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Abstract. Most agents can acquire information about their environments as they op-

erate. A good plan for such an agent is one that not only achieves the goal, but is also

executable, i.e., ensures that the agent has enough information at every step to know what
to do next. In this paper, we present a formal account of what it means for an agent to

know how to execute a plan and to be able to achieve a goal. Such a theory is a prerequi-
site for producing specifications of planners for agents that can acquire information at run

time. It is also essential to account for cooperation among agents. Our account is more

general than previous proposals, correctly handles programs containing loops, and incor-
porates a solution to the frame problem. It can also be used to prove programs containing

sensing actions correct.

Keywords: reasoning about knowledge and action, knowledge prerequisites of actions.

1. Introduction

Work in the classical planning paradigm has generally made very strong as-
sumptions about the domain in which planning is taking place, in particular,
that the planner has complete knowledge of the initial state, and that actions
are such that the planner can compute a complete description of any state
reachable by doing a sequence of actions in the initial state (for instance,
STRIPS [4] operators). Such assumptions cannot be sustained in most real
applications (e.g., robotics, information gathering agents); there, agents need
to acquire knowledge at execution time by sensing their environment.

Some work, for instance [3, 5, 8, 19, 22], has attempted to generalize
classical planning techniques to deal with this. But a key problem is that in
such domains, it is not even clear what a plan is and when it is a solution to a
particular planning problem. Plans must at the very least include conditional
control structures so that the choice of action can depend on the result of
sensing. But then it appears that standard programming language notions
of correctness are insufficient. Even if it can be shown that a plan must
achieve the goal (and terminate), the agent may not have enough knowledge
to execute it. For example, suppose that the agent knows that behind one
of two doors there is a treasure and behind the other there is a monster, but
does not know which leads to what. Then, even though the plan

if TreasureBehindDoor1 then goThrough(Door1)
else goThrough(Door2)
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can be shown to achieve the goal of getting the treasure, the agent does not
know how to execute it because he cannot evaluate the test. Similarly,

goThrough(DoorToTreasure)

achieves the goal, but cannot be executed because the agent does not know
which primitive action the program stands for. The nondeterministic plan1

[goThrough(Door1) | goThrough(Door2)];AtTreasure?

also achieves the goal, but cannot be executed since the agent does not know
which branch to take. However, if he can look through a window on one of
the doors to determine what is behind it, then the following plan is adequate:

Example 1.

lookThroughWindow;
if TreasureBehindDoor1 then goThrough(Door1)

else goThrough(Door2)

It must achieve the goal and the agent will know how to execute it.
Whether an agent knows how to execute a plan depends on how smart

he is — how much he knows and what sort of inferences he can perform.
A very smart agent that can do lookahead would know how to execute the
following nondeterministic plan:

Example 2.

lookThroughWindow;
pick d : [Door(d)?;goThrough(d)];
AtTreasure?

The very smart agent could use its knowledge gathered through the sensing
action to pick the correct door given that it looks ahead and realizes that it
must end up at the treasure. A dumber executor would not.

All this is really part of our common sense knowledge about agents. We
do not delegate a goal to someone unless we believe that he is able to achieve
it. And even if someone does not know how to achieve a goal on his own, we
may still enlist his help by providing instructions he knows how to follow.
Such instructions would typically not specify the plan down to the last detail;
we assume some intelligence on the part of the executor.

1 Our use of test actions may be confusing to some; read φ?; δ as “action δ occurring
when φ holds”, and for δ; φ?, read “action δ occurs after which φ holds”. Thus, the plan
in the example involves either going through Door1 or going through Door2, so that one
ends up at the treasure.
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The classical planning paradigm involves a very smart planner and a
very dumb executor — it is assumed that the difficult problem solving is
performed at planning time, and that execution is relatively direct. But
there is no real reason to restrict our attention to this picture. In some
cases, planning from scratch may be so hard that it is better to try to build
a smart executor that the user can program at a high level — we pursue this
in [12]. Others have suggested that the right role for plans is as advice to
a relatively smart improvisation module [1]. Also, multi-agent systems are
becoming more common and typically involve agents at different levels of
smartness. All this suggests studying what knowing how or ability means
for agents with varying levels of intelligence.

Before one even starts talking about plans, it is useful to have a formal
account of what sort of knowledge is involved in the ability to achieve a goal.
This is what we develop in section 3. Plans are partial representations of this
kind of knowledge; how complete they must be depends on how smart the
intended executor is. In section 4, we develop two accounts of knowing how
to execute a plan, one for a very smart agent and another for a much dumber
one. In fact, these are merely two points in a space of agents with various
kinds of abilities. But as argued in the concluding section, the framework we
propose provides a useful foundation for further exploration of this space.

We will discuss related work as it becomes relevant. It is worth singling
out, however, the very similar work of Ernest Davis [2]. Like us, Davis de-
velops accounts of knowing how to execute a plan for both smart and dumb
executors. However in [2], he fails to show that his account really handles
unbounded iteration, a key problem area in earlier work. Nor does he discuss
ability to achieve a goal and its relation to knowing how. Although devel-
oped independently, our accounts of knowing how are remarkably similar,
and it seems that most of our results could have been obtained using his
axiomatization as a starting point. We point out some of the differences as
they become pertinent.

