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Abstract 

The consultation of internet databases and the related use of computer software to retrieve, 

visualise and model data have become key components of many areas of scientific research. 

This paper focuses on the relation of these developments to understanding the biology of 

organisms, and examines the conditions under which the evidential value of data posted 

online is assessed and interpreted by the researchers who access them, in ways that underpin 

and guide the use of those data to foster discovery. I consider the types of knowledge 

required to interpret data as evidence for claims about organisms, and in particular the 

relevance of knowledge acquired through physical interaction with actual organisms to 

assessing the evidential value of data found online. I conclude that familiarity with research 

in vivo is crucial to assessing the quality and significance of data visualised in silico; and that 

studying how biological data are disseminated, visualised, assessed and interpreted in the 
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digital age provides a strong rationale for viewing scientific understanding as a social and 

distributed, rather than individual and localised, achievement.  

 

Keywords: data, computer, organisms, experimentation, understanding, automation, 

databases. 

 

Introduction 

Scientific knowledge production is currently affected by the dissemination of data on an 

unprecedented scale. Technologies for the automated production and sharing of vast amounts 

of data have changed the way in which data are handled and interpreted in several scientific 

domains, most notably molecular biology and biomedicine. In these fields, the activity of data 

gathering has become increasingly technology-driven, with machines such as next generation 

genome sequencers and mass spectrometers generating billions of data points within hours, 

and with little need for human supervision. Given the relative ease and low costs with which 

datasets can be produced (that is, once a laboratory has been able to afford these expensive 

machines in the first place), researchers often end up generating extremely large datasets in 

case any pattern of relevance to their investigations might emerge. At the same time, there is 

increasing pressure to make the data thus collected widely and freely available, and integrate 

them with other types of data, ranging from field observations to data produced through 

experimental research.1 Data are seen as a resource of potential interest to all scientists 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 For an overview of the challenges and opportunities afforded by the so-called ‘data deluge’, see the special 
issue of Science on ‘Dealing with Data’, volume 331, issue 6018, February 2011; and the special issue of 
Studies in the History and the Philosophy of the Biological and Biomedical Sciences on ‘Data-Driven Research 
in the Biological and Biomedical Sciences’, volume 43, issue 1, 2012. 
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working on the same phenomena, the result of large investments which need to be put to 

good use. As a consequence, scientific institutions and funding bodies have stepped up efforts 

to improve what Geoff Bowker has called ‘memory practices’ – techniques and technologies 

geared towards storing and retrieving facts (Bowker 2006).  

Digital technologies such as online databases are widely believed to constitute the best 

available solution to the logistics of storing, disseminating, retrieving and analyzing data 

(Hey et al 2009). It is not hard to see why this should be the case: data sharing through the 

internet can happen in a matter of seconds, and software and hardware to make data travel 

online are becoming increasingly easier and cheaper to set up. Many research efforts are thus 

being devoted to the dissemination, modelling and visualisation of data online, in the hope 

that free and well-managed access to large datasets will enable scientists to use them to 

understand phenomena, thus generating new paths towards discovery. Some scientists go as 

far as claiming that the introduction of computational tools for data handling, such as 

databases and other digital infrastructures, heralds a new methodological paradigm in 

science, often referred to as data-intensive, or even data-driven, research (Kell and Oliver 

2004; Hey et al, 2009). 

What interests me here is one crucial assumption underlying these kinds of claims: the idea 

that computing and digital technologies for data handling are making it possible to automate 

not only the production and dissemination of data, but also their interpretation (see for 

instance Allen 2001). This paper aims to explore the philosophical significance and the 

practical feasibility of this idea by addressing the epistemic relation between research carried 

out in vivo and practices of data dissemination, visualisation and analysis through online 

databases. I consider the conditions under which researchers assess and interpret the scientific 

significance of data posted online: in other words, how scientists come to understand what 



4	
  

	
  

those data tell them about the natural world. Such an understanding arguably underpins and 

guides the subsequent use of data to foster new discoveries; it is hard to imagine how data 

could be used as evidence for a claim, or as a reason to set up a research project, in the 

absence of intuitions about what those data tell scientists about specific entities or processes. 

Nevertheless, little philosophical reflection has addressed the problem of what gives meaning 

to data available online – what makes it possible for scientists to interpret them and assess 

their evidential value, so as to be able to use them to improve their understanding of 

phenomena. As a starting point to tackle this question, I shall discuss the very notion of 

scientific understanding and its relation to processes of data interpretation. I will then 

consider the idea of automated reasoning which underlies many of the claims made about the 

epistemic power of research carried out through digital databases and computational 

modelling. As I will show, this idea becomes problematic when one considers the amount of 

curation involved in making data available online and keeping databases useable in the light 

of new research advancements; and it is further undermined by the importance of embodied 

knowledge in assessing the evidential value of data disseminated in this way. Consideration 

of these two sets of problems with automated reasoning will lead me to formulate the 

following central claim: the ability to assess and interpret the evidential value of data, and 

thus to use them to generate new scientific understanding, is tied to familiarity with the target 

system(s) that data are taken to document, as well as with the conditions under which that 

system is studied in vivo.  

