise, a report is a set of solutions. a set of solution is
a theory, and a theory is a set of solutions. The Galois connection gives us a
systematic way of transferring constructs and problems back and forth between
Asg(L,H) and ST (L,H), providing a bridge between semantics and syntax, as
it is put. In this work, the world of solution sets is particularly simple, all sets
are �nite and easily presentable. The world of reports, on the other hand, is
already less giving: the number of reports is in�nite and sets of statements of
interest are typically non �nite. Not surprisingly, we �nd ourselves working �rst
and foremost with solution sets and transferring structures as needed from the
world of assignments to the world of reports.

Comment: Though we are working with the particular binary relation Sat,
the constructions and results of this section are highly generic. They apply ad
verbatim to any binary relation26 R, R ⊆ M × C. They do not belong per
se to a theory of satis�ability, and one should therefore not expect a theory of
satis�ability to be limited to Galois connection results.

3.5 (L,H)-theories

A (L,H)-theory is simply a ctr image, i.e., an element of {ctr(A)|A ⊆ Asg}.
Note that ctr(α) is rep(L,α) hence val(α).

ctr(A) =
⋂
α∈A ctr(α) =

⋂
α∈A rep(L,α) =

⋂
α∈A val(α)

Theories are generated from the maximal reports by generalized intersection,
except for the trivial theory ctr(∅), in exactly the same way that solutions

25Technically, modulo a lattice dual.
26For example, if we change the binary relation `assignment α̌ satis�es statement š' to `the

value of sentence ě at assignment α̌ is a designated value' , or val(ě, α̌) ∈ D, D a set of value,
one per sort, we get another interesting Galois connection.

20



sets are generated by generalized intersection from the solution sets of single
statements sol(s), s ∈ ST (L,H).

1. ctr(∅) = ST , the top theory is unsatis�able and it is the only one to be
so.

2. If A 6= ∅ then sol(ctr(A)) = 〈A〉H = sol(ctr(〈A〉H)) and 〈A〉H 6= ∅
3. The smallest theory is ctr(Asg); it collects all the tautologies of the

language (L,H) and is included in all other theories.
4. Theories are in general in�nite sets by contrast to solution sets.
5. Membership is nonetheless easily determined. To assess if (e, b) is element

of the set rep(L,α), compute val(e, α) and compare with b:
(e, b) ∈ rep(L,α) ⇔ val(e, α) = b
6. Notation: rep(L,A) = ctr(A) =

⋂
α∈A rep(L,α)

7. sol(rep(L,A)) = 〈A〉H =
⋂
s∈rep(L,A) sol(s)

There are many sets of interest in ST (L,H) besides �nite sets and (L,H)-
theories. For example, a set of sterms may be functional, closed under vari-
ous algebraic operations, closed under various co-algebraic operations, or repre-
sentable as an axiomatic system.

3.5.1 Functional sets of sterms

The set of sterms S is said to be functional, S ∈ PF (L,H), if:
∀e, b, b′, (e : b) ∈ S, (e : b′) ∈ S ⇒ b = b′

PF (L,H) is essentially collecting all partial functions. A report is a func-
tional set of sterms, Rep(L,H) ⊆ PF (L,H) ⊆ ℘(ST (L,H)). The system of
sets PF (L,H) is ordered by inclusion and closed under generalized intersection.
It is a closure system. The functional set S is maximal if all terms e have a
value. A maximal theory is therefore also a maximal functional set, a func-
tion. All theories but the trivial one are functional; most functional sets are not
satis�able.

3.5.2 Sets of sterms closed under the computation rules

The set of sterms S is said to be closed under computational rule r, where r is:

e1 : b1, e2 : b2, . . . , c : (B1, B2, . . .→ Bm)

(c e1 e2 . . .) : Hc(b1, b2, ...)

if
∀e1, b1, e2, b2, . . . , (e1 : b1) ∈ S, (e2 : b2) ∈ S, . . .
⇒ ((c e1 e2 . . .) : Hc(b1, b2, ...)) ∈ S

A (L,H)-theory is closed under all the computational rules of the language
- opening the door to an algebraic approach to the study of theories.

21



3.5.3 Sets of sterms closed under decomposition (e.g. Hintikka sets)

The set of sterms S is said to be closed under c-decomposition, where c is a
connective of the language, if
∀e1, e2, . . . ,∀b, ((c e1 e2 . . .) : b) ∈ S
⇒ ∃b1, b2, . . . , (e1 : b1) ∈ S ∧ (e2 : b2) ∈ S ∧ . . . ∧Hc(b1, b2, ...) = b

The trivial theory is closed under c-decomposition, the maximal theories
are closed but one cannot expect all (L,H)-theories to be closed under c-
decomposition.

Example: Consider val((c e), α1) = b and val((c e), α2) = b or ((c e) : b) ∈
rep(L, {α1, α2}). It is perfectly possible that val(e, α1) = b1, val(e, α1) = b2,
Hc(b1) = b, Hc(b2) = b, and b1 6= b2.

4 Logic at the statement level

Satis�ability considerations allow us to recover a very familiar looking logical
formalism.

4.1 Entailment or (L,H)-implication

We say report Σ1 (L,H)-implies report Σ2 or Σ1 |=(L,H) Σ2 if sol(Σ1) ⊆ sol(Σ2),
i.e., an assignment that satis�es Σ1 will satisfy Σ2, a solution of Σ1 is a solution
of Σ2. By reporting Σ2, you are not reporting anything new. (L,H)-implication
is entailment or logical implication from a semantics point of view as usually
understood:

�Generalized Tarski Thesis (GTT): An argument is validx if and
only if in every casex in which the premises are true, so is the
conclusion.�[4, p 29]

We carry along a reference to the language L and the interpretationH to belabor
the point we are trying to make: logical results are relative, they depend on
the composite terms we have and the conventions we use to value them. For
example,
{e1 : b1, e2 : b2, . . . , } |=(L,H) {(c e1 e2 . . .) : Hc(b1, b2, ...)}
The binary relation |=(L,H) is set inclusion

27 on ℘(Asg(L,H)) transferred to
Rep(L,H). It is a preorder28 and has the properties29 one expects [27, 15, 23],
including:

1. Re�exivity: Σ |= Σ
2. Transitivity :Σ1 |= Σ2, Σ2 |= Σ3 ⇒ Σ1 |= Σ3

3. Inclusion to entailment is antitone: Σ1 ⊆ Σ2 ⇒ Σ2 |= Σ1

4. Premiss dilution: Σ1 ⊆ Σ3, Σ1 |= Σ2 ⇒ Σ3 |= Σ2

27More to the point, set inclusion on the lattice of solution sets, solIm.
28Note that we now have two preorders on Rep(L,H).
29The binary relation |=(L,H) may be highly dependent on L and H, but the properties of
|=(L,H), the ones we are typically interested by, are, on the other hand, quite generic.

