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Abstract. This paper presents Rasiowa–Sikorski deduction systems (R–S systems) for

logics CPL, CLuN, CLuNs and mbC. For each of the logics two systems are developed: an

R–S system that can be supplemented with admissible cut rule, and a KE-version of R–S

system in which the non-admissible rule of cut is the only branching rule. The systems

are presented in a Smullyan-like uniform notation, extended and adjusted to the aims of

this paper. Completeness is proved by the use of abstract refutability properties which are

dual to consistency properties used by Fitting. Also the notion of admissibility of a rule

in an R–S-system is analysed.
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1. Introduction

This paper presents Rasiowa–Sikorski deduction systems ([32,33], “R–S sys-
tems” for short) for the propositional part of paraconsistent logic CLuN [2]
and its two extensions: paraconsistent CLuNs [4] and logic mbC, which is a
Logic of Formal Inconsistency [10]. We start the presentation with the clas-
sical case and analyse also the classical variant with equivalence. For each of
the analysed logics two systems are presented. The first one is a rather stan-
dard R–S system which can be supplemented with the rule of cut to search
for shorter proofs. The rule of cut is admissible in this case. The second is
a version of R–S system inspired by a tableau system called “KE” [16,17],
in which the rule of cut is the only branching rule. In this version cut is not
admissible.

To our best knowledge there are no Rasiowa–Sikorski formalizations of
the logics CLuN, CLuNs, mbC. In [6,7] the Reader may find tableau methods
for CLuN. The Logics of Formal Inconsistency have various proof-theoretical
descriptions—there is a tableau method for mbC [10], the KE tableau
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method, which is also implemented [29], and there is also a sequent system
for mbC [15]. In [14] the authors have also introduced resolution systems
for the three logics, which are also grounded in Inferential Erotetic Logic
(see Section 6 for more information concerning the logic of questions and
its connection with the proof methods analysed in [14] and in this paper).
We do not know, however, if there is any description of CLuN and CLuNs in
terms of KE-like tableaux.

In this paper we also propose an extension of the uniform notation by
Smullyan [34] in order to account for semantical cases which do not follow
under the α-, β-scheme. The extended version allows for a uniform treatment
of the analysed logics by the use of only four schemas of rules. Finally,
we develop a special technique of proving completeness of the presented
system—a technique using abstract refutability properties [12] which are
dual to consistency properties proposed by Smullyan and used extensively,
e.g., by Fitting [18,19]. We also introduce the notion of admissibility of a
rule in an R–S system and sketch some results in this field.

1.1. Motivation for This Work

Our motivation is basically proof-theoretical. We are interested in (a) rela-
tions between different deduction systems, (b) duality of proof-procedures,
(c) relationship between efficiency of proof-procedures and the rule of cut.
The choice of logics was motivated by our previous research presented in
[14], but also by the fact that the logics we have chosen allow for a neat
generalisation—by the use of an extended uniform notation the various log-
ics are characterized by only four schemas of rules. What is more, the general
unifying treatment extends to the proofs of soundness and completeness.

1.2. Logics CLuN, CLuNs, mbC

Let us now present the main characters. Logic CLuN, introduced in [2], is
a predicative paraconsistent logic, and the weakest negation-complete ex-
tension of positive classical logic. CLuNs is a very rich extension of CLuN

which remains paraconsistent although its axioms allow for introduction of
the paraconsistent negation inside formulas (see [4]). Both logics are known
from their role in the construction of inconsistency-adaptive logics (see, e.g.,
[3]).

In [14,40] the authors have considered the propositional fragments of
logics CLuN and CLuNs expressed, however, in a linguistic extension of the
original logics, containing both paraconsistent and classical negation. We
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shall follow this approach in this paper. As in [14,40], for the sake of sim-
plicity, we will use the names CLuN and CLuNs for the propositional logics
considered here.

The Logics of Formal Inconsistency, of which mbC is the basic—minimal—
example, are paraconsistent logics which “internalize” the property of con-
sistency expressing it by the use of an operator ‘◦’. In this way the logics
recover all of Classical Logic inside the systems (see [10]). Logic mbC has
been introduced in [11] and has gained popularity since then. It may be also
thought of as an extension of CLuN (see [4,5]).

1.3. Invertible Rules and Confluent Systems

It is a good practice to construct deduction systems with invertible rules.
One good reason for this is that such deduction systems are usually conflu-
ent, which means that whenever one starts with a provable formula, there
are no “bad moves” in the construction of a derivation (a tree) that would
lead to a “dead end”, from where no proof can be found.1

Thus confluency seems a desirable property, favourable for implementa-
tion. However, in order to obtain invertible rules for CLuN, CLuNs and mbC

we had to express them in a language richer than the object-level language
of the given logic. The idea is to think of ‘∼ A’ as a disjunction of a clas-
sically negated formula ‘¬A’ and a semantically atomic expression ‘χ∼A’,
where ‘χ’ is introduced to the language in order to express syntactically the
fact that a paraconsistently negated formula ‘∼ A’ can get a direct assign-
ment of a logical value, and thus can be true even though A is also true.
The idea comes from [5], and have been used successfully in [40] and later in
[14], where the consistency operator ‘◦’ is treated in a similar manner.2 The
uniform notation is introduced for the richer language with ‘χ’. It turns out
that only in the case of CPL one language is sufficient.

1.4. Rasiowa–Sikorski Deduction Systems

In their joint paper [32], and later in the monograph [33] the authors—
Helena Rasiowa and Roman Sikorski—presented the method of diagrams

1[23, p. 121]: “A tableau calculus is proof confluent, if from every tableau for an unsat-
isfiable set of sentences a closed tableau can be constructed.”

2Let us also observe at the margin that the general idea—inspired by Suszko’s Thesis—
to capture a non-classical logic in a classic-like metalanguage is highly productive (see [1]),
especially in proof-theory, see [9] and the discussion presented there. In [9] this idea is used
to introduce cut-based analytic tableaux inspired by KE, just like in our account.

315
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of formulas, which nowadays is called Rasiowa–Sikorski method, Rasiowa–
Sikorski diagrams, or simply R–S system. Roughly speaking, a diagram of a
formula is a tree with finite sequences of formulas in the nodes. The rules of
the system decompose formulas in a way which is characteristic of uniform
(α, β) notation. When the diagram of a formula A is completed its leaves
contain finite sequences of literals. Each such leaf corresponds to a clause
(disjunction) and a conjunction of such clauses is a Conjunctive Normal
Form of A.

Originally, a diagram of a formula has been defined as a (partial) function
taking as arguments finite binary sequences. The binary sequences “expand”
step by step and “pick up” sequences of formulas as arguments. It is a
beautiful definition. Unfortunately, it is out of the commonly accepted proof-
theoretical tradition which leaves us with two predominant formats of proof:
that of sequences and that of trees. Therefore we define the diagrams as
labelled trees.

Let us also make the following useful distinction between S-formulation of
tableau system, where single formulas occur in the nodes, and H-formulation
of tableau system, where sets, or certain structures containing formulas, like
sequences, occur in the nodes. “S” is for Smullyan, and “H” for Hintikka,
and, obviously, an R–S system is an H-formulation of tableaux.

The R–S systems have been developed for many logics and found var-
ious important applications, int.al., in the area of computer science—see,
e.g., [20,21,25,26,30]. In [20,21,30] the authors have introduced the term
“dual tableaux”. Dual tableaux are strongly motivated by R–S systems, but
at the same time they are “genuine” tableaux, conceptualised as trees and
in S-formulation. The term “dual” is to emphasize duality of R–S systems
with respect to analytic tableau systems. The former may be interpreted
as deriving Conjunctive Normal Form of a formula A, and is a “validity
checker”, whereas the later attempts to build a proof of A by deriving Dis-
junctive Normal Form of ‘¬A’ and is thus an “unsatisfiability checker” (the
terminology comes from [30]).

1.5. Tableau System KE

In [16,17] the authors have presented a tableau system which analyses α-
and β-formulas exclusively in a linear manner. For example, a β-formula of
the form ‘A ∨ B’ is analysed only when one of: ‘¬A’ or ‘¬B’ is present at a
branch. The presence of ‘A∨B’ and ‘¬A’ allows us to infer B, and similarly
for the other case. Obviously, one needs a rule introducing the missing ‘¬A’
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or ‘¬B’ when necessary. And here comes the rule of cut—the only branching
rule of the system.

The motivation for using cut in this way, in order to decrease the size of
derivation trees by restricting the use of branching rules, goes back at least
to [8]. If the size of a tree is supposed to model time complexity (see for
example [31, p. 551] for this claim), then cut-based proof procedures seem to
support efficiency.3 As the authors state in [16,17], the rule of cut expresses
the Principle of Bivalence, a principle which is absent in the formulation of
standard analytic tableaux. The lack of this principle in the foundations of
the method can lead, at least in some cases, to a computational collapse.
The rule of cut is then introduced as a remedy.