In closing, I will consider two consequences of this view. First, I shall contest the idea that 

scientific discovery through the analysis of large datasets can ever be fully automated. My 

discussion of how data posted online help to understand the biology of organisms shows the 

complementarity between research conducted in silico and in vivo: no matter how accurately 
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and efficiently databases help scientists to search and visualise datasets, the interpretation of 

data as evidence for a claim about a target system is intimately tied to knowledge about that 

system that can hardly be formalised within a computer system. Secondly, I shall point out 

that this does not mean that every researcher involved in the dissemination, curation and 

analysis of data in silico needs to be familiar with the organisms data are used to understand. 

The process of interpreting data is carried out collectively by a large group of scientists, often 

including bioinformaticians, experimental biologists, field biologists, computer scientists and 

even engineers, who may not even know each other, but who all contribute to building the 

infrastructures, experimental set-ups and research materials used to generate, disseminate, 

visualise and interpret data. Understanding organisms is a social achievement, obtained 

through the distribution and localised integration of specific cognitive abilities and types of 

knowledge. Recognising the distributed nature of scientific understanding as fostered by 

digital tools for data handling is an important step towards identifying what is new and 

exciting about data-intensive research in the digital age, and constitutes a more promising 

avenue for analysis than the emphasis on automation favoured by some commentators. 

 

1. Interpreting data to understand phenomena 

I shall start my analysis with a discussion of the relation between scientific understanding and 

processes of data interpretation, with an emphasis on how the very notion of data need to be 

conceptualised in order to make sense of data-intensive science in the digital age.  

I define data as mobile pieces of information, which are collected, stored and disseminated in 

order to be used as evidence for claims about specific processes or entities. Thus any material 

product of research activities can be considered as a data point as long as (1) it is taken to 
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constitute potential evidence for a range of phenomena, and (2) it is possible to circulate it 

across a community of scientists.  These artefacts can be passed around in the form of 

pictures, graphs or numbers, and they can be manipulated to various degrees in order to 

create visualisations of large datasets. The opportunity to be ‘passed on’ that these objects 

afford, by virtue of their materiality, makes them ideally suited for travel from context to 

context. Scientists can share, exchange, donate datasets; data can be posted online and 

retrieved unchanged by whoever wishes to access them.  This fact does not challenge the 

well-known philosophical contention that there are no such things as ‘raw data’ or ‘theory-

free’ representations of data. There is no doubt that the visualisation and subsequent use of 

data is affected by choices made during their production - decisions about how to set up 

experiments or observations, which instruments to use and how to calibrate them, which data 

formats to adopt and which tools to use for collection, storage and dissemination (Bogen and 

Woodward 1988, Gooding 1990, Radder 2003 and 2009). However, the new ways in which 

data can be disseminated and retrieved do affect their epistemic value as evidence for claims 

about phenomena. As I have argued elsewhere, the evidential value of data is quintessentially 

dependent not only on how they have been produced, but also on the context in which they 

are adopted and used (Leonelli 2009a). Data can be re-used as evidence for several claims. 

Indeed, it is the possibility to provide different interpretations of their significance, all of 

which might turn out to be valid, that grounds and motivates the very idea of data-intensive 

science and the extensive computational resources allocated to it.  

Another way to put this is to say that the dissemination and use of data across different 

scientific contexts is viewed as helpful to foster current scientific understandings of a variety 

of phenomena. Data are not viewed as part of one unique process of discovery, from which 

they are inextricable. Rather, data are viewed as potential components of more than one line 
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of inquiry: the fact that they can be interpreted in different ways means that they contribute to 

the understanding of more than just one target system. The notion of understanding employed 

here is one that focuses on the processes through which an understanding of phenomena is 

achieved, rather than on a strict a priori definition of what counts as understanding. The only 

assumptions I make are that understanding phenomena is not the same as learning a set of 

claims about phenomena which account for some of their features (claims typically described 

by philosophers as propositional knowledge, or explanation). There is a difference between 

understanding a phenomenon and possessing an explanation of it, since it is perfectly 

possibly to have access to one such explanation without being able to understand it (see also 

de Regt 2009). My account focuses on the idea of understanding as a cognitive ability, which 

scientists acquire through three main types of experience: intellectual, involving reasoning 

through and developing concepts, theories and explanations for natural phenomena; material, 

involving learning and practicing ways of intervening in the world and particularly with the 

phenomena of interest; and social, involving learning and practicing how to contribute to one 

or more scientific communities with their own specific norms, goals, ways of thinking and 

ways of doing. These different types of experiences occasion scientists to pick up and 

exercise specific epistemic skills (the abilities to act in ways that are recognised by the 

relevant epistemic community as well suited to understanding a given phenomenon, e.g. 