22



5. Conclusion pruning30: Σ4 ⊆ Σ2, Σ1 |= Σ2 ⇒ Σ1 |= Σ4

6. Cut31: Σ1 |= Σ2, Σ3 |= Σ4 ⇒ ((Σ3 − Σ2) ∪ Σ1) |= Σ4

7. In terms of closure, Σ1 |=H Σ2 ⇔ Σ2 ⊆ 〈Σ1〉H
8. (L,H)-implication can be extended without di�culties to arbitrary set of

sterms:
S1 |=H S2 ⇔ sol(S1) ⊆ sol(S2)⇔ S2 ⊆ 〈S1〉H

4.2 (L,H)-equivalence

Report Σ1 is (L,H)-equivalent to report Σ2 if Σ1 |= Σ2 and Σ2 |= Σ1 or
sol(Σ1) = sol(Σ2), notation Σ1 ≡(L,H) Σ2. The binary relation ≡(L,H) is set
equality on ℘(Asg(L,H)) transferred to Rep(L,H). Two reports are (L,H)-
equivalent if they are satis�ed by the same assignments. This equivalence is
central to logic, more so than the equivalence of terms we would argue, though
the two equivalences are naturally related,

e1 ' e2 ⇔ ∀b, (e1 : b) ≡ (e2 : b)
The relation ≡(L,H) determines the reports that tell the same story, allowing

the speaker to choose a formulation that suits her tastes or goals and providing
ways for the listener to reduce the report to a normal form.

The local logician ends up with a �nite partition - would Asg(L,H) be �nite
- and a naturally occurring equational system to sort out. With a �nite number
of assignments, let's say N , there are only so many di�erent stories that can be
told, at most 2N in general, exactly 2N if the range of sol is ℘(Asg(L,H)) itself.

4.3 (L,H)-consequence

Sterm s is said to be a (L,H)-consequence of report Σ, (s = |Σ), or, in topo-
logical term, s is near the set Σ, if Σ |= {s} - an assignment that satis�es Σ will
satisfy s. By adding consequence s to the report, nothing more is said. Math-
ematically, logical consequence can be seen as an extension or a coarsening of
membership:

s ∈ Σ ⇒ s = |Σ
(s = |Σ) ⇔ Σ |=H {s} ⇔ s ∈ 〈Σ〉H ⇔ s ∈H Σ
and is nothing more than a specialization of (L,H)-implication to a singleton

conclusion. Properties of logical nearness include:
1. Explosion: any sterm follow from an unsatis�able report,
Σ /∈ SatRep⇒ (Σ |= s)
2. A tautological sterm is a consequence of any report:
{s} ∈ TautRep⇒ ∀Σ, (Σ |= s)
3. Logical implication from logical nearness:
(∀s ∈ Σ2, Σ1 |= s) ⇔ Σ1 |= Σ2

4. If we collect all the consequences of a report Σ, what do we get? The set
of sterms {s |Σ |=H s } which is, not surprisingly, a theory:

30Proofs 2-5: Inclusion is transitive on ℘(Asg(L,H)).
31Proof: From α ∈ sol((Σ3−Σ2)∪Σ1) infer α ∈ sol(Σ1), α ∈ sol(Σ2), α ∈ sol(Σ3−Σ2), α ∈

sol(Σ3), α ∈ sol(Σ4)

23



{s |Σ |=H s } = 〈Σ〉H =
⋂
α∈sol(Σ) rep(L,α)

5 Pre-image analysis

So far, we have relied on the Galois decomposition sol(Σ) =
⋂
s∈Σ sol(s) to

simplify matters; the set Σ is reduced to statements, and this is how far the
Galois connection goes. We would like to go further, to be able to decompose
sol(s), whenever s = (e : b) with e composite.

Question: When e = (c e1 e2..), how does sol(e : b) depends on sol(e1 : b1),
sol(e2 : b2), ...?

A pre-image analysis will give us the answer. Recall that,
α ∈ sol(e : b) ⇔ val(e, α) = b
By pre-image analysis we mean the decomposition of f(a) = b, where f :

A→ B, as:
f(a) = b ⇔ a = a1 or a = a2 or....
where a1, a2, . . . are the preimages32 of b by f . Nothing to it really, right to

left it is function application, computation, and left to right it is decomposition,
analysis, truth conditions, solving the equation f(a) = b for a. If the function
f has structured arguments, e.g., f : A× A′ → B, the decomposition proceeds
in two steps, e.g.,

f(a, a′) = b
⇔ (a, a′) = (a1,a2) or (a, a′) = (a3,a4) or....
⇔ (a = a1 and a

′ = a2) or (a = a3 and a
′ = a4) or . . .

Preimage analysis is the driving force behind tableau expansion, a kind of
case analysis that is commonly seen in logic [9]. For example, using a classical
binary interpretation for the connective ∧,

val(e1 ∧ e2) = 1 ⇔ (val(e1)⊗ val(e2)) = 1 ⇔ val(e1) = 1 and val(e2) = 1
and

val(e1 ∧ e2) = 0
⇔ (val(e1)⊗ val(e2)) = 0
⇔ (val(e1) = 0 and val(e2) = 0) or (val(e1) = 0 and val(e2) = 1) or (val(e1) =

1 and val(e2) = 0)
In a tableau expansion one would see rather a branching based on the so

called β-rule:
e1 ∧ e2 : 0  e1 : 0 or e2 : 0
The preimage analysis formulation is equivalent, just more systematic, more

rigid33. It applies to any operation Hc not just to the Boolean operations,
⊗, ⊕, . . ..