1.6. Duality of Proof Procedures and at Least Two Shades of Cut

As we have said, this paper is a continuation of [14]. In [14] the authors have
described the so-called erotetic calculi for the logics considered here (except
for CPL with equivalence, which is new in this paper). Erotetic calculus is
a calculus of questions originally developed in the framework of Inferential
Erotetic Logic (see [37,38] and Section 6 of this paper). But the questions
of a formal language are based on finite sequences of sequents and this is
where the purely proof-theoretical perspective emerges. At the moment, we
leave the erotetic aspect aside and analyse only sequents.

Basically, there are two types of erotetic calculi: canonical and dual.
Canonical constructions are to a large degree erotetic versions of R–S sys-
tems. In [14] the authors have introduced calculi which are dual with respect
to the canonical erotetic calculi. Duality may be expressed both in proof-
theoretical and in semantic terms.

Proof-theoretically, the difference between the two types of calculi is in
the nature of the closing conditions: these may be arrived at through a
kind of decomposition of formulas and inspection of complementary for-
mulas (canonical calculi), or through a decomposition and resolution (dual
calculi). Semantically, the relation of duality can be expressed as follows.
Suppose S is a finite sequence of formulas of a given formal language, and
v is a valuation function defined for the language and with values in {0, 1}.
Then we may define two semantical, dual to each other, properties: the first
property consists in S having at least one term true under v, whereas the
second one consists in S having at least one term false under v. The erotetic

3It seems, however, that there is no clear evidence that implementing cut leads to an
improvement of a proof procedure in terms of efficiency. We are indebted to one of the
Reviewers for spotting this problem.
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rules of canonical calculi preserve the first property, and the dual erotetic
calculi preserve the second property.

Let us emphasize that the duality relation between erotetic calculi is lo-
cated on the level of proof-procedures, whereas duality of “dual tableaux”
may be explained in terms of the two sides of a sequent: the analysis charac-
teristic of analytic tableaux takes place on the left side of sequents, whereas
the R–S derivation process, and the analysis specific to dual tableaux, takes
place on the right side.

Therefore there are at least two relations of duality worth study. One
is located at the level of formulas in the sense of the difference between
αs and βs; in other words, it is the level of two sides of a sequent. The
second relation is at the level of proof-procedures; it is what we do with
the sequents and how we arrive at the conclusion that a proof has been
obtained. Finally, it is worth to stress that on the second level of duality
the cut rule known from sequent calculi is “canonical” and, as was said, it
expresses the Principle of Bivalence, whereas the resolution rule is its dual
and it expresses the Principle of Non-contradiction.

2. Rasiowa–Sikorski Deduction System for Classical Propositional

Logic

The language LCPL of Classical Propositional Logic (CPL for short) consists
of countably infinitely many propositional variables p1, p2, . . . , pi, . . ., logi-
cal connectives ¬,∧,∨,→ and parentheses (,). We use VAR for the set of
propositional variables and write p, q, r, s instead of p1, p2, p3, p4. The no-
tion of formula of LCPL is defined in a standard way, FORCPL stands for the
set of all formulas of LCPL. We will use A,B,C as metavariables for for-
mulas of LCPL. For simplicity, single quotation marks (i.e.: ‘ ’) will be used
in two roles: to indicate that an expression is mentioned (not used) and as
Quinean corners. We also resign from the use of it whenever there is no risk
of a misunderstanding.

Language LCPL is equipped with usual semantics based on Boolean valu-
ations with 0 and 1 for false and truth, respectively. We shall write “valua-
tion” instead of “Boolean valuation”. Formulas true under every valuation
are called CPL-valid.

In the sequel we will refer to the following fact, which we state without
proof (see [19, p. 15]):
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Table 1. α, β assignment for CPL

α α0 α1 β β0 β1

A ∧ B A B ¬(A ∧ B) ¬A ¬B

¬(A ∨ B) ¬A ¬B A ∨ B A B

¬(A → B) A ¬B A → B ¬A B

Table 2. κ assignment for CPL

κ κ0

¬¬A A

Fact 1. For any function f from the set VAR to the set {0, 1} there exists
exactly one valuation v which is an extension of f , that is, such that v(pi) =
f(pi) for each pi ∈ VAR.

We use the uniform notation as introduced in [34]. The following table
(see Table 1) defines the meaning of αs and βs for CPL.
We also decide to treat doubly negated formulas separately, and thus intro-
duce the κ-assignment presented in Table 2.4

Quite obviously:

Corollary 1. In the case of α-, β-, and κ-formulas defined for CPL, for
an arbitrary valuation v,

1. v(α) = 1 iff v(α0) = 1 and v(α1) = 1,

2. v(β) = 0 iff v(β0) = 0 and v(β1) = 0,

3. v(κ) = v(κ0).

Letters S, T will refer to finite sequences of formulas of language LCPL. We
will use the sign: ′ for concatenation of finite sequences, thus ‘S ′ T ’ refers to
the result of concatenation of S and T . In the case of one-term sequences, we
will often omit angle brackets. For example, we will write ‘S ′ A ′ T ’ instead
of ‘S ′ 〈A〉 ′ T ’. Also the following convention will be useful. The inscription
‘S(A)’ will refer to a finite sequence of formulas of LCPL such that A is
its term (element). In other words, we can say that a sequence is of the
form ‘S(A)’, or that it is of the form ‘S1

′ A ′ S2’, and in both cases we refer
to the same class of sequences. By and large, the convention referring to

4The κ-notation has been introduced in [39] in order to account for a group of cases for
quantifiers together with the case of double negation. The leading idea is that κs account
for simple linear cases where one formula is transformed into one formula. This is how we
use this notation in this paper.
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Table 3. The rules of RS
CPL

rule Rβ: rule Rα: rule Rκ:

S(β)

S(β/β0, β1)

S(α)

S(α/α1)S(α/α0)

S(κ)

S(κ/κ0)

concatenation is more precise but in some contexts, like proofs of theorems,
less perspicuous than the one with parentheses, therefore we will use both
conventions.

In order to indicate that both ‘A’ and ‘B’ are terms of S we shall write
‘S(A)(B)’; the order of A and B in S is arbitrary, thus ‘S(A)(B)’ and
‘S(B)(A)’ have the same meaning. Then by ‘S(A/B)’ we mean the result
of replacing the one distinguished term of S of the form ‘A’ with an oc-
currence of ‘B’. In other words, if ‘S(A)’ is of the form ‘S1

′ A ′ S2’ (in
the concatenation-convention), then ‘S(A/B)’ refers to ‘S1

′ B ′ S2’. Observe
that S1 and S2 may contain occurrences of A, and these occurrences are not
replaced. The inscription ‘S(A1/B1)(A2/B2)’ will refer to a superposition
of two replacement operations, and so on. We will also need: ‘S(A/B1, B2)’
which refers to the result of replacing the distinguished term of the form ‘A’
with two terms: B1, B2, that is, to ‘S1

′ 〈B1, B2〉
′ S2’.

R–S deduction system for CPL will be called RS
CPL. It consists of the

rules falling under the schemas displayed in Table 3.
If two formulas are of the forms: ‘A’ and ‘¬A’, then we call them com-

plementary. A sequence of formulas containing a pair of complementary
formulas among its terms will be called fundamental.

The tableaux built using R–S system tools will be called decomposition
diagrams. Formally:

Definition 1. Let S be a finite sequence of formulas of language LCPL.
By a decomposition diagram of S via the rules of RS

CPL we mean a finite
tree labelled with finite sequences of formulas of LCPL, where the labels are
regulated by the rules of RS

CPL and S labels the root.
By a proof of a formula, A, in RS

CPL we mean a decomposition diagram
of the one-term sequence 〈A〉 via the rules of RS

CPL each leaf of whose is
labelled with a fundamental sequence.

The following example presents a decomposition diagram of the sequence:
〈p ∧ q, p ∧ ¬q,¬p ∧ r,¬p ∧ ¬r〉 via the rules of RS

CPL. In the sequel, we omit
the angle brackets around sequences. The formulas which are acted upon by
a rule are boxed. Every time Rα is applied.
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Table 4. ε assignment for CPL

ε ε00 ε01 ε10 ε11

A ↔ B A ¬B ¬A B

¬(A ↔ B) ¬A ¬B A B

Example 1.

p ∧ q , p ∧ ¬q, ¬p ∧ r, ¬p ∧ ¬r

q, p ∧ ¬q , ¬p ∧ r, ¬p ∧ ¬r

Υ4q, p, ¬p ∧ r , ¬p ∧ ¬r

q, p, r, ¬p ∧ ¬r

q, p, r, ¬rq, p, r, ¬p

q, p,¬p, ¬p ∧ ¬r

p, p ∧ ¬q, ¬p ∧ r , ¬p ∧ ¬r

p, p ∧ ¬q, r, ¬p ∧ ¬r

Υ3Υ2

Υ1

where Υ1 = p, p∧¬q,¬p,¬p∧¬r, Υ2 = p, p∧¬q, r,¬p, Υ3 = p, p∧¬q, r,¬r,
Υ4 = q,¬q,¬p ∧ r,¬p ∧ ¬r.

Assume that we add the equivalence connective ‘↔’ to the language. The
extended language will be called ‘LCPL↔’, and the Classical Propositional
Logic expressed in LCPL↔ will be called ‘CPL(↔)’. Then the assignment
given in Table 4 occurs useful.