when manipulating a mathematical model or calibrating a measuring instrument) and 

research commitments (bits of knowledge that are used as platforms for carrying out research, 

along the lines of the core of a research programme as envisaged by Lakatos). So, for 

instance, the ability to understand specific features of an organism will depend on the 

acquisition of background knowledge sanctioned as trustworthy by the biological community 
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as well as expertise in handling the instruments, models, specimens and theories used to 

investigate and explain those features.2 

The case of data is particularly interesting to consider when thinking about the conditions 

under which understanding is acquired, not least because few philosophers have yet done so 

(models and theory being the focus of the vast majority of current philosophical discussions 

of scientific understanding). I will argue that the ways in which scientists, and particularly 

biologists, assess the evidential value of data - and thus use them to develop and corroborate 

claims about phenomena - is intimately tied to skills and commitments formed through 

interactions with actual organisms, which in turn are extremely difficult to formalise and 

standardise so as to incorporate them into computational processes. Interpreting data to 

understand phenomena thus involves the iteration of computational analysis and decision-

making processes grounded in the skills and commitments acquired by researchers through 

physical interaction with the systems they are attempting to understand. In what follows, I 

will thus focus on the material experiences that make it possible to interpret scientific data, 

and show how paying attention to these experiences as sources of knowledge, and to how 

they inform processes of data dissemination, clarifies how scientific understanding is 

obtained and socialised in contemporary data-intensive science. To that aim, I will now turn 

to what scientists actually mean by data-intensive science, and how advances in the 

computational analysis and online dissemination of data are fuelling visions of increasingly 

machine-driven discovery. 

 

2. Dreams of automated reasoning 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 For a detailed defence of this view on scientific understanding, see Leonelli (2009b). 
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‘Data-driven discovery’ is the idea that computer software can be assigned a prominent role 

in facilitating the extraction of scientifically meaningful patterns from data, either through 

statistical analysis or through search mechanisms in databases (such as, in the simplest cases, 

the use of keywords and related algorithms to retrieve data of interest to database users). The 

extent to which scientists are pushing the use of computers to interpret data is particularly 

evident within the life sciences, where the complexity of the entities under investigation and 

the related emphasis towards integrating diverse kinds of data (as in, for example, systems 

biology) are challenging biologists to find ever more sophisticated tools for data analysis 

(Stein 2008). Examples of databases used to this aim are ‘community databases’ in model 

organism research, which bring together information about several aspects of a specific 

model organism (such as The Arabidopsis Information Resource, which collects sequence, 

metabolic, physiological, morphological and expression data on the model plant Arabidopsis 

thaliana; Huala et al 2001); and ‘grids’ or ‘portals’ in biomedical research (such as the 

Cancer Biomedical Informatics Grid, which provides access to all sorts of data available on 

several types of cancer; Eschenbach and Buetow 2006).3  

The overarching vision that drives at least some of these attempts is the pursuit of full 

automation in scientific inquiry, or, in the words of a recent and controversial commentary, 

‘machine science’ (Evans and Rezhetsky 2010): the progressive elimination of human 

intervention (and thus, manual labour and subjective decision-making) from data analysis, 

resulting in the automatic generation of scientific hypotheses, findings and, ultimately, new 

discoveries. This vision of scientific research aims to make the involvement of humans in the 

selection, evaluation and interpretation of experimental data as limited as possible. The 

automation of reasoning processes has been the Holy Grail of computational science and AI 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3 For a detailed philosophical and historical analysis of how community databases have 
affected research on model organisms in biology, see Leonelli and Ankeny (2012).  
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since several decades, and the natural sciences constitute an ideal test case to probe the extent 

to which the limits and costs of human reasoning and intervention can be overcome through 

reliance on machines (King et al 2009). 

Prima facie, automated reasoning seems to be growing increasingly plausible, with several 

examples of inference methods being successfully implemented to extract patterns from data. 

So-called ‘random walks’ through datasets, for instance, are algorithms devised to spot gene 

expression patterns from randomly assembled gene expression data (e.g. Noirel 2009). 