2. A theory of action

Our theory is based on an extended version of the situation calculus [15], a
predicate calculus dialect for representing dynamically changing worlds. In
this formalism, the world is taken to be in a certain situation (or state). That
situation can only change as a result of an agent doing an action. The term
do(a, s) represents the situation that results from the agent’s performance of
action a in situation s. The initial situation is represented by the constant
S0. Thus for example, the formula On(A,B, do(putOn(A,B), S0)) could
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mean that A is on B in the situation that results from the agent’s doing
putOn(A,B) in the initial situation. Predicates and function symbols whose
value may change from situation to situation (and whose last argument is a
situation) are called fluents. Note that we write s < s′ if and only if s′ is the
result of doing some sequence of actions in s, where the actions are possible
in the situation where they are done.2

An action is specified by first stating the conditions under which it can
be performed by means of a precondition axiom. For example,

Poss(pickUp(x), s) ≡ ∀z¬Holding(z, s) ∧ nextTo(x, s)

means that it is possible for the agent to pick up an object x in situation s if
and only if he is not holding anything and is standing next to x in s. Then,
one specifies how the action affects the world’s state with effect axioms, for
example:

Poss(drop(x), s) ∧ Fragile(x) ⊃ Broken(x, do(drop(x), s)).

The above axioms are not sufficient if one wants to reason about change.
It is usually necessary to add frame axioms that specify when fluents remain
unchanged by actions. The frame problem [15] arises because the number of
these frame axioms is of the order of the product of the number of fluents and
the number of actions. Our approach incorporates a solution to the frame
problem due to Reiter [20] (who extends previous proposals by Pednault
[18], Schubert [23] and Haas [7]). The basic idea behind this is to collect all
effect axioms about a given fluent and assume that they specify all the ways
the value of the fluent may change. A syntactic transformation can then be
used to obtain a successor state axiom for the fluent, for example:

Poss(a, s) ⊃ [Broken(x, do(a, s)) ≡
(a = drop(x) ∧ Fragile(x)) ∨ (Broken(x, s) ∧ a &= repair(x))].

This says that x is broken after the agent does action a in situation s if and
only if either the action was dropping x and x is fragile, or x was already
broken in s and the action was not repairing it. This treatment avoids the
proliferation of axioms, as it only requires a single successor state axiom per
fluent and a single precondition axiom per action.3

Scherl and Levesque [21] have generalized this account to handle sensing
or knowledge-producing actions. Such actions affect the mental state of the

2 The relation < on situations is fully axiomatized in the foundational axioms (for
example, see [10]).

3 This discussion ignores the ramification problem; a treatment compatible with our
approach has been proposed by Lin and Reiter [14].
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agent rather than the state of the external world. For example, it should
be the case that after performing the action senseDown, an agent that is
trying to cut down a tree would know whether the tree is down:

Poss(senseDown, s) ⊃ KWhether(Down, do(senseDown, s)).

KWhether(φ, s) is an abbreviation for Know(φ, s) ∨ Know(¬φ, s). Simi-
larly, after doing readCombOfSafe, an agent would know what the com-
bination of the safe he is trying to open is:

Poss(readCombOfSafe, s) ⊃
∃cKnow(combOfSafe = c, do(readCombOfSafe, s)).

Knowledge is represented by adapting Kripke’s possible world semantics [9]
to the situation calculus, as first done by Moore [16]. K(s′, s) represents
the fact that in situation s, the agent thinks that the world could be in
situation s′. Know(φ, s) is an abbreviation for the formula ∀s′(K(s′, s) ⊃
φ(s′)). For clarity, we sometimes use the pseudo-variable now to represent the
situation bound by the enclosing Know; so Know(Down(now), s) stands
for ∀s′(K(s′, s) ⊃ Down(s′)). We require K to be transitive and euclidean,
which ensures that the agent always knows whether he knows something
(i.e., positive and negative introspection).

For a domain with the two sensing actions described above, the successor
state axiom for the knowledge fluent K can be specified as follows:

Poss(a, s) ⊃ (K(s∗, do(a, s)) ≡
∃s′[K(s′, s) ∧ s∗ = do(a, s′) ∧ Poss(a, s′) ∧

(a = senseDown ⊃ (Down(s′) ≡ Down(s))) ∧
(a = readCombOfSafe ⊃ CombOfSafe(s′) = CombOfSafe(s))]).

First note that for non-knowledge-producing actions (e.g. drop(x)), the
specification ensures that the only change in knowledge that occurs in mov-
ing from s to do(drop(x), s) is the knowledge that the action drop has been
successfully performed. For the case of a knowledge-producing action such
as senseDown, the idea is that in moving from s to do(senseDown, s),
the agent not only knows that the action has been performed (as above),
but also the truth value of the associated predicate Down. Since in this
case we require that Down(s′) ≡ Down(s), Down will have the same truth
value in all s′ such that K(do(senseDown, s′), do(senseDown, s)). Ob-
serve that for any situation s, Down is true at do(senseDown, s) if and
only if Down is true at s. Therefore, Down has the same truth value in all
worlds s∗ such that K(s∗, do(senseDown, s)), and so KWhether(Down,



170 Y. Lespérance, H. J. Levesque, F. Lin, R. B. Scherl

do(senseDown, s)) holds. Similar reasoning explains why we must have
∃cKnow(CombOfSafe = c, do(readCombOfSafe, s)). This can be ex-
tended to an arbitrary number of knowledge-producing actions in a straight-
forward way.