Let us observe that the following is true:

Corollary 2. In the case of ε-formulas defined for CPL(↔), for an arbi-
trary valuation v:

4. v(ε) = 1 iff (v(ε00) = 1 or v(ε01) = 1) and (v(ε10) = 1 or v(ε11) = 1).

The R–S system for logic CPL(↔), called RS
CPL↔, consists of the rules

falling under schemas Rα, Rβ, Rκ, and Rε:

S(ε)

S(ε/ε10, ε11)S(ε/ε00, ε01)
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In order to demonstrate soundness of R–S systems we interpret sequences
of formulas semantically as disjunctions.

Definition 2. A finite sequence S of formulas of language LCPL (language
LCPL↔) is correct under valuation v iff v assigns value 1 to at least one term
of S.

Corollary 3. A fundamental sequence is correct under every valuation.

Corollaries 1 and 2 may be easily used to prove that the rules: Rα, Rβ, Rκ,
Rε are correct (or sound) in the following sense: they preserve correctness
under a valuation of sequences of formulas from a premise to a conclusion(s).
The corollaries, however, may as well be used to show that the rules preserve
correctness under a valuation in the opposite direction: from a conclusion(s)
to a premise, that is, that they are semantically invertible. To sum up:

Lemma 1. Let S and T represent a premise and a conclusion (respectively)
of a rule falling under schema Rβ or Rκ. For any valuation v: S is correct
under v iff T is correct under v.

Lemma 2. Let S, T0 and T1 represent a premise and conclusions (respec-
tively) of a rule falling under schema Rα or Rε. For any valuation v: S is
correct under v iff both T0 and T1 are correct under v.

By Lemmas 1, 2 and Corollary 3 we obtain:

Theorem 1. (soundness of RS
CPL and RS

CPL↔) If there exists a proof of A

in RS
CPL (in RS

CPL↔), then A is CPL-valid.

We will show completeness of the method in Section 5.

3. Rasiowa–Sikorski Deduction Systems for CLuN, CLuNs and

mbC

We will formalize the three non-classical logics by the schemas of rules pre-
sented for CPL and CPL(↔). We adopt all the language and notational
conventions introduced in the previous section. Until the end of this section
let L ∈ {CLuN,CLuNs,mbC}. For each L we will alter the definition of αs,
βs, and possibly κs and εs. Therefore the tables introducing the uniform
notation will present the proper meaning of the rule schemas.
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Table 5. The axiom system for CLuN

A → (B → A) (A → B) → (((A → (B → C)) → (A → C))

A → (B → (A ∧ B)) (A ∧ B) → A

(A ∧ B) → B A → (A ∨ B)

B → (A ∨ B) (A → C) → ((B → C) → (A ∨ B → C))

A ∨ (A → B) A ∨ ¬A

A → (¬A → B) A ∨ ∼ A

(MP) If ⊢CLuN A and ⊢CLuN A → B, then ⊢CLuN B

Table 6. The axioms for the CLuNs-negation

∼∼ A → A A →∼∼ A

∼ (A → B) → A ∧ ∼ B A∧ ∼ B →∼ (A → B)

∼ (A ∧ B) → ∼ A∨ ∼ B ∼ A∨ ∼ B →∼ (A ∧ B)

∼ (A ∨ B) → ∼ A∧ ∼ B ∼ A∧ ∼ B →∼ (A ∨ B)

3.1. CLuN, CLuNs and mbC: Axiomatic Account

Logics CLuN and CLuNs are expressed in the same language LCLuN, which is
built upon language LCPL by adding the sign ‘∼’ for paraconsistent negation.
The set FORCLuN of formulas of LCLuN is defined by the following BNF-
grammar:

A ::= p | ¬A | ∼ A | A ∧ A | A ∨ A | A → A

Let us recall that we consider a ¬-extension of the original system CLuN.

The language LmbC of the logic mbC is the language of CLuN enriched
with the symbol ‘◦’ (consistency operator). The set FORmbC of formulas of
LmbC is defined by the following BNF-grammar:

A ::= p | ¬A | ∼ A | ◦ A | A ∧ A | A ∨ A | A → A

Logic mbC is usually worded in a language without classical negation,
but it is possible to define the constant falsum in it by putting:

⊥ ::= ◦ A ∧ (A ∧ ∼ A)

Then the classical negation is defined by: ¬A ::=A → ⊥. However, as we
consider mbC as an extension of CLuN we take ‘¬’ as primitive.

Table 5 presents the Hilbert-style deductive system for CLuN. Axiom 12
can be equivalently stated as follows: (A →∼ A) →∼ A. The axiomatic
account of CLuNs is obtained by adding the axioms presented in Table 6 to
the axiomatic basis of CLuN.
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In order to obtain the axiomatic characterization of mbC we add the
following axiom to the axioms of CLuN:

Ax(◦) ◦A → (A → (∼ A → B))

3.2. CLuN, CLuNs and mbC: Semantics

Semantics of the logics CLuN, CLuNs and mbC is sometimes based on the
notion of semivaluation.5 For our purposes it is more convenient to use the
notions introduced below.

Let FORCLuN

∼ = {∼ A : A ∈ FORCLuN}.

Definition 3. (CLuN-valuation) A CLuN-valuation is a function

v : FORCLuN −→ {0, 1} satisfying the following conditions:

(v1) v(A ∧ B) = 1 iff v(A) = v(B) = 1,

(v2) v(A ∨ B) = 0 iff v(A) = v(B) = 0,

(v3) v(A → B) = 0 iff v(A) = 1 and v(B) = 0,

(v4) v(¬A) = 1 iff v(A) = 0,

(v5) there exists an assignment function v : FORCLuN

∼ −→ {0, 1} such that
v(∼ A) = 1 iff v(A) = 0 or v(∼ A) = 1.

The idea is that the assignment v directly assigns a logical value to para-
consistently negated formulas independently of the value assigned by v to
the arguments of paraconsistent negation. For this reason ‘∼ A’ can be true
although A is also true.

The notion of CLuNs-valuation is akin to the above, but with the dif-
ference in the definition of the direct v-assignment. This time the formulas
whose values are assigned “directly” are only those formulas of the form
‘∼ A’, where either A is a propositional variable or A has the form ‘¬B’ for
some B. Let FORCLuNs

∼ = {∼ A : A ∈ VAR} ∪ {∼ ¬A : A ∈ FORCLuN}.

Definition 4. (CLuNs-valuation) A CLuNs-valuation is a function

v : FORCLuN −→ {0, 1} satisfying conditions (v1)–(v4) from Definition 3
and the following:

5The notion of CLuN-valuation is the basis of the standard approach to the semantics
of CLuN (see [4,5]). The concept of CLuN-semivaluation is not explicitly analysed in the
literature on CLuN and CLuNs, but the idea of semivaluation is present in the studies on
LFIs [10]. The notion of mbC-semivaluation is described in [10] under the name “bivaluation
semantics for mbC”.
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(v5∗) there exists an assignment function v : FORCLuNs

∼ −→ {0, 1} such that
v(∼ A) = 1 iff v(A) = 0 or v(∼ A) = 1,

(v6) v(∼ (A ∨ B)) = v(∼ A ∧ ∼ B),

(v7) v(∼ (A → B)) = v(A ∧ ∼ B),

(v8) v(∼ (A ∧ B)) = v(∼ A ∨ ∼ B),

(v9) v(∼∼ A) = v(A).

For the case of mbC, let FORmbC

∼ ◦ = {∼A : A ∈ FORmbC} ∪ {◦A : A ∈
FORmbC}.

Definition 5. (mbC-valuation) An mbC-valuation is a function

v : FORmbC −→ {0, 1} satisfying conditions (v1)–(v4) from Definition 3 and
the following:

(v5∗∗) there exists an assignment function v : FORmbC

∼ ◦ −→ {0, 1} such that

v(∼ A) = 1 iff v(A) = 0 or v(∼ A) = 1

and

v(◦A) = 1 iff (v(A) = 0 and v(◦A) = 1) or (v(∼A) = 0 and v(◦A) =
1)

3.3. CLuN, CLuNs and mbC: Rules

Logics L will be formalized in a language built upon LL by adding the
following operator: ‘χ’. Called “skyhook” the operator is used to express
the fact that some formulas of LL can get the direct assignment of a logical
value. This idea has been used in [40], and then in [14]. Here we also take
this approach.

3.3.1. CLuN The language resulting from LCLuN by the addition of ‘χ’
will be denoted by the symbol ‘LCLuN+ ’. In order to avoid introducing new
metavariables, we define the syntax of “+-languages” not in BNF-format,
but as in [40]. The set FORCLuN+, of formulas of LCLuN+ , is defined as the
smallest set such that: (i) each formula of LCLuN is a formula of LCLuN+ ; (ii)
if ‘∼ A’ is a formula of LCLuN, then ‘χ ∼ A’ and ‘¬χ ∼ A’ are formulas of
LCLuN+ .