Another example is the use of robots to generate and test hypotheses by sifting through 

existing data – an approach used with remarkable success in the case of sequence data, as in 

the case of yeast (King et al 2009). Yet another form of automated analysis is carried out 

through the implementation of retrieval mechanisms to search databases in the first place: 

bio-ontologies such as the Gene Ontology are developed to structure the information 

contained within databases and the ways in which data are classified, visualized and modeled, 

so that scientists accessing these tools can gain access to useful data as quickly and efficiently 

as possible. These methods provide important insights for the investigation of the biology of 

organisms, for instance by enabling the integrated analysis of datasets that could not 

otherwise have been put in relation to each other (O’Malley and Soyer 2012; Leonelli 

forthcoming); and by directing researchers to specific research topics, questions and 

directions for future exploration (Wimsatt 2007; Krohs and Callebaut 2007).   

Whether these methods can be regarded as promising substitutes for non-computational 

forms of inquiry, however, is disputable; and this paper aims to show how automated forms 

of reasoning, and particularly inference of meaningful patterns from data, cannot be expected 

to replace localised, physical interactions between human researchers and the target system(s) 

under investigation. In order to show the limits of automated reasoning, I shall focus on the 
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role of the material experiences of scientists – which I shall refer to as ‘embodied knowledge’ 

- in assessing the evidential value of data found online, and the difficulties hitherto 

encountered in formalising this type of knowledge.  

 

3. The reality of data curation 

When considering how tools such as digital databases and computational models are 

developed and maintained, it becomes apparent that making and keeping data tractable for 

automated analysis requires considerable manual and conceptual labour. Data disseminated 

through digital databases, and thus made amenable to computational visualisation and 

modelling, need to be ‘curated’ by professionals whose expertise lies in making those data 

accessible to computational tools (Blake and Bult 2005, Buetow 2005). Professional curators 

play a crucial role in making it possible for researchers to retrieve and analyse data found on 

digital databases. Curation involves several complex tasks, including the selection of data to 

be assimilated into a database; their formatting into a standard that can be digitally tractable 

by the available software; their classification into retrievable categories, which makes it 

possible to ‘mine’ the data according to whichever biological question is asked; and their 

visualisation through modelling tools that display data in ways that make it possible to spot 

meaningful patterns (Howe et al 2008; Leonelli 2010). Further effort is put into ranking (or, 

in curators’ own terms, ‘cleaning’) data as preparation for automated analysis; and in 

selecting information that is to accompany data on their digital journeys. Data cleaning alone 

is estimated to take 80% of the total time invested in preparing data for mining (Boerner 

2010). Moreover, it is also important to stress the tight relation between data mining 

techniques and data visualisation tools. The latter are widely acknowledged as crucial ways to 

‘transform data into information’, where information is interpreted as meaningful insight 
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about specific phenomena (Fry 2008: 2). Data mining always involves devising ways to 

visualise and display results. Mining data for patterns can thus be understood as an exercise 

in visualising data, i.e. in finding ways to display the results of a search on a database 

performed with the help of data retrieval mechanisms. Visualisations are seen as ‘revealing’ 

patterns that would not be spotted unless data are adequately displayed. Visualisations also 

offer a potential solution to the problems posed by the quantities of data to be analysed, since 

a typical genomic experiment involves one million data points (Hey et al 2009). The extent to 

which data mining, visualisation and interpretation are intertwined points to the degree of 

responsibility that curators bear in setting up data for re-use, since it is clear that whoever 

chooses what counts as an adequate visualisation has a strong impact on how data will be 

interpreted. Curatorial processes form an integral part of the process of scientific inquiry 

through which data are analysed and interpreted. Indeed, experimental scientists are 

becoming increasingly aware of the significance of mining and visualising tools in affecting 

how data are eventually interpreted (Mariscal et al 2010). It has also been noted that the 

format given to data when they are processed for dissemination tends to drive the types of 

analysis that are then carried out - and thus the type of results obtained (Fry 2008).  

The above glimpses into the work carried out by data curators, and its potential impact on 

how those data will be interpreted in the long term, suggest that their efforts are difficult to 

fully automate. When selecting data formats, visualisation tools, modelling techniques and 

classification systems for data, curators are making choices that partly determine the 

significance that those data can have when ‘automatically’ mined. These choices are 

informed by the curators’ own knowledge of scientific research and by their assessment of 
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the potential usefulness of specific datasets towards new insights.4 Perhaps most importantly 

for my purposes here, data curation does not stop once curators have cleaned data, formatted 

them and developed mechanisms to retrieve them and visualise them. Curators need to 

maintain the databases that they have put online, and make sure that the choices made when 

first classifying and visualising them remain valid in the face of ever-shifting scientific 

developments. This process of updating requires difficult conceptual and practical decisions 

about how new discoveries are affecting structures, classifications and models previously set 

up to disseminate and visualise data. 5 The highly qualitative nature of these decisions, and 

their essentially unpredictable nature (by definition, they are responses to unforeseeable 

developments), make curatorial processes hard to formalise and automate as desired by 

supporters of ‘machine science’. 