So, how does the structure of term e in�uence sol(e : b)?
α ∈ sol((c e1 e2..) : b)

⇔ val((c e1 e2..), α) = b
⇔ Hc(val(e1, α), val(e2, α), ...) = b

32The number of preimages is assumed �nite. We do not want to work with witnesses here.
33The handling of signed formulas in tableau expansions [8], or, in general, many valued

tableau expansions [21], is quite close in spirit and techniques with what we are doing here.

24



⇔ (val(e1), val(e2), ...) = (b1, b2, . . .) or (val(e1), val(e2), ...) = (b′1, b
′
2, . . .) or . . .

⇔ (val(e1) = b1 and val(e2) = b2 and ...) or (val(e1) = b′1 and val(e2) =
b′2 and ...) or . . .
⇔ (α ∈ sol(e1 : b1) and α ∈ sol(e2 : b2) and ...) or (α ∈ sol(e1 : b′1) and α ∈

sol(e2 : b′2) and ...) or . . .
The decomposition is driven by the preimages of the operations Hc and

can be iterated until we reach the constraints on atomic terms. We start with
a single constraint, val(e, α) = b, and end up with a complex of constraints,
a disjunction of conjunction of disjunctions of ... of conjunctions of atomic
constraints, a tree with `and' and `or' at the nodes and atomic constraints as
val((a), α) = b at the leaves.

The connectives `and' and `or' may be seen as part of the presentation
language - here, English for mathematicians, loosely speaking -, or they may be
seen as the connectives of a dedicated constraint language. Naturally, we would
prefer to work with a formal constraint language, but, it turns out, we do not
really have to introduce a speci�c language: maximal expressivity considerations
will provide a suitable surrogate.

Alternatively, using for example a (possibly formal) calculus of classes:
α ∈ sol((c e1 e2..) : b)

⇔ α ∈ (sol(e1, b1) ∩ sol(e2, b2) ∩ ...) ∪ (sol(e1, b
′
1) ∩ sol(e2, b

′
2) ∩ ...) ∪ . . .

or, more primitively, the algebraic system B,
[sol((c e1 e2..) : b)]α = ([sol(e1, b1)]α ⊗ [sol(e2, b2)]α ⊗ ...) ⊕ ([sol(e1, b

′
1)]α ⊗

[sol(e2, b
′
2)]α ⊗ ...)⊕ . . .

where [A]α = 1 if α is an element of A and [A]α = 0 otherwise.
The {and, or}-tree of constraints, alternatively the {∩,∪}-tree of solution

sets or the {⊗,⊕}-tree of Boolean bits, can be left as is or further processed,
yielding for example a sum of products. Either way, we have the decomposition
we are after: sol(e : b) is reexpressible in term of sol((a) : b′), with a ∈ Atoms(e).
Rearranging the tree, migrating the `or' nodes to the root, removing redundan-
cies, and pruning or closing branches with con�icting atomic constraints, is
Boolean algebra at work. The moves can all be justi�ed equationally via their
Boolean algebra counterparts.

The solution set sol(e : b) is reexpressible as an union of intersections,
the intersections being over sol((a) : b′), with a ∈ Atoms(e). The solution
set sol((a) : b′) is a cylindrical set of assignments, {α |α(a) = b′}, the inter-
sections , e.g. sol((a1) : b1) ∩ sol((a2) : b2), are also cylindrical sets, and
{α} = (∩)a∈Atoms(L)sol((a) : α(a)).

What about the converse? Under which conditions is an union of intersec-
tions of sol((a) : b′), with a ∈ Atoms(e), a solution set? A cylindrical set of
assignments, e.g., {α |α(a1) = b1 andα(a1) = b1}, is always a solution set, for
sol({(a1) : b1, (a2) : b2}) = {α |α(a1) = b1 andα(a1) = b1}. If the interpreta-
tion is functionally complete, all sets of assignments are solution sets since all
functions from assignments to values are representable 34. At the other end of

34Proof, for example, by reductio ab absurdum: Assume set A is not a solution set, then a
function f that has A as a preimage set cannot be represented by a polynomial term.

25



the spectrum, the solution sets under the initial interpretation A(L) are limited
to the cylindrical sets.

6 Maximal Expressivity

6.1 A Boolean language for reports

Where are we now? Our language community agrees on how to report infor-
mation from the �eld: it agrees on a term language as the means of expression
and on a way of computing the values of composite terms. The stories that can
be told may di�er greatly in their syntax and intent but as far as information
content is concerned, there are as many stories as there are solution sets, as
many stories as there are formal concepts. Depending on L and H, the number
of formal concepts the language di�erentiates may not be very large.

Let's de�ne the expressivity of the interpreted language (L,H) as its lattice of
formal concepts (modulo isomorphism), or a numerical characterization thereof
when convenient, e.g., its cardinal. This choice is driven by the central role that
solution sets play and is, one would expect, more potent than a measure based
on the number of term connectives or the number of truth values.

To increase expressivity, the local academy may decide to alter the language,
adding connectives, changing some interpretations35, or it may agree to enrich
the lattice of solution sets in some other way, for example by changing what
counts as a report. So far, a report has been a �nite functional set of statements
- a �nite partial function. An interesting way of improving expressivity is via
the introduction of connectives at the report level, iterating what we have done
for the sentences. What's sauce for the goose is sauce for the gander. Note the
shift in perspective though: with connectives at the report level, we now have to
view statements and reports �rst and foremost as linguistic entities; connectives
combines linguistic entities. Statements and reports as couples and �nite set of
couples, i.e., as mathematical objects, our old take on the matter, are reduced
to the role of mathematical representations.

To set up a term language for reports, we need to specify the atoms (our
former notion of reports for example), the connectives, and eventually the valu-
ations of interest. Let's work out in some details a Boolean language of reports.

Term language on reports:
Φ := (Σ) | (& Φ Φ) | (∨Φ Φ) | (¬Φ)
Intended interpretation:
[(Σ)] = sol(Σ)
[(& Φ1 Φ2)] = [Φ1] ∩ [Φ2]
[(∨Φ1 Φ2)] = [Φ1] ∪ [Φ2]
[(¬Φ1 Φ2)] = Asg − [Φ]
The valuation [ ] is the algebraic extension of sol to composite reports.

35A functionally complete interpretation would be the limit of that approach and would
provide maximal expressivity.