The notion of CLuN-valuation for the richer language LCLuN+ is obtained
from the definition of CLuN-valuation for the language LCLuN by the addition
of the following two clauses:

(χ) v(χ ∼ A) = 1 iff v(∼ A) = 1

(¬χ) v(¬χ ∼ A) = 1 iff v(∼ A) = 0
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Table 7. α, β assignment for CLuN

α α0 α1 β β0 β1

A ∧ B A B ¬(A ∧ B) ¬A ¬B

¬(A ∨ B) ¬A ¬B A ∨ B A B

¬(A → B) A ¬B A → B ¬A B

¬ ∼ A A ¬χ ∼ A ∼ A ¬A χ ∼ A

Table 7 presents the α, β assignment for logic CLuN; κ is understood like
in CPL (see Table 2), ε does not apply to CLuN.

As in the classical case, the following holds:

Lemma 3. In the case of α-, β-, and κ-formulas defined for CLuN, for an
arbitrary CLuN-valuation v of language LCLuN+,

1. v(α) = 1 iff v(α0) = 1 and v(α1) = 1,

2. v(β) = 0 iff v(β0) = 0 and v(β1) = 0,

3. v(κ) = v(κ0).

Proof. We consider only one case. Let α = ¬ ∼ A. Let v stand for an
arbitrary CLuN-valuation and suppose that v(α) = 1. Then v(∼A) = 0 by
condition (v4) of Definition 3. By condition (v5), there exists an assignment
v such that v(∼ A) = 1 iff v(A) = 0 or v(∼ A) = 1. This entails that
v(A) = 1 and, by (¬χ), v(¬χ ∼ A) = 1. We have shown that if v(α) = 1,
then v(α0) = 1 and v(α1) = 1.

The R–S system formalizing logic CLuN, named RS
CLuN, is composed of

rules falling under the schemas Rα, Rβ and Rκ, with αs and βs defined by
Table 7 and κs defined by Table 2.

3.3.2. CLuNs In the case of logic CLuNs, we make use of the same lan-
guage LCLuN+ , but redefine the notion of formula and the uniform notation.
Thus let LCLuNs+ = LCLuN+ . The set FORCLuNs+, of formulas of LCLuNs+ , is
defined as the smallest set such that: (i) each formula of LCLuNs is a formula
of LCLuNs+ ; (ii) if ‘∼ A’ is a formula of LCLuNs and either A ∈ VAR or A is
of the form ‘¬B’, then ‘χ ∼ A’ and ‘¬χ ∼ A’ are formulas of LCLuNs+ .

Table 8 presents the α, β assignment for CLuNs. The assignments for
‘∼A’ and ‘¬ ∼A’ are correct iff A is a propositional variable or a classically
negated formula.

Table 9 presents the κ assignment for CLuNs. Again, ε does not apply
here.
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Table 8. α, β assignment for CLuNs

α α0 α1 β β0 β1

A ∧ B A B ¬(A ∧ B) ¬A ¬B

¬(A ∨ B) ¬A ¬B A ∨ B A B

¬(A → B) A ¬B A → B ¬A B

∼ (A ∨ B) ∼ A ∼ B ¬ ∼ (A ∨ B) ¬ ∼ A ¬ ∼ B

∼ (A → B) A ∼ B ¬ ∼ (A → B) ¬A ¬ ∼ B

¬ ∼ (A ∧ B) ¬ ∼ A ¬ ∼ B ∼ (A ∧ B) ∼ A ∼ B

for A ∈ VAR for A ∈ VAR

or A = ¬B or A = ¬B

¬ ∼ A A ¬χ ∼ A ∼ A ¬A χ ∼ A

Table 9. κ assignment for CLuNs

κ κ0

¬¬A A

∼∼ A A

¬∼∼ A ¬A

The notion of CLuNs-valuation is extended to language LCLuNs+ by adding
conditions (χ), (¬χ), just as in the case of CLuN, with the exception that
‘χA’ and ‘¬χA’ are formulas of LCLuNs+ .

We state the following without proof:

Lemma 4. In the case of α-, β- and κ-formulas defined for CLuNs, for an
arbitrary CLuNs-valuation v of language LCLuNs+,

1. v(α) = 1 iff v(α0) = 1 and v(α1) = 1,

2. v(β) = 0 iff v(β0) = 0 and v(β1) = 0,

3. v(κ) = v(κ0).

The R–S system formalizing logic CLuNs, called RS
CLuNs, is composed of

the rules falling under the schemas Rα, Rβ, Rκ with αs and βs defined by
Table 8 and κs defined by Table 9.

3.3.3. mbC Let LmbC+ be the language obtained from the language LmbC

by the addition of ‘χ’. The set FORmbC+, of formulas of this language, is the
smallest set such that: (i) each formula of LmbC is a formula of LmbC+ ; (ii)
if A is a formula of LmbC, where A = ∼B or A = ◦B, then ‘χA’ and ‘¬χA’
are formulas of LmbC+ .

Since logic mbC is built upon CLuN, the notions of α- and β-formulas are
defined by Table 7. In addition, we redefine the notion of ε-formulas.
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Table 10. ε assignment for mbC

ε ε00 ε01 ε10 ε11

◦A ¬A ¬ ∼A χ ◦A χ ◦A

¬ ◦A A ¬χ ◦A ¬χ ◦A ∼A

The notion of mbC-valuation for the language LmbC+ is obtained from
the definition of mbC-valuation for the language LmbC by the addition of the
following four clauses:

(χ) v(χ ∼ A) = 1 iff v(∼ A) = 1

(¬χ) v(¬χ ∼ A) = 1 iff v(∼ A) = 0

(χ′) v(χ◦ A) = 1 iff v(◦A) = 1

(¬χ′) v(¬χ◦ A) = 1 iff v(◦A) = 0

Again, we have what follows:

Lemma 5. In the case of α-, β-, κ- and ε-formulas defined for mbC, for an
arbitrary mbC-valuation v of language LmbC+,

1. v(α) = 1 iff v(α0) = 1 and v(α1) = 1,

2. v(β) = 0 iff v(β0) = 0 and v(β1) = 0,

3. v(κ) = v(κ0),

4. v(ε) = 1 iff (v(ε00) = 1 or v(ε01) = 1) and (v(ε10) = 1 or v(ε11) = 1).

Proof. This time we consider only the (⇐) direction for ε = ◦A. Suppose
that v(ε00) = v(¬A) = 1 and v(ε10) = v(χ ◦ A) = 1. Then by clause (χ′),
clause (v4) of Definition 3 and clause (v5∗∗) of Definition 5, also v(◦A) = 1.
The case of v(ε00) = v(ε11) = 1 is exactly the same. Suppose that v(ε01) =
v(¬ ∼ A) = 1 and v(ε10) = v(χ ◦A) = 1. Then, again, by clause (χ′), clause
(v4) of Definition 3 and clause (v5∗∗) of Definition 5, v(◦A) = 1. The case
v(ε01) = v(ε11) = 1 is the same.

The R–S system for logic mbC, called RS
mbC, has all the rules of RS

CLuN

and the rules of the form Rε. αs, βs and κs are defined as in the case of
CLuN, ε is defined by Table 10.

There is a certain price we pay for the general description of CPL(↔) and
mbC by the use of ε assignment. Namely, for ε = ◦A we have a repetition
in the right conclusion, as the rule Rε takes the form depicted on the left
below. It may be shown, however, that the rule R∗

◦ depicted on the right is

admissible in RS
mbC. We go back to this issue at the end of this section.
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rule R◦: rule R∗

◦:

S(◦A)

S(◦A/χ◦ A, χ◦ A)S(◦A/¬A, ¬∼ A)

S(◦A)

S(◦A/χ◦ A)S(◦A/¬A, ¬∼ A)

The notions of decomposition diagram and proof are defined analogously
as in the classical case. Observe, however, that the notion of proof is reserved
for formulas of “pure” language LL. The skyhook connective ‘χ’ may be
introduced in the course of decomposition only.

Definition 6. Let S be a finite sequence of formulas of language LL+ .
By a decomposition diagram of S via the rules of RS

L we mean a finite
tree labelled with finite sequences of formulas of LL+ , where the labels are
regulated by the rules of RS

L and S labels the root.

Let A be a formula of language LL. By a proof of a formula, A, in RS
L we

mean a decomposition diagram of the one-term sequence 〈A〉 via the rules

of RS
L each leaf of whose is labelled with a fundamental sequence. If there

exists a proof of formula A in RS
L, then we say that A is provable in RS

L.

The following generalization of the notion of proof will be used in the
sequel.

Definition 7. Let S be a finite sequence of formulas of language LL+ and
let T be a decomposition diagram of S via the rules of RS

L. We say that T
is successful iff each leaf of T is labelled with a fundamental sequence.

Here are some examples.

Example 2. Formula p → (∼ p → q) is not provable in any of the systems
presented here.

p → (∼ p → q)

¬p, ∼p → q

¬p, ¬∼ p , q

¬p, ¬χ∼ p, q¬p, p, q
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Example 3. Formula ∼ (p ∧ q) → (∼ p ∨ ∼ q) is not provable in RS
CLuN,

as there are no means to decompose formula ‘¬χ ∼ (p ∧ q)’.

∼ (p ∧ q) → (∼p ∨ ∼q))

¬∼ (p ∧ q), ∼p ∨ ∼q

¬∼ (p ∧ q) , ∼p,∼q

¬χ∼ (p ∧ q),∼p,∼ qp ∧ q, ∼p,∼q

However, the same formula is provable in RS
CLuNs.