 

4. Assessing the quality and reliability of data found online 

The importance of curatorial decisions becomes even more relevant when we consider the 

knowledge that users of databases need to have in order to interpret the data that they find 

there. I shall thus turn to the ways in which scientists assess whether the data that they 

retrieve online are reliable; and how they decide to accept data as evidence for claims that 

those data were not originally produced to test. I will also consider the tools that curators 

provide to data users, in order to help them to assess the evidential value of data found online. 

When finding potentially interesting data online, one of the first and most important questions 

that researchers need to ask concerns the reliability of those data. Can the data be trusted? 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
4 For a more detailed discussion of the expertise of curators, see for instance Leonelli 2010 
and 2012.  
5 For a study of how a specific database, the Gene Ontology, has evolved over time to take 
account of shifting biological knowledge, see Leonelli et al (2011).  
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Are they of good quality? Answering these questions usually involves evaluating the 

adequacy of the experimental conditions under which data have been produced (Bogen and 

Woodward 1988). How is this done when the researchers who use the data have not been 

personally involved in conducting those experiments? One solution to this problem consists 

of ‘confidence rankings’ set up by database curators. This constitutes an attempt to replace 

biologists’ individual evaluation of the quality and reliability of datasets with standard 

rankings of data quality, indicating the degree of trust with which scientists should approach 

each dataset on a database. In particular, confidence rankings classify evidence as more or 

less reliable depending on the methods through which they were produced. For instance, data 

produced through knock-out experiments (which are seen as providing results that do not 

crucially depend on environmental conditions) tend to be ranked as more reliable than data 

produced through micro-array experiments (which are often critiqued as being highly 

susceptible to changes in environmental conditions; Rogers and Cambrosio 2007). A good 

example of confidence ranking are the ‘evidence codes’ used within The Arabidopsis 

Information Resource, according to which data ‘inferred by direct assay’ (IDA) are ranked 

higher than data ‘inferred by electronic annotation’ or computational prediction (IEA), 

because IEA has not been experimentally verified (Swarbreck 2008). 

Reliance on confidence rankings involves delegating an important aspect of the evaluation of 

the evidential significance of data to curators. When constructing these rankings, curators are 

in charge of assessing the reliability of evidence and data-generating procedures in the first 

place. This is potentially problematic, as curators may bring their own biases and limited 

expertise to these classifications (particularly as they are often not familiar with many of the 

materials, including organisms, from which data are generated), thus generating a hierarchy 
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of types of evidence that may not be dependable.6 Even more questionable from a 

philosophical viewpoint is the idea of determining the quality of evidence through a ranking 

of its sources, i.e. the instruments and techniques used to produce data. As we have learned 

from the philosophy of experiment (e.g. Gooding 1990 and Radder 1993, 2009), experimental 

instruments - and well as of course other methods for data generation, such as field 

observations and specimen collection - do not have intrinsic reliability. The same experiment 

can be more or less reliable depending on the goals of the investigation at hand, the training 

and abilities of the scientists involved, and the circumstances and settings in which it is 

conducted. The tacit knowledge and specific conditions under which an experiment is carried 

out often determine the quality and reliability of its results, and cannot be fully captured by a 

mere description of the instruments and protocols used. The classification of experiments and 

other forms of data production by type, as proposed within confidence rankings, is therefore a 

dubious indicator of the quality of the data obtained. 

Curators are aware of these difficulties and are trying to overcome them by giving database 

users the opportunity to consult ‘meta-data’, which consist of detailed information about the 

provenance of data – how they were obtained, where, on which materials, through which 

instruments, following which protocols and which research goals (see for instance Taylor et 

al 2008). The idea underlying the use of meta-data is that information about data provenance 

can be interpreted differently by each scientist interested in a specific dataset, depending on 

her own research experience. In other words, access to meta-data gives researchers the 

opportunity to assess the quality of data through the lenses of their own knowledge of their 

field and familiarity with (and opinion of) specific experimental set-ups. For instance, they 

might assess a dataset as reliable because they trust the instrument or laboratory or group that 

produced it, or because they see the materials on which data were obtained (a specific type of 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
6 On this point, see also Cartwright’s (2007) critique of evidence rankings in evidence-based medicine. 
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tissue from a standardised mutant specimen, for instance) as comparable with the materials 

used in their own research. 

By appealing to researchers’ personal experience of what counts as good data, the use of 

meta-data might come close to answering scientists’ need to judge for themselves whether the 

data they use are reliable or not. In this way, the consultation of meta-data makes it possible 

for a scientist accessing data in silico to form her own opinion on their quality and reliability. 