In general, a particular domain will be specified by the union of the
following sets of axioms:
– Axioms describing the initial situation, S0.
– Action precondition axioms, one for each primitive action.
– Successor state axioms, one for each fluent.
– Unique names axioms for the primitive actions.
– Some foundational domain-independent axioms, which are similar to the

ones given in [10].

3. Ability

Very roughly, ability to achieve a goal involves knowing what to do when,
so as to arrive at a goal state. We make this more precise by appealing
to the notion of an action selection function, a mapping from situations
to primitive actions. We understand such a function as prescribing which
action the agent should perform in a situation. We say that situation s′ is on
the path prescribed by action selection function σ in situation s if and only
if there is a path from s to s′ and at every step along the way, the action
performed is the one prescribed by σ:

OnPath(σ, s, s′) def= s ≤ s′ ∧ ∀a∀s∗(s < do(a, s∗) ≤ s′ ⊃ σ(s∗) = a).

Here s ≤ s′ is shorthand for s < s′ ∨ s = s′. Note that OnPath(σ, s, s′)
implies that all the actions prescribed by σ between s and s′ are possible.

We will say that the agent “can get” to a situation where a goal φ holds
by following action selection function σ in situation s if and only if there is
a situation s′ on the path prescribed by σ in s where the agent knows that
the goal holds, and at every step between s and s′, the agent knows what
the next action prescribed by σ is:

CanGet(φ,σ, s) def= ∃s′(OnPath(σ, s, s′) ∧Know(φ, s′) ∧
∀s∗[s ≤ s∗ < s′ ⊃ ∃aKnow(σ(now) = a, s∗)]).

Finally, we say that the agent can achieve a goal φ in situation s if and
only if there exists an action selection function σ such that he knows in s
that he can get to a situation where the goal holds by following σ:

Can(φ, s) def= ∃σ Know(CanGet(φ,σ, now), s).
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For the example sketched in the introduction, where an agent wants to
get to a treasure but does not know which of two doors leads to it, it is
straightforward to verify that our definition yields the right results, i.e., that
the agent can achieve the goal if and only if it is possible for him to sense
whether the treasure is behind a given door. Our account also gives the right
results for more challenging examples involving unbounded iteration, such
as the following:

Example 3. Consider a situation where an agent wants to cut down a tree.
This yields the following definition and axioms:

Down(s) def= remainingChops(s) = 0,

Poss(a, s) ⊃ [remainingChops(do(a, s)) = n ≡
a = chop ∧ remainingChops(s) = n + 1 ∨
a &= chop ∧ remainingChops(s) = n],

Poss(chop, s) ≡ remainingChops(s) > 0.

We assume that the tree will fall down after some number (unknown to
the agent) of primitive chopping actions (in other words, there is a natural
number n such that remainingChops(S0) = n). We also assume that
the agent can always find out whether the tree is down by sensing. This
yields the following successor state axiom for K and precondition axiom for
senseDown:

Poss(a, s) ⊃ (K(s∗, do(a, s)) ≡
∃s′[K(s′, s) ∧ s∗ = do(a, s′) ∧ Poss(a, s′) ∧

(a = senseDown ⊃ (Down(s′) ≡ Down(s)))]),

Poss(senseDown, s) ≡ True.

Notice however that we do not assume that the agent knows how many
chop actions are necessary to get the tree down. Even then, it seems that
the agent should be able to achieve the goal of cutting the tree down; all
he needs to do is to keep sensing and chopping until the tree is down.
Indeed, it is straightforward to verify that the above axioms imply that
Can(Down, S0). Consider the action selection function such that σ(s) is
chop whenever ∃s∗ s = do(senseDown, s∗), and senseDown otherwise. It
is easy to show that the agent must always know what action is prescribed
by σ. And since in any belief alternative remainingChops chops are suffi-
cient to get the tree down, it follows that the agent can get to a goal state
by following σ.
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Example 4. Now, suppose that the agent has no way of sensing whether
the tree is down. Then, we get the following successor state axiom for K:

Poss(a, s) ⊃ (K(s∗, do(a, s)) ≡ ∃s′[K(s′, s) ∧ s∗ = do(a, s′) ∧ Poss(a, s′)]).

Suppose also that ¬Know(Down, S0). Then, we would expect the
agent to be unable to get the tree down. Indeed, it can be verified that
¬Can(Down, S0): the assumptions imply that Know(∀s∗(now ≤ s∗ ⊃
¬Know(Down, s∗)), S0); by the definition of Can, the result follows.

To our knowledge, this is the first time an account has been shown to
handle both ability and inability in cases involving unbounded iteration.
The earlier accounts of Moore [16] and Morgenstern [17] have problems with
such cases; we explain their inadequacies in the next section. Van der Hoek,
van Linder and Meyer [25] have also developed a logic of ability that handles
unbounded iteration properly, but in a more restrictive propositional modal
framework.

Let us now examine some properties of our definition of ability and see
how some alternative definitions fail to handle important cases. To simplify
the discussion, for the remainder of this section we will be assuming that
all actions are possible, i.e., ∀a∀sPoss(a, s). Our results could easily be
generalized. If one were to try to give an inductive definition of Can, one
would likely start from the observations that:
– if a goal is known to hold already, then it can be achieved, and
– if there is an action such that the agent knows that he can achieve the

goal after the action is performed, then he can achieve the goal from the
beginning.

In fact, we have shown that given our definition, Can holds if and only if
one of the above conditions hold:

Proposition 5.
Can(φ, s) ≡ (Know(φ, s) ∨ ∃aKnow(Can(φ, do(a, now)), s)).