∼ (p ∧ q) → (∼p ∨ ∼q))

¬∼ (p ∧ q), ∼p ∨ ∼q

¬∼ (p ∧ q) , ∼p,∼q

¬ ∼p,¬ ∼q, ∼p,∼q

The following holds:

Corollary 4. A fundamental sequence is correct under every L-valuation.

Soundness of RS
L is proved as in the classical case, by using Lemmas 3, 4, 5

and Corollary 4.

Theorem 2. (soundness of RS
L) Let A be a formula of LL. If there exists

a proof of A in RS
L, then A is L-valid.

At the end of this section, let us go back to the notion of admissibility
of a rule in RS

L. By ‘RS
L + R’ we mean the set of rules of RS

L enlarged
with the rules falling under the schema R. The notion of admissibility will
be understood as follows.

Definition 8. We say that a rule R is admissible in R–S system RS
L iff for

each finite sequence S of formulas of LL+ , whenever there exists a successful
decomposition diagram of S in RS

L + R, then there exists also a successful
decomposition diagram of S in RS

L.
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Generally, in order to prove admissibility of a rule in a deduction system
it is enough to show that, first, the rule cannot serve to prove something that
should not be provable, and second, the deduction system without the rule
is complete. In the R–S setting the first property amounts to invertibility of
the rule. It is easily seen that rule R∗

◦ is invertible for the same reason R◦ is.

Hence, after we prove completeness of RS
L it will be easily seen that R∗

◦ is

admissible in RS
L. Also the following rule of cut (which will be called Rcut):

S ′ T

S ′ ¬A ′ TS ′ A ′ T

may be shown to be admissible in RS
L by using the same argument.

It is commonly believed that direct, constructive proofs of admissibility
are more valuable than indirect ones. In our case, however, the direct proof
amounts to delivering a procedure of proof-search in RS

L, but this seems
simply trivial; the rules are sound, invertible and clearly they reduce com-
plexity of formulas, thus almost any algorithm of the rules application will
do. To sum up, we stay with the observation that both an indirect and a
direct proof of admissibility of rules R∗

◦, Rcut in RS
L are obtainable.

4. The Rule of Cut

In this section we introduce the promised second variant of R–S systems.
First, we introduce the following conventions. Until the end of this section let
L ∈ {CPL,CPL(↔),CLuN,CLuNs,mbC}. In the case of L ∈ {CPL,CPL(↔)},
the language LL+ equals LCPL/LCPL↔. If A ∈ LL+ , then by A we refer to
complement of A, that is

A =

{

B, if A is of the form ¬B
¬A, otherwise

Propositional variables and their negations are called literals.

The rules of RS
CPL

cut follow under the schemas presented in Table 11. The
letter ‘l ’ in the names of the rules lRα, lRε is for “linear”.

Observe that rule lRα may be applied provided there is an occurrence of
‘αi’ in the sequence. In the conclusion: ‘S(α/αj)’ only α has been replaced,
the term of the form ‘αi’ does not disappear from S. A similar observation
pertains to the rule for ε-formulas: there must be a term of the form ‘εik’ in
the premise, and in ‘S(ε/εjn, εjm)’ only ε is replaced.
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Table 11. rules of RS
CPL
cut

rule lRα: rule Rβ : rule lRε:

S(α)(αi)

S(α/αj)

S(β)

S(β/β0, β1)

S(ε)(εik)

S(ε/εjn, εjm)

where i, j ∈ {0, 1} where i, j, k, n, m ∈ {0, 1}

i 6= j i 6= j and n 6= m

rule Rκ: the rule of cut Rcut:

S(κ)

S(κ/κ0)

S ′ T

S ′ ¬A ′ TS ′ A ′ T

Here is an example: a decomposition diagram of sequence p∧q, p∧¬q,¬p∧
r,¬p ∧ ¬r via the rules of RS

CPL

cut (see Example 4). The first rule applied is
that of cut, therefore there is no formula “acted upon” in the first sequence.

Example 4.

p ∧ q, p ∧ ¬q, ¬p ∧ r, ¬p ∧ ¬r

p ∧ q , p ∧ ¬q, ¬p ∧ r, ¬p ∧ ¬r, ¬p

q, p ∧ ¬q , ¬p ∧ r,¬p ∧ ¬r, ¬p

q, ¬q, ¬p ∧ r, ¬p ∧ ¬r, ¬p

p ∧ q, p ∧ ¬q, ¬p ∧ r , ¬p ∧ ¬r, p

p ∧ q, p ∧ ¬q, r, ¬p ∧ ¬r , p

p ∧ q, p ∧ ¬q, r,¬r, p

Let us note that there is another possibility to obtain a fundamental
sequence on the left branch of the above diagram. Not only ‘¬p∧¬r’ and ‘p’
match the scheme of lRα, but also ‘¬p∧¬r’ and ‘r’ do. Here is an alternative
for the last two nodes on the left branch of the diagram above:

p ∧ q, p ∧ ¬q, r , ¬p ∧ ¬r , p

p ∧ q, p ∧ ¬q, r,¬p, p

Naturally, proof-search in RS
CPL

cut is goal-directed and non-deterministic.
The question about a general strategy for constructing minimal successful
decomposition diagrams is very important, however, even an attempt to
answer it goes beyond the scope of this paper.
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For logic CPL(↔) we need linear rules for ε-formulas. The solution is
lRε (see Table 11). As the Reader may expect, our aim is to produce the
same schema for ‘↔’ and ‘◦’. The above schema of lRε for CPL(↔) produces
some repetitions, however. E.g., for ε = A ↔ B and i = 0, k = 0, j = 1, n =
0,m = 1:

S(A ↔ B)(¬A)

S(A ↔ B/¬A,B)

which means that there are at least two occurrences of ‘¬A’ in the conclusion.
However, as in the case of R∗

◦, it is easy to see that the variant of lRε without

the repetition is admissible in RS
CPL

cut .

The other R–S systems with cut are obtained as follows.

• RS
CLuN

cut : the rules lRα, Rβ, Rκ from Table 11 with α-, β-formulas defined
as in Table 7 and κ-formulas defined as in Table 2.

• RS
CLuNs

cut : the rules lRα, Rβ , Rκ from Table 11 with α-, β-formulas defined
as in Table 8, and κ-formulas defined as in Table 9.

• RS
mbC

cut : the rules lRα, Rβ, Rκ from Table 11 and rule lRε with α-, β-
formulas defined as in Table 7, κ-formulas defined as in Table 2, and
ε-formulas defined as in Table 10.

Here are some examples.

Example 5. The following is a proof of formula ‘p ∨ ∼ p’ in RS
CLuN

cut . It is

also a proof of the formula in RS
CLuN since the only rule used is Rβ which

is common to both calculi.

p ∨ ∼p

p, ∼p

p,¬p, χ ∼p

Example 6. Here is a proof of formula ‘¬(p ∧ (∼p ∧ ◦p))’ in RS
mbC

cut (to the

left) and in RS
mbC (to the right).

333
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¬(p ∧ (∼p ∧ ◦p))

¬p, ¬(∼p ∧ ◦p)

¬p , ¬ ∼p, ¬ ◦ p

¬p, ¬ ∼p,¬χ ◦ p,∼p

¬(p ∧ (∼p ∧ ◦p))

¬p, ¬(∼p ∧ ◦p)

¬p, ¬ ∼p, ¬ ◦ p

¬p, ¬ ∼p,¬χ ◦ p,∼p¬p,¬ ∼p, p, ¬χ ◦ p

Example 7. A successful decomposition diagram of sequence
p ∧ ¬∼ p, p ∧ ∼ p,¬p ∧ ∼ p via the rules of RS

mbC

cut . The Reader may check
that the smallest successful decomposition diagram for this sequence via the
rules of RS

mbC has 5 branches.

p ∧ ¬∼p, p ∧ ∼p,¬p ∧ ∼p

p ∧ ¬∼p, p ∧ ∼p, ¬p ∧ ∼p , ¬¬p

p ∧ ¬ ∼p , p ∧ ∼p, ∼p , ¬¬p

p, p∧ ∼p, ∼p , ¬¬p

p, p ∧ ∼p,¬p, χ∼p,¬¬p

p ∧ ¬∼p , p ∧ ∼p,¬p ∧ ∼p, ¬p

¬ ∼p, p ∧ ∼p , ¬p ∧ ∼p, ¬p

¬∼p,∼p,¬p ∧ ∼p,¬p

4.1. Analytic Restriction

A natural question to ask is that about analytic restriction of RS
L

cut. We
introduce a version of the notion of analyticity which is, in a way, adjusted
to formalism presented in this work. First, instead of the traditional notion
of subformula we shall use the notion of decomposition set of a formula.