Difficulties, however, abound also in this case, mostly due to the lack of standard 

terminology to describe data-collecting conditions across research contexts. How 

experimental practices are described, for instance, might be unintelligible to researchers 

coming from a research context other than the one in which data were originally produced 

(e.g. when shifting from biological to clinical research on human tissues). The ways in which 

instruments are calibrated and maintained might also differ; or the time-scale over which the 

measurement is carried out might vary (an important parameter when extracting data from 

living, and developing, organisms). Perhaps unsurprisingly, capturing processes of data 

production through descriptive and standardised tools such as evidence codes and meta-data 

constitutes a remarkable challenge. 

Curators have several ways to cope with this challenge, often involving consultation with 

data users to determine which elements of an experimental system are most valuable in order 

to assess the quality of the result produced (Leonelli 2010). Still, curators are ultimately 

responsible for assembling information acquired through dialogue with researchers, and 

translating it into an adequate system for the classification of data and its provenance. And as 

noted before, this kind of work requires the constant updating and re-gearing of the 

classification systems in place to follow developments in scientific knowledge and practices, 

which is extremely difficult to automate. 
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5. Assessing the evidential value of data found online 

Meta-data play an important role also when trying to establish the evidential value of data 

found online towards a specific claim about phenomena. This is because determining the 

evidential value of data requires knowledge of the organism in question and of the 

instruments used to explore it. Paraphrasing Evelyn Fox Keller (1983), it requires ‘a feeling 

for’ the material conditions under which phenomena are investigated.  

Keller’s expression has been critiqued for its lack of precision, a terminological vagueness 

that plagues arguments pointing to the importance of embodied, non-propositional knowledge 

in scientific research. Gilbert Ryle famously called this kind of knowledge ‘knowing how’, 

thus distinguishing the knowledge needed to carry out scientific research from the 

propositional knowledge used to devise experiments and interpret results (‘knowing that’; 

Ryle 1949). Other philosophers, most famously Michael Polanyi, emphasised the ‘tacit’ 

nature of such knowledge, thus dismissing the very possibility that embodied knowledge 

could be articulated (Polanyi 1967). Meta-data become very interesting from the 

epistemological viewpoint when considered through the lenses of this philosophical 

literature, because they constitute an explicit attempt to articulate and formalise the embodied 

dimensions of scientific knowledge, and particularly the material experience of researchers 

involved in data production. By supplying as much information as possible about how data 

are produced, meta-data become a tool to express the ‘knowing how’ involved in the 

generation and use of data, thus demonstrating the extent to which such knowledge can be 

reported and assessed.   
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This does not mean challenging the idea that experimentation is a hugely localised, situated 

affair, each instance of which brings together a vast variety of skills, assumptions, materials, 

environmental conditions and goals. Both the curators who develop meta-data and the 

researchers who use them recognise that each method of and setting for data production has 

its own idiosyncrasies. Indeed, the selection of meta-data starts from the idea that each 

scientific inquiry is unique, due to extreme complexity of the parameters involved. At the 

same time, the selection of meta-data can be interpreted as involving three key assumptions 

about what researchers need to know about data in order to interpret their significance: 

1. The belief that some of the characteristics of each experimental setting matter more 

than others when it comes to assess the quality and significance of the results 

obtained. For instance, it is impossible for any biologist to determine the evidential 

value of a given dataset, in the absence of information about what materials that 

dataset was taken from (which model organism and, if known, which specific mutant 

strain, including information about its phenotype and genotype).7 

2. The belief that those characteristics can be singled out as pertaining to the same ‘type’ 

across several experimental settings. Any researcher wishing to interpret biological 

data found online will need information about what organism they were taken from, 

with which instrument(s), who carried out the experiment, where and when. So meta-

data will need to include categories such as ‘organism’, ‘instruments’, ‘authors’, 

‘location of original experiment’ and ‘time of original experiment’. 

3. The belief that at least some of these characteristics can be explicitly described 

through texts, graphs or other media. Textual descriptions can be useful in expressing 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
7 Such information, which may seem trivial to assemble and record in a database, is actually 
hard to generate and document, as I discuss in the case of biomedical databases in Leonelli 
(2012). 
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at least some aspects of embodied knowledge, as in the case of experimental protocols 

(‘the pipette needs to be carefully inserted into the probe, so as not to shake the liquid 

inside’). Yet, as stressed by several authors within the ‘tacit knowledge’ tradition, 

propositions fare very poorly in capturing researchers’ skills (how well a researcher 

can splice genes or photograph embryos) or the feelings and familiarity held by a 

researcher for an organism (how well a researcher knows a strain of mutant mice, thus 

allowing her to spot when their behaviour deviates from the norm). A partial remedy 

to this, increasingly used by database curators, is to capture aspects of embodied 

knowledge through graphs (for instance, when plant researchers illustrate how to 

intervene on a plant to keep it from dying) or video recording. The Journal of 

Visualised Experiments is one of the several online initiatives devoted to recording 

and distributing meta-data by filming whole experiments. 