Note that establishing this result (in either direction) requires the assump-
tion that agents have negative introspection (i.e., that K is euclidean). This
is one point over which our account differs from Davis’s [2], so the proposition
would not hold in his system.

The above result might suggest a simpler way of defining ability: use
the above equivalence as an axiom to somehow define Can. Unfortunately,
this approach does not seem to work. By itself, the axiom is too weak; for
instance, it is consistent with it that Can (for any given goal) is always true.
If on the other hand, we try to define ability as the least fixed-point of the
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above equivalence, the resulting version of ability ends up being too strong.
Let

Can⊥(φ, s) def= ∀C( (#)
∀s′[C(s′) ≡ Know(φ, s′) ∨ ∃aKnow(C(do(a, now)), s′)] ⊃ C(s)).

Now using proposition 5, it is easy to show that Can⊥ is stronger than
Can, i.e. ∀s(Can⊥(φ, s) ⊃ Can(φ, s)). However, Can⊥ is not implied by
Can. In fact, Can⊥ fails to handle our tree chopping example — we get
that ¬Can⊥(Down, S0) despite the fact that intuitively, the agent can get
the tree down by repeatedly sensing and chopping. To see this, take C to
be true of a situation if and only if the tree is known to be down in that
situation. Then C clearly satisfies the equivalence in (#). But this means
that Can⊥ will be true in no additional situations, as it is a least fixed point.
Since the tree is not down in the initial situation S0, this means that Can⊥
is false in S0.

Historically, our definition of Can was motivated by Can⊥, and its fail-
ure on the tree example. It remains an open question whether there is a
natural fixed-point equation like the equivalence inside (#) for which Can
is the least fixed-point solution. We also considered an iterative analogue
to Can⊥, which is discussed in Appendix B; it too failed to handle the tree
example properly.

4. Knowing how

To get help from other agents in achieving our goals, we often need to give
them explicit instructions, some sort of program to execute. Whether an
agent knows how to execute a program depends on how smart the agent is.
We will now formalize some notions of knowing how that appear significant;
towards the end, we also relate knowing how to ability to achieve a goal.

4.1. Programs in the extended situation calculus

Our programs will include the following nondeterministic forms:

δ1|δ2 nondeterministic choice of branch,
πx δ(x) nondeterministic choice of argument,
πa δ(a) nondeterministic choice of primitive action.

To be able to talk about the different deterministic execution paths through
a nondeterministic program, we will extend our earlier notion of action selec-
tion function. Let a path selection function σ be a mapping from situations
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into pairs of objects and actions.4 To simplify our notation, for any path
selection function σ, and any situation s, we denote the left member of σ(s)
as σl(s), and the right member as σr(s), i.e. σ(s) = (σl(s),σr(s)). We will
use σl to pick an object in interpreting πx δ(x) and similarly for σr and
πa δ(a). To handle δ1|δ2, we introduce a reserved action constant symbol
null ; we will take the left branch if and only if σr(s) = null . Semantically,
null behaves like a no-op, and has no effects.

We introduce programs into the formalism as abbreviations (macros), in
the style of [12]. The abbreviation Do(δ,σ, s, s′), where δ is a program and
σ is a path selection function, means that the execution of δ according to σ
starting in situation s terminates in the situation s′. It is defined inductively
as follows:

Do(θ,σ, s, s′) def= Poss(θ, s) ∧ s′ = do(θ, s),
for any primitive action θ.

Do(φ?,σ, s, s′) def= φ(s) ∧ s′ = s.

Do(δ1; δ2,σ, s, s′) def= ∃s′′(Do(δ1,σ, s, s′′) ∧ Do(δ2,σ, s′′, s′)).

Do(if φ then δ1 else δ2,σ, s, s′) def= (φ(s) ⊃ Do(δ1,σ, s, s′)) ∧
(¬φ(s) ⊃ Do(δ,σ, s, s′))

Do(δ1|δ2,σ, s, s′) def= (σr(s) = null ⊃ Do(δ1,σ
+, s, s′)) ∧

(σr(s) &= null ⊃ Do(δ2,σ
+, s, s′)).

Do(πx δ(x),σ, s, s′) def= Do(δ(σl(s)),σ+, s, s′).

Do(πa δ(a),σ, s, s′) def= Do(δ(σr(s)),σ+, s, s′).

Do(while φ do δ,σ, s, s′) def= ∀P ({∀s1(¬φ(s1) ⊃ P (s1, s1)) ∧
∀s1, s2, s3(φ(s1) ∧ Do(δ,σ, s1, s2) ∧ P (s2, s3) ⊃ P (s1, s3))}

⊃ P (s, s′)).

Here σ+ is defined by the following axiom:

∀s σ+(s) = σ(do(null , s)).

This is needed in order to properly handle cases like (A|B)|C and πx(πy
A(x, y)). So the null action plays two roles: it handles the nesting of | and
π operators by advancing the path selection function after each selection,

4 It will generally be clear from context whether σ refers to a path selection function
or an action selection function; we shall be explicit when confusion could arise.
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and as a possible value of a path selection function, it is used to select which
branch of δ1|δ2 one should take.

Given a program δ and a path selection function σ, there is at most one
terminating situation:

Proposition 6. Do(δ,σ, s, s1) ∧ Do(δ,σ, s, s2) ⊃ s1 = s2.

