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Abstract. The Aleph Zero or Zero Dichotomy is a strong version of Zeno’s Dichotomy
II which being entirely derived from the topological successiveness of the ω∗-order comes
to the same Zeno’s absurdity.

1. Zeno’s paradoxes and modern science

Zeno’s Paradoxes have interested philosophers of all times (see [13], [14], [79], [68], [47]
or [24] for historical background), although until the middle of the XIX century they
were frequently considered as mere sophisms [13], [14], [67], [68]. From that time, and
particularly along the XX century, they became the unending source of new philosophical,
mathematical and physical discussions. Authors as Hegel [43], James [48], Russell [67],
Whitehead [81], [82] or Bergson [9], [10] focused their attention on the challenging world
of Zeno’s paradoxes. At the beginning of the second half of the XX century the pioneering
works of Black [11], Wisdom [83], Thomson [75], [76], and Benacerraf [8] introduced a new
way of discussing the possibilities to perform an actual infinity of actions in a finite time (a
performance which is involved in most of Zeno’s paradoxes). I refer to Supertask Theory
[64]. In fact, infinity machines, or supermachines, are our modern Achilles substitutes. A
supermachine is a theoretical device supposedly capable of performing countably many
actions in a finite interval of time. The possibilities of performing an uncountable infinity
of actions were ruled out by P. Clark and S. Read [22], for which they made use of a
Cantor’s argument on the impossibility of dividing a real interval into uncountably many
adjacent parts [19]. Although supertasks have also been examined from the perspective
of nonstandard analysis ([55], [54], [1], [52]), as far as I know the possibilities to perform
an hypertask along an hyperreal interval of time have not been discussed, although finite
hyperreal intervals can be divided into uncountable many successive infinitesimal intervals,
the so called hyperfinite partitions ([73], [34], [49], [44], etc.). Supertask theory has finally
turned its attention, particularly from the last decade of the XX century, towards the
discussion of the physical plausibility of supertasks ([66], [60], [64], [68], [39], [41], [40]) as
well as on the implications of supertasks in the physical world ([60], [61], [62], [30], [63],
[58], [2], [3], [65]), including relativistic and quantum mechanics perspectives [80], [45],
[28], [29], [58], [27], [70]

During the last half of the XX century several solutions to some of Zeno’s paradoxes
have been proposed. Most of these solutions were found in the context of new branches of
mathematics as Cantor’s transfinite arithmetic, topology, measure theory [37], [38], [85],
[39], [41], [40], and more recently internal set theory (a branch of nonstandard analysis)
[55], [54]. It is also worth noting the solutions proposed by P. Lynds within a classical
and quantum mechanics framework [51]. Some of these solutions, however, have been
contested [59], [1]. And in most of cases the proposed solutions do not explain where
Zeno’s arguments fail [59], [64]. Moreover, some of the proposed solutions gave rise to a
significant collection of new and exciting problems [68], [47] [70].
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The four most famous paradoxes of Zeno are usually regarded as arguments against
motion ([4], ([38], [42], [23], [68] etc.) be it performed in a continuous or in a discon-
tinuous world. Achilles and the Tortoise and the Dichotomy in the continuous case, the
Stadium and the Arrow in the discontinuous one. The paradoxes of the second case (to-
gether with the paradox of Plurality) are more difficult to solve, if a solution exists after
all, particularly in a quantum spacetime framework. Most of the proposed solutions to
Zeno’s paradoxes are, in effect, solutions to the paradoxes of the first group or to the
second one in a dense continuous spacetime framework. This situation is very significant
taking into account the increasing number of contemporary physical theories suggesting
the quantum nature of spacetime, as for instance Superstring Theory ([35], [36] [77], [31]),
Loop Quantum Gravity ([71], [5] [72]), Quantum Computation Theory ([74], [6], [50]) or
Black Hole Thermodynamics [6], [74]. Is, therefore, at this quantum level where physics
(the science of changes) will finally meet the problem of Change [7] whose insolvability
probably motivated Zeno’s arguments? Is the problem of Change really inconsistent as
some authors ([56], [57]) claimed? These are in fact two intriguing and still unsolved
questions related to Zeno’s arguments [59].

2. Zeno’s paradoxes and the ω-order

No less intriguing, though for different reasons, is the fact that one immediately perceives
when examining the contemporary discussions on Zeno’s paradoxes. Surprisingly, the
Axiom of Infinity is never involved in such discussions. Zeno’s arguments have never
been used to question the Axiom of Infinity, as if the existence of actual infinite totalities
were beyond any doubt [32]. Grünbaum, for instance, proposed in this sense that if it
were the case that from modern kinematics together with the denseness postulate a false
zenonian conclusion could be formally derived, then we would have to replace kinematics
by other mechanical theory [38]. Anything but questioning the hypothesis of the actual
infinity from which topological denseness ultimately derives. And this in spite of the lack
of selfevidence of that hypothesis, which is even rejected by some schools of contemporary
mathematics as constructivism (among whose precursors we find scholars as Newton,
Fermat or Euler [53]).