The development of meta-data on the basis of these assumptions does not challenge the idea 

that embodied knowledge relevant to the interpretation of data can only be obtained through 

actual, physical interaction with the target system(s) under investigation – in our case, with 

actual organisms. However, what meta-data seem to foster is a new level of reflexivity and 

communication across experimenters coming from different traditions. The principle 

underlying the use of meta-data is that the characteristics of the embodied knowledge 

involved in data production can and should be articulated, so that scientists not directly 

involved in that process can still form an opinion about how it was carried out. Researchers 

who do not share theoretical commitments and goals, but who do share a minimal amount of 

skills in laboratory practices, can thus form an opinion about the evidential value and 

scientific significance of each other’s results.8 Viewed in this way, meta-data aim to capture 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
8 This process is also helped by the use of common standards, instruments and infrastructures, as shown by 
Rogers and Cambrosio (2007) in the case of micro-array data. The facts that a single company (Affimetrix) 
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and express the conditions under which researchers can interpret any dataset, no matter its 

origin, towards understanding phenomena of interest to them. 

This is an important finding for philosophical research on the role of embodied knowledge in 

science. At the very least, it makes it clear how important this type of knowledge is to gaining 

scientific understanding of phenomena. The idea of carrying out research entirely in silico, 

through automated analysis and without complementing it with interactions with actual 

organisms, becomes untenable given this insight. Interaction with organisms in vivo is not 

important only as a validation of the results found online; it is required in order to be able to 

interpret the evidential value of data collected on those organisms in the first place. 

At the same time, this reading of meta-data makes it possible to think of embodied 

knowledge as something which is not necessarily restricted to the boundaries of one specific 

research setting and to the experience of one individual. As I argued, a researcher’s existing 

familiarity with experimental techniques, materials and instruments (his/her existing 

commitments and skills) is crucial to being able to assess the evidential value of data. This 

does not prevent such knowledge, once it exists, from being discussed and articulated. 

Differences between the skills and commitments favoured within different experimental 

settings can be identified and evaluated; and, most importantly, people with different training 

and experimental background can, through tools such as metadata, form opinions on each 

other’s practices and use those opinions to interpret data found in silico. Of course, reliance 

on meta-data presupposes trust in the ways in which each researcher describes her own 

experimental practices. Data users have no means nor time to verify those descriptions – the 

information provided through meta-data needs to be accepted as correct, unless specific 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
acquired a monopoly on the technology used to store results on chips, and that minimal standards to describe a 
microarray experiment were introduced, have greatly enhanced the opportunities for scientists to exchange and 
interpret data coming from different labs. 
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reasons for doubt emerge (such as a public indictment for fraud, as in the recent case of 

Korean stem cell researcher Huang Woo-suk; Hong 2008). This however has arguably been 

the case throughout the history of science; a degree of trust in other researchers’ accuracy and 

data has always been a requirement for the advancement of scientific knowledge, and seemed 

to have been largely vindicated overall.  

A crucial insight emerging from this analysis is that the embodied knowledge, skills and 

commitments necessary to interpret data does not need to be harboured by each and every 

individual scientist involved in the complex process of producing, disseminating, assessing 

and interpreting data. As I illustrated, curators play an important role in making 

communication about embodied knowledge possible on the scale required by current data-

intensive research. Researchers that are not involved in material interactions with organisms, 

such as modellers, computer scientists and statisticians, are also often involved in setting up 

digital databases and computational tools to retrieve, visualise and analyse data within them. 

Assessing the evidential value of data in relation to specific claims about organisms is greatly 

helped by reliance on the experience, expertise, skills and commitments of these scientists, 

many of whom will never have come into contact with the organisms that data are used to 

investigate. At the same time, the experience, expertise, skills and commitments of 

researchers who do interact with these organisms are indispensable to actually using data 

retrieved through databases in order to understand biological features.  

 

Conclusion: Data analysis in the digital age, and the distributed nature of 

scientific understanding  
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I have shown that to assess the reliability, quality, relevance and significance of data found 

online, researchers greatly benefit from computational tools and standards such as meta-data, 

but also require embodied knowledge derived from material interactions with the systems 

under investigation. In order to yield fruitful scientific insights, the online consultation of 

databases needs to be embedded in a wider spectrum of scientific practices, particularly ones 

that enable researchers to understand what a specific dataset might signal for the purposes of 

their own investigations. Especially in the case of biological research on organisms, this 

means that at least some of the curators and users of databases need to be versed in some 

form of physical interaction with organisms, thus bringing the skills and commitments gained 

through those interactions to bear when classifying, assessing and re-using data on those 

organisms.  