If | and π do not occur in a program δ, we say that it is determinate. It
is clear from the definition that path selection functions play no role in the
interpretation of determinate programs:

Proposition 7. If δ is determinate, then
∀σ,σ′, s, s′(Do(δ,σ, s, s′) ≡ Do(δ,σ′, s, s′)).

Let us define
Do(δ, s, s′) def= ∃σ Do(δ,σ, s, s′).

Thus, Do(δ, s, s′) means that there is an execution of δ (determined by some
path selection function) in s that terminates in s′. Then, from the above
proposition, we have that if δ is determinate, then ∀σ, s, s′(Do(δ, s, s′) ≡
Do(δ,σ, s, s′)).

In formalizing knowing how, we must consider not just terminating sit-
uations, but also all intermediate situations. We shall use the abbreviation
During(δ,σ, s, s′) to mean that situation s′ occurs during the execution of δ
starting in s according to σ. If there is a situation s∗ such that Do(δ,σ, s, s∗)
holds, then During(δ,σ, s, s′) holds if and only if s ≤ s′ ≤ s∗. However, we
also want During to hold for the situations encountered in executions that do
not successfully terminate. For non-terminating executions, all situations en-
countered are During ; so for example, During(while True do null ,σ, s, s′)
holds if and only if s′ is a successor of s where only null actions happen
between s and s′. For executions that terminate unsuccessfully, all situa-
tions between the starting situation and the one where the program fails
are During; for example, During(stackOnto(A,B);False?,σ, s, s′) holds if
and only if s′ is s or do(stackOnto(A,B), s).

We define During(δ,σ, s, s′) in a way similar to Do:5

During(θ,σ, s, s′) def= s = s′ ∨ (Poss(θ, s) ∧ s′ = do(θ, s)),
for any primitive action θ.

5 Although During cannot be defined in terms of Do, there is a way that Do can be
defined in terms of During . However doing this requires that we introduce some special
mechanism to distinguish failing states and terminating states, and we shall not pursue
this further here.
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During(φ?,σ, s, s′) def= φ(s) ∧ s′ = s.

During(δ1; δ2,σ, s, s′) def= During(δ1,σ, s, s′) ∨
∃s′′(Do(δ1,σ, s, s′′) ∧ During(δ2,σ, s′′, s′)).

During(if φ then δ1 else δ2,σ, s, s′) def= (φ(s) ⊃ During(δ1,σ, s, s′)) ∧
(¬φ(s) ⊃ During(δ,σ, s, s′))

During(δ1|δ2,σ, s, s′) def= (σr(s) = null ⊃ During(δ1,σ
+, s, s′)) ∧

(σr(s) &= null ⊃ During(δ2,σ
+, s, s′)).

During(πx δ(x),σ, s, s′) def= During(δ(σl(s)),σ+, s, s′).

During(πa δ(a),σ, s, s′) def= During(δ(σr(s)),σ+, s, s′).

During(while φ do δ,σ, s, s′) def= ∀P ({∀s1(¬φ(s1) ⊃ P (s1, s1)) ∧
∀s1, s2[φ(s1) ∧ (During(δ,σ, s1, s2) ∨ ∃s3(Do(δ,σ, s1, s3) ∧ P (s3, s2)))

⊃ P (s1, s2)]} ⊃ P (s, s′)).

4.2. Executability under a strategy

A path selection function specifies a kind of execution strategy. We say
that an agent can execute a program when he follows a given strategy if
and only if the program terminates when executed according to the strategy
and at every point during the execution, either the agent knows that the
program has terminated or knows which action to perform next. We define
this formally as follows:6

CanExec(δ,σ, s) def= ∃s∗ Do(δ,σ, s, s∗) ∧ ∀si(During(δ,σ, s, si) ⊃
{∀s′, s′i[K(s′, s) ∧ K(s′i, si) ∧ s′ ≤ s′i ⊃ Do(δ,σ, s′, s′i)] ∨
∃a∀s′, s′i[K(s′, s) ∧ K(s′i, si) ∧ s′ ≤ s′i ⊃ During(δ,σ, s′, do(a, s′i))]}).

Note that an agent may be able to execute a program according to a
strategy without knowing in advance that the program will terminate:

CanExec(δ,σ, s) &⊃ Know(∃s′ Do(δ,σ, now, s′), s).

For example, consider the program senseP ; while ¬P do null .
Assume that P holds initially but the agent is not aware of that, i.e.,

6 Another way of understanding this is the following: the combination of a nondeter-
ministic program and an execution strategy stands for the deterministic specialization of
the program obtained by executing it with the strategy; then CanExec(δ, σ, s) stands for
ability to execute the deterministic program referred to by 〈δ,σ〉.



Ability and Knowing How in the Situation Calculus 177

P (S0) ∧ ¬Know(P, S0). Then the agent can execute the program in S0

because after doing senseP , he will know that P holds, and will not enter
the infinite while loop. But initially, the agent does not know that the pro-
gram will terminate, because as far as he is concerned, it may well be the
case that ¬P . This implies that an agent may be able to execute a program
according to a strategy without realizing that this is the case:

CanExec(δ,σ, s) &⊃ Know(CanExec(δ,σ, now), s).

It is also worth noting that since the execution of determinate programs
does not depend on the execution strategy, we have:

Proposition 8. For all determinate programs δ,
∃σCanExec(δ,σ, s) ⊃ ∀σCanExec(δ,σ, s).