Definition 9. (Decomposition set) Let A be a formula of LL+ . By decom-
position set of A, symbolically Dec(A), we mean the smallest set satisfying
the following conditions:

1. A ∈ Dec(A),

2. if κ ∈ Dec(A) then κ0 ∈ Dec(A),

3. if β ∈ Dec(A), then βi ∈ Dec(A) for both i = 0, 1,

4. if α ∈ Dec(A), then αi ∈ Dec(A) for both i = 0, 1,

5. for L ∈ {CPL(↔),mbC}, if ε ∈ Dec(A), then εij ∈ Dec(A) for each
i, j ∈ {0, 1}.
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Moreover, let S = 〈A1, . . . , An〉 be a finite sequence of formulas of LL+ . We
set:

Dec(S) = Dec(A1) ∪ · · · ∪ Dec(An)

Definition 10. (analytic application of a rule, analytic restriction of RS
L

cut)

Let R stand for a rule of RS
L

cut. We say that rule R has been applied ana-
lytically to sequence S iff

• R is one of Rβ, Rκ, lRα, lRε and this application of R yields a sequence
T such that each term of T belongs to Dec(S),

• R is Rcut and this application of R yields T ′ A ′ U and T ′ ¬A ′ U such
that {A,¬A} ∩ Dec(T ′ U) 6= ∅.

Moreover, by analytic restriction of RS
L

cut we mean the set of rules falling
under the schemas Rβ, Rκ, lRα, lRε, Rcut but restricted to their analytic
applications.

To state the obvious, every application of Rβ, Rκ, lRα, lRε is analytic.

Soundness of the analytic restriction of RS
L

cut follows from soundness of

RS
L

cut. Completeness of the analytic restriction will be considered in the
next section.

5. Completeness

The proof of completeness theorem presented below is inspired by a con-
struction introduced by Raymond Smullyan, and then developed by Melvin
Fitting and used successfully in completeness proofs for the classical and
many non-classical logics (see, e.g., [18,19,34]). In this abstract approach
families of sets called “consistency properties” are defined syntactically in
a way which encodes semantic property of consistency. Showing that the
encoding is correct is actually the main work to be done in order to flip the
bridge between syntax and semantics.

The idea to use a “dual” construction, where refutability properties are
introduced instead of consistency properties, has been developed successfully
in doctoral dissertation by Szymon Chlebowski (see [12]) in order to prove
completeness of erotetic calculi for the First-Order Logic.6 However, the
construction presented here is adjusted (mainly weakened) to the purpose

6The notion of dual Hintikka set has been used by Smullyan in [35]. In the erotetic
context it has been used for the first time in [13].
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of describing propositional logics; also the first author has made it more
“sensitive” to the sequence-format characteristic to R–S systems.

Again, until the end of this section let L ∈ {CPL,CPL(↔),CLuN,CLuNs,
mbC}. As before, in the case of L ∈ {CPL,CPL(↔)}, LL+ = LCPL/LCPL↔.

Definition 11. (Refutability property) Let F be a family of finite sequences
of formulas of LL+ , the empty sequence included. We say that F is a refutabil-
ity property for L iff the following conditions are satisfied:

1. No S ∈ F is a fundamental sequence.

2. If S(α) ∈ F , then S(α/αi) ∈ F for i = 0 or for i = 1.

3. If S(β) ∈ F , then S(β/β0, β1) ∈ F .

4. If S(κ) ∈ F , then S(κ/κ0) ∈ F .

5. If S(ε) ∈ F , then S(ε/εi0, εi1) ∈ F for i = 0 or for i = 1.

Example 8. The following is an example of refutability property for CPL:

F = {〈p ∨ q, p ∧ q, r, s〉, 〈p ∨ q, p, r, s〉, 〈p, q, p ∧ q, r, s〉, 〈p, q, p, r, s〉}

The technical notion of rank of a formula (and a sequence) will be used

in the completeness proof. In the case of L ∈ {CPL,CPL(↔)}, FORL+ =

FORCPL/FORCPL↔.

Definition 12. (Rank of a formula, rank of a sequence) Rank of a formula

in L, symbolically rL, is a function rL : FORL+ −→ N0 defined inductively
as follows:

• rL(pi) = rL(¬pi) = 0,

• if it applies, rL(χA) = rL(¬χA) = 0,

• rL(κ) = rL(κ0) + 1,

• rL(α) = rL(α0) + rL(α1) + 1,

• rL(β) = rL(β0) + rL(β1) + 1,

• if it applies, rL(ε) =

(

∑

i,j∈{0,1}

rL(εij)

)

+ 1.

If S is a finite, non-empty sequence of formulas of LL+ , then by rank of S,
symbolically rL(S), we mean:

rL(S) = max{rL(F ) : F is a term of S}

It should be clear that the value of rL depends on L, at least for some
of the arguments. However, in order to simplify notation, we will write ‘r’
instead of ‘rL’, as it should not cause any confusion.
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In the case of L = CPL, by “L-valuation” we mean Boolean valuation.

Definition 13. (falsifying valuation) Let S be a finite sequence of formulas
of LL+ . If there is an L-valuation v such that each term of S is false under v,
then we say that v is a falsifying L-valuation of S or that S has a falsifying
L-valuation.

Let FORL

χ stand for the set of formulas of the form ‘χA’ which are for-

mulas of language LL+ . Observe that the elements of the set VAR ∪ FORL

χ

are semantically atomic (in semantics of L) and are pairwise logically inde-
pendent (in semantics of L). This yields the following fact, which, similarly
to the classical case, we state without proof:

Fact 2. For any function f from the set VAR∪FORL

χ to the set {0, 1} there
exists exactly one L-valuation v which is an extension of f , that is, such that
v(A) = f(A) for each A ∈ VAR ∪ FORL

χ.

Lemma 6. (Counter-model existence lemma) If a sequence, S, belongs to a
refutability property for L, then S has a falsifying L-valuation.

Proof. Let S be an arbitrary sequence which is an element of a refutability
property F for logic L. If S is empty, then, trivially, each L-valuation is a fal-
sifying L-valuation of S. For non-empty sequences the proof is by induction
on rank of sequence S.

Base step: suppose that r(S) = 0, that is, S is a finite sequence of literals
and/or formulas of the form ‘χA’, ‘¬χA’. By clause 1. of Definition 11, there
is no pair of complementary formulas among the terms of S. By Fact 2, the
following assignment f of truth values:

for each A ∈ VAR ∪ FORL

χ, f(A) = 0 iff A is a term of S

extends to an L-valuation on FORL+. Obviously, it is a falsifying L-valuation
of S.

Induction hypothesis: each sequence from F of rank less than n has a
falsifying L-valuation. Let S ∈ F and r(S) = n. There is at least one formula
F in S of rank n. Suppose that there is exactly one such formula.

If F is an α-formula, then S is of the form ‘S(α)’. By item 2. of Defini-
tion 11, ‘S(α/α0)’ ∈ F or ‘S(α/α1)’ ∈ F , where α0 and α1 are the compo-
nents of F . By definition of rank of a formula, r(αi) < r(F ) for i ∈ {0, 1}.
In both cases, r(S(α/αi)) < n, thus by induction hypothesis there exists a
falsifying L-valuation v for ‘S(α/αi)’ (where i = 0 or i = 1). If v(αi) = 0,
then v(F ) = 0 (for both i = 0, 1), therefore L-valuation v is also a falsifying
L-valuation for sequence S.
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The reasoning is analogous if F is a β-, κ- or ε-formula, and relies on
the simple inequalities: r(β) > r(β0) + r(β1), r(κ) > r(κ0), and finally
r(ε) > r(εi0) + r(εi1) for i ∈ {0, 1}. We skip the details.

Now we have to consider a situation when S ∈ F and r(S) = n, but there
is k ≥ 1 formulas of rank n in sequence S. We reason by subinduction on
k. The base step (for k = 1) has been proved above. Suppose k > 1 and
S is of the form S1

′ F1
′ S2

′ · · ·′ Sk
′ Fk

′ Sk+1, where F1, . . . , Fk are all the
formulas of rank n and S1, S2, . . . , Sk, Sk+1 are (possibly empty) sequences
of formulas of rank lesser than n. We consider the form of formula F1 and
reason analogously as before.

As we can see now, a refutability property for L defined syntactically is
a family of sequences which have falsifying L-valuations, that is, whose sets
of terms are semantically refutable in logic L.

Now we may define:

Definition 14. (RS-refutable sequence) We say that a sequence, S, of for-

mulas of LL+ is RS-refutable in RS
L iff there is no successful decomposition

diagram of S via the rules of RS
L.

And finally:

Lemma 7. Let G be a family of all finite and non-empty sequences S of
formulas of LL+ which are RS-refutable in RS

L. G is a refutability property
in L.

Proof. We have to show that G satisfies each item of Definition 11.

Therefore let S ∈ G. Observe that the tree containing only the root
labelled with S is successful whenever S is fundamental. For this reason,
if S ∈ G, then S cannot be fundamental, thus item 1. of Definition 11 is
satisfied.

Now we prove clause 2. Let S(α) ∈ G. Our aim is to show that then also
S(α/αi) ∈ G for i = 0 or i = 1. Therefore suppose that S(α/αi) /∈ G for
both i = 0, 1. Then there are successful decomposition diagrams: T0 with
‘S(α/α0)’ in the root, and T1 with ‘S(α/α1)’ in the root. Then also the tree

S(α)

T1T0

is a successful decomposition diagram, and it shows that S(α) /∈ G. We
arrive at contradiction.
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The reasoning goes analogously in the remaining cases and so we skip
them.