26



Why the interest in a Boolean language of reports? The set of all assignments
happens to be naturally endowed with a Boolean algebra structure, a Boolean
language of reports merely transfers that structure. We are using a structure36

present at the solution set level, the operations ∩, ∪, and (Asg−Ǎ), to interpret
the newly introduced report connectives. Any operation on ℘(Asg(L,H)) could
be used to the same e�ect. The Boolean structure is nonetheless of particular
interest and plays a major role in our analysis of expressivity and in logic in
general. With composite reports, the world of reports get richer, the set of
solution sets grows in proportion, and expressivity increases.

In practice, the speaker may prefer to work with statements rather than
reports. A language for Boolean statements would follow the same route:

s′ := (s) | (& s′ s′) | (∨ s′ s′) | (¬ s′)
[(s)] = sol(s)
[(& s′1 s

′
2)] = [s′1] ∩ [s′2]

. . .
The di�erences between a language of composite reports and a language of

composite statements is mostly cosmetic, since a report37 is (L,H)-equivalent
to the conjunction of its elements:

Σ ≡(L,H) s1& s2&... where s1, s2, . . . are the elements of Σ.
From sol(Σ) =

⋂
s∈Σ sol(s) = sol(s1) ∩ sol(s2) ∩ . . .

Composite reports and composite statements have the same expressive power38

and are linguistically quite close; translating a composite report into a composite
statement is fast and uneventful.

Our set of solution sets is now a Boolean algebra, the Boolean algebra gen-
erated from {sol(s) | s ∈ ST (L,H)} plus Asg, to account for sol(∅), by inter-
section, union, and complementation. The original complete lattice of solution
sets was generated from {sol(s) | s ∈ ST (L,H)} by generalized intersection and
the addition of Asg.

Which two Boolean reports tell the same story? Relative to the interpreta-
tion given above, we recover, not surprisingly, the usual calculus of classes, this
time at the composite report level, mirroring once again the polynomial identi-
ties of the Boolean algebra B, for example (Φ1∧Φ2) ≡ (Φ2∧Φ1) or (Φ∧Φ) ≡ Φ.
With Boolean reports, we get a new layer of logical results.

Of note,
1. The Boolean statement e : b1 ∨ e : b2 . . . , where {b1, b2, . . .} = Be, is a

tautology.
2. The negation connective is eliminable:
¬(e : b) ≡H e : b1 ∨ e : b2 . . . where {b1, b2, . . .} = Be − {b}
3. The conjunction (e : b1) & (e : b2) is not satis�able if b1 6= b2.

Comment

36A measure would be another interesting structure to transfer, the listener may want to
valuate the likelihood of a story.

37the set of statement kind
38as determined by their respective lattice of solution sets

27



(1) Instead of working with a new layer of valuation, one may prefer a
speci�cation such as: �Assignment α satis�es report term (∨Φ1 Φ2) i� α satis�es
report term Φ1 or α satis�es Φ2�.

This is �ne naturally; it is merely an extension of the binary relation Sat to
composite reports and it it the format that is most often used in logic textbooks
to explicit a semantics. The algebraic approach has the advantage of not relying
on the meaning one may attach to a presentation language connective as �or�.
What I, as an English speaker mean by �or� may not be what you, the reader,
understand by �or�. The operation ⊕, on the other hand, takes only four entries
to be fully de�ned, and the computation of [(∨Φ1 Φ2)]α in term of [Φ1]α and
[Φ2]α does not leave much room for personal interpretation,

[(∨Φ1 Φ2)]α = [Φ1]α ⊕ [Φ2]α
(2) The setup sentence-statement can be iterated ad in�nitum39. Connec-

tives can be added at will, and so can interpretations.

6.2 Conjunction and disjunction

Although we start with an arbitrary stock of connectives, Boolean connectives
are ubiquitous in this work. They appear:

- at the term level, e.g., e1 ∧ e2

- at the statement level, e.g., s′1&s′2
- at the constraint level where `and' and `or' are used to express composite

constraints on assignments and may be seen as part of the presentation language
or as part of a dedicated language for constraints.

Relative to the interpretation of the statement connectives given, the last
two usages are closely related:

(val(e1, α) = b1 and val(e2, α) = b2 and ...) ⇔ α ∈ sol({e1 : b1, e2 :
b2, . . .}) ⇔ α ∈ sol((e1 : b1)&(e2 : b2)& . . .)

One usage can be de�ned in term of the other, e.g., for Boolean statements,
α ∈ sol(s′1) and α ∈ sol(s′2) and . . . ⇔ α ∈ sol(s′1 & s′2 & . . .)
α ∈ sol(s′1) or α ∈ sol(s′2) or . . . ⇔ α ∈ sol(s′1 ∨ s′2 ∨ . . .)
An {and, or}-tree of constraints corresponds naturally to a {&,∨}-composite

statement. The correspondence is particularly transparent with a {∩,∪}-tree of
solution sets format.

7 Wrapping Things up

7.1 An accounting of possibilities

We are reaching the end of the road here; there is nothing else to decompose.
A statement s′ is (L,H)-equivalent to a sum of products, to a disjunction of
conjunctions of statements whose terms are atomic:

s′ ≡H (a1 : b1 & a2 : b2 & . . .) ∨ (a2 : b3 & a5 : b4 & . . .) ∨ . . .
39Typing with a hierarchy of universes, e.g., (e:type:sort:kind:...), illustrates the idea.

28



This sum of product is a set of alternatives, an accounting of possibilities.
We start with one log book for the speaker, and end up with a set of log books
for the listener: the set of possibilities as speci�ed by the report.

Note that there is no negation connective in these normal forms. The range
of values BT accounts for all the possibilities. Logic, from a valuation point of
view, is at heart two connectives, `and' and `or'. We need the 0-ary connective
⊥ to express the absence of possibilities, and the 0-ary connective > can be
added for convenience.

In term of solution sets, all solution sets sol(s′), s′ composite statement,
can be reexpressed as a �nite union of cylindrical sets of assignments where a
cylindrical set of assignment is the solution set of an alternative, e.g., sol(a2 :
b3 & a5 : b4 & . . .).

Pretty much what we are used to with classical propositional logic, but for
negation.