4.3. Dumb knowing how

One way an agent may execute a possibly nondeterministic program is by
arbitrarily picking an alternative at every choice point. Since we cannot rule
out any execution strategy, we must require that he be able to execute the
program according to all strategies to ensure he will succeed. This ability
to blindly execute a program is what we call dumb knowing how. We define
the notion formally as follows:

DKH(δ, s) def= ∀σ[∀s′∃xKnow(σ(now) = x, s′) ⊃ CanExec(δ,σ, s)].

Note that we only consider path selection functions whose value is always
known to the agent, that is, strategies that the agent knows how to follow.
With respect to the situation described earlier where someone is seeking a
treasure, a dumb agent knows how to execute the program in example 1,
but not the one in example 2.

One can show that if an agent can blindly execute a program, then the
program must terminate no matter what execution strategy is used:

Proposition 9. DKH(δ, s) ⊃ ∀σ∃s′ Do(δ,σ, s, s′).

The DKH notion is particularly useful for cases where an agent wants to
delegate a task to another agent. For instance, in a cooperative environment,
agent A may come up with a plan to achieve one of his goals, make sure that
agent B knows how to dumbly execute this plan, and then ask B to execute
it. If B collaborates and tries to execute the program, he will be able to do
so. The execution will eventually terminate, A’s goal will be achieved, and B
will be able to go on to other business. (B, having faith in agent A, need not
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know that he knows how to execute the program; he can simply trust agent
A on this.) A special case is when A and B are the same agent (e.g., one that
does off-line planning and later dumb execution). Then the agent knows that
he knows how to dumbly execute the program, i.e., Know(DKH(δ, now), s).

4.4. Smart knowing how

Another way an agent may execute a possibly nondeterministic program is
by considering ahead of time whether there are alternatives at every choice
point whose choice guarantees that he will be able to complete the execution
of the program. Such an ideal agent is looking ahead before committing
to any execution strategy. It seems that if such an agent knows of some
strategy that he can execute the program under this strategy, then we can
be confident that he will pick that strategy (or some equally good one) and
succeed in executing the program. We call this ability to smartly execute a
program smart knowing how. It is defined formally as follows:

SKH(δ, s) def= ∃σ Know(CanExec(δ,σ, now), s).

For instance, a smart agent does know how to execute the program in ex-
ample 2 (as well as that in example 1). However, no agent will ever know
how to execute False?|while True do null , because neither of its branches
can be executed; the first one fails and the second one loops forever.

An immediate consequence of the definition is that if an agent knows
how to smartly execute δ, then he knows that δ has a terminating execution
path:

Proposition 10. SKH(δ, s) ⊃ Know(∃s′ Do(δ, now, s′), s).

We mentioned earlier that the accounts proposed by Moore [16] and
Morgenstern [17] are inadequate for dealing with unbounded iteration. The
problem arises with non-terminating programs such as while True do a.
Intuitively, we would want to say that no agent knows how to execute
such a program, as it is impossible to bring it to termination. Our ac-
count conforms to this and yields ¬SKH(while True do a, s) as well as
¬DKH(while True do a, s). The axioms provided by Moore and Morgen-
stern however, do not rule out an agent’s knowing how to execute such a
program. Davis [2] does not discuss the issue of knowing how for programs
involving unbounded iteration. His account appears to handle such cases
properly, but no examples are provided. Singh [24] has also developed an
account of knowing how in a more restrictive propositional modal setting.
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4.5. Relationships among these notions

It is interesting to examine the relationships among these notions. First, if
an agent knows that he knows how to execute a program acting as a dumb
executor, then he also knows how to execute it acting smart:

Proposition 11. For all complex actions δ,
Know(DKH(δ, now), s) ⊃ SKH(δ, s).

The converse does not hold in general because there may be strategies
under which the program cannot be executed and a smart executor will be
able to avoid these, while a dumb one will not. However, since the execution
of determinate programs is independent of any strategy, we have:

Proposition 12. For all determinate complex actions δ,
Know(DKH(δ, now), s) ≡ SKH(δ, s).

The notion of ability to achieve a goal defined earlier can be related to
that of smart knowing how in a very natural way. Let us define

Achieve(φ) def= while ¬Know(φ) do πa a.

Achieve(φ) is a kind of universal program for achieving the goal φ. Then,
we can show that being able to achieve a goal is equivalent to knowing how
to achieve it by executing the universal program:

Proposition 13. Can(φ, s) ≡ SKH(Achieve(φ), s).

This is an appealing property. We could take this as a definition for
Can, but we find our earlier definition simpler and easier to work with.

One could also consider defining smart knowing how in terms of
ability, that is, taking SKH(δ, s) as standing for something like
Can(∃s′ Do(δ, s′, now), s)7 — a smart agent knows how to execute δ if and
only if it can achieve the goal of having done δ. We plan to explore this
approach and determine how it relates to our current definition.

5. Planning reconsidered

In this paper, we presented a definition of ability and two definitions of
knowing how as macro abbreviations in the situation calculus, and showed
that they had reasonable formal properties and generalized a number of

7 This isn’t quite right because it does not require the execution of δ to start in situation
s; but this can be fixed.
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other accounts. These definitions, we claimed, were a necessary first step
to any theory of planning in a context involving incomplete knowledge of
the initial state, knowledge-producing actions, and actions with context-
dependent effects.