In the second half of the XIX century B. Bolzano [12] and R. Dedekind [26] tried
unsuccessfully to prove the existence of actual infinite totalities. For his part, G. Cantor,
the founder of transfinite mathematics, simply took it for granted. Thus, in §6 of his
famous Beiträge (pp. 103-104 of the English translation [18]) we can read:

The first example of a transfinite set is given by the totality of finite cardinal
numbers ν.

although, as could be expected, he gave no proof of that existence. In accordance with his
profound theological platonism [25], Cantor was firmly convinced of the actual existence
of infinite totalities [16], [17], [15], [20], [21]. But convictions do not suffice in mathematics
and finally we had to state that existence by the expeditious way of axioms.

The cantorian notion of ω-order is an immediate consequence of assuming the set of
finite cardinals as a complete totality ([18], p. 115):

By ω we understand the type of a well ordered aggregate

(e1, e2, . . . , eν , . . . )
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in which

eν ≺ eν+1

and where ν represents all finite cardinal numbers in turn.

In modern terms, we say that a sequence is ω-ordered if it has a first element and each
element has an immediate successor. Similarly a sequence is ω∗-ordered if it has a last
element and each element has an immediate predecessor. Evidently, both types of ordering
are intimately related to most of Zeno’s arguments particularly to both dichotomies,
although, surprisingly, the analysis of Zeno’s arguments as formal consequences of the ω-
ordering remains still undone. For some unknown reasons, it seems we are not interested in
analyzing the formal consequences of assuming the existence of sequences (lists) which are
simultaneously complete and uncompletable, as is the case of both the ω-ordered and the
ω∗-ordered sequences (they are in fact complete because this is what the Axiom of Infinity
states, and uncompletable because there is not a last (first) element which complete them).
No matter the enormous problems the actual infinity means for experimental sciences as
physics (recall for example the problems of renormalization in particle physics [33], [46],
[35], [84], [36], [69]).

Apart from discussing the nature of motion and some others philosophical subtleties,
Zeno’s argument can also be used to question the formal consistency of the actual infinity.
The short discussion that follows is just oriented in that direction. Its main objective is
to analyze a version of Zeno’s Dichotomy II based on the topological successiveness of
the ω∗-ordered sequences of real numbers within any real interval. The result leads to a
dichotomy, the Aleph Zero or Zero Dichotomy, whose formal consequence coincides with
Zeno’s absurdity, although in this case it is formally derived from the Axiom of Infinity
via the ω-ordering.

3. The Aleph Zero or Zero Dichotomy

Let us consider the famous Achilles’ race rightward along the X axis from point 0 to point
1 whose impossibility Zeno’s Dichotomy II claims. In the place of the uncountable and
densely ordered sequence of points within the real interval [0, 1] we will only consider the
ω∗-ordered sequence of points:
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2
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Achilles must successively traverse at a finite uniform velocity v in order to reach point 1
starting from point 0. In fact this denumerable sequence of points (Z∗-points according to
classical Vlastos’ terminology [78]) is not densely but successively ordered, which means
that between any two successive Z∗-points no other Z∗-point exists. In consequence,
and at a finite velocity, Z∗-points can only be traversed in a successive way: one after
the other. Due to the topological denseness of the real number continuum modelling
space and time, no instant has an immediate successor instant in the same way that, for
instance, natural number have. On the contrary, between any two instants uncountably
many other instants exist. Consequently the last instant at which Achilles is still at rest
is not followed by the first instant at which Achilles is already running. Thus, although
it will irrelevant for the discussion that follows, we must decide if t0 is the last instant
at which Achilles is still at rest or it is the first instant at which he is running, although
in this last case we have also to assume that at t0 Achilles has traversed a zero distance
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(otherwise he would be running at an infinite velocity). This said, we will assume that
t0 is the last instant at which Achilles is still at rest. According to classic mechanics
Achilles will reach point 1 just at t1 = t0 + 1/v. But before reaching his goal, he has
to successively traverse the controversial Z∗-points. We will focus our attention just on
the way Achilles performs such a traversal. For this, let f(t) be the number of Z∗-points
Achille has traversed at the precise instant t, being t any instant within the closed interval
[t0, t1]. It is quite clear that f(t0) = 0 because at t0 Achilles has not begun to run. For
any other instant t within the half closed interval (t0, t1] Achilles has already passed over
countably many Z∗-points, for if there were an instant t in (t0, t1] at which Achilles has
only passed over a finite number n of Z∗-points, these n Z∗-points would have to be the
impossible firsts n points of an ω∗-ordered sequence of points. So we can write:

f(t) =

{
0 if t = t0

ℵ0 if t0 < t ≤ t1
(2)