Theorem 3. (Completeness of RS
L) Let A be a formula of LL. If A is

L-valid, then A has a proof in RS
L.

Proof. Suppose that A is not provable in RS
L. Then 〈A〉 is RS-refutable in

RS
L. By Lemma 7, 〈A〉 belongs to a refutability property for L. By Lemma 6,

there is an L-valuation v such that v(A) = 0. Thus, by contraposition, if A

is L-valid, then A must be provable in RS
L.

5.1. Completeness of R–S Systems with Cut

Here we use the same technique and the proofs are analogous. We only state
what is necessary.

Definition 15. (cut-refutability property for L) Let F be a family of finite
sequences of formulas of LL+ , the empty sequence included. We say that F
is a cut-refutability property for L iff the following conditions are satisfied:

1. No S ∈ F is fundamental.

2. If S(α)(αi) ∈ F , where i ∈ {0, 1}, then S(α/αj) ∈ F , where j ∈
{0, 1}, j 6= i.

3. If S(β) ∈ F , then S(β/β0, β1) ∈ F .

4. If S(κ) ∈ F , then S(κ/κ∗) ∈ F .

5. For L ∈ {CPL(↔),mbC}, if S(ε)(εik) ∈ F , where i, k ∈ {0, 1}, then
S(ε/εjl, εjm) ∈ F , where j, l,m ∈ {0, 1}, i 6= j and l 6= m.

6. If S ′ T ∈ F , then for each formula A of LL+ , S ′ A ′ T ∈ F or S ′ ¬A ′ T ∈
F .

Due to item 6. of the above definition, cut-refutability properties are
infinite sets.

Lemma 8. (Counter-model existence theorem) If S is an element of a cut-
refutability property for L, then S has a falsifying L-valuation.

For the purpose of proving this lemma we adopt the usual technique
coupled with consistency properties (see [19], Section 3.6., pp. 52–57), but
adjust it to our sequence-format. Namely, we will call a cut-refutability
property F subsequence closed7 iff every subsequence S∗ of a sequence S ∈ F
is already in F .

7By subsequence of sequence S we mean any sequence that is created by deleting some
elements of S without changing the order of the other elements. More formally, finite
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We state without proof:

Fact 3. Every cut-refutability property may be extended to one which is
subsequence closed.

By the way, observe that our subsequence closed cut-refutability prop-
erties are already of finite character. Finite sequences are sufficient for
our aims, as we deal with the propositional level only. Now we will prove
the counter-model existence lemma for subsequence closed properties, then
Lemma 8 will follow as a corollary from this result and Fact 3.

Lemma 9. (Counter-model existence lemma for subsequence closed cut-
refutability properties) If S is an element of a cut-refutability property F
for L and F is subsequence closed, then S has a falsifying L-valuation.

Proof. Suppose that F is a subsequence closed cut-refutability property
for L and assume that S ∈ F . As we already know, if S is empty, then there
exists a falsifying L-valuation for S, thus suppose it is not.

By and large, the proof will run analogously as the proof of Lemma 6.
The base step is exactly the same.

We assume the induction hypothesis: for each sequence of rank less than
n (n > 0) there exists a falsifying L-valuation. Let S ∈ F be such that
r(S) = n. As in the proof of Lemma 6, we need to consider separately the
case when there is exactly one formula F of rank n, and when there is k > 1
formulas of rank n.

Let S = S1
′ F ′ S2 (this time we use the notation with concatenation),

where F is the only formula in S of rank n. We skip the cases of F being a
κ-formula and F being a β-formula.

Assume that F is an α-formula and let α0, α1 stand for the components
of F . By item 6. of Definition 15:

(a) sequence S∗ = S1
′ α ′ α0

′ S2 belongs to F or

(b) sequence S♯ = S1
′ α ′ α0

′ S2 belongs to F

Obviously, r(α0) < r(α) and r(α0) < r(α). If (a) holds, then by item 2. of
Definition 15, T = S1

′ α1
′ α0

′ S2 ∈ F . Moreover, r(α1) < n, therefore
r(T ) < n, and as before, we arrive at the conclusion that there exists a
falsifying L-valuation v for T which is also a falsifying L-valuation for S∗.
Since v makes each term of S∗ false, it also makes each term of S false.

Footnote 7 continued
n-term sequence is a function from {1, . . . , n} to a certain set (the set of terms of the
sequence). A subsequence of a sequence is any restriction of this function.
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Suppose that (b) is the case. This is the tricky part where we need the
property of being subsequence closed. Consider the following sequence of
literals: S♯♯ = S1

′ α0
′ S2. It is a subsequence of S♯, so it belongs to F .

Moreover, r(S♯♯) < n, thus the induction hypothesis applies to S♯♯: there
exists an L-valuation v falsifying S♯♯. We have v(α0) = 0, and thus also
v(α) = 0, which shows that v is a falsifying L-valuation for S♯. The same
L-valuation falsifies S.

The situation is similar when F is an ε-formula. We use cut (that is item
6. of Definition 15) to introduce:

(a) sequence S∗ = S1
′ ε ′ ε00

′ S2 belongs to F or

(b) sequence S♯ = S1
′ ε ′ ε00

′ S2 belongs to F

If (a) holds, then by item 5. of Definition 15 we arrive at the conclusion that
there exists a falsifying L-valuation v for S∗, which falsifies also S.

If (b) holds, then we have to use item 6. of Definition 15 once again, to
come to the conclusion that:

(c) sequence S∗ = S1
′ ε ′ ε00

′ ε01
′ S2 belongs to F or

(d) sequence S♯ = S1
′ ε ′ ε00

′ ε01
′ S2 belongs to F

If (c) holds, then we reason as in the case (a), and (d) is the tricky part where
we use the subsequence-closed property and the fact that v(ε00) = v(ε01) = 0
yields v(ε) = 0.

Now we reason by induction with respect to the number k of formulas of
rank n in sequence S. The base case has been proved above and it is easy
to see that the inductive part may be proved by exactly the same reasoning
as that presented for the base step. Therefore we skip it.

Now we go back to:

Proof. of Lemma 8.

By Fact 3, every cut-refutability property for L may be extended to one
which is subsequence closed, and by Lemma 9, if S is an element of a cut-
refutability property F for L and F is subsequence closed, then S has a falsi-
fying L-valuation. Therefore if S is an element of a cut-refutability property
for L, then S has a falsifying L-valuation.

Analogously as before, we define the notion of RS-refutable sequence in
RS

L

cut and proceed to:
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Lemma 10. Let G be a family of all finite and non-empty sequences S of
formulas of LL+ which are RS-refutable in RS

L

cut. G is a cut-refutability
property for L.

Proof. The reasoning is exactly as in the case of Lemma 7. Item 1. of
Definition 15 is satisfied, as fundamental sequences are not RS-refutable. For
the other items we show smoothly that if, e.g., S(ε/εjn, εjm) 6∈ F , then there
exists a successful decomposition diagram that can be easily “extended” by
adding the root with S(ε)(εik) to the top of it, and so finally we arrive at the
conclusion that S(ε)(εik) 6∈ F (where i, j, k, n,m are suitably restricted).

We consider item 6. Let S ′ T ∈ G. We want to show that then also for
each formula A of LL+ , S ′ A ′ T ∈ G or S ′ ¬A ′ T ∈ G. Therefore suppose
that for certain formula A, neither S ′ A ′ T is in G nor S ′ ¬A ′ T is in G.
By the definition of RS-refutable sequences it means that both: S ′ A ′ T
and S ′ ¬A ′ T have successful decomposition diagrams. The two diagrams
may be combined to obtain a successful decomposition diagram of sequence
S ′ T . This is done exactly as in the proof of Lemma 7 for the case of α-
formulas.

Theorem 4. (Completeness) Let A be a formula of LL. If A is L-valid, then

A is provable in RS
L

cut.

Proof. Suppose that it is not. Then 〈A〉 is RS-refutable. By Lemma 10, 〈A〉
belongs to a cut-refutability property. By Lemma 8, there is an L-valuation
v such that v(A) = 0. Thus by contraposition, if A is L-valid, then A must

be provable in RS
L

cut.

5.2. Completeness of Analytic Restrictions of R–S Systems with Cut

It was tempting to prove completeness of analytic R–S systems by the same
technique which works for the unrestricted version. The following definition
has been prepared for this occasion:

Definition 16. Let F be a family of finite sequences of formulas of LL+ ,
the empty sequence included. We say that F is an analytic cut-refutability
property iff clauses 1.-5. from Definition 15 are satisfied and

6*. If S ′ T ∈ F , then for each formula A such that:

(i) {A,¬A} ∩ Dec(S ′ T ) 6= ∅, and
(ii) neither A nor ‘¬A’ is a term of S ′ T ,

it is the case that S ′ A ′ T ∈ F or S ′ ¬A ′ T ∈ F .
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In order to prove completeness we had to show that every analytic cut-
refutability property is a subset of a refutability property. For this purpose
we have developed a kind of Henkin-style construction; it turned out, how-
ever, that both the construction and the proof of its correctness get irra-
tionally complicated, having nothing in common with the usual elegance
of abstract properties. One hypothesis explaining why it is the case is that
when the rules of deduction system are formulated in uniform notation they
do not characterize the (classical) negation connective as such. Then adding
a clause expressing cut, as an operation involving a formula and its nega-
tion, causes an “interference” which makes the proofs entangle in subcases
of subcases.