What our account does not provide, however, is a theory of planning
itself. What exactly is a plan? If we simply say that it is any program that
achieves a goal and that the agent knows how to execute, then for smart
agents, the planning problem is absolutely trivial: when ¬Can(φ, s), there
can be no plan for φ; but when Can(φ, s), the agent also knows how to
execute the universal program defined above: SKH(Achieve(φ), s).

For dumber agents, however, the case is not so clear. Even if Can(φ, s),
must there exist a program δ that will bring about φ and such that
DKH(δ, s) holds? What would be ideal in this case would be a way of
synthesizing a suitable program from a proof of Can(φ, s), that is, from
a proof of ∃σ Know(CanGet(φ,σ, now), s). This is can be thought of as
a generalization of planning by deduction and answer extraction [6] that
would somehow convert an action selection function into a program of the
appropriate sort.

We can also imagine a variety of types of programs for agents of varying
power. For a very dumb agent, we might require that all tests in all if-then-
elses and while-loops in the program consist of comparisons among known
sensor values. This would decouple the agent from any background theory
of the world. Another alternative might be to allow tests that refer to values
of fluents, and assume that the agent can use successor state axioms at run
time. Yet another possibility is to allow tests and actions that incorporate
limited versions of planning. For instance, we might let the agent decide at
run time whether or not it needs to perform a knowledge-producing action
before executing a test. There is clearly a tradeoff here: the more we assume
of our agent at execution time (with whatever effects on performance this
might have), the less work will be necessary at planning time.

An answer to the question of what it means to solve the planning prob-
lem for a dumb executor that can perform sensing at run time is provided
in [11]. The account assumes that the executor is very dumb and neither
performs reasoning about fluents, nor memorizes sensor values. A plan lan-
guage suitable for such an executor is presented. The language only allows
branching based on the result of an immediately preceding sensing action,
and has the property that agents always know how to execute any plan that
can be expressed. In [13], this language is shown to be universal in that any
effectively achievable goal can be achieved by getting an agent to execute a
program in this language.
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It would be interesting to develop accounts of planning for executors at
different points in the dumb-smart spectrum. Another interesting area for
future research is group ability, i.e., when can a group of agents (that can
perform sensing) jointly achieve a goal.

Appendix

A. Proof of Proposition 5

The proof uses three lemmas. Remember that for simplicity here, we are
assuming that primitive actions are always physically possible. First, we
show that whenever a goal is known to hold already, it can be achieved:

Lemma 14. Know(φ, s) ⊃ Can(φ, s).

Proof. Take arbitrary σ and s′ such that K(s′, s). Since K is transi-
tive and we are given that Know(φ, s), we have that Know(φ, s′). Thus,
CanGet(φ,σ, s′) and Know(CanGet(φ,σ, now), s).

Then, we show that if there is an action such that the agent knows that
he can achieve his goal after the action is performed, then he can achieve
the goal from the beginning:

Lemma 15. ∃aKnow(Can(φ, do(a, now)), s) ⊃ Can(φ, s).

Proof. Suppose that there is an action a such that
Know(Can(φ, do(a, now)), s). This means that

∀s′(K(s′, s) ⊃ Can(φ, do(a, s′))),
and thus that

∀s′(K(s′, s) ⊃ ∃σs′ Know(CanGet(φ,σs′ , now), do(a, s′))) (∗)

i.e., for every K-accessible situation s′, there is a action selection function σs′

that the agent knows will get him to the goal. We will show that Can(φ, s),
by constructing a single action selection function that works for every K-
accessible situation.

First, notice that we can partition the accessible situations into equiv-
alence classes according to whether they remain mutually accessible af-
ter the performance of action a. Given s1 and s2 such that K(s1, s) and
K(s2, s), let s1 ≈ s2 iff K(do(a, s2), do(a, s1)). It is easy to show that
≈ must be an equivalence relation given the successor state axiom for K
and the requirement that K be transitive and euclidean. We must select
a single action selection function for all situations in a given equivalence
class in order to construct a global action selection function for which the
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agent can get to the goal. Let f be some arbitrary function that maps an
equivalence class into the action selection function associated with one of
its member, i.e., such that f([s1]) = σs2 where s1 ≈ s2. We claim that
∀s′(K(s′, s) ⊃ CanGet(φ, f([s′]), do(a, s′))), i.e., in every accessible situa-
tion the agent can get to the goal by following the action selection function
selected by f after doing a. To see this, suppose that f([s′]) = σs∗; then
K(s∗, s) and K(do(a, s′), do(a, s∗)); so by (∗) CanGet(φ,σs∗ , do(a, s′)).

Now let us define a global action selection function as follows:

σg(s∗) =
{

f([s′])(s∗) if ∃s′(K(s′, s) ∧ s′ < s∗)
a otherwise

It follows that ∀s′(K(s′, s) ⊃ CanGet(φ,σg, do(a, s′))). Since ∀s′(K(s′, s) ⊃
σg(s′) = a), we must also have that ∀s′(K(s′, s) ⊃ CanGet(φ,σg, s′)), and
thus that Can(φ, s).

Finally, we show the converse of the above two results:

Lemma 16.
Can(φ, s) ⊃ Know(φ, s) ∨ ∃aKnow(Can(φ, do(a, now)), s).

Proof. We assume that Can(φ, s) and ¬Know(φ, s) and show that

∃aKnow(Can(φ, do(a, now)), s).