7.2 A language of alternatives

With hindsight, the linguistic community could have provided Alice with a
streamlined version of the language:

n = ⊥ |> | (l) | (∨ l n)
where the atoms l are log books. Technically, nothing more than lists40 of

log books. Assignment α satis�es report n if α includes one log book of n.
Computationally:

sat(α,⊥) = 0
sat(α, (l)) = [l ⊆ α]
sat(α, (∨ l n)) = sat(α, (l))⊕ sat(α, n)
Lists of assignments would play the same role, without the redundancies. In

a list of log books, one log book may be included in another. A list of assignments
is however a verbose format, not the format of choice when conciseness is the
goal41.

7.3 Sequents

At some point, the members of our linguistic community may want to work with
a deductive system and would prefer one that allows elimination and introduc-
tion of term connectives. A tableau calculus mostly eliminates connectives42.
Sequent calculus are typically more symmetric. In terms of sequent, working
with statements, the introduction rule

e1 : b1, e2 : b2, . . . ` (c e1 e2 . . .) : Hc(b1, b2, ...)

40`list' as used in computer science.
41Circuit minimization is a big issue in computer science. Our speakers are oblivious to

such concerns. They have unlimited resources. A list of assignments format would be a �ne
option.

42More precisely, term connectives are eliminated and the constraint connectives `and' and
`or' are introduced.

29



expresses the computational rule

e1 : b1, e2 : b2, . . . , c : (B1, B2, . . .→ Bm)

(c e1 e2 . . .) : Hc(b1, b2, ...)

And preimage analysis is implemented via an an elimination rule :

(c e1 e2 . . .) : b ` (e1 : b1 & e2 = b2 & ...) ∨ (e1 : b′1 & e2 = b′2 & ...) ∨ . . .

where b = Hc(b1, b2, ...) = Hc(b
′
1, b
′
2, ...) = . . . .

Term connectives may be thus introduced and eliminated at will within a
sequent derivation. Note that we are giving matching sequent rules for the term
connectives only, not for the statement connectives.

7.4 Distinguished value reexpression

We can collapse the sentence level and the statement level by using a distin-
guished value, let's say 1, and a few special purpose term connectives43. In a
multi-sorted setting, it is notationally simpler to assume that the same value 1
is present in all BT .

Consider the term connectives [1/b], one per value b. The connective is unary
and its interpretation H[1/b] is partially speci�ed by the restriction:

(e) : b ≡H ([1/b]e) : 1
Spelling out the equivalence,
valα([1/b]e) = 1 ⇔ H[1/b](valα(e)) = 1⇔ valα(e) = b
The operation H[1/b] is similar to a Post unary operator (iterates thereof)

[33], H[1/b](b) = 1. In fact, our distinguished value reexpression setting is pretty
much a Post algebra setting. In a bivalent logic, the connective [1/0] is the
negation connective.

Let's assume that statement connectives & and ∨ are representable by sen-
tence connectives, by &̃ and ∨̃ let's say, in the following sense:

(e1 : 1 & e2 : 1) ≡H (e1 &̃ e2) : 1
(e1 : 1 ∨ e2 : 1) ≡H (e1 ∨̃ e2) : 1
The constraints put on the interpretations H&̃ and H∨̃ are quite mild,
H&̃(val(e1, α), val(e2, α)) = 1 ⇔ val(e1, α) = 1 and val(e2, α) = 1
H∨̃(val(e1, α), val(e2, α)) = 1 ⇔ val(e1, α) = 1 or val(e2, α) = 1
If the value 1 is seen as the top value of the range, then H&̃ = min and

H∨̃ = max work just �ne.
This is enough structure to represent any composite statement s′ as a sen-

tence. We just have to propagate the above transformations from the leaves to
the root. If the composite statement is already available as a (non empty) list
of alternatives, the transformation is transparent:

s′ ≡H (a1 : b1 & a2 : b2 & . . .) ∨ (a2 : b3 & a5 : b4 & . . .) ∨ . . .
⇔ s′ ≡H (([1/b1]a1 &̃ [1/b2]a2 &̃ . . .)∨̃([1/b3]a3 &̃ [1/b4]a5 &̃ . . .)∨̃ . . .) : 1

43The special purpose term connectives are strong candidates for inclusion into a natural
set of logical term connectives

30



Instead of attaching values to sentences and reporting the results, the speaker
may equivalently communicate a single sentence. When the convention of the
linguistic community is �Uttering is Stating�, e.g., the convention in use in many
natural languages, the speaker can still express herself, with no loss in expres-
sivity.

7.5 Falling back on our two feet

If the interpretation is binary, polynomial equivalence becomes logical equiva-
lence,

e1 ' e2

⇔ (e1 : 0) ≡ (e2 : 0) and (e1 : 1) ≡ (e2 : 1)
⇔ (e1 : 1) ≡ (e2 : 1)
hence the little need for two equivalence relations in classical logic, exten-

sionally speaking. Intentionally, the two relations are naturally quite di�erent,
one talks of information processing, the other of satis�ability.

7.6 Logical notions by hook or by crook

Our version of logical entailment is based on satis�ability considerations,
Σ1 |=(L,H) Σ2 ⇔ sol(Σ1) ⊆ sol(Σ2)
Let's consider an empty set of premisses. A statement s is a (L,H)-validity,

or ∅ |=H s, if it is a (L,H)-consequence of the empty set - a tautology per the
terminology we adopted earlier.

In many-valued logic, logical notions are more commonly introduced via the
artifact of designated values. For example:

- sentence e is 1-valid, or ∅ |=1 e, if theH-value of e at any atomic assignment
α is 1, i.e., if the range of the function on assignments val(e) is limited to the
singleton {1}.

- sentence e is D-valid, or ∅ |=D e, if the H-value of e at any atomic assign-
ment α is an element of the designated set of values D, i.e., Range(val(e)) ⊆
D ∩Be

These sentence based versions of logical notions are, nicely enough, de�nable
in term of the satis�ability based logical notions,
|=1 e ⇔ |=(L,H) (e : 1) ⇔ sol(e : 1) = Asg(L,H)
|=D e ⇔ |=(L,H) (∨)d∈D (e : d) ⇔ (∪)d∈D sol(e : d) = Asg(L,H)
Conversely, once statements can be represented by sentences ( see Distin-

guished value reexpression above), satis�ability based logical notions are de�n-
able in term of logical notions relative to a single designated value (one per
sort). For example,
|=(L,H) (e : b) ⇔ |=(L,H) ([1/b]e : 1) ⇔ |=1 [1/b]e
That all these versions of validity, entailment, ..., are so closely related is at

�rst sight surprising, but it shouldn't really, for they are all based on the same
notion: set of assignments. Entailment relations relative to a set of designated
values involve set of preimages, set of assignments, and the entailment relation
issued from satis�ability is inclusion of solution sets in disguise.