Notice f(t) is well defined for each t in [t0, t1]. Consequently, f maps the real interval
[t0, t1] into the set of two elements {0,ℵ0}. In this way f defines a dichotomy, the Aleph
Zero or Zero Dichotomy, regarding the number of Z∗-points Achilles has traversed when
moving rightward from 0 to 1 along the X axis. Accordingly, with respect to the number
of the traversed Z∗-points, Achilles can only exhibit two states:

(1) State A0: Achilles has traversed 0 Z∗-points.
(2) State Aℵ0 : Achilles has traversed ℵ0 Z∗-points.

Thus, Achilles directly becomes from having traversed no Z∗-point (state A0) to having
traversed ℵ0 of them (state Aℵ0). Finite intermediate states, as An at which Achilles
would have traversed only a finite number n of Z∗-points, simply do no exist.

Let us now examine the transition from A0 to Aℵ0 under the inevitable restriction of
the Aleph Zero or Zero Dichotomy. The topological successiveness of Z∗-points makes it
impossible that they can be traversed other than successively. And taking into account
that between any two successive Z∗-points a finite distance greater than zero exists, to
traverse ℵ0 successive Z∗-points -whatever they be- means to traverse a finite distance
greater than 0. This traversal, at the finite Achilles’ velocity, can only be accomplished
by lasting a certain amount of time necessarily greater than 0. Achilles, therefore, has to
expend a certain time τ > 0 in becoming Aℵ0 from A0. This time τ is indeterminable,
otherwise we would know the precise instant at which Achilles becomes Aℵ0 and, con-
sequently, we would also know the precise Z∗-point on which he reaches that condition,
which is evidently impossible because in this case there would have to be a natural number
n such that n+1 = ℵ0. The indeterminacy of τ means both the existence of more than one
alternative for its value and the impossibility to determine the precise alternative. Now
then, indeterminable as it may be, τ has also to be greater than 0 and this requirement is
incompatible with the Aleph Zero or Zero Dichotomy. In effect, let r be any real number
greater than 0. It is immediate to prove that r is not a valid value for τ because if that
were the case we would have:

∀t ∈ (0, r) : 0 < f(t) < ℵ0 (3)
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going against the Aleph Zero or Zero Dichotomy. Therefore it impossible for τ to be
greater than 0, which in addition is confirmed by the inexistence of finite intermediate
states An. Consequently, Achilles cannot become Aℵ0 at his finite velocity v. He must
therefore remain A0. Or in other words, he cannot begin to move. Evidently, this conclu-
sion is the same absurdity claimed by Zeno’s Dichotomy II, although in our case it has
been entirely derived from the topological successiveness of the ω∗-order, which in turns
derives from the assumed existence of complete denumerable totalities (actual infinities)
[18], i.e. from the Axiom of Infinity. It is therefore this axiom the ultimate cause of the
above Zeno’s absurdity.

References

1. Joseph S. Alper and Mark Bridger, Mathematics, Models and Zeno’s Paradoxes, Synthese 110 (1997),
143 – 166.

2. , On the Dynamics of Perez Laraudogotia’s Supertask, Synthese 119 (1999), 325 – 337.
3. Joseph S. Alper, Mark Bridger, John Earman, and John D. Norton, What is a Newtonian System?

The Failure of Energy Conservation and Determinism in Supertasks, Synthese 124 (2000), 281 – 293.
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65. Jon Pérez Laraudogoitia, Mark Bridger, and Joseph S. Alper, Two Ways of Looking at a Newtonian

Supertask, Synthese 131 (2002), no. 2, 157 – 171.
66. I. Pitowsky, The Physical Church Thesis and Physical Computational Complexity, Iyyun 39 (1990),

81 –99.
67. Bertrand Russell, The Problem of Infinity Considered Historically, Zeno’s Paradoxes (Wesley C.

Salmon, ed.), Hackett Publishing Company, Inc, Indianapolis/Cambridge, 2001, pp. 45 – 58.
68. Wesley C. Salmon, Introduction, Zeno’s Paradoxes (Wesley C. Salmon, ed.), Hackett Publishing

Company, Inc, Indianapolis, Cambridge, 2001, pp. 5 – 44.
69. Bruce A. Schumm, Deep Down Things. The Breathtaking Beauty of Particle Physics, The Johns

Hopkins University Press, Baltimore, 2004.
70. Z. K. Silagadze, Zeno meets modern science, Philsci-archieve (2005), 1–40.
71. Lee Smolin, Three roads to quantum gravity. A new understanding of space, time and the universe,

Phoenix, London, 2003.
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