In closing, I want to discuss what I take to be two important implications of this line of 

argument. One is the claim that the full automation of reasoning about data, leading to data-

driven discovery and ‘machine science’, remains highly unlikely despite the impressive 

advancement in data handling and computational technologies of recent years. This is due to 

the constant dialectic, continuously generating new insights and new standards for what 

counts as scientific understanding, between propositional and embodied knowledge 

(‘knowing that’ and ‘knowing how’). Consider my analysis of the role of curators in 

processing data and making them available for online retrieval, for instance by developing 

meta-data; and the role of researchers in assessing meta-data to determine the evidential value 

of the data found online. The quality, reliability and accuracy of meta-data will certainly 

improve over years to come, but these developments are unlikely to lead to a completely 

automated set-up and updating of databases or to a fully automated interpretation of the data 

found therein. Let me stress again that I am not disputing the importance of e-science tools 
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and automation in occasioning a methodological and epistemic shift in research practices. 

Rather, I am emphasising the crucial role of human expertise, and particularly of researchers’ 

familiarity with methods of data production, in interpreting data found online. The possibility 

to provide multiple interpretations of the same dataset, so highly valued within contemporary 

science, is due to efforts to contextualise data within several different research situations. 

Data interpretation is at least partly a matter of understanding the circumstances in which data 

have been produced – and yet, there is no single (or, arguably, even a ‘best’) interpretation at 

stake. Depending on their research context and degree of familiarity with specific methods of 

data production, scientists may interpret the same data – the same travelling object – in 

different ways. 

Far from detracting from the revolutionary power of digital technologies for data analysis, I 

take my argument to shed light on what is actually new and exciting about data-intensive 

science: that is, the ways in which digital technology is fostering new forms of collaboration 

and division of labour within the sciences. Researchers make important choices at all stages 

of data analysis. Individuals are called upon to decide how to set up experiments and calibrate 

instruments that produce the data in the first place; how data should be formatted, mined and 

visualised; how data should be interpreted and which evidential value they acquire in 

different research contexts. What is remarkable about the current situation is that, for any 

given datasets, several individuals, sometimes hundreds of them, are involved in making 

those decisions. Thanks to the unifying platform provided by computers and internet access, 

those individuals are increasingly likely to have little in common: they probably will not 

know each other, they might have very different expertises and priorities, and they might be 

working within a variety of epistemic cultures. Most importantly, each of those individuals 
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might possess a different form of embodied knowledge, and thus make use of different skills 

and commitments when handling data.  

In the past, individuals pertaining to such disconnected communities would rarely have 

crossed path. At least in part because of digital tools and the internet, the division of labour 

within science is becoming more fluid. The life of data is so long and unpredictable, that 

there is no way to control who is manipulating data, and how, as data journey across 

laboratories all around the globe. Data users need to trust data curators to have made the right 

choices when implementing tools for data visualisation. Data users also need to trust data 

producers to have accurately described their experimental context and the instruments and 

materials used to obtain their results. As I have shown, mechanisms are in place to enable 

users to check for themselves the quality and reliability of data posted online – but while 

these tools are crucial to the interpretation of those data, users still need to trust producers and 

curators in their descriptions of their decision-making processes. It is becoming increasingly 

clear that making sense of large datasets cannot be the task of one individual on his/her own. 

Rather, interpreting data in order to foster the scientific understanding of organisms is an 

achievement of a (sometimes very large) group of different individuals with diverse goals - 

and it is this harmonious mix of diversity and co-operation that makes it possible to extract 

several insights from the same datasets. This brings me to the second, and possibly most 

important, implication of the arguments made in this paper: the essentially distributed nature 

of scientific understanding as a collective cognitive achievement of the many scientists 

involved in contemporary data-intensive research.9 Considering how data is disseminated and 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
9 This reading of data-intensive science comes close to Ronald Giere’s reading of research at 
CERN as a large distributed cognitive system (Giere 2006, pp.108ff.). We differ, however, in 
our emphasis. While Giere is interested in exploring the role played by artefacts in extending 
human cognition, I wish to stress the distributed nature of understanding itself as a cognitive 
achievement of scientific collectives. 
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interpreted in the digital age highlights the importance of distributed cognition within 21st 

century science, fostering an increasingly pluralistic understanding of data and, as a 

consequence, a richer understanding of the natural world. 
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