31



8 Clari�cations, limitations, generalizations

This is where our analysis of Alice's language ends. We started with a generous
language of terms and an unlimited supply of truth values, and found neverthe-
less the means of reporting limited. Alice expresses herself by attaching values to
chosen sentences. Values of composite sentences are computed following agreed
upon linguistic conventions. Values of atomic sentences are read from sensor
displays, or, would our cognitive agents be more capable, may be the product
of the deliberation of a committee of expert observers, the verdict of a jury, or
the hunch of an oracle - subjective valuation if any. It does not really matter.
The present analysis is all about information processing, how information is
transformed, transferred, hidden, and recovered, not how it is acquired in the
�rst place. The situation is pretty similar to image analysis. Once we have the
pixels, it is �ltering, convolution, segmentation, feature extraction, reconstruc-
tion of the original image, i.e., computation and inverse problems, one way or
another. Where the pixels come from or what they correspond to is altogether
a di�erent matter. The original image is our log book. Transformed images,
features of the original image, are the computed pieces of data. Reconstructing
an image from features, from partial information, is the satis�ability problem.

Two sentences e1 and e2 are said to be equivalent if their associated functions,
val(e1) and val(e2), are equal, val(e1) = val(e2). Two sentences are equivalent
if, upon computation, they always end up with the same values, if they are
equal as polynomials. Which two sentences are equivalent is highly dependent
on the interpretation of the connectives, on the local conventions. Equivalence
of sentences is a theory of algebraic identities; it reduces logic to algebra, to a
study of polynomial terms.

It is no small task to justify a particular choice of interpretation as the
correct one. One is free naturally to choose any algebraic operation whatsoever;
mathematically speaking, it makes no di�erence. But if the objective is the
formal representation of connectives already present in the community in some
informal way, then, choices have to be justi�ed, some representations may be
better than others. And, given a particular algebraic system, some informal
connectives may just not have a good representative. The English connective
`if then' is case in point; controversies abound regarding its correct Boolean
interpretation. One is free to choose a Boolean interpretation for the formal
connective '⊃′, but to read it as the English connective `if then' and claim
that the chosen Boolean interpretation is or is related to the (English) meaning
of the connective is quite another matter. Natural languages connectives and
formal language connectives live in two di�erent worlds; much may be lost in
translation - or gained, e.g., conciseness and clarity. Extracting the principles
of formal logic, including its connectives, from a study of natural languages is a
common and interesting approach. It may not be the most pro�table or natural
approach to the subject however. Natural languages and formal languages yield
to di�erent forces; they follow di�erent dynamics.

A report is a �nite set of valued sentences, i.e., a �nite set of statements.
A report if satis�able if it can be generated by a competent speaker from at

32



least one assignment, one log book. Two reports are equivalent if they are
satis�ed by the same assignments. A report is a set of solutions and a set of
solutions is a theory, Galois connection wise. Report equivalence and report
entailment mirror quite faithfully our intuitions about logical equivalence and
logical entailment, more so certainly than polynomial equivalence. Bob, the
limited listener, hears a set of assignments. One expects a suitably capable
speaker to adapt the amount of information transferred to the needs and status
of the listener, in general, to tailor her speech to ful�ll some objectives.

From a satis�ability point of view, a statement is a constraint on assign-
ment, an equation in need of a solution. Report solution sets are intersection
of statement solution sets. Preimage analysis tells us that, once normalized,
statement solution sets are union of cylindrical sets of assignments. The con-
verse does not necessarily hold however: the singleton {α} is a solution set, but
the union of a few singletons may not be a solution set. Decomposition of a
constraint into constraint complexes introduced two key connectives, `and' and
`or'. These connectives are constraint language connectives, they allow us to
express constraints involving composite sentences in term of (composite) con-
straints involving simpler sentences. We are not free to choose the interpretation
attached to these connectives, their meaning is determined by their usage within
a tableau expansion, they are in that sense absolute. On the other hand, the
setting sentence-statement can be iterated, ad in�nitum. The values attached
to [sol(e, b)]α do not have to be limited to 0 and 1; characteristic functions do
not have to range into {0, 1}. Statements are also linguistic entities, they are the
sentences of some (other) formal language. As such, statements can be valued,
statement connectives can be interpreted and quite arbitrarily so. An interpre-
tation for `and' and `or' that respects the preimage analysis equivalences, i.e.,
the usage of `and' and `or' within a tableau expansion, is a perfectly suitable
alternate reading of the connectives. In that sense, the meaning of `and' and
`or' is not really absolute.

Attempts to increase the expressivity of the language led us to composite
reports and composite statements, to statements connectives that can be read
as the `and' and `or' connectives of constraint decomposition, and to normal
forms. A composite report is logically equivalent to a disjunction of conjunctions
of statements whose terms are atomic; this disjunction of conjunctions is a
set of alternatives, an accounting of possibilities. Conversely, in a maximally
expressive language, all such sets of alternatives are reportable.

Explorer Alice has by now quite a few ways of reporting her observations:

1. She can share her raw data.

2. She may report a summary of her observations; the log book is �ltered,
aggregated, averaged in various ways.

3. The report may be a �nite set of statements or Alice may �nd it more
appropriate to use the language of Boolean statements.

4. She may value transparency and opt for a list of alternatives format.

33



5. Alice's audience may be averse to statements and the convention that �Ut-
tering is Stating� may be the law of the land. Subject to some conditions
on the means of expression44, this is not a limitation; Alice can translate
any report into an equivalent sentence.

Option 1 transfers all the information. Option 2 allows some hedging. Options
3, 4 and 5 provide maximum expressivity. Option 2 favors direct access to highly
integrated pieces of information, whereas option 4 privileges rawness.