From the first assumption, we have that

∃σ Know(CanGet(φ,σ, now), s). (†)

Take an arbitrary s′ such that K(s′, s). Since ¬Know(φ, s) and K is
euclidean, it follows that ¬Know(φ, s′). Now by (†), we have that
CanGet(φ,σ, s′). By the definition of CanGet, this together with
¬Know(φ, s′) implies that CanGet(φ,σ, do(σ(s′), s′)) and ∃aKnow(σ(now)
= a, s′). Since K(s′, s) and K is transitive, we also have that
Know(CanGet(φ,σ, do(σ(now), now)), s′), and thus also that there is an
a such that Know(CanGet(φ,σ, do(a, now)), s′). By the successor state
axiom for K, this implies that Know(CanGet(φ,σ, now), do(a, s′)). There-
fore ∃σ Know(CanGet(φ,σ, now), do(a, s′)), and Can(φ, do(a, s′)). Thus,
∃aKnow(Can(φ, do(a, now)), s).

B. An iterative definition of ability

Let us write Cank
I (φ, s) if the agent is able to achieve φ in at most k steps,

for any natural number k. Inductively, we define:

Cank
I (φ, s)=

{
Know(φ, s) if k = 0
Cank−1

I (φ, s) ∨ ∃aKnow(Cank−1
I (φ, do(a, now)), s) if k > 0
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An easy consequence of lemmas 14 and 15 is the following:

Proposition 17. For any k ≥ 0, Cank
I (φ, s) ⊃ Can(φ, s).

In many cases where an agent is able to achieve a goal, the agent knows
that it can achieve the goal in at most k steps, i.e. Cank

I (φ, s). For instance,
this applies to the treasure example in the introduction (provided that the
agent can perform the sensing action). But this fails to apply for the tree
example. Roughly speaking, we have that the agent knows that there is a k
such that k chops are sufficient, but that there is no k such that the agent
knows that k chops are sufficient. Models of the theory are such that in each
situation accessible from S0, there is fixed finite number of chops that will fell
the tree, but that there are accessible situations for every natural number.

C. Proof of Proposition 13

The proof uses the following lemma:

Lemma 18.

During(Achieve(φ),σ, s, s′) ≡ OnPath(σr, s, s
′) ∧

∀s∗(s ≤ s∗ < s′ ⊃ ¬Know(φ, s∗)),

Do(Achieve(φ),σ, s, s′) ≡ During(Achieve(φ),σ, s, s′) ∧ Know(φ, s′),

where σ ranges over path selection functions.

We prove each direction of the theorem as follows:

Lemma 19. Can(φ, s) ⊃ SKH(Achieve(φ), s).

Proof. Suppose that the antecedent holds, i.e., that there exists an ac-
tion selection function σ such that Know(CanGet(φ,σ, now), s). Take an
arbitrary ss such that K(ss, s). By the assumption and the definition of
CanGet, we have that

∃se(OnPath(σ, ss, se) ∧ Know(φ, se) ∧
∀si[ss ≤ si < se ⊃ ∃aKnow(σ(now) = a, si))]).

Since situations are well founded, we must also have

∃se(OnPath(σ, ss, se) ∧ Know(φ, se) ∧
∀si[ss ≤ si < se ⊃ ¬Know(φ, si) ∧ ∃aKnow(σ(now) = a, si))]).

Let σ′ be an arbitrary path selection function such that σ′
r = σ. By

the above and lemma 18, we have that ∃se Do(Achieve(φ),σ′, ss, se). Take
arbitrary si, s′s and s′i such that ss ≤ si ≤ se, K(s′s, ss), K(s′i, si), and
s′s ≤ s′i. By the above and the fact that K is transitive, it follows that
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if si = se then Know(φ, s′i). By the above and the fact that K is eu-
clidean, it follows that if si &= se then ¬Know(φ, s′i). As well, by the
above, we must have OnPath(σ, s′s, s

′
i). Thus by lemma 18, we must have

that During(Achieve(φ),σ′, s′s, s
′
i), and Do(Achieve(φ),σ′, s′s, s

′
i) for si = se.

Therefore, CanExec(Achieve(φ),σ′, ss).

Lemma 20. SKH(Achieve(φ), s) ⊃ Can(φ, s).

Proof. Suppose that the antecedent holds, i.e., that there exists a path
selection function σ such that Know(CanExec(Achieve(φ),σ, now), s).
Take an arbitrary ss such that K(ss, s). The assumption implies that
∃seDo(Achieve(φ),σ, ss, se). Thus by lemma 18, we have that

∃se(OnPath(σ, ss, se) ∧Know(φ, se) ∧ ∀si[ss ≤ si < se ⊃ ¬Know(φ, si)]).

Take an arbitrary si such that ss ≤ si < se. Clearly, it must be the case
that ¬Do(Achieve(φ),σ, ss, si). Since K(ss, s), by transitivity of K and the
successor state axiom for K, we must also have that K(ss, ss) ∧ K(si, si).
This implies that

¬∀s′s, s
′
i[K(s′s, ss) ∧ K(s′i, si) ∧ s′s ≤ s′i ⊃ Do(Achieve(φ),σ, s′s, s

′
i)].

Thus, by the assumption and the definition of CanExec, we have that

∃a∀s′s, s
′
i[K(s′s, ss) ∧ K(s′i, si) ∧ s′s ≤ s′i ⊃

During(Achieve(φ),σ, s′s, do(a, s′i))].

Clearly σr(si) = a; so we have ∃aKnow(σr(now) = a, si). Therefore, we
have that Know(CanGet(φ,σr, now), s).
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