Obviously, we may be wrong. But in order to prove completeness of the
restricted analytic version of RS

L

cut we decided to rely on a terminating
proof-search procedure. Similar strategy has been adopted in [16,17], where
the authors first prove completeness of KE by a smart argument referring
KE to an axiomatic system (where the rule of cut is used to simulate Modus
Ponens), and then prove completeness of the analytic restriction of KE by
developing a suitable proof-search procedure.

5.2.1. Proof-Search Procedure for the Analytic Restriction of RS
L

cut
Let

us stress, however, that this proof-search procedure is developed for the
purpose of the completeness proof, and not for the purpose of “genuine”
proof-search, since, first of all, the efficiency of the procedure must be poor.8

First of all, the proof-procedure aims at decreasing the rank of a sequence
of formulas. Recall that the rank of a sequence is defined as the maximum
of ranks of the formulas in the sequence. Therefore we start with a decom-
position of a formula whose rank equals the rank of the analysed sequence.
Let A stand for the leftmost such formula (there may be more than one). If
A is a κ- or β-formula, then the things are simple: we apply the appropriate
rule and check if there is another formula of the same rank in the sequence-
conclusion. If A is an α- or ε-formula, then we check for the complement of
its component: αi or εik. If there is one, then we apply the appropriate rule
and, again, search for formulas of the same rank in the sequence-conclusion.

Now suppose that A is an α- or ε-formula but the suitable complement
of its component is missing. We do what follows.

8As was rightly pointed out by one of the Reviewers, the cause of inefficiency is directly
related to. . . the use of the rule of cut, since the whole sequence of formulas must be
searched through before its application (see the description of the procedure).
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• For α-formulas: check if there is a component of A in the analysed se-
quence. If there is one, then mark A as analysed, since the component
“witnesses” A’s falsity. If there is no component, then choose one of
them, e.g. α0, and apply Rcut introducing α0 and α0 as cut formulas.
(Observe that this application of Rcut is analytic in the sense of Defi-
nition 10.) There are two sequences-conclusions. In the next step apply
lRα with respect to the sequence-conclusion with α0, then formula A
will be replaced with its component and thus one formula of the maxi-
mal rank disappears. In the second sequence-conclusion there is A and
its component, thus mark A as analysed.

• For ε-formulas: we need two components of the forms εi0, εi1 to witness
A’s falsity. If there is such a pair of components in the analysed sequence,
then mark A as analysed. If there is exactly one component of a pair,
e.g. ε00, then apply Rcut with the second component of the pair and its
complement, e.g. ε01 and ε01, as cut formulas. (Again, this application
of Rcut is analytic.) Then in the sequence-conclusion with ε01 apply lRε,
and in the sequence-conclusion with ε01 there is now a required pair of
components, thus mark A as analysed.

Finally, if there is no component of A in the analysed sequence, then
choose one, e.g. ε00, apply Rcut with ε00 and ε00 as cut formulas, and then
apply Rcut again to the sequence-conclusion containing ε00, introducing
ε01 and ε01 as cut formulas. Both applications of Rcut are analytic. We
obtain situations as above—in each of the resulting sequences A is either
replaced with a pair of its components or marked as analysed.

On further steps of proof-search the formulas marked as analysed are
ignored. By König’s Lemma this kind of procedure terminates—this may
be demonstrated with the use of rank of a sequence. When a decomposition
diagram is finished, its leaves contain only formulas of rank 0 and/or those
marked as analysed. If the leaves are fundamental, then we have a proof
(a successful decomposition diagram). If the decomposition diagram is not
successful, then we choose e.g. the leftmost leaf which is not a fundamental
sequence and assign the logical value 0 to all its terms of rank 0. Simple
reasoning by induction with respect to rank of formulas shows that every
formula which is a term of a sequence on the same branch is false under
each L-valuation which is an extension of the assignment. And this allows
us to state:
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Theorem 5. (Completeness of analytic restriction of RS
L

cut) Let A be a
formula of LL. If A is L-valid, then A is provable in the analytic restriction
of RS

L

cut.

6. R–S Systems and the Logic of Questions

The inspiration to construct R–S systems presented in this paper came from
research conducted in the framework of Inferential Erotetic Logic (IEL, for
short; see [38] for a general introduction). The logic of questions IEL gave
birth to two proof methods: the method of synthetic tableaux (see [36])
and the method of Socratic proofs, which is, roughly speaking, a method
of transforming questions of certain formal languages concerning such im-
portant logical properties as validity. An erotetic calculus is a set of rules
transforming such questions; at the same time, it constitutes a deduction
system for the underlying logic. The method has been described for classical
[12,37,39] and various non-classical logics [14,27,28,40].

The results presented in this paper were originally obtained in the frame-
work of the method of Socratic proofs. We realised, however, that the format
of R–S systems can be somewhat more general, hence the decision to take
the proof-theoretical perspective and leave the erotetic aspects aside.9

However, here is something for the Readers familiar with the method
of Socratic proofs and for those interested in erotetic reasoning. Using the
uniform notation introduced in this paper, the erotetic calculi E

L for logics
L ∈ {CPL,CPL(↔),CLuN,CLuNs,mbC} may be presented as follows.

?(Φ ; ⊢ S(α) ; Ψ)

?(Φ ; ⊢ S(α/α0) ; ⊢ S(α/α1) ; Ψ)
Rα

?(Φ ; ⊢ S(β) ; Ψ)

?(Φ ; ⊢ S(β/β0, β1) ; Ψ)
Rβ

?(Φ ; ⊢ S(κ) ; Ψ)

?(Φ ; ⊢ S(κ/κ0) ; Ψ)
Rκ

?(Φ ; ⊢ S ′ ε ′ T ; Ψ)

?(Φ ; ⊢ S ′ ε00
′ ε01

′ T ; ⊢ S ′ ε10
′ ε11

′ T ; Ψ)
Rε

9There is more to say abut the common denominator of the method of Socratic proofs
and the R–S systems. In [22] the authors sketch an algorithmic procedure of generating a
proof in an axiomatic system for CPL which is based on the use of the method of Socratic
proofs. The result is constructive and leads, int.al., to a conclusion that the method of
Socratic proofs for CPL is polynomially simulated by the axiomatic system. However,
originally, the research has been inspired by a similar work done in the framework of the
R–S systems in [30]. As the authors of [22] admit, the result may be easily formulated with
the use of the R–S machinery.
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And the rules of E
L
cut may be presented as follows.

?(Φ ; ⊢ S(α)(αi) ; Ψ)

?(Φ ; ⊢ S(α/αj) ; Ψ)
lRα

?(Φ ; ⊢ S(β) ; Ψ)

?(Φ ; ⊢ S(β/β0, β1) ; Ψ)
Rβ

where i, j ∈ {0, 1}, i 6= j

?(Φ ; ⊢ S(κ) ; Ψ)

?(Φ ; ⊢ S(κ/κ0) ; Ψ)
Rκ

?(Φ ; ⊢ S ′ T ; Ψ)

?(Φ ; ⊢ S ′A ′ T ; ⊢ S ′¬A ′ T ; Ψ)
RPB

?(Φ ; ⊢ S(ε)(εik) ; Ψ)

?(Φ ; ⊢ S(ε/εjn, εjm) ; Ψ)
lRε

where i, j, k, n,m ∈ {0, 1}, i 6= j and n 6= m.

7. Conclusions

In this paper we have presented two versions of Rasiowa–Sikorski deduction
systems for the following logics: CPL, the propositional parts of paraconsis-
tent logics CLuN and CLuNs, and mbC, which is the minimal logic of formal
inconsistency. The first version of the R–S systems goes along the lines of R–
S methodology, whereas the second one simulates the KE tableau calculus in
the R–S framework. It turns out that the two frameworks may be combined
with benefits, although the questions about the complexity of the obtained
systems, especially their relative complexity, remain open. This subject may
be further investigated.

One of the technical results of the presented research is the use of the so-
called refutability properties—dual to consistency properties—in the com-
pleteness proof, especially the adjustment of this notion to the presented
proof format. The technique of proving completeness by the use of the
refutability properties seems promising and its usefulness will be examined
in the future.
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[14] Chlebowski, S.Z., and D. Leszczyńska-Jasion, Dual Erotetic Calculi and the Min-

imal LFI. Studia Logica 103(6):1245–1278, 2015.

[15] Coniglio, M.E., and T.G. Rodrigues, Some investigations on mbC and mCi. In C.A.

Mortari, (ed.), Tópicos de lógicas não clássicas, NEL/UFSC, 2014, pp. 11–70.

[16] D’Agostino, M., Are tableaux an improvement on truth-tables? Journal of Logic,

Language and Information 1(3):235–252, 1992.

[17] D’Agostino, M., and M. Mondadori, The Taming of the Cut. Classical Refutations

with Analytic Cut. Journal of Logic and Computation 4(3):285–319, 1994.

347
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