Upon decomposition, the sentence level connectives fade away and two con-
straint language connectives appear. Option 4 provides a streamlined version
of the decomposition; there are no sentence connectives in a list of alternatives.
No matter how many truth values and sentence connectives we start with, we
can always shift to a positive bivalent logic and two connectives, `and' and `or',
or equivalent. There is no loss in the stories that can be told as long as the only
way we have to judge stories is via satis�ability.

The main technical requirement for our results is, besides compositionality,
the �niteness of the decomposition of the operations Hc: the preimage analysis
may involve only a �nite number of preimages. Similar results can be reached
in quite di�erent settings: any language that supports a tableau calculus is a
�ne candidate. Let's consider for example a multimodal language L with Kripke
style interpretations for the modal connectives. The value of composite term e at
world w is computed from the values of the subterms of e at world w and from the
values of the subterms of e at worlds R-neighboring w, where R is some binary
relation on worlds. The computation is maybe more elaborate than a simple call
to some operationHc but it is nonetheless a perfectly �ne computation assuming
the number of R-neighbors to world w �nite - the total number of worlds does
not have to be �nite. Solutions are �nite entities and the decomposition of a
statement is a preimage analysis that can be iterated all the way down to atomic
sentences. If the number of R-neighboring worlds is not �nite, the situation is
quite di�erent. A typical example would be a quanti�ed language with a non-
�nite domain of quanti�cation. The computation of the value of a universally
quanti�ed sentence would require, if we follow a propagation of value protocol,
the prior computation of the values of all its instances. That is a feat beyond our
best technologies, our computers are limited to the processing of a �nite number
of values. Should we ever acquire a countable (or larger) number of values, we
still would have the bother of aggregating them into a single value. Two tasks
that are quite problematic by our contemporary computability standards. If
we do not compute the value of a universal sentence from the values of its
instances, how do we determine the value of a universal? In general, we don't.
At best, we relate values of various sentences or we search for examples and
counterexamples. On the decomposition side, the situation is less dire: through
the judicious use of witnesses and expansion priorities, preimage analysis can
grow into a tractable list of alternatives, although typically the list is not �nite
and the tableau expansion is never-ending. But that is �ne for it is the tableaus

44For example, the availability of suitable sentence connectives or functional completeness
in some sense.

34



that do end that are often of interest.

The speaker and the listener

Interestingly enough, the sharp distinction between sentences and statements,
which at the start of this work we thought was fundamental, somewhat evap-
orates - see Distinguished value reexpression. The distinction may not be as
cogent as initially envisioned but it is nonetheless a good distinction to keep.
For one thing, sentences are processed by the speaker, statements by the listener
and the di�erence between speaker and listener remains as relevant as ever. The
speaker computes, combines, summarizes. The listener analyzes, decomposes,
solves. It is algebra versus coalgebra, synthesis versus analysis, many to one
versus one to many. One builds, the other breaks. The speaker propagates
values, the listener propagates constraints. The speaker is a forward chainer,
she leads the story; the listener manages goals and subgoals.

Information processing

Our analysis of the transfer of information between the speaker and the listener
gives us two logics. Satis�ability issues are traditional logical concerns, infor-
mation processing is somewhat of a novel topic. The two subjects are naturally
closely related, satis�ability determination is the inverse problem of processing.
Should we then consider logic as the study of information transfer, as a sub�eld
of data analysis? The thesis seems mildly absurd in the face of 2500 hundred
years of logic tradition that was never really concerned with information trans-
fer, but it is also clear that reporting is nothing but information transfer. The
question is naturally more pertinent in a setting that considers a plurality of
values. The construction of a report is not the only way a log book can be put
to good use. Data mining, computation of correlations, statistical reduction,
discovery of relations, are all worthy and, nowadays, lucrative endeavors. It
may be data processing beyond the con�nes of a particular algebraic model,
computation beyond the operations provided by H(L). But it is still computa-
tion.

Moreover, if thinking is information processing, how much of psychology is
logic, how much of logic is psychology? A question put to rest in the nineteenth
century that, interestingly, refuses to die.

It becomes a matter of what we mean by the word `logic' rather than what
logic is, and what is meant by the word has certainly evolved over the years.

What happened to truth?

Still there, but mostly irrelevant to our considerations. Even at the log book
level there is not much truth. The sensors may be faulty or badly calibrated,
Alice may have landed on the wrong planet, or a few sensor displays may have
been misread. It does not really matter; the values could as well have been
assigned at random. Our story begins once atomic sentences have a value; how

35



the values are obtained is of no import. Which is not to say we are not interested
by truth or shouldn't. It is just that our approach does not presume a notion of
truth nor does it require one. Logic, as presented in this paper, is not grounded
by reality, by features of natural languages or by any notions of truth. What
we have rather is a formal language perspective: a (re)construction of logical
notions from an analysis of the transfer of information between speakers and
listeners. Logic is not per se a theory of truth nor a theory of truth transmission.

Contrast: Logic from empirical truth.

Let's assume that we have a way of determining truth, typically involving an
actual world understood as the ultimate arbiter of what a fact is and a notion of
correspondence between facts and sentences, a relation that is somehow acces-
sible to the observer. The world has facts, some correspond to atomic sentences
and some to composite sentences. Sentences are true or false by virtue of cor-
responding facts. In such a setting the value of a composite sentence is not
computed, it is observed; at best one may recognize a functional dependence
between sentence and subsentence values. Logical notions have their origins in
the world, logical truth is seen as a special kind of empirical truth, and logical
equivalences are natural laws - hence falsi�able and subject to revision. Logical
results are what they are because the actual world is as it is.

However appealing and popular such an approach may be, it is not without
its problems. For one, the world of facts may not be that giving. What are the
facts corresponding to disjunctions, negations, universals, necessities, and, if
logical truth is empirical truth, to tautologies and contradictions? We prefer an
approach that computes values. There are no composite facts in Alice's world,
no negative facts; at most, facts corresponding to atomic sentences. Alice does
not have a privileged access to Truth: she merely records and computes.

Access to Reality

Our run-of-the-mill cognitive agent is going to have a �nite number of sensors,
certainly not a countable number of them, and will record a �nite number of
observations in its lifetime. This gives the agent a �nite amount of information
to work with. How much knowledge of the actual world can a cognitive agent
have if its only access to that world is a �nite amount of sensory data? How
much knowledge of the actual world can a homo sapiens have?

So, is logic conventional or empirical?

Strictly speaking, the logics discussed in this work are neither. They describe
local linguistic practices, they do not prescribe them. The rules of formation
and the rules of value propagation are normative; the results of the local logician
are not. Alice does not need a logician to be a competent speaker. As long as
she complies with the formative and valuative rules of the language, her reports

36



will be well-formed and well-valued. She does not need to be aware of, or to
knowingly follow, any logical laws.

On the other hand, Uncle George is a scientist. He studies the properties
of sentences, statements, reports, solution sets, theories, and the properties of
the properties, the properties of the properties of the properties, and so on. If
his medium of work is mathematics, his results are mathematical theorems; the
local language becomes a mathematical object via some representation and its
properties are derived within the con�nes of the mathematical standards of the
times. Relative to such a representation, logical results have the certainty of a
mathematical theorem. If the local logician is more of a �eld scientist, he will
spend his days observing the local world of sentences and statements (tokens
thereof), the local practices, collecting evidences, examples, counterexamples;
his results are empirical.

The logic of sentences and the logic of statements presented here are not
conventions; they are rather the product of conventions. The study of the
properties of the local language can be, clearly enough, theoretical or empirical.

References

[1] H. Andréka, I. Németi, and I Sain. Algebraic logic. In D. M. Gabbay and
F. Guenthner, editors, Handbook of Philosophical Logic, volume 2, pages
133�247. Kluwer Academic Publishers, 2nd edition, 2001.

[2] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge
University Press, 1998.

[3] Hendrik Pieter Barendregt, Wil Dekkers, and Richard Statman. Lambda

Calculus with Types. Perspectives in logic. Cambridge University Press,
2013.

[4] J.C. Beall and G. Restall. Logical Pluralism. Clarendon Press, 2006.

[5] Jean-Yves Béziau. Logica Universalis: Towards a General Theory of Logic.
Birkhäuser, 2005.

[6] P. Blackburn, J.F.A.K. van Benthem, and F. Wolter. Handbook of Modal

Logic. Studies in Logic and Practical Reasoning. Elsevier Science, 2006.

[7] Stanley N. Burris and H.P. Sankappanavar. A Course in Universal Algebra.
Springer-Verlag, 1981.

[8] Marcello d'Agostino. Tableau methods for classical propositional logic. In
Marcello D'Agostino, Dov M Gabbay, Reiner Hähnle, and Joachim Possega,
editors, Handbook of tableau methods, pages 45�123. Springer Netherlands,
1999.

[9] Marcello D'Agostino, Dov M Gabbay, Reiner Hähnle, and Joachim Possega,
editors. Handbook of tableau methods. Kluwer, 1999.

37



[10] B. A. Davey and H. A. Priestley. Introduction to lattices and order. Cam-
bridge University Press, New York, second edition, 2002.

[11] Michael A. E. Dummett. Truth and Other Enigmas. Harvard University
Press, Cambridge, MA, 1978.

[12] Michael A. E. Dummett. The Logical Basis of Metaphysics. Harvard Uni-
versity Press, 1991.

[13] H.B. Enderton. A Mathematical Introduction to Logic. Harcourt/Academic
Press, 2001.

[14] M. Erné, J. Koslowski, A. Melton, and G. E. Strecker. A primer on galois
connections. Annals of the New York Academy of Sciences, 704(1):103�125,
1993.

[15] John Etchemendy. The Concept of Logical Consequence. Harvard Univer-
sity Press, Cambridge, MA, 1990.

[16] D. Gabbay and F. Guenther, editors. Handbook of Philosophical Logic.
Kluwer, Dordrecht, 2001-2005.

[17] Bernhard Ganter, Gerd Stumme, and Rudolf Wille. Formal concept analy-
sis: foundations and applications, volume 3626 of Lecture Notes in Arti�cial
Intelligence. Springer, 2005.

[18] Joseph A. Goguen. A categorical manifesto. Mathematical Structures in

Computer Science, 1:49�67, 3 1991.

[19] Robert Goldblatt. Algebraic polymodal logic: A survey. Logic Journal of

the IGPL, 8(4):393�450, 2000.

[20] Siegfried Gottwald. Many-valued logic. In Edward N. Zalta, editor, The
Stanford Encyclopedia of Philosophy. Spring 2010 edition, 2010.

[21] Reiner Hähnle. Tableaux for many-valued logics. In Marcello D'Agostino,
Dov M Gabbay, Reiner Hähnle, and Joachim Possega, editors, Handbook
of Tableau Methods, pages 529�580. Springer, 1999.

[22] Lloyd Humberstone. Sentence connectives in formal logic. In Edward N.
Zalta, editor, The Stanford Encyclopedia of Philosophy. Summer 2013 edi-
tion, 2013.

[23] Ramon Jansana. Propositional consequence relations and algebraic logic. In
Edward N. Zalta, editor, The Stanford Encyclopedia of Philosophy. Spring
2011 edition, 2011.

[24] G. Malinowski. Many-Valued Logics. Clarendon Press, 1993.

[25] Per Martin-Löf. On the meanings of the logical constants and the justi�ca-
tions of the logical laws. Nordic Journal of Philosophical Logic, 1(1):11�60,
1996.

38



[26] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

[27] P. A. Planchette. Logical consequence. In Lou Goble, editor, The Blackwell
Guide to Philosophical Logic. Blackwell, 2001.

[28] Hilary Putnam. Is logic empirical? Boston Studies in the Philosophy of

Science, 5, 1968.

[29] W.V. Quine. Carnap and logical truth. Synthese, 12(4):350�374, 1960.

[30] W.V. Quine. Mathematical Logic. Harvard University Press, 1983.

[31] Yaroslav Shramko and Heinrich Wansing. Truth values. In Edward N.
Zalta, editor, The Stanford Encyclopedia of Philosophy. Spring 2014 edition,
2014.

[32] A. Tarski. What are logical notions? History and Philosophy of Logic,
7:143�154, 1986.

[33] Alasdair Urquhart. Basic many-valued logic. In D.M. Gabbay and F. Guen-
thner, editors, Handbook of Philosophical Logic, volume 2 of Handbook of

Philosophical Logic, pages 249�295. Springer Netherlands, 2001.

39


